Induced Pluripotent Stem Cells and Their Applications in Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in the loss of motor function in the central nervous system (CNS) and ultimately death. The mechanisms underlying ALS pathogenesis have not yet been fully elucidated, and ALS cannot be treated effectively. Mo...
Saved in:
Published in | Cells (Basel, Switzerland) Vol. 12; no. 6; p. 971 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.03.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in the loss of motor function in the central nervous system (CNS) and ultimately death. The mechanisms underlying ALS pathogenesis have not yet been fully elucidated, and ALS cannot be treated effectively. Most studies have applied animal or single-gene intervention cell lines as ALS disease models, but they cannot accurately reflect the pathological characteristics of ALS. Induced pluripotent stem cells (iPSCs) can be reprogrammed from somatic cells, possessing the ability to self-renew and differentiate into a variety of cells. iPSCs can be obtained from ALS patients with different genotypes and phenotypes, and the genetic background of the donor cells remains unchanged during reprogramming. iPSCs can differentiate into neurons and glial cells related to ALS. Therefore, iPSCs provide an excellent method to evaluate the impact of diseases on ALS patients. Moreover, patient-derived iPSCs are obtained from their own somatic cells, avoiding ethical concerns and posing only a low risk of immune rejection. The iPSC technology creates new hope for ALS treatment. Here, we review recent studies on iPSCs and their applications in disease modeling, drug screening and cell therapy in ALS, with a particular focus on the potential for ALS treatment. |
---|---|
AbstractList | Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in the loss of motor function in the central nervous system (CNS) and ultimately death. The mechanisms underlying ALS pathogenesis have not yet been fully elucidated, and ALS cannot be treated effectively. Most studies have applied animal or single-gene intervention cell lines as ALS disease models, but they cannot accurately reflect the pathological characteristics of ALS. Induced pluripotent stem cells (iPSCs) can be reprogrammed from somatic cells, possessing the ability to self-renew and differentiate into a variety of cells. iPSCs can be obtained from ALS patients with different genotypes and phenotypes, and the genetic background of the donor cells remains unchanged during reprogramming. iPSCs can differentiate into neurons and glial cells related to ALS. Therefore, iPSCs provide an excellent method to evaluate the impact of diseases on ALS patients. Moreover, patient-derived iPSCs are obtained from their own somatic cells, avoiding ethical concerns and posing only a low risk of immune rejection. The iPSC technology creates new hope for ALS treatment. Here, we review recent studies on iPSCs and their applications in disease modeling, drug screening and cell therapy in ALS, with a particular focus on the potential for ALS treatment. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in the loss of motor function in the central nervous system (CNS) and ultimately death. The mechanisms underlying ALS pathogenesis have not yet been fully elucidated, and ALS cannot be treated effectively. Most studies have applied animal or single-gene intervention cell lines as ALS disease models, but they cannot accurately reflect the pathological characteristics of ALS. Induced pluripotent stem cells (iPSCs) can be reprogrammed from somatic cells, possessing the ability to self-renew and differentiate into a variety of cells. iPSCs can be obtained from ALS patients with different genotypes and phenotypes, and the genetic background of the donor cells remains unchanged during reprogramming. iPSCs can differentiate into neurons and glial cells related to ALS. Therefore, iPSCs provide an excellent method to evaluate the impact of diseases on ALS patients. Moreover, patient-derived iPSCs are obtained from their own somatic cells, avoiding ethical concerns and posing only a low risk of immune rejection. The iPSC technology creates new hope for ALS treatment. Here, we review recent studies on iPSCs and their applications in disease modeling, drug screening and cell therapy in ALS, with a particular focus on the potential for ALS treatment.Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in the loss of motor function in the central nervous system (CNS) and ultimately death. The mechanisms underlying ALS pathogenesis have not yet been fully elucidated, and ALS cannot be treated effectively. Most studies have applied animal or single-gene intervention cell lines as ALS disease models, but they cannot accurately reflect the pathological characteristics of ALS. Induced pluripotent stem cells (iPSCs) can be reprogrammed from somatic cells, possessing the ability to self-renew and differentiate into a variety of cells. iPSCs can be obtained from ALS patients with different genotypes and phenotypes, and the genetic background of the donor cells remains unchanged during reprogramming. iPSCs can differentiate into neurons and glial cells related to ALS. Therefore, iPSCs provide an excellent method to evaluate the impact of diseases on ALS patients. Moreover, patient-derived iPSCs are obtained from their own somatic cells, avoiding ethical concerns and posing only a low risk of immune rejection. The iPSC technology creates new hope for ALS treatment. Here, we review recent studies on iPSCs and their applications in disease modeling, drug screening and cell therapy in ALS, with a particular focus on the potential for ALS treatment. |
Audience | Academic |
Author | Zhao, Zhenhan Zhang, Haoyun Wang, Xuemei Wang, Xin Zhou, Shuanhu Meng, Fandi Liu, Jinmeng Du, Hongmei Liu, Shiyue Chen, Yanchun Guan, Yingjun Huo, Zijun Zhou, Fenghua Zhang, Lingyun |
AuthorAffiliation | 5 Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA 3 Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China 4 Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA; shuanhuzhou@gmail.com 1 Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; hongmeiduwf@163.com (H.D.); zijunhuo1998@163.com (Z.H.); cyc7907@wfmc.edu.cn (Y.C.); jinqiuhupan@163.com (Z.Z.); 18800460605@163.com (F.M.); 18863662168@163.com (X.W.) 2 Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China; liu08308399@163.com (S.L.); haoyunzh@163.com (H.Z.); zhoufh@wfmc.edu.cn (F.Z.); 18353687185@163.com (J.L.); zly199311@126.com (L.Z.) |
AuthorAffiliation_xml | – name: 2 Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China; liu08308399@163.com (S.L.); haoyunzh@163.com (H.Z.); zhoufh@wfmc.edu.cn (F.Z.); 18353687185@163.com (J.L.); zly199311@126.com (L.Z.) – name: 3 Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China – name: 4 Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA; shuanhuzhou@gmail.com – name: 1 Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China; hongmeiduwf@163.com (H.D.); zijunhuo1998@163.com (Z.H.); cyc7907@wfmc.edu.cn (Y.C.); jinqiuhupan@163.com (Z.Z.); 18800460605@163.com (F.M.); 18863662168@163.com (X.W.) – name: 5 Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA |
Author_xml | – sequence: 1 givenname: Hongmei surname: Du fullname: Du, Hongmei – sequence: 2 givenname: Zijun surname: Huo fullname: Huo, Zijun – sequence: 3 givenname: Yanchun orcidid: 0000-0003-4740-9228 surname: Chen fullname: Chen, Yanchun – sequence: 4 givenname: Zhenhan surname: Zhao fullname: Zhao, Zhenhan – sequence: 5 givenname: Fandi surname: Meng fullname: Meng, Fandi – sequence: 6 givenname: Xuemei orcidid: 0000-0002-3527-2191 surname: Wang fullname: Wang, Xuemei – sequence: 7 givenname: Shiyue surname: Liu fullname: Liu, Shiyue – sequence: 8 givenname: Haoyun surname: Zhang fullname: Zhang, Haoyun – sequence: 9 givenname: Fenghua surname: Zhou fullname: Zhou, Fenghua – sequence: 10 givenname: Jinmeng orcidid: 0000-0002-6041-2723 surname: Liu fullname: Liu, Jinmeng – sequence: 11 givenname: Lingyun orcidid: 0000-0002-3571-3209 surname: Zhang fullname: Zhang, Lingyun – sequence: 12 givenname: Shuanhu orcidid: 0000-0003-4745-5347 surname: Zhou fullname: Zhou, Shuanhu – sequence: 13 givenname: Yingjun orcidid: 0000-0002-9578-0497 surname: Guan fullname: Guan, Yingjun – sequence: 14 givenname: Xin surname: Wang fullname: Wang, Xin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36980310$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1r3DAQhk1JadI0x16LoZdeNh1ZlmSdyrL0Y2GhhaS9ClmWd7XYkivZgfz7jrNJ2Q2RDhLSOw_zzszb7MwHb7PsPYFrSiV8NrbrEimAgxTkVXZRgKCLsgR5dnQ_z65S2gOuinAC7E12TrmsgBK4yP6sfTMZ2-S_uim6IYzWj_nNaPt8NbNz7Zv8dmddzJfD0DmjRxd8yp3Pl_19GGMYds7kGz3aqLv8xnQ2huTSu-x1q7tkrx7Py-z3t6-3qx-Lzc_v69VyszCslOOCWaEtECkoM1CapiyY0dQyWwpeNq2UVhqoJC1oobmua2FrqCitADjTnLT0MlsfuE3QezVE1-t4r4J26uEhxK3ScXSYlhISZFW3puakKSstNWbQQkkrIVnLG0DWlwNrmOreNgYrgZ5OoKc_3u3UNtwpAoD5ComET4-EGP5ONo2qd2nukfY2TEkVQhYMgBCK0o_PpPswRY-1mlWEScH4kWqr0YHzLVZcmxmqlqKkgpNKcFRdv6DC3djeGZyY1uH7ScCHY6f_LT6NBQroQWCwmynaVhk3PrQeya5Dx2qeP3Uyfxi1eBb1BH5Z_w-0stop |
CitedBy_id | crossref_primary_10_1002_ctm2_1646 crossref_primary_10_31083_j_fbl2903114 crossref_primary_10_3390_biomedicines13010035 crossref_primary_10_1016_j_xinn_2024_100620 crossref_primary_10_1016_j_yexcr_2025_114449 crossref_primary_10_3389_fgene_2024_1385114 crossref_primary_10_1080_14712598_2024_2392307 crossref_primary_10_3390_cells13040343 crossref_primary_10_1038_s41591_024_03281_3 crossref_primary_10_2174_011574888X313112240510160102 crossref_primary_10_1016_j_nbd_2024_106674 crossref_primary_10_3389_fncel_2024_1435619 crossref_primary_10_3390_ijms242316833 crossref_primary_10_3389_fpsyt_2024_1470642 crossref_primary_10_3390_ijms24086987 crossref_primary_10_3390_brainsci15020134 crossref_primary_10_3390_cells14050347 crossref_primary_10_1097_WCO_0000000000001178 crossref_primary_10_3389_fmolb_2024_1383453 crossref_primary_10_3390_genes14091697 |
Cites_doi | 10.1007/s00401-013-1149-y 10.3389/fncel.2015.00289 10.5966/sctm.2012-0042 10.3390/biomedicines9070753 10.1001/jamaneurol.2020.4300 10.1111/jnc.15289 10.1038/362059a0 10.1093/hmg/ddw163 10.1016/j.stem.2009.08.021 10.1016/j.neuron.2008.10.013 10.1038/s41593-021-01006-0 10.1523/JNEUROSCI.2126-14.2015 10.1002/acn3.51078 10.1016/j.celrep.2014.03.019 10.1016/j.stem.2014.02.004 10.1016/j.stemcr.2022.01.004 10.3389/fddsv.2021.773424 10.1016/j.neuron.2019.05.048 10.1002/glia.23761 10.1038/s41419-020-03102-8 10.1016/j.ymeth.2021.09.002 10.1080/21678421.2020.1828475 10.1007/s10048-015-0448-y 10.1016/S0140-6736(22)01272-7 10.3109/00207454.2015.1096271 10.1002/ana.26047 10.3390/antiox7020025 10.1016/j.chest.2018.06.035 10.1016/j.stemcr.2021.10.010 10.1007/s00401-005-1019-3 10.1186/s40478-018-0564-7 10.1038/nm.4189 10.15252/embj.2018101033 10.1016/j.isci.2021.103221 10.1136/jnnp-2016-315018 10.2174/187152710793237502 10.1016/j.jbiosc.2021.06.015 10.1093/nar/gkab582 10.1016/j.scr.2019.101448 10.1016/j.stem.2009.05.005 10.1093/hmg/ddt425 10.1038/s41591-018-0140-5 10.1111/ene.14393 10.1016/j.scr.2022.102788 10.1101/2021.12.30.474573 10.1002/ana.410390519 10.1016/j.gene.2015.11.049 10.1038/s41467-017-00911-y 10.3390/cells10020249 10.1016/j.mcn.2013.07.007 10.3390/ijms21249593 10.1016/B978-0-12-802973-2.00013-6 10.1016/j.nbd.2018.03.010 10.1016/j.bbrc.2010.02.150 10.1007/978-3-030-11096-3_6 10.1073/pnas.1202922109 10.1097/WCO.0000000000000862 10.1002/stem.201 10.1126/science.1158799 10.1016/j.neuron.2013.10.015 10.1007/s12015-021-10200-3 10.1016/j.cell.2017.10.011 10.1126/scitranslmed.3004052 10.1016/j.cell.2020.09.020 10.1016/j.cell.2007.11.019 10.1126/science.1086071 10.1016/j.neurol.2017.04.003 10.1007/s00415-019-09652-y 10.1007/s40778-016-0049-1 10.1007/s12035-020-02006-0 10.1001/jamaneurol.2021.4893 10.1016/j.ebiom.2019.11.026 10.1038/s41419-018-0990-2 10.1016/j.stemcr.2020.03.023 10.3390/ijms22031413 10.1002/cne.23578 10.1038/s41593-022-01040-6 10.1002/adbi.202000223 10.1016/j.reth.2019.07.002 10.2183/pjab.85.348 10.1002/stem.2388 10.1038/nbt1374 10.1016/j.neuron.2016.09.015 10.1126/science.1239278 10.1007/s12192-019-01064-1 10.1038/s41598-022-12098-4 10.3390/ijms21103464 10.1016/j.stem.2011.07.014 10.1016/j.cell.2018.03.004 10.1038/s41598-020-69845-8 10.1136/bmjopen-2019-033131 10.1056/NEJMoa2204705 10.1016/j.tins.2021.04.008 10.1038/nature14974 10.1038/s41593-019-0498-9 10.1016/j.neulet.2021.135911 10.1016/j.stemcr.2017.12.018 10.1186/s13287-018-1048-1 10.1098/rstb.2014.0367 10.1111/acel.13549 10.1038/nature21029 10.1016/j.brainres.2015.10.003 10.1016/j.tips.2019.12.002 10.3390/cells10020240 10.3390/ijms232113462 10.15252/embr.201642402 10.1016/j.cell.2006.07.024 10.1016/j.stem.2014.03.004 10.1038/s41467-018-05127-2 10.1002/sctm.20-0522 10.4103/1673-5374.332123 10.1097/01.NAJ.0000911516.31267.67 10.3389/fncel.2016.00290 10.1002/prp2.983 10.1016/j.stemcr.2014.05.017 10.1016/j.neuron.2011.09.010 10.1016/j.eclinm.2022.101707 10.1126/scitranslmed.aaf3962 10.1056/NEJM199403033300901 10.1186/s13041-017-0300-4 10.1016/j.stem.2021.12.008 10.15252/emmm.201809423 10.1038/nature14973 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.3390/cells12060971 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (WRLC) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2073-4409 |
ExternalDocumentID | oai_doaj_org_article_79098bfcb61d48a9a549f0438795f6d0 PMC10047679 A743761876 36980310 10_3390_cells12060971 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 82271483 – fundername: Shandong Province Natural Science Foundation of China grantid: ZR2020MH150; ZR2020MH149 – fundername: Support Program for Youth Innovation Technology in Colleges and Universities of Shandong Province of China grantid: 2019KJK004 – fundername: Student Innovation Fund of Weifang Medical University grantid: KX2022395 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD ESX GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM CGR CUY CVF ECM EIF NPM PMFND 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c549t-5e7ae019735c04cd425ca3e5e4764df99e9c0893232a6abb7eb083380065a61f3 |
IEDL.DBID | BENPR |
ISSN | 2073-4409 |
IngestDate | Wed Aug 27 01:21:31 EDT 2025 Thu Aug 21 18:38:15 EDT 2025 Fri Jul 11 03:10:39 EDT 2025 Fri Jul 25 11:59:11 EDT 2025 Tue Jun 17 22:06:03 EDT 2025 Tue Jun 10 21:04:56 EDT 2025 Thu Jan 02 22:53:33 EST 2025 Thu Apr 24 22:58:27 EDT 2025 Tue Jul 01 01:00:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | induced pluripotent stem cells drug screening amyotrophic lateral sclerosis cell therapy disease modeling |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-5e7ae019735c04cd425ca3e5e4764df99e9c0893232a6abb7eb083380065a61f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-4745-5347 0000-0002-9578-0497 0000-0003-4740-9228 0000-0002-6041-2723 0000-0002-3527-2191 0000-0002-3571-3209 |
OpenAccessLink | https://www.proquest.com/docview/2791597563?pq-origsite=%requestingapplication% |
PMID | 36980310 |
PQID | 2791597563 |
PQPubID | 2032536 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_79098bfcb61d48a9a549f0438795f6d0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10047679 proquest_miscellaneous_2792500113 proquest_journals_2791597563 gale_infotracmisc_A743761876 gale_infotracacademiconefile_A743761876 pubmed_primary_36980310 crossref_citationtrail_10_3390_cells12060971 crossref_primary_10_3390_cells12060971 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Cells (Basel, Switzerland) |
PublicationTitleAlternate | Cells |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 Gubert (ref_75) 2019; 37 Morotz (ref_61) 2022; 21 Ohnuki (ref_110) 2015; 370 Chen (ref_41) 2016; 17 Tsai (ref_74) 2022; 12 Choi (ref_122) 2020; 11 Pender (ref_2) 2020; 33 Wainger (ref_121) 2021; 78 Imamura (ref_126) 2021; 89 Takahashi (ref_29) 2007; 131 Lee (ref_43) 2017; 1656 ref_96 Kerk (ref_90) 2022; 17 ref_18 Bensimon (ref_24) 1994; 330 ref_15 Freibaum (ref_59) 2015; 525 Ronchi (ref_47) 2021; 5 Fujimori (ref_118) 2018; 24 Renton (ref_10) 2011; 72 Spijkers (ref_123) 2021; 157 Sun (ref_78) 2018; 9 Tsuburaya (ref_112) 2018; 9 Sareen (ref_97) 2014; 522 Chen (ref_50) 2014; 14 Liu (ref_104) 2022; 17 Hofweber (ref_68) 2018; 173 Deneault (ref_125) 2022; 203 Lu (ref_58) 2016; 92 Bristol (ref_81) 1996; 39 Popescu (ref_99) 2013; 2 Nizzardo (ref_100) 2014; 23 Sleutjes (ref_120) 2022; 10 Zeng (ref_17) 2020; 10 Niedermeyer (ref_22) 2019; 155 Zhou (ref_34) 2009; 27 Burkhardt (ref_76) 2013; 56 Talbott (ref_5) 2016; 138 Dafinca (ref_1) 2016; 34 Imamura (ref_117) 2022; 53 Feldman (ref_3) 2022; 400 Zhang (ref_11) 2015; 525 Miller (ref_27) 2022; 387 Higelin (ref_67) 2016; 10 Imamura (ref_52) 2017; 9 Picchiarelli (ref_73) 2019; 22 Namboori (ref_124) 2021; 16 Morimoto (ref_119) 2019; 11 Hayashi (ref_107) 2019; 1123 Barres (ref_92) 2008; 60 Clement (ref_95) 2003; 302 Kim (ref_36) 2009; 4 Lenglet (ref_20) 2017; 173 ref_89 Alves (ref_77) 2015; 9 Fusaki (ref_38) 2009; 85 Kato (ref_8) 2005; 110 Egawa (ref_64) 2012; 4 Liu (ref_70) 2015; 16 Yu (ref_66) 2020; 183 Hou (ref_40) 2013; 341 Yakubov (ref_37) 2010; 394 Witzel (ref_25) 2022; 79 Dimos (ref_30) 2008; 321 Reber (ref_69) 2021; 49 Ferraiuolo (ref_31) 2021; 755 Wainger (ref_80) 2014; 7 Bilican (ref_63) 2012; 109 Almeida (ref_55) 2013; 126 Eitan (ref_91) 2022; 25 Costa (ref_12) 2010; 9 Feng (ref_88) 2022; 2022 Giacomelli (ref_109) 2022; 29 Okano (ref_111) 2020; 41 Donnelly (ref_54) 2013; 80 Masrori (ref_14) 2020; 27 Sakae (ref_57) 2018; 6 Guo (ref_72) 2017; 8 Kreiter (ref_65) 2018; 115 Baxi (ref_79) 2022; 25 Takahashi (ref_28) 2006; 126 Zhang (ref_39) 2022; 62 Birger (ref_85) 2019; 50 Huang (ref_21) 2020; 7 Kondo (ref_98) 2014; 3 Kuta (ref_114) 2020; 25 Zou (ref_53) 2017; 88 Madill (ref_84) 2017; 10 Rajpurohit (ref_87) 2020; 57 Westergard (ref_56) 2019; 11 Dafinca (ref_60) 2020; 14 Fang (ref_16) 2016; 126 Imamura (ref_116) 2019; 9 Fang (ref_113) 2019; 103 Phatnani (ref_13) 2021; 44 Son (ref_46) 2011; 9 Xu (ref_4) 2020; 267 Zhao (ref_86) 2020; 68 Liddelow (ref_93) 2017; 541 Rosati (ref_102) 2018; 9 Ray (ref_32) 2021; 17 Nakagawa (ref_33) 2008; 26 Kaur (ref_9) 2016; 577 Rothstein (ref_23) 2017; 171 Bar (ref_108) 2019; 38 Haraguchi (ref_42) 2022; 30 Kiskinis (ref_51) 2014; 14 ref_103 Lamas (ref_44) 2021; 1 Tyzack (ref_82) 2016; 2 ref_106 Kato (ref_115) 2021; 132 Sterneckert (ref_45) 2022; 10 Sun (ref_105) 2021; 10 Toma (ref_48) 2015; 35 Muffat (ref_83) 2016; 22 Rosen (ref_7) 1993; 362 Nicholson (ref_19) 2021; 22 Haase (ref_35) 2009; 5 ref_49 Marrone (ref_71) 2018; 10 Neuro (ref_62) 2021; 24 Nizzardo (ref_101) 2016; 25 Aschenbrenner (ref_26) 2023; 123 ref_6 |
References_xml | – volume: 126 start-page: 385 year: 2013 ident: ref_55 article-title: Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons publication-title: Acta Neuropathol. doi: 10.1007/s00401-013-1149-y – volume: 9 start-page: 289 year: 2015 ident: ref_77 article-title: Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration publication-title: Front. Cell Neurosci. doi: 10.3389/fncel.2015.00289 – volume: 2 start-page: 167 year: 2013 ident: ref_99 article-title: Neural progenitors derived from human induced pluripotent stem cells survive and differentiate upon transplantation into a rat model of amyotrophic lateral sclerosis publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2012-0042 – ident: ref_18 doi: 10.3390/biomedicines9070753 – volume: 78 start-page: 186 year: 2021 ident: ref_121 article-title: Effect of Ezogabine on Cortical and Spinal Motor Neuron Excitability in Amyotrophic Lateral Sclerosis: A Randomized Clinical Trial publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2020.4300 – volume: 157 start-page: 393 year: 2021 ident: ref_123 article-title: Neuromuscular junction-on-a-chip: ALS disease modeling and read-out development in microfluidic devices publication-title: J. Neurochem. doi: 10.1111/jnc.15289 – volume: 362 start-page: 59 year: 1993 ident: ref_7 article-title: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis publication-title: Nature doi: 10.1038/362059a0 – volume: 25 start-page: 3152 year: 2016 ident: ref_101 article-title: iPSC-derived LewisX+CXCR4+beta1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddw163 – volume: 5 start-page: 434 year: 2009 ident: ref_35 article-title: Generation of induced pluripotent stem cells from human cord blood publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.08.021 – volume: 60 start-page: 430 year: 2008 ident: ref_92 article-title: The mystery and magic of glia: A perspective on their roles in health and disease publication-title: Neuron doi: 10.1016/j.neuron.2008.10.013 – volume: 25 start-page: 226 year: 2022 ident: ref_79 article-title: Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines publication-title: Nat. Neurosci. doi: 10.1038/s41593-021-01006-0 – volume: 35 start-page: 1291 year: 2015 ident: ref_48 article-title: Motoneurons derived from induced pluripotent stem cells develop mature phenotypes typical of endogenous spinal motoneurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2126-14.2015 – volume: 7 start-page: 1103 year: 2020 ident: ref_21 article-title: Longitudinal biomarkers in amyotrophic lateral sclerosis publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.51078 – volume: 7 start-page: 1 year: 2014 ident: ref_80 article-title: Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.03.019 – volume: 14 start-page: 796 year: 2014 ident: ref_50 article-title: Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.02.004 – volume: 17 start-page: 678 year: 2022 ident: ref_90 article-title: Homozygous ALS-linked FUS P525L mutations cell-autonomously perturb transcriptome profile and chemoreceptor signaling in human iPSC microglia publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2022.01.004 – volume: 1 start-page: 773424 year: 2021 ident: ref_44 article-title: Harnessing the Potential of Human Pluripotent Stem Cell-Derived Motor Neurons for Drug Discovery in Amyotrophic Lateral Sclerosis: From the Clinic to the Laboratory and Back to the Patient publication-title: Front. Drug Discov. doi: 10.3389/fddsv.2021.773424 – volume: 103 start-page: 802 year: 2019 ident: ref_113 article-title: Small-Molecule Modulation of TDP-43 Recruitment to Stress Granules Prevents Persistent TDP-43 Accumulation in ALS/FTD publication-title: Neuron doi: 10.1016/j.neuron.2019.05.048 – volume: 30 start-page: 101267 year: 2022 ident: ref_42 article-title: Pramef12 enhances reprogramming into naive iPS cells publication-title: Biochem. Biophys. Rep. – volume: 68 start-page: 1046 year: 2020 ident: ref_86 article-title: Mutant C9orf72 human iPSC-derived astrocytes cause non-cell autonomous motor neuron pathophysiology publication-title: Glia doi: 10.1002/glia.23761 – volume: 11 start-page: 888 year: 2020 ident: ref_122 article-title: Prevention of mitochondrial impairment by inhibition of protein phosphatase 1 activity in amyotrophic lateral sclerosis publication-title: Cell Death Dis. doi: 10.1038/s41419-020-03102-8 – volume: 203 start-page: 297 year: 2022 ident: ref_125 article-title: A streamlined CRISPR workflow to introduce mutations and generate isogenic iPSCs for modeling amyotrophic lateral sclerosis publication-title: Methods doi: 10.1016/j.ymeth.2021.09.002 – volume: 22 start-page: 186 year: 2021 ident: ref_19 article-title: The human gut microbiota in people with amyotrophic lateral sclerosis publication-title: Amyotroph Lateral Scler Front. Degener. doi: 10.1080/21678421.2020.1828475 – volume: 16 start-page: 223 year: 2015 ident: ref_70 article-title: The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation publication-title: Neurogenetics doi: 10.1007/s10048-015-0448-y – volume: 400 start-page: 1363 year: 2022 ident: ref_3 article-title: Amyotrophic lateral sclerosis publication-title: Lancet doi: 10.1016/S0140-6736(22)01272-7 – volume: 126 start-page: 771 year: 2016 ident: ref_16 article-title: Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis publication-title: Int. J. Neurosci. doi: 10.3109/00207454.2015.1096271 – volume: 89 start-page: 1226 year: 2021 ident: ref_126 article-title: Prediction Model of Amyotrophic Lateral Sclerosis by Deep Learning with Patient Induced Pluripotent Stem Cells publication-title: Ann. Neurol. doi: 10.1002/ana.26047 – ident: ref_49 doi: 10.3390/antiox7020025 – volume: 155 start-page: 401 year: 2019 ident: ref_22 article-title: Respiratory Failure in Amyotrophic Lateral Sclerosis publication-title: Chest doi: 10.1016/j.chest.2018.06.035 – volume: 16 start-page: 3020 year: 2021 ident: ref_124 article-title: Single-cell transcriptomics identifies master regulators of neurodegeneration in SOD1 ALS iPSC-derived motor neurons publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2021.10.010 – volume: 110 start-page: 101 year: 2005 ident: ref_8 article-title: Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS): Immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal models publication-title: Acta Neuropathol. doi: 10.1007/s00401-005-1019-3 – volume: 6 start-page: 63 year: 2018 ident: ref_57 article-title: Poly-GR dipeptide repeat polymers correlate with neurodegeneration and Clinicopathological subtypes in C9ORF72-related brain disease publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-018-0564-7 – volume: 22 start-page: 1358 year: 2016 ident: ref_83 article-title: Efficient derivation of microglia-like cells from human pluripotent stem cells publication-title: Nat. Med. doi: 10.1038/nm.4189 – volume: 38 start-page: e101033 year: 2019 ident: ref_108 article-title: Epigenetic aberrations in human pluripotent stem cells publication-title: EMBO J. doi: 10.15252/embj.2018101033 – volume: 24 start-page: 103221 year: 2021 ident: ref_62 article-title: An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients publication-title: iScience doi: 10.1016/j.isci.2021.103221 – volume: 88 start-page: 540 year: 2017 ident: ref_53 article-title: Genetic epidemiology of amyotrophic lateral sclerosis: A systematic review and meta-analysis publication-title: J. Neurol Neurosurg. Psychiatry doi: 10.1136/jnnp-2016-315018 – volume: 9 start-page: 764 year: 2010 ident: ref_12 article-title: Diagnosis, pathogenesis and therapeutic targets in amyotrophic lateral sclerosis publication-title: CNS Neurol. Disord. Drug Targets doi: 10.2174/187152710793237502 – volume: 132 start-page: 640 year: 2021 ident: ref_115 article-title: Niclosamide affects intracellular TDP-43 distribution in motor neurons, activates mitophagy, and attenuates morphological changes under stress publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2021.06.015 – volume: 49 start-page: 7713 year: 2021 ident: ref_69 article-title: The phase separation-dependent FUS interactome reveals nuclear and cytoplasmic function of liquid-liquid phase separation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab582 – volume: 37 start-page: 101448 year: 2019 ident: ref_75 article-title: Generation of four patient-specific pluripotent induced stem cell lines from two Brazilian patients with amyotrophic lateral sclerosis and two healthy subjects publication-title: Stem Cell Res. doi: 10.1016/j.scr.2019.101448 – volume: 4 start-page: 472 year: 2009 ident: ref_36 article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.05.005 – volume: 23 start-page: 342 year: 2014 ident: ref_100 article-title: Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt425 – volume: 24 start-page: 1579 year: 2018 ident: ref_118 article-title: Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent publication-title: Nat. Med. doi: 10.1038/s41591-018-0140-5 – volume: 27 start-page: 1918 year: 2020 ident: ref_14 article-title: Amyotrophic lateral sclerosis: A clinical review publication-title: Eur. J. Neurol. doi: 10.1111/ene.14393 – volume: 62 start-page: 102788 year: 2022 ident: ref_39 article-title: Generation of an induced pluripotent stem cell line (ZZUi034-A) from a 65 year old Chinese female donor with sendai virus reprogramming protocol publication-title: Stem Cell Res. doi: 10.1016/j.scr.2022.102788 – ident: ref_89 doi: 10.1101/2021.12.30.474573 – volume: 39 start-page: 676 year: 1996 ident: ref_81 article-title: Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex publication-title: Ann. Neurol. doi: 10.1002/ana.410390519 – volume: 577 start-page: 109 year: 2016 ident: ref_9 article-title: Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis publication-title: Gene doi: 10.1016/j.gene.2015.11.049 – volume: 8 start-page: 861 year: 2017 ident: ref_72 article-title: HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients publication-title: Nat. Commun. doi: 10.1038/s41467-017-00911-y – ident: ref_96 doi: 10.3390/cells10020249 – volume: 56 start-page: 355 year: 2013 ident: ref_76 article-title: A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells publication-title: Mol. Cell Neurosci. doi: 10.1016/j.mcn.2013.07.007 – ident: ref_103 doi: 10.3390/ijms21249593 – volume: 138 start-page: 225 year: 2016 ident: ref_5 article-title: The epidemiology of amyotrophic lateral sclerosis publication-title: Handb. Clin. Neurol. doi: 10.1016/B978-0-12-802973-2.00013-6 – volume: 115 start-page: 167 year: 2018 ident: ref_65 article-title: Age-dependent neurodegeneration and organelle transport deficiencies in mutant TDP43 patient-derived neurons are independent of TDP43 aggregation publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2018.03.010 – volume: 394 start-page: 189 year: 2010 ident: ref_37 article-title: Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.02.150 – volume: 1123 start-page: 71 year: 2019 ident: ref_107 article-title: Pluripotent Stem Cell Heterogeneity publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-11096-3_6 – volume: 109 start-page: 5803 year: 2012 ident: ref_63 article-title: Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1202922109 – volume: 33 start-page: 649 year: 2020 ident: ref_2 article-title: Cognitive and behavioural impairment in amyotrophic lateral sclerosis publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0000000000000862 – volume: 27 start-page: 2667 year: 2009 ident: ref_34 article-title: Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells publication-title: Stem Cells doi: 10.1002/stem.201 – volume: 321 start-page: 1218 year: 2008 ident: ref_30 article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons publication-title: Science doi: 10.1126/science.1158799 – volume: 80 start-page: 415 year: 2013 ident: ref_54 article-title: RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention publication-title: Neuron doi: 10.1016/j.neuron.2013.10.015 – volume: 17 start-page: 1954 year: 2021 ident: ref_32 article-title: An Overview on Promising Somatic Cell Sources Utilized for the Efficient Generation of Induced Pluripotent Stem Cells publication-title: Stem Cell Rev. Rep. doi: 10.1007/s12015-021-10200-3 – volume: 171 start-page: 725 year: 2017 ident: ref_23 article-title: Edaravone: A new drug approved for ALS publication-title: Cell doi: 10.1016/j.cell.2017.10.011 – volume: 4 start-page: 145ra104 year: 2012 ident: ref_64 article-title: Drug screening for ALS using patient-specific induced pluripotent stem cells publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3004052 – volume: 183 start-page: 636 year: 2020 ident: ref_66 article-title: TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS publication-title: Cell doi: 10.1016/j.cell.2020.09.020 – volume: 10 start-page: 1089970 year: 2022 ident: ref_45 article-title: Progress and challenges in directing the differentiation of human iPSCs into spinal motor neurons publication-title: Front. Cell Dev. Biol. – volume: 131 start-page: 861 year: 2007 ident: ref_29 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 302 start-page: 113 year: 2003 ident: ref_95 article-title: Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice publication-title: Science doi: 10.1126/science.1086071 – volume: 2022 start-page: 6483582 year: 2022 ident: ref_88 article-title: Autophagy-Mediated Inflammatory Cytokine Secretion in Sporadic ALS Patient iPSC-Derived Astrocytes publication-title: Oxid. Med. Cell Longev. – volume: 173 start-page: 280 year: 2017 ident: ref_20 article-title: Amyotrophic lateral sclerosis or not: Keys for the diagnosis publication-title: Rev. Neurol. doi: 10.1016/j.neurol.2017.04.003 – volume: 267 start-page: 944 year: 2020 ident: ref_4 article-title: Global variation in prevalence and incidence of amyotrophic lateral sclerosis: A systematic review and meta-analysis publication-title: J. Neurol. doi: 10.1007/s00415-019-09652-y – volume: 2 start-page: 236 year: 2016 ident: ref_82 article-title: Human Stem Cell-Derived Astrocytes: Specification and Relevance for Neurological Disorders publication-title: Curr. Stem Cell Rep. doi: 10.1007/s40778-016-0049-1 – volume: 57 start-page: 4117 year: 2020 ident: ref_87 article-title: Mechanistic Insights of Astrocyte-Mediated Hyperactive Autophagy and Loss of Motor Neuron Function in SOD1(L39R) Linked Amyotrophic Lateral Sclerosis publication-title: Mol. Neurobiol. doi: 10.1007/s12035-020-02006-0 – volume: 79 start-page: 121 year: 2022 ident: ref_25 article-title: Safety and Effectiveness of Long-term Intravenous Administration of Edaravone for Treatment of Patients with Amyotrophic Lateral Sclerosis publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2021.4893 – volume: 50 start-page: 274 year: 2019 ident: ref_85 article-title: Human iPSC-derived astrocytes from ALS patients with mutated C9ORF72 show increased oxidative stress and neurotoxicity publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.11.026 – volume: 9 start-page: 937 year: 2018 ident: ref_102 article-title: Establishment of stable iPS-derived human neural stem cell lines suitable for cell therapies publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0990-2 – volume: 14 start-page: 892 year: 2020 ident: ref_60 article-title: Impairment of Mitochondrial Calcium Buffering Links Mutations in C9ORF72 and TARDBP in iPS-Derived Motor Neurons from Patients with ALS/FTD publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2020.03.023 – ident: ref_15 doi: 10.3390/ijms22031413 – volume: 522 start-page: 2707 year: 2014 ident: ref_97 article-title: Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord publication-title: J. Comp. Neurol. doi: 10.1002/cne.23578 – volume: 25 start-page: 433 year: 2022 ident: ref_91 article-title: Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3’UTR protect against ALS publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01040-6 – volume: 5 start-page: e2000223 year: 2021 ident: ref_47 article-title: Electrophysiological Phenotype Characterization of Human iPSC-Derived Neuronal Cell Lines by Means of High-Density Microelectrode Arrays publication-title: Adv. Biol. doi: 10.1002/adbi.202000223 – volume: 11 start-page: 143 year: 2019 ident: ref_119 article-title: Ropinirole hydrochloride remedy for amyotrophic lateral sclerosis—Protocol for a randomized, double-blind, placebo-controlled, single-center, and open-label continuation phase I/IIa clinical trial (ROPALS trial) publication-title: Regen. Ther. doi: 10.1016/j.reth.2019.07.002 – volume: 85 start-page: 348 year: 2009 ident: ref_38 article-title: Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. doi: 10.2183/pjab.85.348 – volume: 34 start-page: 2063 year: 2016 ident: ref_1 article-title: C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia publication-title: Stem Cells doi: 10.1002/stem.2388 – volume: 26 start-page: 101 year: 2008 ident: ref_33 article-title: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts publication-title: Nat. Biotechnol. doi: 10.1038/nbt1374 – volume: 92 start-page: 383 year: 2016 ident: ref_58 article-title: Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons publication-title: Neuron doi: 10.1016/j.neuron.2016.09.015 – volume: 341 start-page: 651 year: 2013 ident: ref_40 article-title: Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds publication-title: Science doi: 10.1126/science.1239278 – volume: 25 start-page: 173 year: 2020 ident: ref_114 article-title: Depending on the stress, histone deacetylase inhibitors act as heat shock protein co-inducers in motor neurons and potentiate arimoclomol, exerting neuroprotection through multiple mechanisms in ALS models publication-title: Cell Stress Chaperones doi: 10.1007/s12192-019-01064-1 – volume: 12 start-page: 8180 year: 2022 ident: ref_74 article-title: Nuclear RNA transcript levels modulate nucleocytoplasmic distribution of ALS/FTD-associated protein FUS publication-title: Sci. Rep. doi: 10.1038/s41598-022-12098-4 – ident: ref_6 doi: 10.3390/ijms21103464 – volume: 9 start-page: 205 year: 2011 ident: ref_46 article-title: Conversion of mouse and human fibroblasts into functional spinal motor neurons publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.07.014 – volume: 173 start-page: 706 year: 2018 ident: ref_68 article-title: Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation publication-title: Cell doi: 10.1016/j.cell.2018.03.004 – volume: 10 start-page: 12998 year: 2020 ident: ref_17 article-title: The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients publication-title: Sci. Rep. doi: 10.1038/s41598-020-69845-8 – volume: 9 start-page: e033131 year: 2019 ident: ref_116 article-title: Induced pluripotent stem cell-based Drug Repurposing for Amyotrophic lateral sclerosis Medicine (iDReAM) study: Protocol for a phase I dose escalation study of bosutinib for amyotrophic lateral sclerosis patients publication-title: BMJ Open doi: 10.1136/bmjopen-2019-033131 – volume: 387 start-page: 1099 year: 2022 ident: ref_27 article-title: Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2204705 – volume: 44 start-page: 658 year: 2021 ident: ref_13 article-title: Non-cell-autonomous pathogenic mechanisms in amyotrophic lateral sclerosis publication-title: Trends Neurosci. doi: 10.1016/j.tins.2021.04.008 – volume: 525 start-page: 129 year: 2015 ident: ref_59 article-title: GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport publication-title: Nature doi: 10.1038/nature14974 – volume: 22 start-page: 1793 year: 2019 ident: ref_73 article-title: FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0498-9 – volume: 755 start-page: 135911 year: 2021 ident: ref_31 article-title: Mini-Review: Induced pluripotent stem cells and the search for new cell-specific ALS therapeutic targets publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2021.135911 – volume: 10 start-page: 375 year: 2018 ident: ref_71 article-title: Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2017.12.018 – volume: 9 start-page: 315 year: 2018 ident: ref_78 article-title: Modeling hallmark pathology using motor neurons derived from the family and sporadic amyotrophic lateral sclerosis patient-specific iPS cells publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-018-1048-1 – volume: 370 start-page: 20140367 year: 2015 ident: ref_110 article-title: Present and future challenges of induced pluripotent stem cells publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2014.0367 – volume: 21 start-page: e13549 year: 2022 ident: ref_61 article-title: Disruption of ER-mitochondria tethering and signalling in C9orf72-associated amyotrophic lateral sclerosis and frontotemporal dementia publication-title: Aging Cell doi: 10.1111/acel.13549 – volume: 541 start-page: 481 year: 2017 ident: ref_93 article-title: Neurotoxic reactive astrocytes are induced by activated microglia publication-title: Nature doi: 10.1038/nature21029 – volume: 1656 start-page: 88 year: 2017 ident: ref_43 article-title: Modeling ALS and FTD with iPSC-derived neurons publication-title: Brain Res. doi: 10.1016/j.brainres.2015.10.003 – volume: 41 start-page: 99 year: 2020 ident: ref_111 article-title: Ropinirole, a New ALS Drug Candidate Developed Using iPSCs publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2019.12.002 – ident: ref_94 doi: 10.3390/cells10020240 – ident: ref_106 doi: 10.3390/ijms232113462 – volume: 17 start-page: 1641 year: 2016 ident: ref_41 article-title: Gadd45a is a heterochromatin relaxer that enhances iPS cell generation publication-title: EMBO Rep. doi: 10.15252/embr.201642402 – volume: 126 start-page: 663 year: 2006 ident: ref_28 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 14 start-page: 781 year: 2014 ident: ref_51 article-title: Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.03.004 – volume: 9 start-page: 2668 year: 2018 ident: ref_112 article-title: A small-molecule inhibitor of SOD1-Derlin-1 interaction ameliorates pathology in an ALS mouse model publication-title: Nat. Commun. doi: 10.1038/s41467-018-05127-2 – volume: 10 start-page: S31 year: 2021 ident: ref_105 article-title: Neuronal cell-based medicines from pluripotent stem cells: Development, production, and preclinical assessment publication-title: Stem Cells Transl. Med. doi: 10.1002/sctm.20-0522 – volume: 17 start-page: 1633 year: 2022 ident: ref_104 article-title: Motor neuron replacement therapy for amyotrophic lateral sclerosis publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.332123 – volume: 123 start-page: 22 year: 2023 ident: ref_26 article-title: New Drug Approved For ALS publication-title: Am. J. Nurs. doi: 10.1097/01.NAJ.0000911516.31267.67 – volume: 10 start-page: 290 year: 2016 ident: ref_67 article-title: FUS Mislocalization and Vulnerability to DNA Damage in ALS Patients Derived hiPSCs and Aging Motoneurons publication-title: Front. Cell Neurosci. doi: 10.3389/fncel.2016.00290 – volume: 10 start-page: e00983 year: 2022 ident: ref_120 article-title: Acute retigabine-induced effects on myelinated motor axons in amyotrophic lateral sclerosis publication-title: Pharmacol. Res. Perspect. doi: 10.1002/prp2.983 – volume: 3 start-page: 242 year: 2014 ident: ref_98 article-title: Focal transplantation of human iPSC-derived glial-rich neural progenitors improves lifespan of ALS mice publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2014.05.017 – volume: 72 start-page: 257 year: 2011 ident: ref_10 article-title: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD publication-title: Neuron doi: 10.1016/j.neuron.2011.09.010 – volume: 53 start-page: 101707 year: 2022 ident: ref_117 article-title: Safety and tolerability of bosutinib in patients with amyotrophic lateral sclerosis (iDReAM study): A multicentre, open-label, dose-escalation phase 1 trial publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2022.101707 – volume: 9 start-page: eaaf3962 year: 2017 ident: ref_52 article-title: The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf3962 – volume: 330 start-page: 585 year: 1994 ident: ref_24 article-title: A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199403033300901 – volume: 10 start-page: 22 year: 2017 ident: ref_84 article-title: Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms publication-title: Mol. Brain doi: 10.1186/s13041-017-0300-4 – volume: 29 start-page: 11 year: 2022 ident: ref_109 article-title: Human stem cell models of neurodegeneration: From basic science of amyotrophic lateral sclerosis to clinical translation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2021.12.008 – volume: 11 start-page: e9423 year: 2019 ident: ref_56 article-title: Repeat-associated non-AUG translation in C9orf72-ALS/FTD is driven by neuronal excitation and stress publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201809423 – volume: 525 start-page: 56 year: 2015 ident: ref_11 article-title: The C9orf72 repeat expansion disrupts nucleocytoplasmic transport publication-title: Nature doi: 10.1038/nature14973 |
SSID | ssj0000816105 |
Score | 2.3498247 |
SecondaryResourceType | review_article |
Snippet | Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in the loss of motor function in the central nervous system (CNS)... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 971 |
SubjectTerms | Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - metabolism Amyotrophic Lateral Sclerosis - therapy Animals Care and treatment Cell differentiation Cell lines Cell therapy Cell- and Tissue-Based Therapy Cellular therapy Central nervous system Development and progression Disease disease modeling Drug screening Efficiency Family medical history Fibroblasts Genotypes Glial cells Health aspects induced pluripotent stem cells Induced Pluripotent Stem Cells - metabolism Inhibitory postsynaptic potentials Methods Mutation Nervous system Neurodegenerative diseases Neurodegenerative Diseases - metabolism Neuronal-glial interactions Neurons - metabolism Oxidative stress Pathogenesis Phenotypes Physiological aspects Pluripotency Proteins Review Somatic cells Stem cells |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhEMilNGnauk2KCqG91ES23sdNaAilCYU8yE3IskwWNnbIeg_595mxncUmlF56tcZYGs1ovrGkbwg5NEFWOtiY4qZRKnRkqReZSSPLS8G9ynxXh-z8Qp1di1-38nZU6gvPhPX0wL3ijrRl1hRVKFRWCuOth4Smwu0rbWWlyi5bh5g3Sqa6NdgAkmGyJ9XkkNcf4X_wZZYzhaRJkyDUcfW_XpFHIWl6XHIUf07fkjcDcKSzvsM7ZCPWu2SrLyX59I7cYA2OEEv6Z7GCdaABKNzSyzbe0xPsEvV1Sa9wU4DORlvWdF7T2f1T0z42D3fzQH97vJC8oJfwCej5fLlHrk9_Xp2cpUPNhDSAYtpURu0jwDbNZWAilOCSwfMoo9BKlJW10QYGGAWAlFe-KHQsAIRxg1AEZqbi78lm3dTxI6E25IWXSqgKIKJX1nhmmcwDCxxyPG4S8uNFiS4MhOJY12LhILFAnbuJzhPybS3-0DNp_E3wGGdkLYQE2N0DMAs3mIX7l1kk5DvOp0M3hU4FP9w2gKEh4ZWbAXLSKoNYkJD9iSS4V5g2v1iEG9x76XJtAQZqqXhCvq6b8U08slbHZtXJALyE5RNkPvQGtB4SB20iJ2tCzMS0JmOettTzu478Gxn-tNL20__Q0meynQNo68_U7ZPN9nEVDwBktcWXzp-eAai7ItM priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYLoi9W0-X4QWQ-PQzwR7lbuLaRp6i3steduF9z_3pm2u2459bWZ0GQyk_lNk_6GkJcmyEoHG1M8NEqFjiz1IjNpZHkpuFeZ7-qQHX9VR1Px-Uye_aEUGhS4_Gtqh_Wkpov5218_1x_A4d9jxgkp-zv8xL3McqaQD-k6uQFBSaOPHg9Iv9uUDUAbJnuWzau9RlGpI--_ukXvxKjx_cmdgHR4h9wekCSd9Et_l1yL9T1ys68tub5PvmNRjhBL-m2-go2hAWzc0pM2XtADHBL1dUlP8ZSATnbOsOmsppOLddMumsvzWaBfPP6hPKcn8AoY-Wz5gEwPP50eHKVDEYU0QOrXpjJqHwHHaS4DE6EEHw2eRxmFVqKsrI02MAAtgKy88kWhYwGojBvEJrBUFX9I9uqmjo8JtSEvvFRCVYAZvbLGM8tkHljgkPRxk5A3GyW6MDCMY6GLuYNMA3XuRjpPyKut-GVPrfEvwY-4IlshZMTuHjSLH25wMKcts6aoQqGyUhhvPcy-wmNObWWlSpaQ17ieDi0JBhX88PsBTA0ZsNwEoJRWGQSHhOyPJMHfwrh5YxFuY64u1xZwoZaKJ-TFthl74h22OjarTgbwJuynIPOoN6DtlDhoE0laE2JGpjWa87ilnp13bOBI-aeVtk_-P66n5FYO-Ky_PrdP9trFKj4DPNUWzztP-Q2Yrx3d priority: 102 providerName: Scholars Portal |
Title | Induced Pluripotent Stem Cells and Their Applications in Amyotrophic Lateral Sclerosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36980310 https://www.proquest.com/docview/2791597563 https://www.proquest.com/docview/2792500113 https://pubmed.ncbi.nlm.nih.gov/PMC10047679 https://doaj.org/article/79098bfcb61d48a9a549f0438795f6d0 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGXkr7dpEGF0l5qIluyHqeyCQmhNCE0ScnNyLKcLGzs7a73kH_fGVvrrintxYfVLNZrRt_MyN8Q8lG7rFLO-BiTRrFQnsVWJDr2LC0FtzKxXR2ys3N5ei2-3WQ3IeC2DNcq1zaxM9Rl4zBGfpAqAyevyiT_Ov8VY9UozK6GEhqPyTaYYA3O1_bh8fnFjyHKgmUlAEH05Joc_PsDjIcvk5RJJE8aHUYdZ__flnnjaBpfm9w4h052yLMAIOmkX_Hn5JGvX5AnfUnJh5fkJ9bicL6kF7MV2IMGIHFLL1t_T4-wS9TWJb3C5ACdbKSu6bSmk_uHpl0087upo98tfpg8o5fwCuj5dPmKXJ8cXx2dxqF2QuzA42vjzCvrAb4pnjkmXAmq6Sz3mRdKirIyxhvHAKsAoLLSFoXyBYAxrhGSwApV_DXZqpvavyXUuLSwmRSyAqhopdGWGZaljjkOvh7XEfmynsTcBWJxrG8xy8HBwDnPR3MekU-D-Lxn1PiX4CGuyCCERNjdD83iNg96lSvDjC4qV8ikFNoaC6OvMLupTFbJkkXkM65njuoKnXI2fHUAQ0Piq3wCCErJBM6EiOyNJEHN3Lh5vSPyoObL_M-mjMiHoRn_iVfXat-sOhmAmWBGQeZNv4GGIXGYTeRmjYgeba3RmMct9fSuIwFHpj8llXn3_37tkqcpwLL-1twe2WoXK_8eYFRb7Add2e_CEPA8E_o3H_IeEw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEN8EBhiJjxeipXFixw8IdWNTx7pqYh3aW3Ach1XqktKmQv2n-Bu5S9LSCMHbXutra5_v43c--w7gdWTCTBplXUoauYG0nquDbuRaz08DrkVXV33IToaifx58vggvtuDX6i0MXatc2cTKUKeFoTPyXV8q9LwyFPzj9IdLXaMou7pqoVGLxbFd_sSQbf7h6BPu7xvfPzwY7ffdpquAazAWKt3QSm0R2EgeGi8wKQqt0dyGNpAiSDOlrDIeenGEGlroJJE2QZjCI3LWOPeM4-_egO2AYyjTge29g-Hpl_WpDrWxQMRSF_PkXHm7dP4-7_qeoGJNLedX9Qj42xNsuML2Nc0Nv3d4F-40gJX1agm7B1s2vw836xaWywfwlXp_GJuy08kC7U-BELxkZ6W9Yvs0JabzlI0oGcF6G6lyNs5Z72pZlLNiejk2bKDpIfSEneFf4MzH84dwfi1cfQSdvMjtE2DK-IkORSAyhKZaqEh7ygt94xmOsSWPHHi_YmJsmkLm1E9jEmNAQzyPWzx34O2afFpX8PgX4R7tyJqICm9XHxSz73Gjx7FUnoqSzCSimwaRVhpXn1E2VaowE6nnwDvaz5jMA07K6OaVAy6NCm3FPURsUnTRBzmw06JEtTbt4ZVExI1Zmcd_lMCBV-th-iZdlcttsahoENai2Uaax7UArZfEkZtUC9aBqCVarTW3R_LxZVV0nCoLSiHV0__P6yXc6o9OBvHgaHj8DG77CAnrG3s70ClnC_scIVyZvGj0hsG361bV37fwWDM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8EBhiJjxeiuvmw4weEuo9qY6Oq2Ib2FhzHYZW6pLSpUP81_jrukrQ0QvC21_ra-uz7-J19vgN4HZkwk0ZZly6N3EBa7uqgF7mWe2nga9HTVR-yz0NxeB58uggvtuDX6i0MpVWubGJlqNPC0Bl515MKPa8Mhd_NmrSI0f7g4_SHSx2k6KZ11U6jFpFju_yJ4dv8w9E-7vUbzxscnO0duk2HAddgXFS6oZXaIsiRfmh4YFIUYKN9G9pAiiDNlLLKcPToCDu00EkibYKQxY_IcSMfmY-_ewO2JUZFvAPbuwfD0Zf1CQ-1tED0Uhf29H3Fu3QWP-95XFDhppYjrPoF_O0VNtxiO2VzwwcO7sKdBryyfi1t92DL5vfhZt3OcvkAvlIfEGNTNpos0BYVCMdLdlraK7ZHU2I6T9kZXUyw_sa1ORvnrH-1LMpZMb0cG3ai6VH0hJ3iX-DMx_OHcH4tq_oIOnmR2yfAlPESHYpAZAhTtVCR5oqHnuHGxzjTjxx4v1rE2DRFzam3xiTG4IbWPG6tuQNv1-TTuprHvwh3aUfWRFSEu_qgmH2PG52OpeIqSjKTiF4aRFpp5D6jm1Wpwkyk3IF3tJ8xmQqclNHNiwdkjYpuxX1Eb1L00B85sNOiRBU37eGVRMSNiZnHfxTCgVfrYfompc3ltlhUNAhx0YQjzeNagNYs-biaVBfWgaglWi2e2yP5-LIqQE5VBqWQ6un_5_USbqGKxidHw-NncNtDdFgn7-1Ap5wt7HNEc2XyolEbBt-uW1N_A8sKXGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induced+Pluripotent+Stem+Cells+and+Their+Applications+in+Amyotrophic+Lateral+Sclerosis&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Du%2C+Hongmei&rft.au=Huo%2C+Zijun&rft.au=Chen%2C+Yanchun&rft.au=Zhao%2C+Zhenhan&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2073-4409&rft.volume=12&rft.issue=6&rft.spage=971&rft_id=info:doi/10.3390%2Fcells12060971&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon |