Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017

Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly unce...

Full description

Saved in:
Bibliographic Details
Published inEarth system science data Vol. 12; no. 4; pp. 2725 - 2746
Main Authors Zheng, Yi, Shen, Ruoque, Wang, Yawen, Li, Xiangqian, Liu, Shuguang, Liang, Shunlin, Chen, Jing M., Ju, Weimin, Zhang, Li, Yuan, Wenping
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 12.11.2020
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1866-3516
1866-3508
1866-3516
DOI10.5194/essd-12-2725-2020

Cover

Loading…
Abstract Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05∘ latitude by 0.05∘ longitude and 8 d interval by revising a light use efficiency model (i.e., EC-LUE model). In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 95 towers from the FLUXNET2015 dataset, covering nine major ecosystem types around the globe, were used to calibrate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and annual variations in the tower-estimated GPP at most sites. The revised EC-LUE model could explain 71 % of the spatial variations in annual GPP over 95 sites. At more than 95 % of the sites, the correlation coefficients (R2) of seasonal changes between tower-estimated and model-simulated GPP are larger than 0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the interannual variations in GPP, and the averaged R2 between annual mean tower-estimated and model-simulated GPP is 0.44 over all 55 sites with observations longer than 5 years, which is significantly higher than those of the original EC-LUE model (R2=0.36) and other LUE models (R2 ranged from 0.06 to 0.30 with an average value of 0.16). At the global scale, GPP derived from light use efficiency models, machine learning models, and process-based biophysical models shows substantial differences in magnitude and interannual variations. The revised EC-LUE model quantified the mean global GPP from 1982 to 2017 as 106.2±2.9 Pg C yr−1 with the trend 0.15 Pg C yr−1. Sensitivity analysis indicated that GPP simulated by the revised EC-LUE model was sensitive to atmospheric CO2 concentration, VPD, and radiation. Over the period of 1982–2017, the CO2 fertilization effect on the global GPP (0.22±0.07 Pg C yr−1) could be partly offset by increased VPD (-0.17±0.06 Pg C yr−1). The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at https://doi.org/10.6084/m9.figshare.8942336.v3 (Zheng et al., 2019).
AbstractList Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05 ∘ latitude by 0.05 ∘ longitude and 8 d interval by revising a light use efficiency model (i.e., EC-LUE model). In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 95 towers from the FLUXNET2015 dataset, covering nine major ecosystem types around the globe, were used to calibrate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and annual variations in the tower-estimated GPP at most sites. The revised EC-LUE model could explain 71 % of the spatial variations in annual GPP over 95 sites. At more than 95 % of the sites, the correlation coefficients ( R2 ) of seasonal changes between tower-estimated and model-simulated GPP are larger than 0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the interannual variations in GPP, and the averaged R2 between annual mean tower-estimated and model-simulated GPP is 0.44 over all 55 sites with observations longer than 5 years, which is significantly higher than those of the original EC-LUE model ( R2=0.36 ) and other LUE models ( R2 ranged from 0.06 to 0.30 with an average value of 0.16). At the global scale, GPP derived from light use efficiency models, machine learning models, and process-based biophysical models shows substantial differences in magnitude and interannual variations. The revised EC-LUE model quantified the mean global GPP from 1982 to 2017 as 106.2±2.9  Pg C yr −1 with the trend 0.15 Pg C yr −1 . Sensitivity analysis indicated that GPP simulated by the revised EC-LUE model was sensitive to atmospheric CO2 concentration, VPD, and radiation. Over the period of 1982–2017, the CO2 fertilization effect on the global GPP ( 0.22±0.07  Pg C yr −1 ) could be partly offset by increased VPD ( - 0.17 ± 0.06 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="096d8044a803ed944d7cc08e33c9559b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-2725-2020-ie00001.svg" width="64pt" height="10pt" src="essd-12-2725-2020-ie00001.png"/></svg:svg>  Pg C yr −1 ). The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at https://doi.org/10.6084/m9.figshare.8942336.v3 (Zheng et al., 2019).
Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05∘ latitude by 0.05∘ longitude and 8 d interval by revising a light use efficiency model (i.e., EC-LUE model). In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 95 towers from the FLUXNET2015 dataset, covering nine major ecosystem types around the globe, were used to calibrate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and annual variations in the tower-estimated GPP at most sites. The revised EC-LUE model could explain 71 % of the spatial variations in annual GPP over 95 sites. At more than 95 % of the sites, the correlation coefficients (R2) of seasonal changes between tower-estimated and model-simulated GPP are larger than 0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the interannual variations in GPP, and the averaged R2 between annual mean tower-estimated and model-simulated GPP is 0.44 over all 55 sites with observations longer than 5 years, which is significantly higher than those of the original EC-LUE model (R2=0.36) and other LUE models (R2 ranged from 0.06 to 0.30 with an average value of 0.16). At the global scale, GPP derived from light use efficiency models, machine learning models, and process-based biophysical models shows substantial differences in magnitude and interannual variations. The revised EC-LUE model quantified the mean global GPP from 1982 to 2017 as 106.2±2.9 Pg C yr−1 with the trend 0.15 Pg C yr−1. Sensitivity analysis indicated that GPP simulated by the revised EC-LUE model was sensitive to atmospheric CO2 concentration, VPD, and radiation. Over the period of 1982–2017, the CO2 fertilization effect on the global GPP (0.22±0.07 Pg C yr−1) could be partly offset by increased VPD (-0.17±0.06 Pg C yr−1). The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at https://doi.org/10.6084/m9.figshare.8942336.v3 (Zheng et al., 2019).
Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05.sup." latitude by 0.05.sup." longitude and 8 d interval by revising a light use efficiency model (i.e., EC-LUE model). In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO.sub.2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 95 towers from the FLUXNET2015 dataset, covering nine major ecosystem types around the globe, were used to calibrate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and annual variations in the tower-estimated GPP at most sites. The revised EC-LUE model could explain 71 % of the spatial variations in annual GPP over 95 sites. At more than 95 % of the sites, the correlation coefficients (R.sup.2) of seasonal changes between tower-estimated and model-simulated GPP are larger than 0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the interannual variations in GPP, and the averaged R.sup.2 between annual mean tower-estimated and model-simulated GPP is 0.44 over all 55 sites with observations longer than 5 years, which is significantly higher than those of the original EC-LUE model (R.sup.2 =0.36) and other LUE models (R.sup.2 ranged from 0.06 to 0.30 with an average value of 0.16). At the global scale, GPP derived from light use efficiency models, machine learning models, and process-based biophysical models shows substantial differences in magnitude and interannual variations. The revised EC-LUE model quantified the mean global GPP from 1982 to 2017 as 106.2±2.9 Pg C yr.sup.-1 with the trend 0.15 Pg C yr.sup.-1 . Sensitivity analysis indicated that GPP simulated by the revised EC-LUE model was sensitive to atmospheric CO.sub.2 concentration, VPD, and radiation. Over the period of 1982-2017, the CO.sub.2 fertilization effect on the global GPP (0.22±0.07 Pg C yr.sup.-1) could be partly offset by increased VPD (-0.17±0.06 Pg C yr.sup.-1). The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at
Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05∘ latitude by 0.05∘ longitude and 8 d interval by revising a light use efficiency model (i.e., EC-LUE model). In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 95 towers from the FLUXNET2015 dataset, covering nine major ecosystem types around the globe, were used to calibrate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and annual variations in the tower-estimated GPP at most sites. The revised EC-LUE model could explain 71 % of the spatial variations in annual GPP over 95 sites. At more than 95 % of the sites, the correlation coefficients (R2) of seasonal changes between tower-estimated and model-simulated GPP are larger than 0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the interannual variations in GPP, and the averaged R2 between annual mean tower-estimated and model-simulated GPP is 0.44 over all 55 sites with observations longer than 5 years, which is significantly higher than those of the original EC-LUE model (R2=0.36) and other LUE models (R2 ranged from 0.06 to 0.30 with an average value of 0.16). At the global scale, GPP derived from light use efficiency models, machine learning models, and process-based biophysical models shows substantial differences in magnitude and interannual variations. The revised EC-LUE model quantified the mean global GPP from 1982 to 2017 as 106.2±2.9 Pg C yr-1 with the trend 0.15 Pg C yr-1. Sensitivity analysis indicated that GPP simulated by the revised EC-LUE model was sensitive to atmospheric CO2 concentration, VPD, and radiation. Over the period of 1982–2017, theCO2 fertilization effect on the global GPP (0.22±0.07 Pg C yr-1) could be partly offset by increased VPD (-0.17±0.06 Pg C yr-1). The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at 10.6084/m9.figshare.8942336.v3 (Zheng et al., 2019).
Audience Academic
Author Liu, Shuguang
Liang, Shunlin
Yuan, Wenping
Ju, Weimin
Zheng, Yi
Zhang, Li
Shen, Ruoque
Chen, Jing M.
Li, Xiangqian
Wang, Yawen
Author_xml – sequence: 1
  givenname: Yi
  surname: Zheng
  fullname: Zheng, Yi
– sequence: 2
  givenname: Ruoque
  orcidid: 0000-0002-4408-829X
  surname: Shen
  fullname: Shen, Ruoque
– sequence: 3
  givenname: Yawen
  surname: Wang
  fullname: Wang, Yawen
– sequence: 4
  givenname: Xiangqian
  surname: Li
  fullname: Li, Xiangqian
– sequence: 5
  givenname: Shuguang
  surname: Liu
  fullname: Liu, Shuguang
– sequence: 6
  givenname: Shunlin
  orcidid: 0000-0003-2708-9183
  surname: Liang
  fullname: Liang, Shunlin
– sequence: 7
  givenname: Jing M.
  surname: Chen
  fullname: Chen, Jing M.
– sequence: 8
  givenname: Weimin
  surname: Ju
  fullname: Ju, Weimin
– sequence: 9
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
– sequence: 10
  givenname: Wenping
  surname: Yuan
  fullname: Yuan, Wenping
BookMark eNp1UsuKFDEULWQEZ0Y_wF3AlWCNuXlWlsPgo2FA8LEOqTyKNNWVMUkPuvMf_EO_xNT0KLYoWdxwOOfk5t5z1p0safFd9xTwBQfFXvpSXA-kJ5LwnmCCH3SnMAjRUw7i5I_7o-6slC3GgoHkp13c7G5yuvUO-VLjzlSPUkDTnEYzoymnUtBNbnj-2mpye1tjWlBIGWV_AOIyoVgLmtMy9dXnHbo1OZqV9wKBGsiPb98JBvm4exjMXPyT-3refXr96uPV2_763ZvN1eV1bzlTtZdOjUEaBw6DF0QZNRpOZZBgKSOKKDcYPlBhg-FsxEFYz_gwGGmAUclHet5tDr4uma2-b14nE_UdkPKkTa7Rzl4PEJwArij2kgnDBkxFsIxRUBSAmeb17ODVvvp53yakt2mfl9a-JowrzoVs1N-syTTTuIRUs7G7WKy-bGOmDLCijXXxD1Y7zu-ibdsMseFHgudHgsap_kudzL4Uvfnw_pgrD1y7riz7oG2sdztoj8RZA9ZrTPQaEw1ErzHRa0yaEv5S_hrZ_zU_AWwlwC0
CitedBy_id crossref_primary_10_1029_2022EF003474
crossref_primary_10_5194_essd_16_1283_2024
crossref_primary_10_11922_11_6035_nesdc_2024_0174_zh
crossref_primary_10_1007_s00382_025_07615_w
crossref_primary_10_1038_s41597_022_01309_2
crossref_primary_10_1016_j_scitotenv_2022_156172
crossref_primary_10_1007_s40333_024_0090_3
crossref_primary_10_1016_j_jhydrol_2024_131012
crossref_primary_10_1038_s43247_023_00869_4
crossref_primary_10_1111_gcb_17479
crossref_primary_10_3390_f14091880
crossref_primary_10_1016_j_jenvman_2023_119566
crossref_primary_10_3390_rs14194795
crossref_primary_10_1007_s11356_024_35267_6
crossref_primary_10_1016_j_agrformet_2023_109789
crossref_primary_10_1016_j_gloplacha_2024_104537
crossref_primary_10_1029_2023MS003714
crossref_primary_10_11922_11_6035_csd_2021_0047_zh
crossref_primary_10_1016_j_atmosenv_2024_120678
crossref_primary_10_3390_rs14143402
crossref_primary_10_1007_s11442_023_2151_5
crossref_primary_10_3390_f14061201
crossref_primary_10_12677_gser_2024_132044
crossref_primary_10_5194_hess_28_4989_2024
crossref_primary_10_1038_s41558_024_02191_z
crossref_primary_10_34133_remotesensing_0127
crossref_primary_10_3390_rs15010071
crossref_primary_10_1016_j_ecolind_2024_112631
crossref_primary_10_1016_j_scitotenv_2024_176673
crossref_primary_10_1016_j_envres_2024_119063
crossref_primary_10_3390_rs16010045
crossref_primary_10_1016_j_agrformet_2024_110264
crossref_primary_10_1016_j_scitotenv_2022_158499
crossref_primary_10_3390_rs14184541
crossref_primary_10_1016_j_ecolind_2022_109150
crossref_primary_10_1016_j_scib_2023_01_027
crossref_primary_10_3390_rs14236062
crossref_primary_10_1002_ece3_71092
crossref_primary_10_1016_j_ecolind_2024_111551
crossref_primary_10_3390_rs15174216
crossref_primary_10_1038_s41597_024_03893_x
crossref_primary_10_1016_j_jag_2021_102522
crossref_primary_10_1016_j_agrformet_2023_109883
crossref_primary_10_1016_j_wsee_2023_04_001
crossref_primary_10_1093_jpe_rtae108
crossref_primary_10_1038_s41558_022_01464_9
crossref_primary_10_1016_j_ecoinf_2024_102767
crossref_primary_10_1126_science_abb7772
crossref_primary_10_1088_1748_9326_ac1a3b
crossref_primary_10_1029_2021WR031871
crossref_primary_10_3390_rs16193731
crossref_primary_10_3390_cli11100205
crossref_primary_10_1177_03091333221114864
crossref_primary_10_1080_22797254_2023_2301657
crossref_primary_10_3390_rs17030487
crossref_primary_10_1016_j_jhydrol_2024_130881
crossref_primary_10_1038_s41558_024_02022_1
crossref_primary_10_1016_j_scitotenv_2024_177344
crossref_primary_10_3390_land13091346
crossref_primary_10_1016_j_gecco_2024_e02891
crossref_primary_10_1016_j_srs_2024_100152
crossref_primary_10_1088_1748_9326_ac4765
crossref_primary_10_34133_ehs_0278
crossref_primary_10_1038_s43017_024_00601_6
crossref_primary_10_1016_j_scib_2024_12_054
crossref_primary_10_1088_1748_9326_ad1726
crossref_primary_10_1016_j_ecolind_2024_112465
crossref_primary_10_1016_j_isci_2023_107211
crossref_primary_10_1016_j_scitotenv_2024_173432
crossref_primary_10_1016_j_agrformet_2023_109622
crossref_primary_10_1016_j_jhydrol_2022_128979
crossref_primary_10_5194_gmd_16_4155_2023
crossref_primary_10_1016_j_scitotenv_2024_170713
crossref_primary_10_1016_j_agrformet_2023_109717
crossref_primary_10_1016_j_agrformet_2022_108905
crossref_primary_10_3390_rs16081361
