Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017
Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly unce...
Saved in:
Published in | Earth system science data Vol. 12; no. 4; pp. 2725 - 2746 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
12.11.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1866-3516 1866-3508 1866-3516 |
DOI | 10.5194/essd-12-2725-2020 |
Cover
Loading…
Abstract | Satellite-based models have been widely used to simulate
vegetation gross primary production (GPP) at the site, regional, or global
scales in recent years. However, accurately reproducing the interannual
variations in GPP remains a major challenge, and the long-term changes in
GPP remain highly uncertain. In this study, we generated a long-term global
GPP dataset at 0.05∘ latitude by 0.05∘ longitude and
8 d interval by revising a light use efficiency model (i.e., EC-LUE model).
In the revised EC-LUE model, we integrated the regulations of several major
environmental variables: atmospheric CO2 concentration, radiation
components, and atmospheric vapor pressure deficit (VPD). These
environmental variables showed substantial long-term changes, which could
greatly impact the global vegetation productivity. Eddy covariance (EC)
measurements at 95 towers from the FLUXNET2015 dataset, covering nine major
ecosystem types around the globe, were used to calibrate and validate the
model. In general, the revised EC-LUE model could effectively reproduce the
spatial, seasonal, and annual variations in the tower-estimated GPP at most
sites. The revised EC-LUE model could explain 71 % of the spatial
variations in annual GPP over 95 sites. At more than 95 % of the sites,
the correlation coefficients (R2) of seasonal changes between tower-estimated and model-simulated GPP are larger than 0.5. Particularly, the
revised EC-LUE model improved the model performance in reproducing the
interannual variations in GPP, and the averaged R2 between annual mean
tower-estimated and model-simulated GPP is 0.44 over all 55 sites with
observations longer than 5 years, which is significantly higher than those
of the original EC-LUE model (R2=0.36) and other LUE models (R2
ranged from 0.06 to 0.30 with an average value of 0.16). At the global
scale, GPP derived from light use efficiency models, machine learning
models, and process-based biophysical models shows substantial differences
in magnitude and interannual variations. The revised EC-LUE model quantified
the mean global GPP from 1982 to 2017 as 106.2±2.9 Pg C yr−1
with the trend 0.15 Pg C yr−1. Sensitivity analysis indicated that GPP
simulated by the revised EC-LUE model was sensitive to atmospheric CO2
concentration, VPD, and radiation. Over the period of 1982–2017, the
CO2 fertilization effect on the global GPP (0.22±0.07 Pg C yr−1) could be partly offset by increased VPD (-0.17±0.06 Pg C yr−1). The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is able to
provide a reliable long-term estimate of global GPP. The GPP dataset is
available at https://doi.org/10.6084/m9.figshare.8942336.v3 (Zheng et al.,
2019). |
---|---|
AbstractList | Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05 ∘ latitude by 0.05 ∘ longitude and 8 d interval by revising a light use efficiency model (i.e., EC-LUE model). In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 95 towers from the FLUXNET2015 dataset, covering nine major ecosystem types around the globe, were used to calibrate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and annual variations in the tower-estimated GPP at most sites. The revised EC-LUE model could explain 71 % of the spatial variations in annual GPP over 95 sites. At more than 95 % of the sites, the correlation coefficients ( R2 ) of seasonal changes between tower-estimated and model-simulated GPP are larger than 0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the interannual variations in GPP, and the averaged R2 between annual mean tower-estimated and model-simulated GPP is 0.44 over all 55 sites with observations longer than 5 years, which is significantly higher than those of the original EC-LUE model ( R2=0.36 ) and other LUE models ( R2 ranged from 0.06 to 0.30 with an average value of 0.16). At the global scale, GPP derived from light use efficiency models, machine learning models, and process-based biophysical models shows substantial differences in magnitude and interannual variations. The revised EC-LUE model quantified the mean global GPP from 1982 to 2017 as 106.2±2.9 Pg C yr −1 with the trend 0.15 Pg C yr −1 . Sensitivity analysis indicated that GPP simulated by the revised EC-LUE model was sensitive to atmospheric CO2 concentration, VPD, and radiation. Over the period of 1982–2017, the CO2 fertilization effect on the global GPP ( 0.22±0.07 Pg C yr −1 ) could be partly offset by increased VPD ( - 0.17 ± 0.06 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="096d8044a803ed944d7cc08e33c9559b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-2725-2020-ie00001.svg" width="64pt" height="10pt" src="essd-12-2725-2020-ie00001.png"/></svg:svg> Pg C yr −1 ). The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at https://doi.org/10.6084/m9.figshare.8942336.v3 (Zheng et al., 2019). Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05∘ latitude by 0.05∘ longitude and 8 d interval by revising a light use efficiency model (i.e., EC-LUE model). In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 95 towers from the FLUXNET2015 dataset, covering nine major ecosystem types around the globe, were used to calibrate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and annual variations in the tower-estimated GPP at most sites. The revised EC-LUE model could explain 71 % of the spatial variations in annual GPP over 95 sites. At more than 95 % of the sites, the correlation coefficients (R2) of seasonal changes between tower-estimated and model-simulated GPP are larger than 0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the interannual variations in GPP, and the averaged R2 between annual mean tower-estimated and model-simulated GPP is 0.44 over all 55 sites with observations longer than 5 years, which is significantly higher than those of the original EC-LUE model (R2=0.36) and other LUE models (R2 ranged from 0.06 to 0.30 with an average value of 0.16). At the global scale, GPP derived from light use efficiency models, machine learning models, and process-based biophysical models shows substantial differences in magnitude and interannual variations. The revised EC-LUE model quantified the mean global GPP from 1982 to 2017 as 106.2±2.9 Pg C yr−1 with the trend 0.15 Pg C yr−1. Sensitivity analysis indicated that GPP simulated by the revised EC-LUE model was sensitive to atmospheric CO2 concentration, VPD, and radiation. Over the period of 1982–2017, the CO2 fertilization effect on the global GPP (0.22±0.07 Pg C yr−1) could be partly offset by increased VPD (-0.17±0.06 Pg C yr−1). The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at https://doi.org/10.6084/m9.figshare.8942336.v3 (Zheng et al., 2019). Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05.sup." latitude by 0.05.sup." longitude and 8 d interval by revising a light use efficiency model (i.e., EC-LUE model). In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO.sub.2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 95 towers from the FLUXNET2015 dataset, covering nine major ecosystem types around the globe, were used to calibrate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and annual variations in the tower-estimated GPP at most sites. The revised EC-LUE model could explain 71 % of the spatial variations in annual GPP over 95 sites. At more than 95 % of the sites, the correlation coefficients (R.sup.2) of seasonal changes between tower-estimated and model-simulated GPP are larger than 0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the interannual variations in GPP, and the averaged R.sup.2 between annual mean tower-estimated and model-simulated GPP is 0.44 over all 55 sites with observations longer than 5 years, which is significantly higher than those of the original EC-LUE model (R.sup.2 =0.36) and other LUE models (R.sup.2 ranged from 0.06 to 0.30 with an average value of 0.16). At the global scale, GPP derived from light use efficiency models, machine learning models, and process-based biophysical models shows substantial differences in magnitude and interannual variations. The revised EC-LUE model quantified the mean global GPP from 1982 to 2017 as 106.2±2.9 Pg C yr.sup.-1 with the trend 0.15 Pg C yr.sup.-1 . Sensitivity analysis indicated that GPP simulated by the revised EC-LUE model was sensitive to atmospheric CO.sub.2 concentration, VPD, and radiation. Over the period of 1982-2017, the CO.sub.2 fertilization effect on the global GPP (0.22±0.07 Pg C yr.sup.-1) could be partly offset by increased VPD (-0.17±0.06 Pg C yr.sup.-1). The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05∘ latitude by 0.05∘ longitude and 8 d interval by revising a light use efficiency model (i.e., EC-LUE model). In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 95 towers from the FLUXNET2015 dataset, covering nine major ecosystem types around the globe, were used to calibrate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and annual variations in the tower-estimated GPP at most sites. The revised EC-LUE model could explain 71 % of the spatial variations in annual GPP over 95 sites. At more than 95 % of the sites, the correlation coefficients (R2) of seasonal changes between tower-estimated and model-simulated GPP are larger than 0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the interannual variations in GPP, and the averaged R2 between annual mean tower-estimated and model-simulated GPP is 0.44 over all 55 sites with observations longer than 5 years, which is significantly higher than those of the original EC-LUE model (R2=0.36) and other LUE models (R2 ranged from 0.06 to 0.30 with an average value of 0.16). At the global scale, GPP derived from light use efficiency models, machine learning models, and process-based biophysical models shows substantial differences in magnitude and interannual variations. The revised EC-LUE model quantified the mean global GPP from 1982 to 2017 as 106.2±2.9 Pg C yr-1 with the trend 0.15 Pg C yr-1. Sensitivity analysis indicated that GPP simulated by the revised EC-LUE model was sensitive to atmospheric CO2 concentration, VPD, and radiation. Over the period of 1982–2017, theCO2 fertilization effect on the global GPP (0.22±0.07 Pg C yr-1) could be partly offset by increased VPD (-0.17±0.06 Pg C yr-1). The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at 10.6084/m9.figshare.8942336.v3 (Zheng et al., 2019). |
Audience | Academic |
Author | Liu, Shuguang Liang, Shunlin Yuan, Wenping Ju, Weimin Zheng, Yi Zhang, Li Shen, Ruoque Chen, Jing M. Li, Xiangqian Wang, Yawen |
Author_xml | – sequence: 1 givenname: Yi surname: Zheng fullname: Zheng, Yi – sequence: 2 givenname: Ruoque orcidid: 0000-0002-4408-829X surname: Shen fullname: Shen, Ruoque – sequence: 3 givenname: Yawen surname: Wang fullname: Wang, Yawen – sequence: 4 givenname: Xiangqian surname: Li fullname: Li, Xiangqian – sequence: 5 givenname: Shuguang surname: Liu fullname: Liu, Shuguang – sequence: 6 givenname: Shunlin orcidid: 0000-0003-2708-9183 surname: Liang fullname: Liang, Shunlin – sequence: 7 givenname: Jing M. surname: Chen fullname: Chen, Jing M. – sequence: 8 givenname: Weimin surname: Ju fullname: Ju, Weimin – sequence: 9 givenname: Li surname: Zhang fullname: Zhang, Li – sequence: 10 givenname: Wenping surname: Yuan fullname: Yuan, Wenping |
BookMark | eNp1UsuKFDEULWQEZ0Y_wF3AlWCNuXlWlsPgo2FA8LEOqTyKNNWVMUkPuvMf_EO_xNT0KLYoWdxwOOfk5t5z1p0safFd9xTwBQfFXvpSXA-kJ5LwnmCCH3SnMAjRUw7i5I_7o-6slC3GgoHkp13c7G5yuvUO-VLjzlSPUkDTnEYzoymnUtBNbnj-2mpye1tjWlBIGWV_AOIyoVgLmtMy9dXnHbo1OZqV9wKBGsiPb98JBvm4exjMXPyT-3refXr96uPV2_763ZvN1eV1bzlTtZdOjUEaBw6DF0QZNRpOZZBgKSOKKDcYPlBhg-FsxEFYz_gwGGmAUclHet5tDr4uma2-b14nE_UdkPKkTa7Rzl4PEJwArij2kgnDBkxFsIxRUBSAmeb17ODVvvp53yakt2mfl9a-JowrzoVs1N-syTTTuIRUs7G7WKy-bGOmDLCijXXxD1Y7zu-ibdsMseFHgudHgsap_kudzL4Uvfnw_pgrD1y7riz7oG2sdztoj8RZA9ZrTPQaEw1ErzHRa0yaEv5S_hrZ_zU_AWwlwC0 |
CitedBy_id | crossref_primary_10_1029_2022EF003474 crossref_primary_10_5194_essd_16_1283_2024 crossref_primary_10_11922_11_6035_nesdc_2024_0174_zh crossref_primary_10_1007_s00382_025_07615_w crossref_primary_10_1038_s41597_022_01309_2 crossref_primary_10_1016_j_scitotenv_2022_156172 crossref_primary_10_1007_s40333_024_0090_3 crossref_primary_10_1016_j_jhydrol_2024_131012 crossref_primary_10_1038_s43247_023_00869_4 crossref_primary_10_1111_gcb_17479 crossref_primary_10_3390_f14091880 crossref_primary_10_1016_j_jenvman_2023_119566 crossref_primary_10_3390_rs14194795 crossref_primary_10_1007_s11356_024_35267_6 crossref_primary_10_1016_j_agrformet_2023_109789 crossref_primary_10_1016_j_gloplacha_2024_104537 crossref_primary_10_1029_2023MS003714 crossref_primary_10_11922_11_6035_csd_2021_0047_zh crossref_primary_10_1016_j_atmosenv_2024_120678 crossref_primary_10_3390_rs14143402 crossref_primary_10_1007_s11442_023_2151_5 crossref_primary_10_3390_f14061201 crossref_primary_10_12677_gser_2024_132044 crossref_primary_10_5194_hess_28_4989_2024 crossref_primary_10_1038_s41558_024_02191_z crossref_primary_10_34133_remotesensing_0127 crossref_primary_10_3390_rs15010071 crossref_primary_10_1016_j_ecolind_2024_112631 crossref_primary_10_1016_j_scitotenv_2024_176673 crossref_primary_10_1016_j_envres_2024_119063 crossref_primary_10_3390_rs16010045 crossref_primary_10_1016_j_agrformet_2024_110264 crossref_primary_10_1016_j_scitotenv_2022_158499 crossref_primary_10_3390_rs14184541 crossref_primary_10_1016_j_ecolind_2022_109150 crossref_primary_10_1016_j_scib_2023_01_027 crossref_primary_10_3390_rs14236062 crossref_primary_10_1002_ece3_71092 crossref_primary_10_1016_j_ecolind_2024_111551 crossref_primary_10_3390_rs15174216 crossref_primary_10_1038_s41597_024_03893_x crossref_primary_10_1016_j_jag_2021_102522 crossref_primary_10_1016_j_agrformet_2023_109883 crossref_primary_10_1016_j_wsee_2023_04_001 crossref_primary_10_1093_jpe_rtae108 crossref_primary_10_1038_s41558_022_01464_9 crossref_primary_10_1016_j_ecoinf_2024_102767 crossref_primary_10_1126_science_abb7772 crossref_primary_10_1088_1748_9326_ac1a3b crossref_primary_10_1029_2021WR031871 crossref_primary_10_3390_rs16193731 crossref_primary_10_3390_cli11100205 crossref_primary_10_1177_03091333221114864 crossref_primary_10_1080_22797254_2023_2301657 crossref_primary_10_3390_rs17030487 crossref_primary_10_1016_j_jhydrol_2024_130881 crossref_primary_10_1038_s41558_024_02022_1 crossref_primary_10_1016_j_scitotenv_2024_177344 crossref_primary_10_3390_land13091346 crossref_primary_10_1016_j_gecco_2024_e02891 crossref_primary_10_1016_j_srs_2024_100152 crossref_primary_10_1088_1748_9326_ac4765 crossref_primary_10_34133_ehs_0278 crossref_primary_10_1038_s43017_024_00601_6 crossref_primary_10_1016_j_scib_2024_12_054 crossref_primary_10_1088_1748_9326_ad1726 crossref_primary_10_1016_j_ecolind_2024_112465 crossref_primary_10_1016_j_isci_2023_107211 crossref_primary_10_1016_j_scitotenv_2024_173432 crossref_primary_10_1016_j_agrformet_2023_109622 crossref_primary_10_1016_j_jhydrol_2022_128979 crossref_primary_10_5194_gmd_16_4155_2023 crossref_primary_10_1016_j_scitotenv_2024_170713 crossref_primary_10_1016_j_agrformet_2023_109717 crossref_primary_10_1016_j_agrformet_2022_108905 crossref_primary_10_3390_rs16081361 crossref_primary_10_5194_gmd_18_287_2025 crossref_primary_10_1016_j_envres_2024_119145 crossref_primary_10_1080_15481603_2024_2430638 crossref_primary_10_3390_rs14246237 crossref_primary_10_31676_0235_2591_2024_6_33_40 crossref_primary_10_1016_j_agrformet_2024_110229 crossref_primary_10_1002_ldr_4560 crossref_primary_10_1029_2021JD035753 crossref_primary_10_3390_f14071336 crossref_primary_10_1016_j_scitotenv_2022_153343 crossref_primary_10_1016_j_ecoinf_2021_101307 crossref_primary_10_3390_rs17010083 crossref_primary_10_1016_j_scitotenv_2022_155086 crossref_primary_10_3354_meps13889 crossref_primary_10_1016_j_jenvman_2023_118176 crossref_primary_10_1038_s41558_024_02205_w crossref_primary_10_1016_j_jag_2023_103179 crossref_primary_10_1016_j_jhydrol_2024_131844 crossref_primary_10_1016_j_jhydrol_2024_132012 crossref_primary_10_1126_science_adf5041 crossref_primary_10_3390_rs14051187 crossref_primary_10_1007_s11707_024_1136_8 crossref_primary_10_5194_esd_13_833_2022 crossref_primary_10_1029_2022MS003397 crossref_primary_10_1016_j_agrformet_2023_109814 crossref_primary_10_1016_j_accre_2024_04_001 crossref_primary_10_1016_j_ecolind_2023_111201 crossref_primary_10_1029_2023JG007553 crossref_primary_10_1016_j_jag_2023_103360 crossref_primary_10_3390_rs16071179 crossref_primary_10_1016_j_jhydrol_2023_129292 crossref_primary_10_1016_j_scitotenv_2024_176293 crossref_primary_10_3390_rs15030665 crossref_primary_10_3390_rs13173374 crossref_primary_10_1029_2020JG005953 crossref_primary_10_3390_rs14061509 crossref_primary_10_1016_j_gecco_2023_e02737 crossref_primary_10_1038_s43247_023_00757_x crossref_primary_10_1016_j_pce_2023_103389 crossref_primary_10_1016_j_ecoinf_2022_101948 crossref_primary_10_1016_j_agrformet_2023_109702 crossref_primary_10_3390_rs15174197 crossref_primary_10_1016_j_scitotenv_2025_179065 crossref_primary_10_3390_rs14010057 crossref_primary_10_1016_j_agrformet_2024_110197 crossref_primary_10_3390_rs16111856 crossref_primary_10_3389_fenvs_2022_908875 crossref_primary_10_3390_f15071198 crossref_primary_10_1016_j_scitotenv_2022_161250 crossref_primary_10_1016_j_ecolind_2024_111976 crossref_primary_10_5194_gmd_15_6637_2022 crossref_primary_10_1175_BAMS_D_18_0341_1 crossref_primary_10_1016_j_resconrec_2023_107279 crossref_primary_10_1088_1748_9326_ac4c5b crossref_primary_10_1016_j_scitotenv_2021_148443 crossref_primary_10_1109_JSTARS_2021_3114190 crossref_primary_10_1109_JSTARS_2024_3432581 crossref_primary_10_1016_j_srs_2022_100049 crossref_primary_10_1016_j_agrformet_2023_109359 crossref_primary_10_1016_j_scitotenv_2023_166507 crossref_primary_10_3390_atmos15030253 crossref_primary_10_1029_2021GL093864 crossref_primary_10_1016_j_cub_2023_07_030 crossref_primary_10_3390_rs13245080 crossref_primary_10_3390_atmos14040687 crossref_primary_10_1016_j_jhydrol_2023_130142 crossref_primary_10_3390_rs14010061 crossref_primary_10_1016_j_jhydrol_2023_129715 crossref_primary_10_1016_j_jenvman_2022_115509 crossref_primary_10_3390_rs15235537 crossref_primary_10_1109_JSTARS_2021_3132723 crossref_primary_10_1016_j_scitotenv_2021_148458 crossref_primary_10_1016_j_scitotenv_2024_173691 crossref_primary_10_1016_j_rse_2023_113919 crossref_primary_10_1007_s00704_024_05275_0 crossref_primary_10_3389_fenvs_2022_1010269 crossref_primary_10_1088_1748_9326_ac8b98 crossref_primary_10_3390_rs15030698 crossref_primary_10_1016_j_agrformet_2023_109376 crossref_primary_10_1007_s11676_022_01546_6 crossref_primary_10_5194_bg_21_2313_2024 crossref_primary_10_1016_j_agwat_2024_109100 crossref_primary_10_1016_j_scitotenv_2024_171400 crossref_primary_10_3390_rs13051015 crossref_primary_10_1080_15481603_2023_2300214 crossref_primary_10_5194_essd_14_5463_2022 crossref_primary_10_3389_fmars_2020_604532 crossref_primary_10_1016_j_agrformet_2021_108761 crossref_primary_10_1016_j_jag_2022_102755 crossref_primary_10_1029_2022JG006918 crossref_primary_10_1016_j_isprsjprs_2022_10_018 crossref_primary_10_1016_j_agrformet_2023_109337 crossref_primary_10_3390_rs13152875 crossref_primary_10_1038_s41597_023_02224_w crossref_primary_10_1029_2023GB007696 crossref_primary_10_1080_15481603_2024_2318846 crossref_primary_10_1016_j_scitotenv_2023_167663 crossref_primary_10_1029_2021MS002515 crossref_primary_10_5194_bg_21_2253_2024 crossref_primary_10_1080_15481603_2023_2213489 crossref_primary_10_3390_rs16193604 crossref_primary_10_1029_2022MS003464 crossref_primary_10_1016_j_scitotenv_2024_176666 crossref_primary_10_1016_j_scienta_2024_113229 crossref_primary_10_1016_j_ecolind_2022_109739 crossref_primary_10_1177_2754124X241235545 crossref_primary_10_1186_s13717_021_00281_w crossref_primary_10_1029_2022JG007100 crossref_primary_10_3390_rs15225275 crossref_primary_10_1016_j_scib_2023_01_014 crossref_primary_10_1080_17538947_2023_2207840 crossref_primary_10_3390_rs14215487 crossref_primary_10_1016_j_scitotenv_2023_163839 crossref_primary_10_3390_rs15215212 crossref_primary_10_1109_JSTARS_2021_3076075 crossref_primary_10_1016_j_agrformet_2025_110462 crossref_primary_10_3390_rs16193706 crossref_primary_10_3390_rs14112651 crossref_primary_10_1016_j_ecolind_2024_111626 crossref_primary_10_1016_j_scitotenv_2024_170886 crossref_primary_10_3390_rs14071722 crossref_primary_10_1016_j_scitotenv_2021_152231 crossref_primary_10_1016_j_jenvman_2024_120254 crossref_primary_10_1016_j_ecolind_2022_108664 crossref_primary_10_1016_j_scitotenv_2022_159390 crossref_primary_10_1016_j_scitotenv_2023_164917 crossref_primary_10_3389_fpls_2024_1482077 crossref_primary_10_1016_j_agrformet_2023_109689 crossref_primary_10_1016_j_agrformet_2023_109327 crossref_primary_10_1016_j_agrformet_2024_110293 crossref_primary_10_1016_j_wace_2024_100700 crossref_primary_10_1109_ACCESS_2022_3210218 crossref_primary_10_1016_j_jag_2022_102978 crossref_primary_10_5194_bg_21_4285_2024 crossref_primary_10_1088_1748_9326_ad8a73 crossref_primary_10_1016_j_rse_2024_114301 |
Cites_doi | 10.1111/gcb.13973 10.1126/science.1146663 10.5194/essd-8-605-2016 10.1016/j.isprsjprs.2018.07.016 10.1073/pnas.1210196109 10.1016/j.rse.2010.01.022 10.1126/sciadv.aax1396 10.1016/j.agrformet.2006.12.001 10.1016/j.rse.2017.05.019 10.1021/j100721a006 10.1007/s10533-004-0370-0 10.1016/j.rse.2011.02.024 10.1111/gcb.12207 10.1029/2006GB002735 10.1029/2005JD005825 10.1073/pnas.0702737104 10.1175/1520-0442-11.8.2042 10.5194/gmd-9-323-2016 10.1175/EI-D-16-0012.1 10.1007/BF00390086 10.1016/0034-4257(95)00135-N 10.1016/j.rse.2018.02.049 10.1038/s41477-019-0478-9 10.1088/1742-6596/930/1/012002 10.1016/j.agrformet.2018.08.003 10.1029/2009GL042154 10.1002/2017GL076803 10.5194/gmd-4-701-2011 10.1029/2003GB002199 10.1038/nclimate3004 10.1111/j.1365-2486.2006.01265.x 10.1029/93GB02725 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2 10.1109/TGRS.2016.2560522 10.1029/2011GB004150 10.1016/S0304-3800(99)00156-8 10.1016/j.rse.2019.01.016 10.1016/j.rse.2011.08.020 10.1016/j.jenvman.2006.08.018 10.1002/2015RG000483 10.1007/BF00386231 10.5194/cp-10-1983-2014 10.1073/pnas.1904955116 10.1080/1747423X.2011.628705 10.1038/ncomms13428 10.1038/nclimate3114 10.1002/2013JG002456 10.1111/j.1365-2486.2012.02678.x 10.1126/science.1103215 10.1016/j.ecolmodel.2013.03.024 10.1111/j.1600-0889.2006.00221.x 10.5194/bg-11-2027-2014 10.1038/sdata.2017.165 10.1016/j.jag.2007.02.001 10.1038/ngeo2903 10.1016/j.rse.2017.12.024 10.1038/nclimate1693 10.1126/science.aad5068 10.1175/JCLI-D-11-00015.1 10.1016/j.envexpbot.2007.05.004 10.1126/science.1078366 10.1016/j.agrformet.2006.08.008 10.1046/j.1365-3040.1999.00391.x 10.1016/S0034-4257(98)00084-4 10.1002/jame.20022 10.3390/rs6098945 10.1016/j.rse.2012.12.023 10.1038/nature20780 10.1111/ele.12211 10.1038/s41561-019-0318-6 10.1016/j.agrformet.2018.02.010 10.1016/S0034-4257(02)00043-3 10.1177/0309133311434244 10.1016/0168-1923(91)90002-8 10.1126/science.1192666 10.1126/science.1251423 10.1002/2014JG002866 10.1038/sdata.2018.214 10.5194/essd-2019-126 10.1038/nclimate2581 10.1002/2016GL069416 10.1038/nclimate2879 10.1029/2011GB004053 10.1111/gcb.13509 10.3402/tellusb.v66.23188 10.1111/j.1469-8137.2004.01224.x 10.1111/j.1365-2486.2007.01316.x 10.1111/j.1461-0248.2009.01351.x 10.5194/hess-17-1833-2013 10.1029/2001JD001242 10.1016/j.agrformet.2014.03.007 10.1175/JHM-D-12-0123.1 10.1007/s00468-016-1486-2 10.1029/2009JD012442 10.5194/essd-7-157-2015 10.1016/j.rse.2006.06.008 10.1890/04-0470 10.1073/pnas.0509478102 10.1111/gcb.12187 10.1016/j.rse.2016.08.030 10.1111/j.1365-2486.2005.001002.x 10.1093/jxb/err294 10.1126/sciadv.aau5740 10.2307/2401901 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7SN 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.5194/essd-12-2725-2020 |
DatabaseName | CrossRef Gale Science in Context Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1866-3516 |
EndPage | 2746 |
ExternalDocumentID | oai_doaj_org_article_81fd615930e746a48036fc443193114a A641341093 10_5194_essd_12_2725_2020 |
GeographicLocations | United States--US North America Europe |
GeographicLocations_xml | – name: North America – name: Europe – name: United States--US |
GroupedDBID | 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABJCF ABUWG ACIWK ACPRK ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS Q2X RKB RNS TR2 TUS ZBA BBORY PQGLB 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c549t-7d9bf7ad1d01e629a9ba537f71c342929d8a5836cfa54b0f6ce4588a7a14375b3 |
IEDL.DBID | BENPR |
ISSN | 1866-3516 1866-3508 |
IngestDate | Wed Aug 27 01:32:12 EDT 2025 Fri Jul 25 19:00:02 EDT 2025 Tue Jun 17 22:04:24 EDT 2025 Thu Jul 17 05:59:27 EDT 2025 Fri Jun 27 05:25:21 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Tue Jul 01 02:14:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-7d9bf7ad1d01e629a9ba537f71c342929d8a5836cfa54b0f6ce4588a7a14375b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4408-829X 0000-0003-2708-9183 |
OpenAccessLink | https://www.proquest.com/docview/2459556719?pq-origsite=%requestingapplication% |
PQID | 2459556719 |
PQPubID | 105729 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_81fd615930e746a48036fc443193114a proquest_journals_2459556719 gale_infotracmisc_A641341093 gale_infotracacademiconefile_A641341093 gale_incontextgauss_ISR_A641341093 crossref_citationtrail_10_5194_essd_12_2725_2020 crossref_primary_10_5194_essd_12_2725_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-12 |
PublicationDateYYYYMMDD | 2020-11-12 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Earth system science data |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref78 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref70 ref73 ref72 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref14 doi: 10.1111/gcb.13973 – ident: ref68 doi: 10.1126/science.1146663 – ident: ref43 doi: 10.5194/essd-8-605-2016 – ident: ref13 doi: 10.1016/j.isprsjprs.2018.07.016 – ident: ref35 doi: 10.1073/pnas.1210196109 – ident: ref98 doi: 10.1016/j.rse.2010.01.022 – ident: ref99 doi: 10.1126/sciadv.aax1396 – ident: ref96 doi: 10.1016/j.agrformet.2006.12.001 – ident: ref15 doi: 10.1016/j.rse.2017.05.019 – ident: ref39 doi: 10.1021/j100721a006 – ident: ref20 doi: 10.1007/s10533-004-0370-0 – ident: ref34 doi: 10.1016/j.rse.2011.02.024 – ident: ref26 doi: 10.1111/gcb.12207 – ident: ref51 doi: 10.1029/2006GB002735 – ident: ref42 doi: 10.1029/2005JD005825 – ident: ref8 doi: 10.1073/pnas.0702737104 – ident: ref21 doi: 10.1175/1520-0442-11.8.2042 – ident: ref82 – ident: ref52 doi: 10.5194/gmd-9-323-2016 – ident: ref46 doi: 10.1175/EI-D-16-0012.1 – ident: ref61 doi: 10.1007/BF00390086 – ident: ref94 doi: 10.1016/0034-4257(95)00135-N – ident: ref93 doi: 10.1016/j.rse.2018.02.049 – ident: ref17 doi: 10.1038/s41477-019-0478-9 – ident: ref33 doi: 10.1088/1742-6596/930/1/012002 – ident: ref104 doi: 10.1016/j.agrformet.2018.08.003 – ident: ref69 doi: 10.1029/2009GL042154 – ident: ref16 doi: 10.1002/2017GL076803 – ident: ref11 doi: 10.5194/gmd-4-701-2011 – ident: ref40 doi: 10.1029/2003GB002199 – ident: ref107 doi: 10.1038/nclimate3004 – ident: ref81 doi: 10.1111/j.1365-2486.2006.01265.x – ident: ref59 doi: 10.1029/93GB02725 – ident: ref65 doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2 – ident: ref92 doi: 10.1109/TGRS.2016.2560522 – ident: ref97 doi: 10.1029/2011GB004150 – ident: ref9 doi: 10.1016/S0304-3800(99)00156-8 – ident: ref67 doi: 10.1016/j.rse.2019.01.016 – ident: ref4 doi: 10.1016/j.rse.2011.08.020 – ident: ref79 doi: 10.1016/j.jenvman.2006.08.018 – ident: ref3 doi: 10.1002/2015RG000483 – ident: ref18 doi: 10.1007/BF00386231 – ident: ref87 doi: 10.5194/cp-10-1983-2014 – ident: ref105 doi: 10.1073/pnas.1904955116 – ident: ref30 doi: 10.1080/1747423X.2011.628705 – ident: ref32 doi: 10.1038/ncomms13428 – ident: ref55 doi: 10.1038/nclimate3114 – ident: ref6 doi: 10.1002/2013JG002456 – ident: ref31 doi: 10.1111/j.1365-2486.2012.02678.x – ident: ref86 doi: 10.1126/science.1103215 – ident: ref44 doi: 10.1016/j.ecolmodel.2013.03.024 – ident: ref80 doi: 10.1111/j.1600-0889.2006.00221.x – ident: ref73 doi: 10.5194/bg-11-2027-2014 – ident: ref101 doi: 10.1038/sdata.2017.165 – ident: ref10 doi: 10.1016/j.jag.2007.02.001 – ident: ref38 doi: 10.1038/ngeo2903 – ident: ref47 doi: 10.1016/j.rse.2017.12.024 – ident: ref88 doi: 10.1038/nclimate1693 – ident: ref89 doi: 10.1126/science.aad5068 – ident: ref64 doi: 10.1175/JCLI-D-11-00015.1 – ident: ref19 doi: 10.1016/j.envexpbot.2007.05.004 – ident: ref23 doi: 10.1126/science.1078366 – ident: ref25 doi: 10.1016/j.agrformet.2006.08.008 – ident: ref54 doi: 10.1046/j.1365-3040.1999.00391.x – ident: ref36 doi: 10.1016/S0034-4257(98)00084-4 – ident: ref63 doi: 10.1002/jame.20022 – ident: ref7 doi: 10.3390/rs6098945 – ident: ref72 doi: 10.1016/j.rse.2012.12.023 – ident: ref27 doi: 10.1038/nature20780 – ident: ref60 doi: 10.1111/ele.12211 – ident: ref76 doi: 10.1038/s41561-019-0318-6 – ident: ref85 doi: 10.1016/j.agrformet.2018.02.010 – ident: ref83 doi: 10.1016/S0034-4257(02)00043-3 – ident: ref29 doi: 10.1177/0309133311434244 – ident: ref12 doi: 10.1016/0168-1923(91)90002-8 – ident: ref102 doi: 10.1126/science.1192666 – ident: ref49 doi: 10.1126/science.1251423 – ident: ref37 doi: 10.1002/2014JG002866 – ident: ref5 doi: 10.1038/sdata.2018.214 – ident: ref103 doi: 10.5194/essd-2019-126 – ident: ref48 doi: 10.1038/nclimate2581 – ident: ref77 doi: 10.1002/2016GL069416 – ident: ref74 doi: 10.1038/nclimate2879 – ident: ref66 doi: 10.1029/2011GB004053 – ident: ref90 doi: 10.1111/gcb.13509 – ident: ref75 doi: 10.3402/tellusb.v66.23188 – ident: ref1 doi: 10.1111/j.1469-8137.2004.01224.x – ident: ref2 doi: 10.1111/j.1365-2486.2007.01316.x – ident: ref45 doi: 10.1111/j.1461-0248.2009.01351.x – ident: ref58 doi: 10.5194/hess-17-1833-2013 – ident: ref22 doi: 10.1029/2001JD001242 – ident: ref95 doi: 10.1016/j.agrformet.2014.03.007 – ident: ref100 doi: 10.1175/JHM-D-12-0123.1 – ident: ref41 doi: 10.1007/s00468-016-1486-2 – ident: ref71 doi: 10.1029/2009JD012442 – ident: ref84 doi: 10.5194/essd-7-157-2015 – ident: ref78 doi: 10.1016/j.rse.2006.06.008 – ident: ref28 – ident: ref91 doi: 10.1890/04-0470 – ident: ref53 doi: 10.1073/pnas.0509478102 – ident: ref57 doi: 10.1111/gcb.12187 – ident: ref24 doi: 10.1016/j.rse.2016.08.030 – ident: ref62 doi: 10.1111/j.1365-2486.2005.001002.x – ident: ref56 – ident: ref70 doi: 10.1093/jxb/err294 – ident: ref106 doi: 10.1126/sciadv.aau5740 – ident: ref50 doi: 10.2307/2401901 |
SSID | ssj0064175 |
Score | 2.6011608 |
Snippet | Satellite-based models have been widely used to simulate
vegetation gross primary production (GPP) at the site, regional, or global
scales in recent years.... Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2725 |
SubjectTerms | Annual variations Atmospheric models Biological fertilization Carbon Carbon cycle Carbon dioxide Carbon dioxide atmospheric concentrations Carbon dioxide concentration Coefficients Correlation coefficient Correlation coefficients Covariance Datasets Eddy covariance Environmental changes Environmental regulations Experiments Fertilization Humidity Interannual variations Learning algorithms Long-term changes Machine learning Photosynthesis Primary production Productivity Radiation Remote sensing Seasonal variation Seasonal variations Sensitivity analysis Simulation Spatial variations Terrestrial ecosystems Towers Vapor pressure Vapour pressure Variables Vegetation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dSxwxFA1FEPoi9aN0W5UgglAcnGSSyeRRxVUL7UOr4FvI5GMRZFa6q-Cb_8F_6C_x3mR2cR9aX3yductuTu7cczKbnEvIrm-jDV7aogE6LYSzeFgZNwGI6F1pdRvT-46fv-qzS_HjSl69avWFe8KyPXAG7qBh0QPr6qoMStRWNFByoxPAe7oCLZ-kEXDebDGVa3AtWLLYRTe3ogINkv_PBLUiDqCAeNyPwBWXkCPY6PsVIyXj_n-V58Q5w09kpReL9DD_yFXyIXRrZPk0NeN9WCfX-Y1A8BStMkB6BjqONFt80BF-Gb3NZhL0Nhu7wiRQUKkUrSzxAvAWvZ5O6M24GxVYpOk9rJ3TZO1Tphv-_PgE3K02yOXw5OL4rOhbJxQOFnzTQnlAWVnPfMlCzTWAbmWlomKuwgZV2jdWNlXtopWiLWPtAh5ZtcqCflKyrT6TpW7chS-EtrWIjrelVTIKqUIj4Xbp0JZd8VZUA1LO4DOu9xXH9hY3BtYXiLhBxA3jBhE3iPiAfJ9_pMfhf8FHOCfzQPTDThcgS0yfJeatLBmQHZxRg44XHW6pGdm7ycSc__ltDiFZgMpLDSPZ64PiGEbgbH9CAXBAk6yFyM2FSHgk3eLtWeKYviRMDBdSS1krpr--x4i-kY-IDh6LZHyTLE3_3oUt0EfTdjs9Ci85oAef priority: 102 providerName: Directory of Open Access Journals |
Title | Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017 |
URI | https://www.proquest.com/docview/2459556719 https://doaj.org/article/81fd615930e746a48036fc443193114a |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA62i-CLeMW1dQkiCOLQSSaZZJ5kV7utgkWqhb6FTC5LocxsO1vBN_9D_2F_iefMZKv7YF8nZ1nynTPnNsl3CHnj62iDlzbTEE4z4SxeVsZDACJ6l9uqjn2_4-tReXgivpzK09Rw69KxyrVP7B21bx32yPe4kJWUpWLVh-VFhlOj8OtqGqGxRUbggjUUX6PZ_tG347UvLgXrqXaR1S0rIBcZvmtC1iL2wJF4PJfAFZdgKzjw-5_I1BP4_89N97Fn_og8TEkjnQ5afkzuheYJuX_QD-X99ZScDZ2B4ClSZkAKGmgb6UD1QRf4Z3Q5kErQ5UDwCsqgkK1SpLTEBxC_6Nmqo-dts8jQWdOfUEP3SntPWaX5ze9riOHqGTmZ7__4eJilEQqZg8JvlSkPaCvrmc9ZKHkF4FtZqKiYK3BQVeW1lbooXbRS1HksXcCrq1ZZyKOUrIvnZLtpm_CC0LoU0fE6t0pGIVXQEpZzh_TsiteiGJN8DZ9xiV8cx1ycG6gzEHGDiBvGDSJuEPExeXf7k4TDXcIz1MmtIPJi9w_ay4VJr5nRLHrI0aoiD0qUVmgI0NEJyJKqAio_OyavUaMGmS8aPFqzsFddZz5_PzZTMBYI6XkFO3mbhGILO3A23VQAHJAsa0Nyd0MSXk23ubw2HJNcQ2f-GvLLu5d3yAPcN158ZHyXbK8ur8IryIBW9YRs6fnBhIyms0-z-SQZ_aTvJ_wBCYEFtQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikWClgIhISImvgRxweEymO7Sx8HaKXeXMePVaUqWZotqDf-A_-DH8UvYSaPwh7ordd4spuMxzPfOJ5vCHnuy2iDlzYpIJwmwlksVsZDACJ6l1pdxna_Y2c3n-yLTwfyYIX8Gmph8Fjl4BNbR-1rh3vk60xILWWuMv12_jXBrlH4dXVoodGZxVY4-w4pW_Nm-gHm9wVj44977ydJ31UgcZALLRLl4QGU9ZlPs5AzDc9jJVdRZY5j7ybtCysLnrtopSjTmLuA1ZxWWYAWSpYcfvcKuSo417iiivHm4PlzkbXEvsghl3BAPt1XVMBIYh3clsdTEEwxCZaJ7cX_iYNtu4D_BYU20o1vkZs9RKUbnU3dJiuhukOubbYtgM_ukqNuHyJ4igQdAHgDrSPtiEXoDP-MzjsKCzrv6GRh6ilgY4oEmngBoiU9WjT0uK5mCYYG-g0y9tZEXtNMF-z3j5-AGNQ9sn8pqr1PVqu6Cg8ILXMRHStTq2QUUoVCwnDqkAxesVLwEUkH9RnXs5ljU41jA1kNatygxk3GDGrcoMZH5NX5Lb0eLhJ-h3NyLogs3O2F-mRm-kVtiix6QISap0GJ3IoC4EB0AjCZ5pBn2hF5hjNqkGejwoM8M3vaNGb65bPZAGMBAJFqeJOXvVCs4Q2c7esiQA9IzbUkubYkCY7ALQ8PhmN6R9SYv8vm4cXDT8n1yd7Ottme7m49IjdQB1hymbE1sro4OQ2PAXstyietwVNyeNkr7A-iUj3U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXKVCA2vBEDBSwEQkKkkzh2nCwQailDh9KKV0V3xvFjVFElw0wGVFb8A3_Dr7DjS7g3j8Ig0V0XbGMnim-O7z12fM8l5K7NvXZW6CCFcBpwozFZGQ8BcG9NqLPc1_sd2zvJ5i5_vif2lsj3LhcGj1V2PrF21LY0uEc-YFxkQiQyyga-PRbxcmP4ePIxwApS-Ke1K6fRQGTLHX6G5dvs0WgDvvU9xoZP3z7ZDNoKA4GBdVEVSAsvI7WNbBi5hGXwblrE0svIxFjHKbOpFmmcGK8Fz0OfGIeZnVpqoBlS5DE89xRZTpNUsB5ZXh9uv3rXxYGER7XMLyrKBTHwoOafKjAmPgAnZvFMBJNMAE6x2PgfUbEuHvCvEFHHveF58qOzWHPc5cPqvMpXzZe_xCT_T5NeIOdaOk7XmvlzkSy54hI5_awud3x4mew3ey7OUhQjAXLvaOlpI6JCx2hKOmnkOuikkc4FmFNYB1AUC8ULwAzofjWjB2UxDjAM0k962kyHhzTKUvbz6zdgR_IK2T2RcV4lvaIs3DVC84R7w_JQS-G5kC4V0BwaFL6XLOdxn4QdOJRplduxgMiBghUc4kkhnlTEFOJJIZ765MHRLa0djuu8jog76oiK4_WFcjpWrQNTaeQtsN8sDp3kieYpUB9vOPDPLIY1te6TO4hXhZoiBUJprOezmRq9ea3WYCoAWQozGMn9tpMvYQRGtzkgYAeUIVvoubLQE5yeWWzuIK1apztTv_F8_fjm2-QMAF29GO1s3SBn0QSYXRqxFdKrpnN3E2hmld9q5zMl708a778ASNOK_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+estimate+of+global+gross+primary+production+for+reproducing+its+long-term+variation%2C+1982%E2%80%932017&rft.jtitle=Earth+system+science+data&rft.au=Zheng%2C+Yi&rft.au=Shen%2C+Ruoque&rft.au=Wang%2C+Yawen&rft.au=Li%2C+Xiangqian&rft.date=2020-11-12&rft.issn=1866-3516&rft.eissn=1866-3516&rft.volume=12&rft.issue=4&rft.spage=2725&rft.epage=2746&rft_id=info:doi/10.5194%2Fessd-12-2725-2020&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_essd_12_2725_2020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon |