MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology
Recognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources. Although leaf image-based methods have been widely adopted in plant species identification, they seldom have been applied in cultivar identifi...
Saved in:
Published in | Horticulture research Vol. 8; no. 1 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2021
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources. Although leaf image-based methods have been widely adopted in plant species identification, they seldom have been applied in cultivar identification due to the high similarity of leaves among cultivars. Here, we propose an automatic leaf image-based cultivar identification pipeline called MFCIS (
M
ulti-
f
eature Combined
C
ultivar
I
dentification
S
ystem), which combines multiple leaf morphological features collected by persistent homology and a convolutional neural network (CNN). Persistent homology, a multiscale and robust method, was employed to extract the topological signatures of leaf shape, texture, and venation details. A CNN-based algorithm, the Xception network, was fine-tuned for extracting high-level leaf image features. For fruit species, we benchmarked the MFCIS pipeline on a sweet cherry (
Prunus avium
L.) leaf dataset with >5000 leaf images from 88 varieties or unreleased selections and achieved a mean accuracy of 83.52%. For annual crop species, we applied the MFCIS pipeline to a soybean (Glycine max L. Merr.) leaf dataset with 5000 leaf images of 100 cultivars or elite breeding lines collected at five growth periods. The identification models for each growth period were trained independently, and their results were combined using a score-level fusion strategy. The classification accuracy after score-level fusion was 91.4%, which is much higher than the accuracy when utilizing each growth period independently or mixing all growth periods. To facilitate the adoption of the proposed pipelines, we constructed a user-friendly web service, which is freely available at
http://www.mfcis.online
. |
---|---|
AbstractList | Recognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources. Although leaf image-based methods have been widely adopted in plant species identification, they seldom have been applied in cultivar identification due to the high similarity of leaves among cultivars. Here, we propose an automatic leaf image-based cultivar identification pipeline called MFCIS (
M
ulti-
f
eature Combined
C
ultivar
I
dentification
S
ystem), which combines multiple leaf morphological features collected by persistent homology and a convolutional neural network (CNN). Persistent homology, a multiscale and robust method, was employed to extract the topological signatures of leaf shape, texture, and venation details. A CNN-based algorithm, the Xception network, was fine-tuned for extracting high-level leaf image features. For fruit species, we benchmarked the MFCIS pipeline on a sweet cherry (
Prunus avium
L.) leaf dataset with >5000 leaf images from 88 varieties or unreleased selections and achieved a mean accuracy of 83.52%. For annual crop species, we applied the MFCIS pipeline to a soybean (Glycine max L. Merr.) leaf dataset with 5000 leaf images of 100 cultivars or elite breeding lines collected at five growth periods. The identification models for each growth period were trained independently, and their results were combined using a score-level fusion strategy. The classification accuracy after score-level fusion was 91.4%, which is much higher than the accuracy when utilizing each growth period independently or mixing all growth periods. To facilitate the adoption of the proposed pipelines, we constructed a user-friendly web service, which is freely available at
http://www.mfcis.online
. Recognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources. Although leaf image-based methods have been widely adopted in plant species identification, they seldom have been applied in cultivar identification due to the high similarity of leaves among cultivars. Here, we propose an automatic leaf image-based cultivar identification pipeline called MFCIS (Multi-feature Combined Cultivar Identification System), which combines multiple leaf morphological features collected by persistent homology and a convolutional neural network (CNN). Persistent homology, a multiscale and robust method, was employed to extract the topological signatures of leaf shape, texture, and venation details. A CNN-based algorithm, the Xception network, was fine-tuned for extracting high-level leaf image features. For fruit species, we benchmarked the MFCIS pipeline on a sweet cherry (Prunus avium L.) leaf dataset with >5000 leaf images from 88 varieties or unreleased selections and achieved a mean accuracy of 83.52%. For annual crop species, we applied the MFCIS pipeline to a soybean (Glycine max L. Merr.) leaf dataset with 5000 leaf images of 100 cultivars or elite breeding lines collected at five growth periods. The identification models for each growth period were trained independently, and their results were combined using a score-level fusion strategy. The classification accuracy after score-level fusion was 91.4%, which is much higher than the accuracy when utilizing each growth period independently or mixing all growth periods. To facilitate the adoption of the proposed pipelines, we constructed a user-friendly web service, which is freely available at http://www.mfcis.online. |
ArticleNumber | 172 |
Author | Liu, Qingzhong Wang, Jiawei Zhang, Yanping Yuan, Xiaohui Zhang, Lisi Zhu, Dongzi Liu, Weizhen Peng, Jing Hong, Po |
Author_xml | – sequence: 1 givenname: Yanping surname: Zhang fullname: Zhang, Yanping organization: School of Computer Science and Technology, Wuhan University of Technology – sequence: 2 givenname: Jing surname: Peng fullname: Peng, Jing organization: School of Computer Science and Technology, Wuhan University of Technology – sequence: 3 givenname: Xiaohui surname: Yuan fullname: Yuan, Xiaohui organization: School of Computer Science and Technology, Wuhan University of Technology, Chongqing Research Institute, Wuhan University of Technology – sequence: 4 givenname: Lisi surname: Zhang fullname: Zhang, Lisi organization: Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology – sequence: 5 givenname: Dongzi surname: Zhu fullname: Zhu, Dongzi organization: Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology – sequence: 6 givenname: Po orcidid: 0000-0001-6238-4554 surname: Hong fullname: Hong, Po organization: Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology – sequence: 7 givenname: Jiawei orcidid: 0000-0002-5598-2115 surname: Wang fullname: Wang, Jiawei organization: Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology – sequence: 8 givenname: Qingzhong surname: Liu fullname: Liu, Qingzhong organization: Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology – sequence: 9 givenname: Weizhen orcidid: 0000-0002-0780-0284 surname: Liu fullname: Liu, Weizhen email: liuweizhen@whut.edu.cn organization: School of Computer Science and Technology, Wuhan University of Technology, Chongqing Research Institute, Wuhan University of Technology |
BookMark | eNp9kU9vVCEUxYmpsbX2C7gicf2UPw8GXJiYidUmNS7UNWHgMqV5A0_gTdNvL9NpNLroCsi9v3PP5bxEJyknQOg1JW8p4epdHenI1UAYHQiRRA13z9AZI4INK7aSJ_0uJRukouQUXdR6SwihYmRcrF6gUz5yzgXVZ2j_9XJ99f09tgnbpeWdbdHhCWwYNraCx9FDajFE1ws54TnOMMUEOOSC58mmht0ytbi3peKlxrTFHmA-KJR0eNnk8Qylxtq6EL7Juzzl7f0r9DzYqcLF43mOfl5--rH-Mlx_-3y1_ng9ODHqNghmqeZjAB2cl456CU54LQmVFAIjZEX1hlEKSko9qs0oA_F9Ma-0U84BP0cfjrrzstmBd91DsZOZS9zZcm-yjebfSoo3Zpv3RnEmpCJd4M2jQMm_FqjN3OalpO7ZMCGkJoJL1bvYscuVXGuB8GcCJeYQlznGZXpc5iEuc9ch9R_kYnv45u4kTk-j_IjWPidtofx19QT1G3YVrX0 |
CitedBy_id | crossref_primary_10_1007_s41468_024_00175_8 crossref_primary_10_1016_j_hpj_2023_02_007 crossref_primary_10_1016_j_atech_2024_100605 crossref_primary_10_1016_j_dib_2024_111241 crossref_primary_10_3389_fpls_2022_806711 crossref_primary_10_1007_s00217_022_04168_8 crossref_primary_10_1109_JSEN_2024_3401714 crossref_primary_10_1016_j_cviu_2024_104221 crossref_primary_10_20965_ijat_2024_p0632 crossref_primary_10_1080_10942912_2022_2158863 crossref_primary_10_35633_inmateh_69_21 crossref_primary_10_1016_j_biosystemseng_2023_09_005 crossref_primary_10_1016_j_eswa_2023_119626 crossref_primary_10_1111_jph_70032 crossref_primary_10_1016_j_compag_2024_109700 crossref_primary_10_1186_s13007_024_01295_z |
Cites_doi | 10.1111/nph.16736 10.1038/nrg3096 10.1016/j.cviu.2017.10.012 10.1080/07038992.2020.1740584 10.5010/JPB.2020.47.2.124 10.1016/j.media.2019.03.014 10.1016/j.isprsjprs.2021.01.017 10.1016/j.patrec.2007.05.017 10.3389/fpls.2018.00553 10.3389/fpls.2017.00520 10.1016/j.patcog.2020.107809 10.1186/s13007-017-0266-3 10.1007/s13580-018-0055-6 10.1007/s00299-008-0507-z 10.1016/j.compag.2019.01.041 10.1186/1471-2156-15-35 10.1016/j.ecoinf.2017.05.005 10.1016/j.scienta.2020.109734 10.3390/sym12020217 10.1016/j.neucom.2015.08.090 10.1155/2014/380585 10.1109/TPAMI.2007.41 10.1007/s13580-020-00227-9 10.1111/tpj.13472 10.3109/07388551.2012.675314 10.1080/13102818.2017.1400401 10.1104/pp.110.162834 10.1111/j.1469-8137.2012.04355.x 10.1016/j.patcog.2017.05.015 10.1016/j.biosystemseng.2020.03.019 10.1016/j.compag.2005.09.004 10.1007/s10681-005-0626-3 10.1016/j.compag.2017.11.021 10.1016/j.agwat.2019.105875 10.1016/j.patcog.2015.04.004 10.1016/j.compbiolchem.2019.03.012 10.1090/S0002-9904-1964-11082-X 10.1016/S0031-3203(02)00262-5 10.1080/14620316.2019.1647798 10.1104/pp.112.202762 10.1093/imaiai/iau011 10.1090/conm/453/08802 10.1007/978-3-642-17691-3_32 10.1007/978-981-10-2107-7_48 10.1109/IISA.2016.7785361 10.1007/978-3-642-17274-8_65 10.1101/2020.06.22.163899 10.1007/978-3-319-60964-5_28 10.1109/TIP.2014.2343457 10.1109/CVPR.2015.7299106 10.1109/CVPR.2014.257 10.1109/CVPR.2017.195 10.5281/zenodo.4739746 10.1007/978-3-319-10590-1_53 10.1007/978-3-319-26690-9_41 10.1609/aaai.v34i07.6968 10.14569/IJACSA.2011.021007 10.1109/CVPR.2009.5206848 10.1007/978-1-4419-0052-4_7 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X2 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 5PM |
DOI | 10.1038/s41438-021-00608-w |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology |
EISSN | 2052-7276 |
ExternalDocumentID | PMC8325680 10_1038_s41438_021_00608_w |
GrantInformation_xml | – fundername: Wuhan University of Technology (WUT) grantid: 104-40120526; WUT: 2020IVA026 funderid: https://doi.org/10.13039/501100007724 – fundername: ; grantid: 104-40120526; WUT: 2020IVA026 |
GroupedDBID | 0R~ 3V. 5VS 7X2 7X7 8FE 8FH 8FI 8FJ AAHBH AAPXW AAVAP ABEJV ABGNP ABPTD ABUWG ABXVV ACGFS ACSMW ADBBV ADRAZ AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMNDL AOIJS ATCPS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAG IAO IEP ITC KQ8 LK8 M0K M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT ROX RPM SNYQT TCJ TGD TOX UKHRP AAYXX CITATION 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS 5PM |
ID | FETCH-LOGICAL-c549t-52a1934fe9fcd6c1d6ec5d960161ef200719b211e866948b46f0d351d89c8cce3 |
IEDL.DBID | M48 |
ISSN | 2662-6810 |
IngestDate | Thu Aug 21 18:04:50 EDT 2025 Wed Aug 13 09:59:00 EDT 2025 Thu Apr 24 22:52:19 EDT 2025 Tue Jul 01 03:40:04 EDT 2025 Fri Feb 21 02:37:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-52a1934fe9fcd6c1d6ec5d960161ef200719b211e866948b46f0d351d89c8cce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5598-2115 0000-0002-0780-0284 0000-0001-6238-4554 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41438-021-00608-w |
PMID | 34333519 |
PQID | 2556905368 |
PQPubID | 2041956 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8325680 proquest_journals_2556905368 crossref_primary_10_1038_s41438_021_00608_w crossref_citationtrail_10_1038_s41438_021_00608_w springer_journals_10_1038_s41438_021_00608_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210801 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Horticulture research |
PublicationTitleAbbrev | Hortic Res |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Oxford University Press |
Publisher_xml | – name: Nature Publishing Group UK – name: Oxford University Press |
References | Baldi (CR21) 2017; 142 Park, Park (CR49) 2007; 28 CR39 Cho (CR57) 2020; 61 Adams (CR36) 2017; 18 Minervini (CR11) 2017; 90 CR35 CR33 Korir (CR2) 2013; 33 CR32 Fufa (CR53) 2005; 145 Neto (CR12) 2006; 50 Danner, Berger, Wocher, Mauser, Hank (CR63) 2021; 173 Yamaç, Todorovic (CR60) 2020; 228 Price (CR7) 2011; 155 Sohn (CR1) 2017; 8 Barré (CR44) 2017; 40 Wang (CR38) 2020; 194 Colmer (CR62) 2020; 228 CR45 CR43 Nadeem (CR59) 2018; 32 CR41 Biot (CR10) 2016; 143 Lee (CR5) 2017; 71 Naresh, Nagendraswamy (CR15) 2016; 173 Qaiser (CR30) 2019; 55 Islam (CR67) 2014; 2014 Jamali (CR3) 2011; 13 Cui, Yang (CR48) 2011; 7 CR18 Yang (CR19) 2021; 112 CR17 MacLane (CR28) 1964; 70 CR16 CR14 Agarwal, Shrivastava, Padh (CR58) 2008; 27 CR13 Zhao, Chan, Cham, Chu (CR6) 2015; 48 Liu (CR20) 2020; 12 CR51 Kim (CR54) 2021; 276 Bubenik (CR37) 2015; 16 Reisi Gahrouei, McNairn, Hosseini, Homayouni (CR61) 2020; 46 Park (CR52) 2020; 47 Li (CR24) 2018; 9 Turner, Mukherjee, Boyer (CR34) 2014; 3 Zeppelzauer (CR31) 2018; 167 CR29 Blonder (CR46) 2012; 196 Erhan, Bengio, Courville, Vincent (CR65) 2009; 1341 CR27 Ling, Jacobs (CR40) 2007; 29 Wu (CR4) 2014; 15 CR26 Pourkhaloee (CR56) 2018; 59 CR25 CR69 CR23 CR22 Gan (CR47) 2019; 80 CR66 Yang (CR68) 2003; 36 CR64 De Vylder, Vandenbussche, Hu (CR8) 2012; 160 Zhou (CR9) 2017; 13 Kaya (CR42) 2019; 158 Ghosh (CR50) 2011; 12 Patzak, Henychová, Paprštein, Sedlák (CR55) 2020; 95 608_CR45 SS Yamaç (608_CR60) 2020; 228 KH Cho (608_CR57) 2020; 61 C Zhao (608_CR6) 2015; 48 M Zeppelzauer (608_CR31) 2018; 167 A Baldi (608_CR21) 2017; 142 A Pourkhaloee (608_CR56) 2018; 59 Y Naresh (608_CR15) 2016; 173 B Wang (608_CR38) 2020; 194 608_CR41 HB Sohn (608_CR1) 2017; 8 608_CR43 M Danner (608_CR63) 2021; 173 K Wu (608_CR4) 2014; 15 608_CR16 M Li (608_CR24) 2018; 9 608_CR17 608_CR18 NK Korir (608_CR2) 2013; 33 608_CR13 608_CR14 K Turner (608_CR34) 2014; 3 MR Islam (608_CR67) 2014; 2014 M Kim (608_CR54) 2021; 276 J De Vylder (608_CR8) 2012; 160 608_CR51 CA Price (608_CR7) 2011; 155 C Yang (608_CR19) 2021; 112 608_CR26 608_CR27 Y Gan (608_CR47) 2019; 80 608_CR29 608_CR22 608_CR66 608_CR23 M Agarwal (608_CR58) 2008; 27 608_CR25 608_CR69 H Park (608_CR52) 2020; 47 M Minervini (608_CR11) 2017; 90 JC Neto (608_CR12) 2006; 50 J Colmer (608_CR62) 2020; 228 T Qaiser (608_CR30) 2019; 55 P Barré (608_CR44) 2017; 40 608_CR64 D Erhan (608_CR65) 2009; 1341 H Adams (608_CR36) 2017; 18 P Bubenik (608_CR37) 2015; 16 J Yang (608_CR68) 2003; 36 608_CR39 H Fufa (608_CR53) 2005; 145 E Biot (608_CR10) 2016; 143 608_CR33 J Zhou (608_CR9) 2017; 13 608_CR35 H-A Park (608_CR49) 2007; 28 H Ling (608_CR40) 2007; 29 C Liu (608_CR20) 2020; 12 S Jamali (608_CR3) 2011; 13 S Ghosh (608_CR50) 2011; 12 SH Lee (608_CR5) 2017; 71 J Patzak (608_CR55) 2020; 95 A Kaya (608_CR42) 2019; 158 608_CR32 F Cui (608_CR48) 2011; 7 O Reisi Gahrouei (608_CR61) 2020; 46 S MacLane (608_CR28) 1964; 70 B Blonder (608_CR46) 2012; 196 MA Nadeem (608_CR59) 2018; 32 |
References_xml | – ident: CR45 – ident: CR22 – ident: CR39 – ident: CR16 – volume: 228 start-page: 778 year: 2020 end-page: 793 ident: CR62 article-title: SeedGerm: a cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination publication-title: N. Phytologist doi: 10.1111/nph.16736 – ident: CR51 – volume: 13 start-page: 131 year: 2011 end-page: 145 ident: CR3 article-title: Identification and distinction of soybean commercial cultivars using morphological and microsatellite markers., Iranian publication-title: J. Crop Sci. – volume: 12 start-page: 821 year: 2011 end-page: 832 ident: CR50 article-title: Software for systems biology: from tools to integrated platforms publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3096 – volume: 167 start-page: 74 year: 2018 end-page: 88 ident: CR31 article-title: A study on topological descriptors for the analysis of 3d surface texture publication-title: Computer Vis. Image Underst. doi: 10.1016/j.cviu.2017.10.012 – volume: 46 start-page: 84 year: 2020 end-page: 99 ident: CR61 article-title: Estimation of crop biomass and leaf area index from multitemporal and multispectral imagery using machine learning approaches publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2020.1740584 – volume: 47 start-page: 124 year: 2020 end-page: 130 ident: CR52 article-title: Molecular identification of sweet potato accessions using ARMS-PCR based on SNPs publication-title: J. Plant Biotechnol. doi: 10.5010/JPB.2020.47.2.124 – ident: CR35 – ident: CR29 – volume: 55 start-page: 1 year: 2019 end-page: 14 ident: CR30 article-title: Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.03.014 – volume: 173 start-page: 278 year: 2021 end-page: 296 ident: CR63 article-title: Efficient RTM-based training of machine learning regression algorithms to quantify biophysical & biochemical traits of agricultural crops publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.01.017 – volume: 28 start-page: 2019 year: 2007 end-page: 2028 ident: CR49 article-title: Iris recognition based on score level fusion by using SVM publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2007.05.017 – volume: 9 start-page: 553 year: 2018 ident: CR24 article-title: Topological data analysis as a morphometric method: using persistent homology to demarcate a leaf morphospace publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00553 – ident: CR25 – volume: 8 start-page: 520 year: 2017 ident: CR1 article-title: Barcode system for genetic identification of soybean [Glycine max (L.) Merrill] cultivars using InDel markers specific to dense variation blocks publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00520 – volume: 112 start-page: 107809 year: 2021 ident: CR19 article-title: Plant leaf recognition by integrating shape and texture features publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107809 – volume: 13 year: 2017 ident: CR9 article-title: Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat publication-title: Plant Methods doi: 10.1186/s13007-017-0266-3 – volume: 59 start-page: 875 year: 2018 end-page: 888 ident: CR56 article-title: Molecular analysis of genetic diversity, population structure, and phylogeny of wild and cultivated tulips (Tulipa L.) by genic microsatellites publication-title: Horticulture Environ. Biotechnol. doi: 10.1007/s13580-018-0055-6 – volume: 27 start-page: 617 year: 2008 end-page: 631 ident: CR58 article-title: Advances in molecular marker techniques and their applications in plant sciences publication-title: Plant Cell Rep. doi: 10.1007/s00299-008-0507-z – volume: 158 start-page: 20 year: 2019 end-page: 29 ident: CR42 article-title: Analysis of transfer learning for deep neural network-based plant classification models publication-title: Computers Electron. Agriculture doi: 10.1016/j.compag.2019.01.041 – volume: 15 year: 2014 ident: CR4 article-title: Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using Insertion-Deletion (InDel) and Simple Sequence Repeat (SSR) markers publication-title: BMC Genet. doi: 10.1186/1471-2156-15-35 – volume: 40 start-page: 50 year: 2017 end-page: 56 ident: CR44 article-title: LeafNet: a computer vision system for automatic plant species identification publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2017.05.005 – volume: 276 start-page: 109734 year: 2021 ident: CR54 article-title: Genome-wide SNP discovery and core marker sets for DNA barcoding and variety identification in commercial tomato cultivars publication-title: Sci. Horticulturae doi: 10.1016/j.scienta.2020.109734 – volume: 12 start-page: 217 year: 2020 ident: CR20 article-title: A novel identification method for apple (Malus domestica Borkh.) cultivars based on a deep convolutional neural network with leaf image input publication-title: Symmetry doi: 10.3390/sym12020217 – ident: CR32 – volume: 173 start-page: 1789 year: 2016 end-page: 1797 ident: CR15 article-title: Classification of medicinal plants: an approach using modified LBP with symbolic representation publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.090 – volume: 1341 start-page: 1 year: 2009 ident: CR65 article-title: Visualizing higher-layer features of a deep network publication-title: Univ. Montr. – ident: CR64 – ident: CR26 – volume: 2014 start-page: e380585 year: 2014 ident: CR67 article-title: Feature and score fusion based multiple classifier selection for iris recognition publication-title: Computational Intell. Neurosci. doi: 10.1155/2014/380585 – volume: 29 start-page: 286 year: 2007 end-page: 299 ident: CR40 article-title: Shape classification using the inner-distance publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.41 – ident: CR18 – volume: 16 start-page: 77 year: 2015 end-page: 102 ident: CR37 article-title: Statistical topological data analysis using persistence landscapes publication-title: J. Mach. Learn. Res. – ident: CR43 – ident: CR66 – volume: 61 start-page: 395 year: 2020 end-page: 406 ident: CR57 article-title: Sequence-characterized amplified region markers and multiplex-polymerase chain reaction assays for kiwifruit cultivar identification publication-title: Horticulture Environ., Biotechnol. doi: 10.1007/s13580-020-00227-9 – volume: 90 start-page: 204 year: 2017 end-page: 216 ident: CR11 article-title: Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants publication-title: Plant J. doi: 10.1111/tpj.13472 – ident: CR14 – volume: 33 start-page: 111 year: 2013 end-page: 125 ident: CR2 article-title: Plant variety and cultivar identification: advances and prospects publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2012.675314 – volume: 143 start-page: 3417 year: 2016 end-page: 3428 ident: CR10 article-title: Multi-scale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis publication-title: Development – ident: CR33 – volume: 32 start-page: 261 year: 2018 end-page: 285 ident: CR59 article-title: DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing publication-title: Biotechnol. Biotechnological Equip. doi: 10.1080/13102818.2017.1400401 – volume: 155 start-page: 236 year: 2011 end-page: 245 ident: CR7 article-title: Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles publication-title: Plant Physiol. doi: 10.1104/pp.110.162834 – ident: CR27 – volume: 18 start-page: 218 year: 2017 end-page: 252 ident: CR36 article-title: Persistence images: A stable vector representation of persistent homology publication-title: J. Mach. Learn. Res. – volume: 196 start-page: 1274 year: 2012 end-page: 1282 ident: CR46 article-title: X-ray imaging of leaf venation networks publication-title: N. Phytologist doi: 10.1111/j.1469-8137.2012.04355.x – volume: 71 start-page: 1 year: 2017 end-page: 13 ident: CR5 article-title: How deep learning extracts and learns leaf features for plant classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.05.015 – ident: CR23 – ident: CR69 – volume: 194 start-page: 99 year: 2020 end-page: 111 ident: CR38 article-title: From species to cultivar: Soybean cultivar recognition using joint leaf image patterns by multi-scale sliding chord matching publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.03.019 – volume: 50 start-page: 121 year: 2006 end-page: 134 ident: CR12 article-title: Plant species identification using Elliptic Fourier leaf shape analysis publication-title: Computers Electron. Agriculture doi: 10.1016/j.compag.2005.09.004 – volume: 145 start-page: 133 year: 2005 end-page: 146 ident: CR53 article-title: Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars publication-title: Euphytica doi: 10.1007/s10681-005-0626-3 – volume: 142 start-page: 515 year: 2017 end-page: 520 ident: CR21 article-title: A leaf-based back propagation neural network for oleander (Nerium oleander L.) cultivar identification publication-title: Computers Electron. Agriculture doi: 10.1016/j.compag.2017.11.021 – volume: 7 start-page: 5723 year: 2011 end-page: 5731 ident: CR48 article-title: Score level fusion of fingerprint and finger vein recognition publication-title: J. Computational Inf. Syst. – ident: CR17 – volume: 228 start-page: 105875 year: 2020 ident: CR60 article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.105875 – ident: CR13 – volume: 48 start-page: 3203 year: 2015 end-page: 3215 ident: CR6 article-title: Plant identification using leaf shapes: a pattern counting approach publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.04.004 – volume: 80 start-page: 187 year: 2019 end-page: 194 ident: CR47 article-title: Automatic hierarchy classification in venation networks using directional morphological filtering for hierarchical structure traits extraction publication-title: Computational Biol. Chem. doi: 10.1016/j.compbiolchem.2019.03.012 – volume: 70 start-page: 329 year: 1964 end-page: 331 ident: CR28 article-title: Homology publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1964-11082-X – volume: 36 start-page: 1369 year: 2003 end-page: 1381 ident: CR68 article-title: Feature fusion: parallel strategy vs. serial strategy publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(02)00262-5 – volume: 95 start-page: 84 year: 2020 end-page: 92 ident: CR55 article-title: Evaluation of S-incompatibility locus, genetic diversity and structure of sweet cherry (Prunus avium L.) genetic resources by molecular methods and phenotypic characteristics publication-title: J. Horticultural Sci. Biotechnol. doi: 10.1080/14620316.2019.1647798 – volume: 160 start-page: 1149 year: 2012 end-page: 1159 ident: CR8 article-title: Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects[J] publication-title: Plant physiology doi: 10.1104/pp.112.202762 – volume: 3 start-page: 310 year: 2014 end-page: 344 ident: CR34 article-title: Persistent homology transform for modeling shapes and surfaces publication-title: Inf. Inference.: A J. IMA doi: 10.1093/imaiai/iau011 – ident: CR41 – ident: 608_CR23 doi: 10.1090/conm/453/08802 – volume: 29 start-page: 286 year: 2007 ident: 608_CR40 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.41 – ident: 608_CR45 doi: 10.1007/978-3-642-17691-3_32 – volume: 112 start-page: 107809 year: 2021 ident: 608_CR19 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107809 – ident: 608_CR51 – ident: 608_CR16 doi: 10.1007/978-981-10-2107-7_48 – volume: 18 start-page: 218 year: 2017 ident: 608_CR36 publication-title: J. Mach. Learn. Res. – volume: 1341 start-page: 1 year: 2009 ident: 608_CR65 publication-title: Univ. Montr. – volume: 36 start-page: 1369 year: 2003 ident: 608_CR68 publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(02)00262-5 – volume: 50 start-page: 121 year: 2006 ident: 608_CR12 publication-title: Computers Electron. Agriculture doi: 10.1016/j.compag.2005.09.004 – volume: 55 start-page: 1 year: 2019 ident: 608_CR30 publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.03.014 – volume: 16 start-page: 77 year: 2015 ident: 608_CR37 publication-title: J. Mach. Learn. Res. – volume: 46 start-page: 84 year: 2020 ident: 608_CR61 publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2020.1740584 – ident: 608_CR18 doi: 10.1109/IISA.2016.7785361 – volume: 40 start-page: 50 year: 2017 ident: 608_CR44 publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2017.05.005 – volume: 194 start-page: 99 year: 2020 ident: 608_CR38 publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.03.019 – volume: 142 start-page: 515 year: 2017 ident: 608_CR21 publication-title: Computers Electron. Agriculture doi: 10.1016/j.compag.2017.11.021 – volume: 12 start-page: 217 year: 2020 ident: 608_CR20 publication-title: Symmetry doi: 10.3390/sym12020217 – volume: 7 start-page: 5723 year: 2011 ident: 608_CR48 publication-title: J. Computational Inf. Syst. – volume: 12 start-page: 821 year: 2011 ident: 608_CR50 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3096 – ident: 608_CR13 doi: 10.1007/978-3-642-17274-8_65 – volume: 70 start-page: 329 year: 1964 ident: 608_CR28 publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1964-11082-X – volume: 3 start-page: 310 year: 2014 ident: 608_CR34 publication-title: Inf. Inference.: A J. IMA doi: 10.1093/imaiai/iau011 – volume: 228 start-page: 105875 year: 2020 ident: 608_CR60 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.105875 – volume: 8 start-page: 520 year: 2017 ident: 608_CR1 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00520 – volume: 27 start-page: 617 year: 2008 ident: 608_CR58 publication-title: Plant Cell Rep. doi: 10.1007/s00299-008-0507-z – volume: 228 start-page: 778 year: 2020 ident: 608_CR62 publication-title: N. Phytologist doi: 10.1111/nph.16736 – volume: 9 start-page: 553 year: 2018 ident: 608_CR24 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00553 – volume: 13 year: 2017 ident: 608_CR9 publication-title: Plant Methods doi: 10.1186/s13007-017-0266-3 – ident: 608_CR69 doi: 10.1101/2020.06.22.163899 – ident: 608_CR29 doi: 10.1007/978-3-319-60964-5_28 – volume: 59 start-page: 875 year: 2018 ident: 608_CR56 publication-title: Horticulture Environ. Biotechnol. doi: 10.1007/s13580-018-0055-6 – volume: 28 start-page: 2019 year: 2007 ident: 608_CR49 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2007.05.017 – ident: 608_CR41 doi: 10.1109/TIP.2014.2343457 – volume: 158 start-page: 20 year: 2019 ident: 608_CR42 publication-title: Computers Electron. Agriculture doi: 10.1016/j.compag.2019.01.041 – ident: 608_CR25 doi: 10.1109/CVPR.2015.7299106 – ident: 608_CR26 doi: 10.1109/CVPR.2014.257 – volume: 196 start-page: 1274 year: 2012 ident: 608_CR46 publication-title: N. Phytologist doi: 10.1111/j.1469-8137.2012.04355.x – volume: 173 start-page: 278 year: 2021 ident: 608_CR63 publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.01.017 – volume: 160 start-page: 1149 year: 2012 ident: 608_CR8 publication-title: Plant physiology doi: 10.1104/pp.112.202762 – volume: 32 start-page: 261 year: 2018 ident: 608_CR59 publication-title: Biotechnol. Biotechnological Equip. doi: 10.1080/13102818.2017.1400401 – ident: 608_CR32 doi: 10.1109/CVPR.2017.195 – volume: 71 start-page: 1 year: 2017 ident: 608_CR5 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.05.015 – ident: 608_CR66 – volume: 90 start-page: 204 year: 2017 ident: 608_CR11 publication-title: Plant J. doi: 10.1111/tpj.13472 – volume: 13 start-page: 131 year: 2011 ident: 608_CR3 publication-title: J. Crop Sci. – volume: 155 start-page: 236 year: 2011 ident: 608_CR7 publication-title: Plant Physiol. doi: 10.1104/pp.110.162834 – volume: 61 start-page: 395 year: 2020 ident: 608_CR57 publication-title: Horticulture Environ., Biotechnol. doi: 10.1007/s13580-020-00227-9 – ident: 608_CR43 doi: 10.5281/zenodo.4739746 – ident: 608_CR33 – ident: 608_CR64 doi: 10.1007/978-3-319-10590-1_53 – volume: 145 start-page: 133 year: 2005 ident: 608_CR53 publication-title: Euphytica doi: 10.1007/s10681-005-0626-3 – ident: 608_CR17 doi: 10.1007/978-3-319-26690-9_41 – volume: 15 year: 2014 ident: 608_CR4 publication-title: BMC Genet. doi: 10.1186/1471-2156-15-35 – ident: 608_CR27 – volume: 173 start-page: 1789 year: 2016 ident: 608_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.090 – volume: 167 start-page: 74 year: 2018 ident: 608_CR31 publication-title: Computer Vis. Image Underst. doi: 10.1016/j.cviu.2017.10.012 – volume: 33 start-page: 111 year: 2013 ident: 608_CR2 publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2012.675314 – volume: 47 start-page: 124 year: 2020 ident: 608_CR52 publication-title: J. Plant Biotechnol. doi: 10.5010/JPB.2020.47.2.124 – ident: 608_CR22 doi: 10.1609/aaai.v34i07.6968 – volume: 95 start-page: 84 year: 2020 ident: 608_CR55 publication-title: J. Horticultural Sci. Biotechnol. doi: 10.1080/14620316.2019.1647798 – volume: 48 start-page: 3203 year: 2015 ident: 608_CR6 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.04.004 – volume: 2014 start-page: e380585 year: 2014 ident: 608_CR67 publication-title: Computational Intell. Neurosci. doi: 10.1155/2014/380585 – volume: 143 start-page: 3417 year: 2016 ident: 608_CR10 publication-title: Development – ident: 608_CR14 doi: 10.14569/IJACSA.2011.021007 – volume: 80 start-page: 187 year: 2019 ident: 608_CR47 publication-title: Computational Biol. Chem. doi: 10.1016/j.compbiolchem.2019.03.012 – ident: 608_CR35 doi: 10.1109/CVPR.2009.5206848 – ident: 608_CR39 doi: 10.1007/978-1-4419-0052-4_7 – volume: 276 start-page: 109734 year: 2021 ident: 608_CR54 publication-title: Sci. Horticulturae doi: 10.1016/j.scienta.2020.109734 |
SSID | ssj0001542357 ssib048324872 |
Score | 2.2851396 |
Snippet | Recognizing plant cultivars reliably and efficiently can benefit plant breeders in terms of property rights protection and innovation of germplasm resources.... |
SourceID | pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 631/158/670 631/1647/48 631/449/711 631/61/447/2312 Accuracy Agriculture Algorithms Artificial neural networks Biomedical and Life Sciences Cultivars Datasets Deep learning Ecology Feature extraction Fruits Germplasm Glycine max Homology Identification Leaves Life Sciences Machine learning Neural networks Pipelines Plant breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Plant Sciences Plant species Plants Property rights Prunus avium Soybeans Species Venation Web services |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09b9swECXadGmHIElb1PkCh2wtYX2QFJklCIwYToB0aQN4EyiSsg24sho7yd_PHU3bcIBYq6STwHci745P7wi54LUykORUTGa8YryuBNOCZ8wktdVFlikbyOP3v-Xggd8NxTAW3OaRVrmaE8NE7WYWa-RdlMrS4DFSXbX_GXaNwt3V2ELjI_mE0mVI6SqGxabGAk_NRRH_lUly1Z1zbPfNkJeASiSKvWyvR5sg8y1F8s0-aVh--gdkP8aN9HoJ9CH54Jsj8uV69Bi1M_xX8nzf793-uaSmoeZpMQtarHTqTc1wqXJ04iIzKIBB20mL_6J7CmErbacwwhRNTZ4h1aVIhx9R531LY1-JEdh1tMXyGjgGXDye_Qsl-W_koX_ztzdgsa0Cs5AMLiD1NBC18drr2jppUye9FU6jLkvqa6xdprqCvNArKTVXFZd14nKROqWtstbn38leM2v8D0KtMKkpXAKG4UgqI5QrvNDWG2W4Nh2Srga3tFFzHFtfTMuw952rcglICYCUAZDypUN-ru9pl4obO68-XWFWxq9vXm58pUOKLRzXFlFVe_tMMxkHdW2Y4oRUSYf8WiG-Mfz-exzvfo8T8jkLTofMwVOyt3h88mcQzSyq8-Cyr6QR9Xk priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (WRLC) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_UUtAHabXF86PkwTcN3Y8kl_gmh4ct2BcVfFuySfY8OPcWPRX_e2dyux4ntdB93ewkZGYzM8kvvwE4FJW2mOSUXGWi5KIqJTdSZNwmlTP9LNMugscv_qjza_H7Rt6sQNbdhYmg_UhpGZfpDh3280FQnW5OgAKiENH8eRU-EXU7WfVADTobEmihGINni30W7DmPhJ_oijJO9Fvt3Zkk138Ru-yfFkHne8jku3PT6I6GX2CzjSPZ6XzkX2El1FuwcTq6b7k0whZ8PouM1C_b8HQxHPy6PGG2ZvZxNo0srWwSbMXJiXk29i1mKKqJNeOGbqkHhgEtayY494yEjp8wCWYElB8xH0LD2ooTI5TrWUMbb2gy2Ph2ehc7_gbXw7OrwTlvCy5wh2niDJNSi_GcqIKpnFcu9So46Q0xtqShol3N1JSYMQatlBG6FKpKfC5Tr43TzoX8O6zV0zrsAHPSprbvExSMT1JaqX0_SOOC1VYY24O0m-bCtWzkVBRjUsRT8VwXc9UUqJoiqqZ47sHR2zfNnIvjn633O-0V7X_5UBDhmsF1R-ke9Jc0-iaR-LaX39Tj28i7jaYllU56cNzpfiH443Hs_l_zPVjPojkSxnAf1mb3j-EA455Z-SMa-itIPvwD priority: 102 providerName: Springer Nature |
Title | MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology |
URI | https://link.springer.com/article/10.1038/s41438-021-00608-w https://www.proquest.com/docview/2556905368 https://pubmed.ncbi.nlm.nih.gov/PMC8325680 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ0LjYeJTKxuVH3gDQ5o4jo2E0KhWDaQOBFTqW-TYTleppKHrNvjvuXOTVZ0GD-QtinOx7s65D59_B_BClMpgkFNwGYuCi7JIuU5FzE1UWp3FsbKheHx4Jk9H4tM4HW9B2-6oYeDFnaEd9ZMaLWavf_38_R4X_LvVkXH15kJQD29OxQYEL6L49TbsomXKaKEO1-6-QO1F_zxe52BwVkkAA0UzFXOC5mrO1dxNdg_uJSJJqKfdphlb-6a3Kytvba8GqzV4APuNu8mOV_rxELZ89QjuH08WDeSGfwxXw0H_47e3zFTMXC7nAcKVzbwpOVk4x6auKSgKMmT1tKYj7J6ht8vqGQqGEanpFbKRURX9hDnva9a0o5ggXcdqysqhPuHg8_mPkMl_AqPByff-KW-6MXCLMeQSI1aDzp4ovS6tk7bnpLep0wTn0vMlpTx7usBw0isptVCFkGXkkFVOaaus9clT2KnmlT8AZlPTM5mLkDBeUWFS5TKfauuNMkKbDvRa5ua2gSqnjhmzPGyZJypfySZH2eRBNvl1B17evFOvgDr-OfqolVne6lxOaGwaf0pSdSDbkOMNRQLj3nxSTc8DKDfqVipV1IFXrcTXhP8-j2f__aFD2IuDalIt4hHsLBeX_jn6R8uiC9vZOOvC7oeTsy9f8a4v-92wELqUgvz8B5d9D_4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED-x8rDtYdqn1sGYH7anzSIfdmJPQhMDqnbQatpA4i04tlMqdWmghYp_an_jzm5CVaTxRl4Tnxz_zvbd-fw7gI-sEAqdnJwmEcspK3JOJWcRVUGhZRpFQvvk8f4g6Z6wH6f8dA3-NndhXFplsyb6hdpMtIuRbzuqLIkak4hv1QV1VaPc6WpTQmOhFof2Zo4u23Snt4_4foqizsHxXpfWVQWoRl9ohp6XQqOFFVYW2iQ6NInV3EhHSxLawoXuQpmjW2RFkkgmcpYUgYl5aITUQmsbo9xHsM5ibNGC9e8Hg5-_llEd_M-Yp_XtnCAW21PmCoxTlwnhuE8Ena_ugEuz9m5S5p2TWb_hdZ7Ds9pSJbsL1XoBa7Z8CU93h5c1W4d9Bdf9zl7v91eiSqKuZhPP_krGVhXUbY6GjEydi-ThJ9WocrffLUFDmVRjxJQ4UaNrdK6JS8AfEmNtRepKFkOUa0jlAnqoivjx-eSPPwR4DScPMuRvoFVOSvsWiOYqVKkJUDA-Qa64MKnlUlslFJOqDWEzuJmuWc5dsY1x5k_bY5EtAMkQkMwDks3b8Pm2TbXg-Lj3680Gs6ye79NsqZ1tSFdwvJXoeLxX35Sjc8_njYsqT0TQhi8N4kvB_-_Hu_v78QEed4_7R9lRb3C4AU8ir4Aub3ETWrPLK_sebalZvlUrMIGzh54z_wCJcTNT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISF4QHyKwgA_wBNYzYed2EgITRvVytiEBJP6Fhzb6SqVNKzdKv41_jru3GRVJ7G35TFxTonvzr4v_w7gjaiUQSen5FkiSi6qUnItRcJNVFmdJ4myoXj86Dg7OBFfRnK0BX-7szBUVtmtiWGhdjNLMfI-QWVplJhM9au2LOLb_uBT85tTBynKtHbtNFYicuj_LNF9m38c7iOv3ybJ4POPvQPedhjgFv2iBXphBg0YUXldWZfZ2GXeSqcJoiT2FYXxYl2ii-RVlmmhSpFVkUtl7JS2ylqfIt1bcDvHW6Rj-Shfx3fwj1OZt-d0olT154JajXOqiSAUFMWXm3vh2sC9Wp55JUcbtr7BA7jf2qxsdyVkD2HL14_g3u74rMXt8I_h4miwN_z-gZmamfPFLODAsqk3Fadt0rGJa6uSgiCwZtLQOXjP0GRmzRS5y4jU5ALdbEal-GPmvG9Y29NijHQdayi0h0KJg09nv0I64Amc3MiEP4Xtelb7Z8CsNLHJXYSE8YpKI5XLvdTWG2WENj2Iu8ktbIt3Tm03pkXIu6eqWDGkQIYUgSHFsgfvLt9pVmgf147e6XhWtJo_L9Zy2oN8g4-XFAnRe_NJPTkNyN64vMpMRT1433F8Tfj_3_H8-u94DXdQU4qvw-PDF3A3CfJHBYw7sL04O_cv0ahalK-C9DL4edPq8g9gxjYj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MFCIS%3A+an+automatic+leaf-based+identification+pipeline+for+plant+cultivars+using+deep+learning+and+persistent+homology&rft.jtitle=Horticulture+research&rft.au=Zhang%2C+Yanping&rft.au=Peng%2C+Jing&rft.au=Yuan%2C+Xiaohui&rft.au=Zhang%2C+Lisi&rft.date=2021-08-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=2662-6810&rft.eissn=2052-7276&rft.volume=8&rft_id=info:doi/10.1038%2Fs41438-021-00608-w&rft_id=info%3Apmid%2F34333519&rft.externalDocID=PMC8325680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-6810&client=summon |