crossref_primary_10_5194_gmd_18_287_2025
crossref_primary_10_1016_j_envres_2024_119145
crossref_primary_10_1080_15481603_2024_2430638
crossref_primary_10_3390_rs14246237
crossref_primary_10_31676_0235_2591_2024_6_33_40
crossref_primary_10_1016_j_agrformet_2024_110229
crossref_primary_10_1002_ldr_4560
crossref_primary_10_1029_2021JD035753
crossref_primary_10_3390_f14071336
crossref_primary_10_1016_j_scitotenv_2022_153343
crossref_primary_10_1016_j_ecoinf_2021_101307
crossref_primary_10_3390_rs17010083
crossref_primary_10_1016_j_scitotenv_2022_155086
crossref_primary_10_3354_meps13889
crossref_primary_10_1016_j_jenvman_2023_118176
crossref_primary_10_1038_s41558_024_02205_w
crossref_primary_10_1016_j_jag_2023_103179
crossref_primary_10_1016_j_jhydrol_2024_131844
crossref_primary_10_1016_j_jhydrol_2024_132012
crossref_primary_10_1126_science_adf5041
crossref_primary_10_3390_rs14051187
crossref_primary_10_1007_s11707_024_1136_8
crossref_primary_10_5194_esd_13_833_2022
crossref_primary_10_1029_2022MS003397
crossref_primary_10_1016_j_agrformet_2023_109814
crossref_primary_10_1016_j_accre_2024_04_001
crossref_primary_10_1016_j_ecolind_2023_111201
crossref_primary_10_1029_2023JG007553
crossref_primary_10_1016_j_jag_2023_103360
crossref_primary_10_3390_rs16071179
crossref_primary_10_1016_j_jhydrol_2023_129292
crossref_primary_10_1016_j_scitotenv_2024_176293
crossref_primary_10_3390_rs15030665
crossref_primary_10_3390_rs13173374
crossref_primary_10_1029_2020JG005953
crossref_primary_10_3390_rs14061509
crossref_primary_10_1016_j_gecco_2023_e02737
crossref_primary_10_1038_s43247_023_00757_x
crossref_primary_10_1016_j_pce_2023_103389
crossref_primary_10_1016_j_ecoinf_2022_101948
crossref_primary_10_1016_j_agrformet_2023_109702
crossref_primary_10_3390_rs15174197
crossref_primary_10_1016_j_scitotenv_2025_179065
crossref_primary_10_3390_rs14010057
crossref_primary_10_1016_j_agrformet_2024_110197
crossref_primary_10_3390_rs16111856
crossref_primary_10_3389_fenvs_2022_908875
crossref_primary_10_3390_f15071198
crossref_primary_10_1016_j_scitotenv_2022_161250
crossref_primary_10_1016_j_ecolind_2024_111976
crossref_primary_10_5194_gmd_15_6637_2022
crossref_primary_10_1175_BAMS_D_18_0341_1
crossref_primary_10_1016_j_resconrec_2023_107279
crossref_primary_10_1088_1748_9326_ac4c5b
crossref_primary_10_1016_j_scitotenv_2021_148443
crossref_primary_10_1109_JSTARS_2021_3114190
crossref_primary_10_1109_JSTARS_2024_3432581
crossref_primary_10_1016_j_srs_2022_100049
crossref_primary_10_1016_j_agrformet_2023_109359
crossref_primary_10_1016_j_scitotenv_2023_166507
crossref_primary_10_3390_atmos15030253
crossref_primary_10_1029_2021GL093864
crossref_primary_10_1016_j_cub_2023_07_030
crossref_primary_10_3390_rs13245080
crossref_primary_10_3390_atmos14040687
crossref_primary_10_1016_j_jhydrol_2023_130142
crossref_primary_10_3390_rs14010061
crossref_primary_10_1016_j_jhydrol_2023_129715
crossref_primary_10_1016_j_jenvman_2022_115509
crossref_primary_10_3390_rs15235537
crossref_primary_10_1109_JSTARS_2021_3132723
crossref_primary_10_1016_j_scitotenv_2021_148458
crossref_primary_10_1016_j_scitotenv_2024_173691
crossref_primary_10_1016_j_rse_2023_113919
crossref_primary_10_1007_s00704_024_05275_0
crossref_primary_10_3389_fenvs_2022_1010269
crossref_primary_10_1088_1748_9326_ac8b98
crossref_primary_10_3390_rs15030698
crossref_primary_10_1016_j_agrformet_2023_109376
crossref_primary_10_1007_s11676_022_01546_6
crossref_primary_10_5194_bg_21_2313_2024
crossref_primary_10_1016_j_agwat_2024_109100
crossref_primary_10_1016_j_scitotenv_2024_171400
crossref_primary_10_3390_rs13051015
crossref_primary_10_1080_15481603_2023_2300214
crossref_primary_10_5194_essd_14_5463_2022
crossref_primary_10_3389_fmars_2020_604532
crossref_primary_10_1016_j_agrformet_2021_108761
crossref_primary_10_1016_j_jag_2022_102755
crossref_primary_10_1029_2022JG006918
crossref_primary_10_1016_j_isprsjprs_2022_10_018
crossref_primary_10_1016_j_agrformet_2023_109337
crossref_primary_10_3390_rs13152875
crossref_primary_10_1038_s41597_023_02224_w
crossref_primary_10_1029_2023GB007696
crossref_primary_10_1080_15481603_2024_2318846
crossref_primary_10_1016_j_scitotenv_2023_167663
crossref_primary_10_1029_2021MS002515
crossref_primary_10_5194_bg_21_2253_2024
crossref_primary_10_1080_15481603_2023_2213489
crossref_primary_10_3390_rs16193604
crossref_primary_10_1029_2022MS003464
crossref_primary_10_1016_j_scitotenv_2024_176666
crossref_primary_10_1016_j_scienta_2024_113229
crossref_primary_10_1016_j_ecolind_2022_109739
crossref_primary_10_1177_2754124X241235545
crossref_primary_10_1186_s13717_021_00281_w
crossref_primary_10_1029_2022JG007100
crossref_primary_10_3390_rs15225275
crossref_primary_10_1016_j_scib_2023_01_014
crossref_primary_10_1080_17538947_2023_2207840
crossref_primary_10_3390_rs14215487
crossref_primary_10_1016_j_scitotenv_2023_163839
crossref_primary_10_3390_rs15215212
crossref_primary_10_1109_JSTARS_2021_3076075
crossref_primary_10_1016_j_agrformet_2025_110462
crossref_primary_10_3390_rs16193706
crossref_primary_10_3390_rs14112651
crossref_primary_10_1016_j_ecolind_2024_111626
crossref_primary_10_1016_j_scitotenv_2024_170886
crossref_primary_10_3390_rs14071722
crossref_primary_10_1016_j_scitotenv_2021_152231
crossref_primary_10_1016_j_jenvman_2024_120254
crossref_primary_10_1016_j_ecolind_2022_108664
crossref_primary_10_1016_j_scitotenv_2022_159390
crossref_primary_10_1016_j_scitotenv_2023_164917
crossref_primary_10_3389_fpls_2024_1482077
crossref_primary_10_1016_j_agrformet_2023_109689
crossref_primary_10_1016_j_agrformet_2023_109327
crossref_primary_10_1016_j_agrformet_2024_110293
crossref_primary_10_1016_j_wace_2024_100700
crossref_primary_10_1109_ACCESS_2022_3210218
crossref_primary_10_1016_j_jag_2022_102978
crossref_primary_10_5194_bg_21_4285_2024
crossref_primary_10_1088_1748_9326_ad8a73
crossref_primary_10_1016_j_rse_2024_114301
Cites_doi 10.1111/gcb.13973
10.1126/science.1146663
10.5194/essd-8-605-2016
10.1016/j.isprsjprs.2018.07.016
10.1073/pnas.1210196109
10.1016/j.rse.2010.01.022
10.1126/sciadv.aax1396
10.1016/j.agrformet.2006.12.001
10.1016/j.rse.2017.05.019
10.1021/j100721a006
10.1007/s10533-004-0370-0
10.1016/j.rse.2011.02.024
10.1111/gcb.12207
10.1029/2006GB002735
10.1029/2005JD005825
10.1073/pnas.0702737104
10.1175/1520-0442-11.8.2042
10.5194/gmd-9-323-2016
10.1175/EI-D-16-0012.1
10.1007/BF00390086
10.1016/0034-4257(95)00135-N
10.1016/j.rse.2018.02.049
10.1038/s41477-019-0478-9
10.1088/1742-6596/930/1/012002
10.1016/j.agrformet.2018.08.003
10.1029/2009GL042154
10.1002/2017GL076803
10.5194/gmd-4-701-2011
10.1029/2003GB002199
10.1038/nclimate3004
10.1111/j.1365-2486.2006.01265.x
10.1029/93GB02725
10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
10.1109/TGRS.2016.2560522
10.1029/2011GB004150
10.1016/S0304-3800(99)00156-8
10.1016/j.rse.2019.01.016
10.1016/j.rse.2011.08.020
10.1016/j.jenvman.2006.08.018
10.1002/2015RG000483
10.1007/BF00386231
10.5194/cp-10-1983-2014
10.1073/pnas.1904955116
10.1080/1747423X.2011.628705
10.1038/ncomms13428
10.1038/nclimate3114
10.1002/2013JG002456
10.1111/j.1365-2486.2012.02678.x
10.1126/science.1103215
10.1016/j.ecolmodel.2013.03.024
10.1111/j.1600-0889.2006.00221.x
10.5194/bg-11-2027-2014
10.1038/sdata.2017.165
10.1016/j.jag.2007.02.001
10.1038/ngeo2903
10.1016/j.rse.2017.12.024
10.1038/nclimate1693
10.1126/science.aad5068
10.1175/JCLI-D-11-00015.1
10.1016/j.envexpbot.2007.05.004
10.1126/science.1078366
10.1016/j.agrformet.2006.08.008
10.1046/j.1365-3040.1999.00391.x
10.1016/S0034-4257(98)00084-4
10.1002/jame.20022
10.3390/rs6098945
10.1016/j.rse.2012.12.023
10.1038/nature20780
10.1111/ele.12211
10.1038/s41561-019-0318-6
10.1016/j.agrformet.2018.02.010
10.1016/S0034-4257(02)00043-3
10.1177/0309133311434244
10.1016/0168-1923(91)90002-8
10.1126/science.1192666
10.1126/science.1251423
10.1002/2014JG002866
10.1038/sdata.2018.214
10.5194/essd-2019-126
10.1038/nclimate2581
10.1002/2016GL069416
10.1038/nclimate2879
10.1029/2011GB004053
10.1111/gcb.13509
10.3402/tellusb.v66.23188
10.1111/j.1469-8137.2004.01224.x
10.1111/j.1365-2486.2007.01316.x
10.1111/j.1461-0248.2009.01351.x
10.5194/hess-17-1833-2013
10.1029/2001JD001242
10.1016/j.agrformet.2014.03.007
10.1175/JHM-D-12-0123.1
10.1007/s00468-016-1486-2
10.1029/2009JD012442
10.5194/essd-7-157-2015
10.1016/j.rse.2006.06.008
10.1890/04-0470
10.1073/pnas.0509478102
10.1111/gcb.12187
10.1016/j.rse.2016.08.030
10.1111/j.1365-2486.2005.001002.x
10.1093/jxb/err294
10.1126/sciadv.aau5740
10.2307/2401901
ContentType Journal Article
Copyright COPYRIGHT 2020 Copernicus GmbH
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 Copernicus GmbH
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7SN
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/essd-12-2725-2020
DatabaseName CrossRef
Gale Science in Context
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-3516
EndPage 2746
ExternalDocumentID oai_doaj_org_article_81fd615930e746a48036fc443193114a
A641341093
10_5194_essd_12_2725_2020
GeographicLocations United States--US
North America
Europe
GeographicLocations_xml – name: North America
– name: Europe
– name: United States--US
GroupedDBID 5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACIWK
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IGS
ISR
ITC
KQ8
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RKB
RNS
TR2
TUS
ZBA
BBORY
PQGLB
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c549t-7d9bf7ad1d01e629a9ba537f71c342929d8a5836cfa54b0f6ce4588a7a14375b3
IEDL.DBID BENPR
ISSN 1866-3516
1866-3508
IngestDate Wed Aug 27 01:32:12 EDT 2025
Fri Jul 25 19:00:02 EDT 2025
Tue Jun 17 22:04:24 EDT 2025
Thu Jul 17 05:59:27 EDT 2025
Fri Jun 27 05:25:21 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Tue Jul 01 02:14:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-7d9bf7ad1d01e629a9ba537f71c342929d8a5836cfa54b0f6ce4588a7a14375b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4408-829X
0000-0003-2708-9183
OpenAccessLink https://www.proquest.com/docview/2459556719?pq-origsite=%requestingapplication%
PQID 2459556719
PQPubID 105729
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_81fd615930e746a48036fc443193114a
proquest_journals_2459556719
gale_infotracmisc_A641341093
gale_infotracacademiconefile_A641341093
gale_incontextgauss_ISR_A641341093
crossref_citationtrail_10_5194_essd_12_2725_2020
crossref_primary_10_5194_essd_12_2725_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-12
PublicationDateYYYYMMDD 2020-11-12
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-12
  day: 12
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Earth system science data
PublicationYear 2020
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref78
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref14
  doi: 10.1111/gcb.13973
– ident: ref68
  doi: 10.1126/science.1146663
– ident: ref43
  doi: 10.5194/essd-8-605-2016
– ident: ref13
  doi: 10.1016/j.isprsjprs.2018.07.016
– ident: ref35
  doi: 10.1073/pnas.1210196109
– ident: ref98
  doi: 10.1016/j.rse.2010.01.022
– ident: ref99
  doi: 10.1126/sciadv.aax1396
– ident: ref96
  doi: 10.1016/j.agrformet.2006.12.001
– ident: ref15
  doi: 10.1016/j.rse.2017.05.019
– ident: ref39
  doi: 10.1021/j100721a006
– ident: ref20
  doi: 10.1007/s10533-004-0370-0
– ident: ref34
  doi: 10.1016/j.rse.2011.02.024
– ident: ref26
  doi: 10.1111/gcb.12207
– ident: ref51
  doi: 10.1029/2006GB002735
– ident: ref42
  doi: 10.1029/2005JD005825
– ident: ref8
  doi: 10.1073/pnas.0702737104
– ident: ref21
  doi: 10.1175/1520-0442-11.8.2042
– ident: ref82
– ident: ref52
  doi: 10.5194/gmd-9-323-2016
– ident: ref46
  doi: 10.1175/EI-D-16-0012.1
– ident: ref61
  doi: 10.1007/BF00390086
– ident: ref94
  doi: 10.1016/0034-4257(95)00135-N
– ident: ref93
  doi: 10.1016/j.rse.2018.02.049
– ident: ref17
  doi: 10.1038/s41477-019-0478-9
– ident: ref33
  doi: 10.1088/1742-6596/930/1/012002
– ident: ref104
  doi: 10.1016/j.agrformet.2018.08.003
– ident: ref69
  doi: 10.1029/2009GL042154
– ident: ref16
  doi: 10.1002/2017GL076803
– ident: ref11
  doi: 10.5194/gmd-4-701-2011
– ident: ref40
  doi: 10.1029/2003GB002199
– ident: ref107
  doi: 10.1038/nclimate3004
– ident: ref81
  doi: 10.1111/j.1365-2486.2006.01265.x
– ident: ref59
  doi: 10.1029/93GB02725
– ident: ref65
  doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
– ident: ref92
  doi: 10.1109/TGRS.2016.2560522
– ident: ref97
  doi: 10.1029/2011GB004150
– ident: ref9
  doi: 10.1016/S0304-3800(99)00156-8
– ident: ref67
  doi: 10.1016/j.rse.2019.01.016
– ident: ref4
  doi: 10.1016/j.rse.2011.08.020
– ident: ref79
  doi: 10.1016/j.jenvman.2006.08.018
– ident: ref3
  doi: 10.1002/2015RG000483
– ident: ref18
  doi: 10.1007/BF00386231
– ident: ref87
  doi: 10.5194/cp-10-1983-2014
– ident: ref105
  doi: 10.1073/pnas.1904955116
– ident: ref30
  doi: 10.1080/1747423X.2011.628705
– ident: ref32
  doi: 10.1038/ncomms13428
– ident: ref55
  doi: 10.1038/nclimate3114
– ident: ref6
  doi: 10.1002/2013JG002456
– ident: ref31
  doi: 10.1111/j.1365-2486.2012.02678.x
– ident: ref86
  doi: 10.1126/science.1103215
– ident: ref44
  doi: 10.1016/j.ecolmodel.2013.03.024
– ident: ref80
  doi: 10.1111/j.1600-0889.2006.00221.x
– ident: ref73
  doi: 10.5194/bg-11-2027-2014
– ident: ref101
  doi: 10.1038/sdata.2017.165
– ident: ref10
  doi: 10.1016/j.jag.2007.02.001
– ident: ref38
  doi: 10.1038/ngeo2903
– ident: ref47
  doi: 10.1016/j.rse.2017.12.024
– ident: ref88
  doi: 10.1038/nclimate1693
– ident: ref89
  doi: 10.1126/science.aad5068
– ident: ref64
  doi: 10.1175/JCLI-D-11-00015.1
– ident: ref19
  doi: 10.1016/j.envexpbot.2007.05.004
– ident: ref23
  doi: 10.1126/science.1078366
– ident: ref25
  doi: 10.1016/j.agrformet.2006.08.008
– ident: ref54
  doi: 10.1046/j.1365-3040.1999.00391.x
– ident: ref36
  doi: 10.1016/S0034-4257(98)00084-4
– ident: ref63
  doi: 10.1002/jame.20022
– ident: ref7
  doi: 10.3390/rs6098945
– ident: ref72
  doi: 10.1016/j.rse.2012.12.023
– ident: ref27
  doi: 10.1038/nature20780
– ident: ref60
  doi: 10.1111/ele.12211
– ident: ref76
  doi: 10.1038/s41561-019-0318-6
– ident: ref85
  doi: 10.1016/j.agrformet.2018.02.010
– ident: ref83
  doi: 10.1016/S0034-4257(02)00043-3
– ident: ref29
  doi: 10.1177/0309133311434244
– ident: ref12
  doi: 10.1016/0168-1923(91)90002-8
– ident: ref102
  doi: 10.1126/science.1192666
– ident: ref49
  doi: 10.1126/science.1251423
– ident: ref37
  doi: 10.1002/2014JG002866
– ident: ref5
  doi: 10.1038/sdata.2018.214
– ident: ref103
  doi: 10.5194/essd-2019-126
– ident: ref48
  doi: 10.1038/nclimate2581
– ident: ref77
  doi: 10.1002/2016GL069416
– ident: ref74
  doi: 10.1038/nclimate2879
– ident: ref66
  doi: 10.1029/2011GB004053
– ident: ref90
  doi: 10.1111/gcb.13509
– ident: ref75
  doi: 10.3402/tellusb.v66.23188
– ident: ref1
  doi: 10.1111/j.1469-8137.2004.01224.x
– ident: ref2
  doi: 10.1111/j.1365-2486.2007.01316.x
– ident: ref45
  doi: 10.1111/j.1461-0248.2009.01351.x
– ident: ref58
  doi: 10.5194/hess-17-1833-2013
– ident: ref22
  doi: 10.1029/2001JD001242
– ident: ref95
  doi: 10.1016/j.agrformet.2014.03.007
– ident: ref100
  doi: 10.1175/JHM-D-12-0123.1
– ident: ref41
  doi: 10.1007/s00468-016-1486-2
– ident: ref71
  doi: 10.1029/2009JD012442
– ident: ref84
  doi: 10.5194/essd-7-157-2015
– ident: ref78
  doi: 10.1016/j.rse.2006.06.008
– ident: ref28
– ident: ref91
  doi: 10.1890/04-0470
– ident: ref53
  doi: 10.1073/pnas.0509478102
– ident: ref57
  doi: 10.1111/gcb.12187
– ident: ref24
  doi: 10.1016/j.rse.2016.08.030
– ident: ref62
  doi: 10.1111/j.1365-2486.2005.001002.x
– ident: ref56
– ident: ref70
  doi: 10.1093/jxb/err294
– ident: ref106
  doi: 10.1126/sciadv.aau5740
– ident: ref50
  doi: 10.2307/2401901
SSID ssj0064175
Score 2.6011608
Snippet Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years....
Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2725
SubjectTerms Annual variations
Atmospheric models
Biological fertilization
Carbon
Carbon cycle
Carbon dioxide
Carbon dioxide atmospheric concentrations
Carbon dioxide concentration
Coefficients
Correlation coefficient
Correlation coefficients
Covariance
Datasets
Eddy covariance
Environmental changes
Environmental regulations
Experiments
Fertilization
Humidity
Interannual variations
Learning algorithms
Long-term changes
Machine learning
Photosynthesis
Primary production
Productivity
Radiation
Remote sensing
Seasonal variation
Seasonal variations
Sensitivity analysis
Simulation
Spatial variations
Terrestrial ecosystems
Towers
Vapor pressure
Vapour pressure
Variables
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dSxwxFA1FEPoi9aN0W5UgglAcnGSSyeRRxVUL7UOr4FvI5GMRZFa6q-Cb_8F_6C_x3mR2cR9aX3yductuTu7cczKbnEvIrm-jDV7aogE6LYSzeFgZNwGI6F1pdRvT-46fv-qzS_HjSl69avWFe8KyPXAG7qBh0QPr6qoMStRWNFByoxPAe7oCLZ-kEXDebDGVa3AtWLLYRTe3ogINkv_PBLUiDqCAeNyPwBWXkCPY6PsVIyXj_n-V58Q5w09kpReL9DD_yFXyIXRrZPk0NeN9WCfX-Y1A8BStMkB6BjqONFt80BF-Gb3NZhL0Nhu7wiRQUKkUrSzxAvAWvZ5O6M24GxVYpOk9rJ3TZO1Tphv-_PgE3K02yOXw5OL4rOhbJxQOFnzTQnlAWVnPfMlCzTWAbmWlomKuwgZV2jdWNlXtopWiLWPtAh5ZtcqCflKyrT6TpW7chS-EtrWIjrelVTIKqUIj4Xbp0JZd8VZUA1LO4DOu9xXH9hY3BtYXiLhBxA3jBhE3iPiAfJ9_pMfhf8FHOCfzQPTDThcgS0yfJeatLBmQHZxRg44XHW6pGdm7ycSc__ltDiFZgMpLDSPZ64PiGEbgbH9CAXBAk6yFyM2FSHgk3eLtWeKYviRMDBdSS1krpr--x4i-kY-IDh6LZHyTLE3_3oUt0EfTdjs9Ci85oAef
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017
URI https://www.proquest.com/docview/2459556719
https://doaj.org/article/81fd615930e746a48036fc443193114a
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA62i-CLeMW1dQkiCOLQSSaZZJ5kV7utgkWqhb6FTC5LocxsO1vBN_9D_2F_iefMZKv7YF8nZ1nynTPnNsl3CHnj62iDlzbTEE4z4SxeVsZDACJ6l9uqjn2_4-tReXgivpzK09Rw69KxyrVP7B21bx32yPe4kJWUpWLVh-VFhlOj8OtqGqGxRUbggjUUX6PZ_tG347UvLgXrqXaR1S0rIBcZvmtC1iL2wJF4PJfAFZdgKzjw-5_I1BP4_89N97Fn_og8TEkjnQ5afkzuheYJuX_QD-X99ZScDZ2B4ClSZkAKGmgb6UD1QRf4Z3Q5kErQ5UDwCsqgkK1SpLTEBxC_6Nmqo-dts8jQWdOfUEP3SntPWaX5ze9riOHqGTmZ7__4eJilEQqZg8JvlSkPaCvrmc9ZKHkF4FtZqKiYK3BQVeW1lbooXbRS1HksXcCrq1ZZyKOUrIvnZLtpm_CC0LoU0fE6t0pGIVXQEpZzh_TsiteiGJN8DZ9xiV8cx1ycG6gzEHGDiBvGDSJuEPExeXf7k4TDXcIz1MmtIPJi9w_ay4VJr5nRLHrI0aoiD0qUVmgI0NEJyJKqAio_OyavUaMGmS8aPFqzsFddZz5_PzZTMBYI6XkFO3mbhGILO3A23VQAHJAsa0Nyd0MSXk23ubw2HJNcQ2f-GvLLu5d3yAPcN158ZHyXbK8ur8IryIBW9YRs6fnBhIyms0-z-SQZ_aTvJ_wBCYEFtQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikWClgIhISImvgRxweEymO7Sx8HaKXeXMePVaUqWZotqDf-A_-DH8UvYSaPwh7ordd4spuMxzPfOJ5vCHnuy2iDlzYpIJwmwlksVsZDACJ6l1pdxna_Y2c3n-yLTwfyYIX8Gmph8Fjl4BNbR-1rh3vk60xILWWuMv12_jXBrlH4dXVoodGZxVY4-w4pW_Nm-gHm9wVj44977ydJ31UgcZALLRLl4QGU9ZlPs5AzDc9jJVdRZY5j7ybtCysLnrtopSjTmLuA1ZxWWYAWSpYcfvcKuSo417iiivHm4PlzkbXEvsghl3BAPt1XVMBIYh3clsdTEEwxCZaJ7cX_iYNtu4D_BYU20o1vkZs9RKUbnU3dJiuhukOubbYtgM_ukqNuHyJ4igQdAHgDrSPtiEXoDP-MzjsKCzrv6GRh6ilgY4oEmngBoiU9WjT0uK5mCYYG-g0y9tZEXtNMF-z3j5-AGNQ9sn8pqr1PVqu6Cg8ILXMRHStTq2QUUoVCwnDqkAxesVLwEUkH9RnXs5ljU41jA1kNatygxk3GDGrcoMZH5NX5Lb0eLhJ-h3NyLogs3O2F-mRm-kVtiix6QISap0GJ3IoC4EB0AjCZ5pBn2hF5hjNqkGejwoM8M3vaNGb65bPZAGMBAJFqeJOXvVCs4Q2c7esiQA9IzbUkubYkCY7ALQ8PhmN6R9SYv8vm4cXDT8n1yd7Ottme7m49IjdQB1hymbE1sro4OQ2PAXstyietwVNyeNkr7A-iUj3U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXKVCA2vBEDBSwEQkKkkzh2nCwQailDh9KKV0V3xvFjVFElw0wGVFb8A3_Dr7DjS7g3j8Ig0V0XbGMnim-O7z12fM8l5K7NvXZW6CCFcBpwozFZGQ8BcG9NqLPc1_sd2zvJ5i5_vif2lsj3LhcGj1V2PrF21LY0uEc-YFxkQiQyyga-PRbxcmP4ePIxwApS-Ke1K6fRQGTLHX6G5dvs0WgDvvU9xoZP3z7ZDNoKA4GBdVEVSAsvI7WNbBi5hGXwblrE0svIxFjHKbOpFmmcGK8Fz0OfGIeZnVpqoBlS5DE89xRZTpNUsB5ZXh9uv3rXxYGER7XMLyrKBTHwoOafKjAmPgAnZvFMBJNMAE6x2PgfUbEuHvCvEFHHveF58qOzWHPc5cPqvMpXzZe_xCT_T5NeIOdaOk7XmvlzkSy54hI5_awud3x4mew3ey7OUhQjAXLvaOlpI6JCx2hKOmnkOuikkc4FmFNYB1AUC8ULwAzofjWjB2UxDjAM0k962kyHhzTKUvbz6zdgR_IK2T2RcV4lvaIs3DVC84R7w_JQS-G5kC4V0BwaFL6XLOdxn4QdOJRplduxgMiBghUc4kkhnlTEFOJJIZ765MHRLa0djuu8jog76oiK4_WFcjpWrQNTaeQtsN8sDp3kieYpUB9vOPDPLIY1te6TO4hXhZoiBUJprOezmRq9ea3WYCoAWQozGMn9tpMvYQRGtzkgYAeUIVvoubLQE5yeWWzuIK1apztTv_F8_fjm2-QMAF29GO1s3SBn0QSYXRqxFdKrpnN3E2hmld9q5zMl708a778ASNOK_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+estimate+of+global+gross+primary+production+for+reproducing+its+long-term+variation%2C+1982%E2%80%932017&rft.jtitle=Earth+system+science+data&rft.au=Zheng%2C+Yi&rft.au=Shen%2C+Ruoque&rft.au=Wang%2C+Yawen&rft.au=Li%2C+Xiangqian&rft.date=2020-11-12&rft.issn=1866-3516&rft.eissn=1866-3516&rft.volume=12&rft.issue=4&rft.spage=2725&rft.epage=2746&rft_id=info:doi/10.5194%2Fessd-12-2725-2020&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_essd_12_2725_2020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon