MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology

Recognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources. Although leaf image-based methods have been widely adopted in plant species identification, they seldom have been applied in cultivar identifi...

Full description

Saved in:
Bibliographic Details
Published inHorticulture research Vol. 8; no. 1
Main Authors Zhang, Yanping, Peng, Jing, Yuan, Xiaohui, Zhang, Lisi, Zhu, Dongzi, Hong, Po, Wang, Jiawei, Liu, Qingzhong, Liu, Weizhen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2021
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources. Although leaf image-based methods have been widely adopted in plant species identification, they seldom have been applied in cultivar identification due to the high similarity of leaves among cultivars. Here, we propose an automatic leaf image-based cultivar identification pipeline called MFCIS ( M ulti- f eature Combined C ultivar I dentification S ystem), which combines multiple leaf morphological features collected by persistent homology and a convolutional neural network (CNN). Persistent homology, a multiscale and robust method, was employed to extract the topological signatures of leaf shape, texture, and venation details. A CNN-based algorithm, the Xception network, was fine-tuned for extracting high-level leaf image features. For fruit species, we benchmarked the MFCIS pipeline on a sweet cherry ( Prunus avium L.) leaf dataset with >5000 leaf images from 88 varieties or unreleased selections and achieved a mean accuracy of 83.52%. For annual crop species, we applied the MFCIS pipeline to a soybean (Glycine max L. Merr.) leaf dataset with 5000 leaf images of 100 cultivars or elite breeding lines collected at five growth periods. The identification models for each growth period were trained independently, and their results were combined using a score-level fusion strategy. The classification accuracy after score-level fusion was 91.4%, which is much higher than the accuracy when utilizing each growth period independently or mixing all growth periods. To facilitate the adoption of the proposed pipelines, we constructed a user-friendly web service, which is freely available at http://www.mfcis.online .
AbstractList Recognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources. Although leaf image-based methods have been widely adopted in plant species identification, they seldom have been applied in cultivar identification due to the high similarity of leaves among cultivars. Here, we propose an automatic leaf image-based cultivar identification pipeline called MFCIS ( M ulti- f eature Combined C ultivar I dentification S ystem), which combines multiple leaf morphological features collected by persistent homology and a convolutional neural network (CNN). Persistent homology, a multiscale and robust method, was employed to extract the topological signatures of leaf shape, texture, and venation details. A CNN-based algorithm, the Xception network, was fine-tuned for extracting high-level leaf image features. For fruit species, we benchmarked the MFCIS pipeline on a sweet cherry ( Prunus avium L.) leaf dataset with >5000 leaf images from 88 varieties or unreleased selections and achieved a mean accuracy of 83.52%. For annual crop species, we applied the MFCIS pipeline to a soybean (Glycine max L. Merr.) leaf dataset with 5000 leaf images of 100 cultivars or elite breeding lines collected at five growth periods. The identification models for each growth period were trained independently, and their results were combined using a score-level fusion strategy. The classification accuracy after score-level fusion was 91.4%, which is much higher than the accuracy when utilizing each growth period independently or mixing all growth periods. To facilitate the adoption of the proposed pipelines, we constructed a user-friendly web service, which is freely available at http://www.mfcis.online .
Recognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources. Although leaf image-based methods have been widely adopted in plant species identification, they seldom have been applied in cultivar identification due to the high similarity of leaves among cultivars. Here, we propose an automatic leaf image-based cultivar identification pipeline called MFCIS (Multi-feature Combined Cultivar Identification System), which combines multiple leaf morphological features collected by persistent homology and a convolutional neural network (CNN). Persistent homology, a multiscale and robust method, was employed to extract the topological signatures of leaf shape, texture, and venation details. A CNN-based algorithm, the Xception network, was fine-tuned for extracting high-level leaf image features. For fruit species, we benchmarked the MFCIS pipeline on a sweet cherry (Prunus avium L.) leaf dataset with >5000 leaf images from 88 varieties or unreleased selections and achieved a mean accuracy of 83.52%. For annual crop species, we applied the MFCIS pipeline to a soybean (Glycine max L. Merr.) leaf dataset with 5000 leaf images of 100 cultivars or elite breeding lines collected at five growth periods. The identification models for each growth period were trained independently, and their results were combined using a score-level fusion strategy. The classification accuracy after score-level fusion was 91.4%, which is much higher than the accuracy when utilizing each growth period independently or mixing all growth periods. To facilitate the adoption of the proposed pipelines, we constructed a user-friendly web service, which is freely available at http://www.mfcis.online.
ArticleNumber 172
Author Liu, Qingzhong
Wang, Jiawei
Zhang, Yanping
Yuan, Xiaohui
Zhang, Lisi
Zhu, Dongzi
Liu, Weizhen
Peng, Jing
Hong, Po
Author_xml – sequence: 1
  givenname: Yanping
  surname: Zhang
  fullname: Zhang, Yanping
  organization: School of Computer Science and Technology, Wuhan University of Technology
– sequence: 2
  givenname: Jing
  surname: Peng
  fullname: Peng, Jing
  organization: School of Computer Science and Technology, Wuhan University of Technology
– sequence: 3
  givenname: Xiaohui
  surname: Yuan
  fullname: Yuan, Xiaohui
  organization: School of Computer Science and Technology, Wuhan University of Technology, Chongqing Research Institute, Wuhan University of Technology
– sequence: 4
  givenname: Lisi
  surname: Zhang
  fullname: Zhang, Lisi
  organization: Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology
– sequence: 5
  givenname: Dongzi
  surname: Zhu
  fullname: Zhu, Dongzi
  organization: Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology
– sequence: 6
  givenname: Po
  orcidid: 0000-0001-6238-4554
  surname: Hong
  fullname: Hong, Po
  organization: Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology
– sequence: 7
  givenname: Jiawei
  orcidid: 0000-0002-5598-2115
  surname: Wang
  fullname: Wang, Jiawei
  organization: Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology
– sequence: 8
  givenname: Qingzhong
  surname: Liu
  fullname: Liu, Qingzhong
  organization: Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology
– sequence: 9
  givenname: Weizhen
  orcidid: 0000-0002-0780-0284
  surname: Liu
  fullname: Liu, Weizhen
  email: liuweizhen@whut.edu.cn
  organization: School of Computer Science and Technology, Wuhan University of Technology, Chongqing Research Institute, Wuhan University of Technology
BookMark eNp9kU9vVCEUxYmpsbX2C7gicf2UPw8GXJiYidUmNS7UNWHgMqV5A0_gTdNvL9NpNLroCsi9v3PP5bxEJyknQOg1JW8p4epdHenI1UAYHQiRRA13z9AZI4INK7aSJ_0uJRukouQUXdR6SwihYmRcrF6gUz5yzgXVZ2j_9XJ99f09tgnbpeWdbdHhCWwYNraCx9FDajFE1ws54TnOMMUEOOSC58mmht0ytbi3peKlxrTFHmA-KJR0eNnk8Qylxtq6EL7Juzzl7f0r9DzYqcLF43mOfl5--rH-Mlx_-3y1_ng9ODHqNghmqeZjAB2cl456CU54LQmVFAIjZEX1hlEKSko9qs0oA_F9Ma-0U84BP0cfjrrzstmBd91DsZOZS9zZcm-yjebfSoo3Zpv3RnEmpCJd4M2jQMm_FqjN3OalpO7ZMCGkJoJL1bvYscuVXGuB8GcCJeYQlznGZXpc5iEuc9ch9R_kYnv45u4kTk-j_IjWPidtofx19QT1G3YVrX0
CitedBy_id crossref_primary_10_1007_s41468_024_00175_8
crossref_primary_10_1016_j_hpj_2023_02_007
crossref_primary_10_1016_j_atech_2024_100605
crossref_primary_10_1016_j_dib_2024_111241
crossref_primary_10_3389_fpls_2022_806711
crossref_primary_10_1007_s00217_022_04168_8
crossref_primary_10_1109_JSEN_2024_3401714
crossref_primary_10_1016_j_cviu_2024_104221
crossref_primary_10_20965_ijat_2024_p0632
crossref_primary_10_1080_10942912_2022_2158863
crossref_primary_10_35633_inmateh_69_21
crossref_primary_10_1016_j_biosystemseng_2023_09_005
crossref_primary_10_1016_j_eswa_2023_119626
crossref_primary_10_1111_jph_70032
crossref_primary_10_1016_j_compag_2024_109700
crossref_primary_10_1186_s13007_024_01295_z
Cites_doi 10.1111/nph.16736
10.1038/nrg3096
10.1016/j.cviu.2017.10.012
10.1080/07038992.2020.1740584
10.5010/JPB.2020.47.2.124
10.1016/j.media.2019.03.014
10.1016/j.isprsjprs.2021.01.017
10.1016/j.patrec.2007.05.017
10.3389/fpls.2018.00553
10.3389/fpls.2017.00520
10.1016/j.patcog.2020.107809
10.1186/s13007-017-0266-3
10.1007/s13580-018-0055-6
10.1007/s00299-008-0507-z
10.1016/j.compag.2019.01.041
10.1186/1471-2156-15-35
10.1016/j.ecoinf.2017.05.005
10.1016/j.scienta.2020.109734
10.3390/sym12020217
10.1016/j.neucom.2015.08.090
10.1155/2014/380585
10.1109/TPAMI.2007.41
10.1007/s13580-020-00227-9
10.1111/tpj.13472
10.3109/07388551.2012.675314
10.1080/13102818.2017.1400401
10.1104/pp.110.162834
10.1111/j.1469-8137.2012.04355.x
10.1016/j.patcog.2017.05.015
10.1016/j.biosystemseng.2020.03.019
10.1016/j.compag.2005.09.004
10.1007/s10681-005-0626-3
10.1016/j.compag.2017.11.021
10.1016/j.agwat.2019.105875
10.1016/j.patcog.2015.04.004
10.1016/j.compbiolchem.2019.03.012
10.1090/S0002-9904-1964-11082-X
10.1016/S0031-3203(02)00262-5
10.1080/14620316.2019.1647798
10.1104/pp.112.202762
10.1093/imaiai/iau011
10.1090/conm/453/08802
10.1007/978-3-642-17691-3_32
10.1007/978-981-10-2107-7_48
10.1109/IISA.2016.7785361
10.1007/978-3-642-17274-8_65
10.1101/2020.06.22.163899
10.1007/978-3-319-60964-5_28
10.1109/TIP.2014.2343457
10.1109/CVPR.2015.7299106
10.1109/CVPR.2014.257
10.1109/CVPR.2017.195
10.5281/zenodo.4739746
10.1007/978-3-319-10590-1_53
10.1007/978-3-319-26690-9_41
10.1609/aaai.v34i07.6968
10.14569/IJACSA.2011.021007
10.1109/CVPR.2009.5206848
10.1007/978-1-4419-0052-4_7
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X2
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
5PM
DOI 10.1038/s41438-021-00608-w
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Agricultural Science Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
EISSN 2052-7276
ExternalDocumentID PMC8325680
10_1038_s41438_021_00608_w
GrantInformation_xml – fundername: Wuhan University of Technology (WUT)
  grantid: 104-40120526; WUT: 2020IVA026
  funderid: https://doi.org/10.13039/501100007724
– fundername: ;
  grantid: 104-40120526; WUT: 2020IVA026
GroupedDBID 0R~
3V.
5VS
7X2
7X7
8FE
8FH
8FI
8FJ
AAHBH
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABUWG
ABXVV
ACGFS
ACSMW
ADBBV
ADRAZ
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AOIJS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
ITC
KQ8
LK8
M0K
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RNTTT
ROX
RPM
SNYQT
TCJ
TGD
TOX
UKHRP
AAYXX
CITATION
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
5PM
ID FETCH-LOGICAL-c549t-52a1934fe9fcd6c1d6ec5d960161ef200719b211e866948b46f0d351d89c8cce3
IEDL.DBID M48
ISSN 2662-6810
IngestDate Thu Aug 21 18:04:50 EDT 2025
Wed Aug 13 09:59:00 EDT 2025
Thu Apr 24 22:52:19 EDT 2025
Tue Jul 01 03:40:04 EDT 2025
Fri Feb 21 02:37:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-52a1934fe9fcd6c1d6ec5d960161ef200719b211e866948b46f0d351d89c8cce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5598-2115
0000-0002-0780-0284
0000-0001-6238-4554
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41438-021-00608-w
PMID 34333519
PQID 2556905368
PQPubID 2041956
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8325680
proquest_journals_2556905368
crossref_primary_10_1038_s41438_021_00608_w
crossref_citationtrail_10_1038_s41438_021_00608_w
springer_journals_10_1038_s41438_021_00608_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210801
  day: 1
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Horticulture research
PublicationTitleAbbrev Hortic Res
PublicationYear 2021
Publisher Nature Publishing Group UK
Oxford University Press
Publisher_xml – name: Nature Publishing Group UK
– name: Oxford University Press
References Baldi (CR21) 2017; 142
Park, Park (CR49) 2007; 28
CR39
Cho (CR57) 2020; 61
Adams (CR36) 2017; 18
Minervini (CR11) 2017; 90
CR35
CR33
Korir (CR2) 2013; 33
CR32
Fufa (CR53) 2005; 145
Neto (CR12) 2006; 50
Danner, Berger, Wocher, Mauser, Hank (CR63) 2021; 173
Yamaç, Todorovic (CR60) 2020; 228
Price (CR7) 2011; 155
Sohn (CR1) 2017; 8
Barré (CR44) 2017; 40
Wang (CR38) 2020; 194
Colmer (CR62) 2020; 228
CR45
CR43
Nadeem (CR59) 2018; 32
CR41
Biot (CR10) 2016; 143
Lee (CR5) 2017; 71
Naresh, Nagendraswamy (CR15) 2016; 173
Qaiser (CR30) 2019; 55
Islam (CR67) 2014; 2014
Jamali (CR3) 2011; 13
Cui, Yang (CR48) 2011; 7
CR18
Yang (CR19) 2021; 112
CR17
MacLane (CR28) 1964; 70
CR16
CR14
Agarwal, Shrivastava, Padh (CR58) 2008; 27
CR13
Zhao, Chan, Cham, Chu (CR6) 2015; 48
Liu (CR20) 2020; 12
CR51
Kim (CR54) 2021; 276
Bubenik (CR37) 2015; 16
Reisi Gahrouei, McNairn, Hosseini, Homayouni (CR61) 2020; 46
Park (CR52) 2020; 47
Li (CR24) 2018; 9
Turner, Mukherjee, Boyer (CR34) 2014; 3
Zeppelzauer (CR31) 2018; 167
CR29
Blonder (CR46) 2012; 196
Erhan, Bengio, Courville, Vincent (CR65) 2009; 1341
CR27
Ling, Jacobs (CR40) 2007; 29
Wu (CR4) 2014; 15
CR26
Pourkhaloee (CR56) 2018; 59
CR25
CR69
CR23
CR22
Gan (CR47) 2019; 80
CR66
Yang (CR68) 2003; 36
CR64
De Vylder, Vandenbussche, Hu (CR8) 2012; 160
Zhou (CR9) 2017; 13
Kaya (CR42) 2019; 158
Ghosh (CR50) 2011; 12
Patzak, Henychová, Paprštein, Sedlák (CR55) 2020; 95
608_CR45
SS Yamaç (608_CR60) 2020; 228
KH Cho (608_CR57) 2020; 61
C Zhao (608_CR6) 2015; 48
M Zeppelzauer (608_CR31) 2018; 167
A Baldi (608_CR21) 2017; 142
A Pourkhaloee (608_CR56) 2018; 59
Y Naresh (608_CR15) 2016; 173
B Wang (608_CR38) 2020; 194
608_CR41
HB Sohn (608_CR1) 2017; 8
608_CR43
M Danner (608_CR63) 2021; 173
K Wu (608_CR4) 2014; 15
608_CR16
M Li (608_CR24) 2018; 9
608_CR17
608_CR18
NK Korir (608_CR2) 2013; 33
608_CR13
608_CR14
K Turner (608_CR34) 2014; 3
MR Islam (608_CR67) 2014; 2014
M Kim (608_CR54) 2021; 276
J De Vylder (608_CR8) 2012; 160
608_CR51
CA Price (608_CR7) 2011; 155
C Yang (608_CR19) 2021; 112
608_CR26
608_CR27
Y Gan (608_CR47) 2019; 80
608_CR29
608_CR22
608_CR66
608_CR23
M Agarwal (608_CR58) 2008; 27
608_CR25
608_CR69
H Park (608_CR52) 2020; 47
M Minervini (608_CR11) 2017; 90
JC Neto (608_CR12) 2006; 50
J Colmer (608_CR62) 2020; 228
T Qaiser (608_CR30) 2019; 55
P Barré (608_CR44) 2017; 40
608_CR64
D Erhan (608_CR65) 2009; 1341
H Adams (608_CR36) 2017; 18
P Bubenik (608_CR37) 2015; 16
J Yang (608_CR68) 2003; 36
608_CR39
H Fufa (608_CR53) 2005; 145
E Biot (608_CR10) 2016; 143
608_CR33
J Zhou (608_CR9) 2017; 13
608_CR35
H-A Park (608_CR49) 2007; 28
H Ling (608_CR40) 2007; 29
C Liu (608_CR20) 2020; 12
S Jamali (608_CR3) 2011; 13
S Ghosh (608_CR50) 2011; 12
SH Lee (608_CR5) 2017; 71
J Patzak (608_CR55) 2020; 95
A Kaya (608_CR42) 2019; 158
608_CR32
F Cui (608_CR48) 2011; 7
O Reisi Gahrouei (608_CR61) 2020; 46
S MacLane (608_CR28) 1964; 70
B Blonder (608_CR46) 2012; 196
MA Nadeem (608_CR59) 2018; 32
References_xml – ident: CR45
– ident: CR22
– ident: CR39
– ident: CR16
– volume: 228
  start-page: 778
  year: 2020
  end-page: 793
  ident: CR62
  article-title: SeedGerm: a cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination
  publication-title: N. Phytologist
  doi: 10.1111/nph.16736
– ident: CR51
– volume: 13
  start-page: 131
  year: 2011
  end-page: 145
  ident: CR3
  article-title: Identification and distinction of soybean commercial cultivars using morphological and microsatellite markers., Iranian
  publication-title: J. Crop Sci.
– volume: 12
  start-page: 821
  year: 2011
  end-page: 832
  ident: CR50
  article-title: Software for systems biology: from tools to integrated platforms
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3096
– volume: 167
  start-page: 74
  year: 2018
  end-page: 88
  ident: CR31
  article-title: A study on topological descriptors for the analysis of 3d surface texture
  publication-title: Computer Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.10.012
– volume: 46
  start-page: 84
  year: 2020
  end-page: 99
  ident: CR61
  article-title: Estimation of crop biomass and leaf area index from multitemporal and multispectral imagery using machine learning approaches
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2020.1740584
– volume: 47
  start-page: 124
  year: 2020
  end-page: 130
  ident: CR52
  article-title: Molecular identification of sweet potato accessions using ARMS-PCR based on SNPs
  publication-title: J. Plant Biotechnol.
  doi: 10.5010/JPB.2020.47.2.124
– ident: CR35
– ident: CR29
– volume: 55
  start-page: 1
  year: 2019
  end-page: 14
  ident: CR30
  article-title: Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.03.014
– volume: 173
  start-page: 278
  year: 2021
  end-page: 296
  ident: CR63
  article-title: Efficient RTM-based training of machine learning regression algorithms to quantify biophysical & biochemical traits of agricultural crops
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.01.017
– volume: 28
  start-page: 2019
  year: 2007
  end-page: 2028
  ident: CR49
  article-title: Iris recognition based on score level fusion by using SVM
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.05.017
– volume: 9
  start-page: 553
  year: 2018
  ident: CR24
  article-title: Topological data analysis as a morphometric method: using persistent homology to demarcate a leaf morphospace
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00553
– ident: CR25
– volume: 8
  start-page: 520
  year: 2017
  ident: CR1
  article-title: Barcode system for genetic identification of soybean [Glycine max (L.) Merrill] cultivars using InDel markers specific to dense variation blocks
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00520
– volume: 112
  start-page: 107809
  year: 2021
  ident: CR19
  article-title: Plant leaf recognition by integrating shape and texture features
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107809
– volume: 13
  year: 2017
  ident: CR9
  article-title: Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0266-3
– volume: 59
  start-page: 875
  year: 2018
  end-page: 888
  ident: CR56
  article-title: Molecular analysis of genetic diversity, population structure, and phylogeny of wild and cultivated tulips (Tulipa L.) by genic microsatellites
  publication-title: Horticulture Environ. Biotechnol.
  doi: 10.1007/s13580-018-0055-6
– volume: 27
  start-page: 617
  year: 2008
  end-page: 631
  ident: CR58
  article-title: Advances in molecular marker techniques and their applications in plant sciences
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-008-0507-z
– volume: 158
  start-page: 20
  year: 2019
  end-page: 29
  ident: CR42
  article-title: Analysis of transfer learning for deep neural network-based plant classification models
  publication-title: Computers Electron. Agriculture
  doi: 10.1016/j.compag.2019.01.041
– volume: 15
  year: 2014
  ident: CR4
  article-title: Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using Insertion-Deletion (InDel) and Simple Sequence Repeat (SSR) markers
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-15-35
– volume: 40
  start-page: 50
  year: 2017
  end-page: 56
  ident: CR44
  article-title: LeafNet: a computer vision system for automatic plant species identification
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2017.05.005
– volume: 276
  start-page: 109734
  year: 2021
  ident: CR54
  article-title: Genome-wide SNP discovery and core marker sets for DNA barcoding and variety identification in commercial tomato cultivars
  publication-title: Sci. Horticulturae
  doi: 10.1016/j.scienta.2020.109734
– volume: 12
  start-page: 217
  year: 2020
  ident: CR20
  article-title: A novel identification method for apple (Malus domestica Borkh.) cultivars based on a deep convolutional neural network with leaf image input
  publication-title: Symmetry
  doi: 10.3390/sym12020217
– ident: CR32
– volume: 173
  start-page: 1789
  year: 2016
  end-page: 1797
  ident: CR15
  article-title: Classification of medicinal plants: an approach using modified LBP with symbolic representation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.090
– volume: 1341
  start-page: 1
  year: 2009
  ident: CR65
  article-title: Visualizing higher-layer features of a deep network
  publication-title: Univ. Montr.
– ident: CR64
– ident: CR26
– volume: 2014
  start-page: e380585
  year: 2014
  ident: CR67
  article-title: Feature and score fusion based multiple classifier selection for iris recognition
  publication-title: Computational Intell. Neurosci.
  doi: 10.1155/2014/380585
– volume: 29
  start-page: 286
  year: 2007
  end-page: 299
  ident: CR40
  article-title: Shape classification using the inner-distance
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.41
– ident: CR18
– volume: 16
  start-page: 77
  year: 2015
  end-page: 102
  ident: CR37
  article-title: Statistical topological data analysis using persistence landscapes
  publication-title: J. Mach. Learn. Res.
– ident: CR43
– ident: CR66
– volume: 61
  start-page: 395
  year: 2020
  end-page: 406
  ident: CR57
  article-title: Sequence-characterized amplified region markers and multiplex-polymerase chain reaction assays for kiwifruit cultivar identification
  publication-title: Horticulture Environ., Biotechnol.
  doi: 10.1007/s13580-020-00227-9
– volume: 90
  start-page: 204
  year: 2017
  end-page: 216
  ident: CR11
  article-title: Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants
  publication-title: Plant J.
  doi: 10.1111/tpj.13472
– ident: CR14
– volume: 33
  start-page: 111
  year: 2013
  end-page: 125
  ident: CR2
  article-title: Plant variety and cultivar identification: advances and prospects
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2012.675314
– volume: 143
  start-page: 3417
  year: 2016
  end-page: 3428
  ident: CR10
  article-title: Multi-scale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis
  publication-title: Development
– ident: CR33
– volume: 32
  start-page: 261
  year: 2018
  end-page: 285
  ident: CR59
  article-title: DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing
  publication-title: Biotechnol. Biotechnological Equip.
  doi: 10.1080/13102818.2017.1400401
– volume: 155
  start-page: 236
  year: 2011
  end-page: 245
  ident: CR7
  article-title: Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.162834
– ident: CR27
– volume: 18
  start-page: 218
  year: 2017
  end-page: 252
  ident: CR36
  article-title: Persistence images: A stable vector representation of persistent homology
  publication-title: J. Mach. Learn. Res.
– volume: 196
  start-page: 1274
  year: 2012
  end-page: 1282
  ident: CR46
  article-title: X-ray imaging of leaf venation networks
  publication-title: N. Phytologist
  doi: 10.1111/j.1469-8137.2012.04355.x
– volume: 71
  start-page: 1
  year: 2017
  end-page: 13
  ident: CR5
  article-title: How deep learning extracts and learns leaf features for plant classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.015
– ident: CR23
– ident: CR69
– volume: 194
  start-page: 99
  year: 2020
  end-page: 111
  ident: CR38
  article-title: From species to cultivar: Soybean cultivar recognition using joint leaf image patterns by multi-scale sliding chord matching
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.03.019
– volume: 50
  start-page: 121
  year: 2006
  end-page: 134
  ident: CR12
  article-title: Plant species identification using Elliptic Fourier leaf shape analysis
  publication-title: Computers Electron. Agriculture
  doi: 10.1016/j.compag.2005.09.004
– volume: 145
  start-page: 133
  year: 2005
  end-page: 146
  ident: CR53
  article-title: Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars
  publication-title: Euphytica
  doi: 10.1007/s10681-005-0626-3
– volume: 142
  start-page: 515
  year: 2017
  end-page: 520
  ident: CR21
  article-title: A leaf-based back propagation neural network for oleander (Nerium oleander L.) cultivar identification
  publication-title: Computers Electron. Agriculture
  doi: 10.1016/j.compag.2017.11.021
– volume: 7
  start-page: 5723
  year: 2011
  end-page: 5731
  ident: CR48
  article-title: Score level fusion of fingerprint and finger vein recognition
  publication-title: J. Computational Inf. Syst.
– ident: CR17
– volume: 228
  start-page: 105875
  year: 2020
  ident: CR60
  article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105875
– ident: CR13
– volume: 48
  start-page: 3203
  year: 2015
  end-page: 3215
  ident: CR6
  article-title: Plant identification using leaf shapes: a pattern counting approach
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.04.004
– volume: 80
  start-page: 187
  year: 2019
  end-page: 194
  ident: CR47
  article-title: Automatic hierarchy classification in venation networks using directional morphological filtering for hierarchical structure traits extraction
  publication-title: Computational Biol. Chem.
  doi: 10.1016/j.compbiolchem.2019.03.012
– volume: 70
  start-page: 329
  year: 1964
  end-page: 331
  ident: CR28
  article-title: Homology
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1964-11082-X
– volume: 36
  start-page: 1369
  year: 2003
  end-page: 1381
  ident: CR68
  article-title: Feature fusion: parallel strategy vs. serial strategy
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00262-5
– volume: 95
  start-page: 84
  year: 2020
  end-page: 92
  ident: CR55
  article-title: Evaluation of S-incompatibility locus, genetic diversity and structure of sweet cherry (Prunus avium L.) genetic resources by molecular methods and phenotypic characteristics
  publication-title: J. Horticultural Sci. Biotechnol.
  doi: 10.1080/14620316.2019.1647798
– volume: 160
  start-page: 1149
  year: 2012
  end-page: 1159
  ident: CR8
  article-title: Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects[J]
  publication-title: Plant physiology
  doi: 10.1104/pp.112.202762
– volume: 3
  start-page: 310
  year: 2014
  end-page: 344
  ident: CR34
  article-title: Persistent homology transform for modeling shapes and surfaces
  publication-title: Inf. Inference.: A J. IMA
  doi: 10.1093/imaiai/iau011
– ident: CR41
– ident: 608_CR23
  doi: 10.1090/conm/453/08802
– volume: 29
  start-page: 286
  year: 2007
  ident: 608_CR40
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.41
– ident: 608_CR45
  doi: 10.1007/978-3-642-17691-3_32
– volume: 112
  start-page: 107809
  year: 2021
  ident: 608_CR19
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107809
– ident: 608_CR51
– ident: 608_CR16
  doi: 10.1007/978-981-10-2107-7_48
– volume: 18
  start-page: 218
  year: 2017
  ident: 608_CR36
  publication-title: J. Mach. Learn. Res.
– volume: 1341
  start-page: 1
  year: 2009
  ident: 608_CR65
  publication-title: Univ. Montr.
– volume: 36
  start-page: 1369
  year: 2003
  ident: 608_CR68
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00262-5
– volume: 50
  start-page: 121
  year: 2006
  ident: 608_CR12
  publication-title: Computers Electron. Agriculture
  doi: 10.1016/j.compag.2005.09.004
– volume: 55
  start-page: 1
  year: 2019
  ident: 608_CR30
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.03.014
– volume: 16
  start-page: 77
  year: 2015
  ident: 608_CR37
  publication-title: J. Mach. Learn. Res.
– volume: 46
  start-page: 84
  year: 2020
  ident: 608_CR61
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2020.1740584
– ident: 608_CR18
  doi: 10.1109/IISA.2016.7785361
– volume: 40
  start-page: 50
  year: 2017
  ident: 608_CR44
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2017.05.005
– volume: 194
  start-page: 99
  year: 2020
  ident: 608_CR38
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.03.019
– volume: 142
  start-page: 515
  year: 2017
  ident: 608_CR21
  publication-title: Computers Electron. Agriculture
  doi: 10.1016/j.compag.2017.11.021
– volume: 12
  start-page: 217
  year: 2020
  ident: 608_CR20
  publication-title: Symmetry
  doi: 10.3390/sym12020217
– volume: 7
  start-page: 5723
  year: 2011
  ident: 608_CR48
  publication-title: J. Computational Inf. Syst.
– volume: 12
  start-page: 821
  year: 2011
  ident: 608_CR50
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3096
– ident: 608_CR13
  doi: 10.1007/978-3-642-17274-8_65
– volume: 70
  start-page: 329
  year: 1964
  ident: 608_CR28
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1964-11082-X
– volume: 3
  start-page: 310
  year: 2014
  ident: 608_CR34
  publication-title: Inf. Inference.: A J. IMA
  doi: 10.1093/imaiai/iau011
– volume: 228
  start-page: 105875
  year: 2020
  ident: 608_CR60
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105875
– volume: 8
  start-page: 520
  year: 2017
  ident: 608_CR1
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00520
– volume: 27
  start-page: 617
  year: 2008
  ident: 608_CR58
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-008-0507-z
– volume: 228
  start-page: 778
  year: 2020
  ident: 608_CR62
  publication-title: N. Phytologist
  doi: 10.1111/nph.16736
– volume: 9
  start-page: 553
  year: 2018
  ident: 608_CR24
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00553
– volume: 13
  year: 2017
  ident: 608_CR9
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0266-3
– ident: 608_CR69
  doi: 10.1101/2020.06.22.163899
– ident: 608_CR29
  doi: 10.1007/978-3-319-60964-5_28
– volume: 59
  start-page: 875
  year: 2018
  ident: 608_CR56
  publication-title: Horticulture Environ. Biotechnol.
  doi: 10.1007/s13580-018-0055-6
– volume: 28
  start-page: 2019
  year: 2007
  ident: 608_CR49
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.05.017
– ident: 608_CR41
  doi: 10.1109/TIP.2014.2343457
– volume: 158
  start-page: 20
  year: 2019
  ident: 608_CR42
  publication-title: Computers Electron. Agriculture
  doi: 10.1016/j.compag.2019.01.041
– ident: 608_CR25
  doi: 10.1109/CVPR.2015.7299106
– ident: 608_CR26
  doi: 10.1109/CVPR.2014.257
– volume: 196
  start-page: 1274
  year: 2012
  ident: 608_CR46
  publication-title: N. Phytologist
  doi: 10.1111/j.1469-8137.2012.04355.x
– volume: 173
  start-page: 278
  year: 2021
  ident: 608_CR63
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.01.017
– volume: 160
  start-page: 1149
  year: 2012
  ident: 608_CR8
  publication-title: Plant physiology
  doi: 10.1104/pp.112.202762
– volume: 32
  start-page: 261
  year: 2018
  ident: 608_CR59
  publication-title: Biotechnol. Biotechnological Equip.
  doi: 10.1080/13102818.2017.1400401
– ident: 608_CR32
  doi: 10.1109/CVPR.2017.195
– volume: 71
  start-page: 1
  year: 2017
  ident: 608_CR5
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.015
– ident: 608_CR66
– volume: 90
  start-page: 204
  year: 2017
  ident: 608_CR11
  publication-title: Plant J.
  doi: 10.1111/tpj.13472
– volume: 13
  start-page: 131
  year: 2011
  ident: 608_CR3
  publication-title: J. Crop Sci.
– volume: 155
  start-page: 236
  year: 2011
  ident: 608_CR7
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.162834
– volume: 61
  start-page: 395
  year: 2020
  ident: 608_CR57
  publication-title: Horticulture Environ., Biotechnol.
  doi: 10.1007/s13580-020-00227-9
– ident: 608_CR43
  doi: 10.5281/zenodo.4739746
– ident: 608_CR33
– ident: 608_CR64
  doi: 10.1007/978-3-319-10590-1_53
– volume: 145
  start-page: 133
  year: 2005
  ident: 608_CR53
  publication-title: Euphytica
  doi: 10.1007/s10681-005-0626-3
– ident: 608_CR17
  doi: 10.1007/978-3-319-26690-9_41
– volume: 15
  year: 2014
  ident: 608_CR4
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-15-35
– ident: 608_CR27
– volume: 173
  start-page: 1789
  year: 2016
  ident: 608_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.090
– volume: 167
  start-page: 74
  year: 2018
  ident: 608_CR31
  publication-title: Computer Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.10.012
– volume: 33
  start-page: 111
  year: 2013
  ident: 608_CR2
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2012.675314
– volume: 47
  start-page: 124
  year: 2020
  ident: 608_CR52
  publication-title: J. Plant Biotechnol.
  doi: 10.5010/JPB.2020.47.2.124
– ident: 608_CR22
  doi: 10.1609/aaai.v34i07.6968
– volume: 95
  start-page: 84
  year: 2020
  ident: 608_CR55
  publication-title: J. Horticultural Sci. Biotechnol.
  doi: 10.1080/14620316.2019.1647798
– volume: 48
  start-page: 3203
  year: 2015
  ident: 608_CR6
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.04.004
– volume: 2014
  start-page: e380585
  year: 2014
  ident: 608_CR67
  publication-title: Computational Intell. Neurosci.
  doi: 10.1155/2014/380585
– volume: 143
  start-page: 3417
  year: 2016
  ident: 608_CR10
  publication-title: Development
– ident: 608_CR14
  doi: 10.14569/IJACSA.2011.021007
– volume: 80
  start-page: 187
  year: 2019
  ident: 608_CR47
  publication-title: Computational Biol. Chem.
  doi: 10.1016/j.compbiolchem.2019.03.012
– ident: 608_CR35
  doi: 10.1109/CVPR.2009.5206848
– ident: 608_CR39
  doi: 10.1007/978-1-4419-0052-4_7
– volume: 276
  start-page: 109734
  year: 2021
  ident: 608_CR54
  publication-title: Sci. Horticulturae
  doi: 10.1016/j.scienta.2020.109734
SSID ssj0001542357
ssib048324872
Score 2.2851396
Snippet Recognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources....
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 631/158/670
631/1647/48
631/449/711
631/61/447/2312
Accuracy
Agriculture
Algorithms
Artificial neural networks
Biomedical and Life Sciences
Cultivars
Datasets
Deep learning
Ecology
Feature extraction
Fruits
Germplasm
Glycine max
Homology
Identification
Leaves
Life Sciences
Machine learning
Neural networks
Pipelines
Plant breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant Sciences
Plant species
Plants
Property rights
Prunus avium
Soybeans
Species
Venation
Web services
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09b9swECXadGmHIElb1PkCh2wtYX2QFJklCIwYToB0aQN4EyiSsg24sho7yd_PHU3bcIBYq6STwHci745P7wi54LUykORUTGa8YryuBNOCZ8wktdVFlikbyOP3v-Xggd8NxTAW3OaRVrmaE8NE7WYWa-RdlMrS4DFSXbX_GXaNwt3V2ELjI_mE0mVI6SqGxabGAk_NRRH_lUly1Z1zbPfNkJeASiSKvWyvR5sg8y1F8s0-aVh--gdkP8aN9HoJ9CH54Jsj8uV69Bi1M_xX8nzf793-uaSmoeZpMQtarHTqTc1wqXJ04iIzKIBB20mL_6J7CmErbacwwhRNTZ4h1aVIhx9R531LY1-JEdh1tMXyGjgGXDye_Qsl-W_koX_ztzdgsa0Cs5AMLiD1NBC18drr2jppUye9FU6jLkvqa6xdprqCvNArKTVXFZd14nKROqWtstbn38leM2v8D0KtMKkpXAKG4UgqI5QrvNDWG2W4Nh2Srga3tFFzHFtfTMuw952rcglICYCUAZDypUN-ru9pl4obO68-XWFWxq9vXm58pUOKLRzXFlFVe_tMMxkHdW2Y4oRUSYf8WiG-Mfz-exzvfo8T8jkLTofMwVOyt3h88mcQzSyq8-Cyr6QR9Xk
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (WRLC)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_UUtAHabXF86PkwTcN3Y8kl_gmh4ct2BcVfFuySfY8OPcWPRX_e2dyux4ntdB93ewkZGYzM8kvvwE4FJW2mOSUXGWi5KIqJTdSZNwmlTP9LNMugscv_qjza_H7Rt6sQNbdhYmg_UhpGZfpDh3280FQnW5OgAKiENH8eRU-EXU7WfVADTobEmihGINni30W7DmPhJ_oijJO9Fvt3Zkk138Ru-yfFkHne8jku3PT6I6GX2CzjSPZ6XzkX2El1FuwcTq6b7k0whZ8PouM1C_b8HQxHPy6PGG2ZvZxNo0srWwSbMXJiXk29i1mKKqJNeOGbqkHhgEtayY494yEjp8wCWYElB8xH0LD2ooTI5TrWUMbb2gy2Ph2ehc7_gbXw7OrwTlvCy5wh2niDJNSi_GcqIKpnFcu9So46Q0xtqShol3N1JSYMQatlBG6FKpKfC5Tr43TzoX8O6zV0zrsAHPSprbvExSMT1JaqX0_SOOC1VYY24O0m-bCtWzkVBRjUsRT8VwXc9UUqJoiqqZ47sHR2zfNnIvjn633O-0V7X_5UBDhmsF1R-ke9Jc0-iaR-LaX39Tj28i7jaYllU56cNzpfiH443Hs_l_zPVjPojkSxnAf1mb3j-EA455Z-SMa-itIPvwD
  priority: 102
  providerName: Springer Nature
Title MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology
URI https://link.springer.com/article/10.1038/s41438-021-00608-w
https://www.proquest.com/docview/2556905368
https://pubmed.ncbi.nlm.nih.gov/PMC8325680
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ0LjYeJTKxuVH3gDQ5o4jo2E0KhWDaQOBFTqW-TYTleppKHrNvjvuXOTVZ0GD-QtinOx7s65D59_B_BClMpgkFNwGYuCi7JIuU5FzE1UWp3FsbKheHx4Jk9H4tM4HW9B2-6oYeDFnaEd9ZMaLWavf_38_R4X_LvVkXH15kJQD29OxQYEL6L49TbsomXKaKEO1-6-QO1F_zxe52BwVkkAA0UzFXOC5mrO1dxNdg_uJSJJqKfdphlb-6a3Kytvba8GqzV4APuNu8mOV_rxELZ89QjuH08WDeSGfwxXw0H_47e3zFTMXC7nAcKVzbwpOVk4x6auKSgKMmT1tKYj7J6ht8vqGQqGEanpFbKRURX9hDnva9a0o5ggXcdqysqhPuHg8_mPkMl_AqPByff-KW-6MXCLMeQSI1aDzp4ovS6tk7bnpLep0wTn0vMlpTx7usBw0isptVCFkGXkkFVOaaus9clT2KnmlT8AZlPTM5mLkDBeUWFS5TKfauuNMkKbDvRa5ua2gSqnjhmzPGyZJypfySZH2eRBNvl1B17evFOvgDr-OfqolVne6lxOaGwaf0pSdSDbkOMNRQLj3nxSTc8DKDfqVipV1IFXrcTXhP8-j2f__aFD2IuDalIt4hHsLBeX_jn6R8uiC9vZOOvC7oeTsy9f8a4v-92wELqUgvz8B5d9D_4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED-x8rDtYdqn1sGYH7anzSIfdmJPQhMDqnbQatpA4i04tlMqdWmghYp_an_jzm5CVaTxRl4Tnxz_zvbd-fw7gI-sEAqdnJwmEcspK3JOJWcRVUGhZRpFQvvk8f4g6Z6wH6f8dA3-NndhXFplsyb6hdpMtIuRbzuqLIkak4hv1QV1VaPc6WpTQmOhFof2Zo4u23Snt4_4foqizsHxXpfWVQWoRl9ohp6XQqOFFVYW2iQ6NInV3EhHSxLawoXuQpmjW2RFkkgmcpYUgYl5aITUQmsbo9xHsM5ibNGC9e8Hg5-_llEd_M-Yp_XtnCAW21PmCoxTlwnhuE8Ena_ugEuz9m5S5p2TWb_hdZ7Ds9pSJbsL1XoBa7Z8CU93h5c1W4d9Bdf9zl7v91eiSqKuZhPP_krGVhXUbY6GjEydi-ThJ9WocrffLUFDmVRjxJQ4UaNrdK6JS8AfEmNtRepKFkOUa0jlAnqoivjx-eSPPwR4DScPMuRvoFVOSvsWiOYqVKkJUDA-Qa64MKnlUlslFJOqDWEzuJmuWc5dsY1x5k_bY5EtAMkQkMwDks3b8Pm2TbXg-Lj3680Gs6ye79NsqZ1tSFdwvJXoeLxX35Sjc8_njYsqT0TQhi8N4kvB_-_Hu_v78QEed4_7R9lRb3C4AU8ir4Aub3ETWrPLK_sebalZvlUrMIGzh54z_wCJcTNT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISF4QHyKwgA_wBNYzYed2EgITRvVytiEBJP6Fhzb6SqVNKzdKv41_jru3GRVJ7G35TFxTonvzr4v_w7gjaiUQSen5FkiSi6qUnItRcJNVFmdJ4myoXj86Dg7OBFfRnK0BX-7szBUVtmtiWGhdjNLMfI-QWVplJhM9au2LOLb_uBT85tTBynKtHbtNFYicuj_LNF9m38c7iOv3ybJ4POPvQPedhjgFv2iBXphBg0YUXldWZfZ2GXeSqcJoiT2FYXxYl2ii-RVlmmhSpFVkUtl7JS2ylqfIt1bcDvHW6Rj-Shfx3fwj1OZt-d0olT154JajXOqiSAUFMWXm3vh2sC9Wp55JUcbtr7BA7jf2qxsdyVkD2HL14_g3u74rMXt8I_h4miwN_z-gZmamfPFLODAsqk3Fadt0rGJa6uSgiCwZtLQOXjP0GRmzRS5y4jU5ALdbEal-GPmvG9Y29NijHQdayi0h0KJg09nv0I64Amc3MiEP4Xtelb7Z8CsNLHJXYSE8YpKI5XLvdTWG2WENj2Iu8ktbIt3Tm03pkXIu6eqWDGkQIYUgSHFsgfvLt9pVmgf147e6XhWtJo_L9Zy2oN8g4-XFAnRe_NJPTkNyN64vMpMRT1433F8Tfj_3_H8-u94DXdQU4qvw-PDF3A3CfJHBYw7sL04O_cv0ahalK-C9DL4edPq8g9gxjYj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MFCIS%3A+an+automatic+leaf-based+identification+pipeline+for+plant+cultivars+using+deep+learning+and+persistent+homology&rft.jtitle=Horticulture+research&rft.au=Zhang%2C+Yanping&rft.au=Peng%2C+Jing&rft.au=Yuan%2C+Xiaohui&rft.au=Zhang%2C+Lisi&rft.date=2021-08-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=2662-6810&rft.eissn=2052-7276&rft.volume=8&rft_id=info:doi/10.1038%2Fs41438-021-00608-w&rft_id=info%3Apmid%2F34333519&rft.externalDocID=PMC8325680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-6810&client=summon