A Deep Learning Computer-Aided Diagnosis Approach for Breast Cancer

Breast cancer is a gigantic burden on humanity, causing the loss of enormous numbers of lives and amounts of money. It is the world’s leading type of cancer among women and a leading cause of mortality and morbidity. The histopathological examination of breast tissue biopsies is the gold standard fo...

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 9; no. 8; p. 391
Main Authors Zaalouk, Ahmed M, Ebrahim, Gamal A, Mohamed, Hoda K, Hassan, Hoda Mamdouh, Zaalouk, Mohamed M. A
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Breast cancer is a gigantic burden on humanity, causing the loss of enormous numbers of lives and amounts of money. It is the world’s leading type of cancer among women and a leading cause of mortality and morbidity. The histopathological examination of breast tissue biopsies is the gold standard for diagnosis. In this paper, a computer-aided diagnosis (CAD) system based on deep learning is developed to ease the pathologist’s mission. For this target, five pre-trained convolutional neural network (CNN) models are analyzed and tested—Xception, DenseNet201, InceptionResNetV2, VGG19, and ResNet152—with the help of data augmentation techniques, and a new approach is introduced for transfer learning. These models are trained and tested with histopathological images obtained from the BreakHis dataset. Multiple experiments are performed to analyze the performance of these models through carrying out magnification-dependent and magnification-independent binary and eight-class classifications. The Xception model has shown promising performance through achieving the highest classification accuracies for all the experiments. It has achieved a range of classification accuracies from 93.32% to 98.99% for magnification-independent experiments and from 90.22% to 100% for magnification-dependent experiments.
AbstractList Breast cancer is a gigantic burden on humanity, causing the loss of enormous numbers of lives and amounts of money. It is the world’s leading type of cancer among women and a leading cause of mortality and morbidity. The histopathological examination of breast tissue biopsies is the gold standard for diagnosis. In this paper, a computer-aided diagnosis (CAD) system based on deep learning is developed to ease the pathologist’s mission. For this target, five pre-trained convolutional neural network (CNN) models are analyzed and tested—Xception, DenseNet201, InceptionResNetV2, VGG19, and ResNet152—with the help of data augmentation techniques, and a new approach is introduced for transfer learning. These models are trained and tested with histopathological images obtained from the BreakHis dataset. Multiple experiments are performed to analyze the performance of these models through carrying out magnification-dependent and magnification-independent binary and eight-class classifications. The Xception model has shown promising performance through achieving the highest classification accuracies for all the experiments. It has achieved a range of classification accuracies from 93.32% to 98.99% for magnification-independent experiments and from 90.22% to 100% for magnification-dependent experiments.
Audience Academic
Author Hassan, Hoda Mamdouh
Zaalouk, Ahmed M
Ebrahim, Gamal A
Zaalouk, Mohamed M. A
Mohamed, Hoda K
AuthorAffiliation 4 Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
3 Department of Information Sciences and Technology, College of Engineering and Computing, George Mason University, Fairfax, VA 22030, USA
2 School of Computing, Coventry University—Egypt Branch, Hosted at the Knowledge Hub Universities, Cairo, Egypt
1 Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
AuthorAffiliation_xml – name: 3 Department of Information Sciences and Technology, College of Engineering and Computing, George Mason University, Fairfax, VA 22030, USA
– name: 1 Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
– name: 4 Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
– name: 2 School of Computing, Coventry University—Egypt Branch, Hosted at the Knowledge Hub Universities, Cairo, Egypt
Author_xml – sequence: 1
  fullname: Zaalouk, Ahmed M
– sequence: 2
  fullname: Ebrahim, Gamal A
– sequence: 3
  fullname: Mohamed, Hoda K
– sequence: 4
  fullname: Hassan, Hoda Mamdouh
– sequence: 5
  fullname: Zaalouk, Mohamed M. A
BookMark eNptkktv1DAQgCNUREvpT0CKxIVLyviR2L4ghZRHpZW4wNlynEnqVWIHO4vEv8ftVsCiygdb428-e0bzsjjzwWNRvCZwzZiCd70L6CfnEaPzkwIJTJFnxQVl0FQ1q_nZP-fz4iqlPQAQRmva8BfFOWsAuCLNRdG15Q3iWu7QRJ9dZReW9bBhrFo34FDeODP5kFwq23WNwdi7cgyx_BDRpK3sjLcYXxXPRzMnvHrcL4vvnz5-675Uu6-fb7t2V9maq62qAce-EVT2mP9GKXCrRmNFI2vLEJFayokgjPU9QWBygJEqpgQwwxSzkl0Wt0fvEMxer9EtJv7SwTj9EAhx0iZuzs6oWS-MlCNvOHLOmZBUSSWNGoBDDz3JrvdH13roFxws-i2a-UR6euPdnZ7CT6041FmSBW8fBTH8OGDa9OKSxXk2HsMhaSqgEURQUBl98x-6D4foc6seKAK5J_CXmkwuwPkx5HftvVS3gnMqeK1opq6foPIacHE2T8nocvwkoT4m2BhSijj-qZGAvh8m_eQwsd-WM70F
CitedBy_id crossref_primary_10_3390_bioengineering10121419
crossref_primary_10_59786_bmtj_211
crossref_primary_10_3389_fonc_2023_1240645
crossref_primary_10_1007_s10549_023_07208_3
crossref_primary_10_3390_diagnostics13101753
crossref_primary_10_1016_j_bspc_2024_106607
crossref_primary_10_3390_bioengineering10060639
crossref_primary_10_1080_21681163_2023_2297983
crossref_primary_10_1016_j_eswa_2023_119972
crossref_primary_10_3390_electronics11223767
crossref_primary_10_1016_j_jksuci_2023_01_017
Cites_doi 10.1186/s40537-019-0197-0
10.1109/JTEHM.2018.2865787
10.18203/2394-6040.ijcmph20184605
10.1109/CVPR.2017.195
10.1109/CCDC.2019.8833431
10.1109/ACCESS.2019.2915611
10.1016/j.cmpb.2011.12.007
10.1109/JBHI.2022.3187765
10.3390/app11020796
10.1093/bioinformatics/16.5.412
10.1177/0037549721996031
10.3322/caac.21660
10.1016/j.bspc.2020.102192
10.1109/TBME.2015.2496264
10.1016/j.icte.2018.10.007
10.1109/CVPR.2016.90
10.1007/s11045-020-00756-7
10.1016/j.neucom.2019.10.008
10.1109/ACCESS.2018.2831280
10.1155/2018/8961781
10.1145/3411408.3411416
10.1007/s11042-019-08453-9
10.1609/aaai.v31i1.11231
10.1109/CVPR.2017.243
10.1109/SMC.2017.8122889
10.1371/journal.pone.0240530
10.1007/s10916-020-01689-1
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering9080391
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_3b7a88f464e44437829898a9d040b0b1
A744274592
10_3390_bioengineering9080391
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PIMPY
PROAC
PTHSS
RPM
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c549t-50efb6728be2302204c9fac7685c3eee2c2417133bb1e038d0f2939703a393c83
IEDL.DBID RPM
ISSN 2306-5354
IngestDate Tue Oct 22 15:14:07 EDT 2024
Tue Sep 17 21:03:20 EDT 2024
Fri Oct 25 03:30:38 EDT 2024
Thu Oct 10 17:35:16 EDT 2024
Fri Feb 23 00:20:31 EST 2024
Wed Jan 10 04:34:02 EST 2024
Thu Sep 26 20:58:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-50efb6728be2302204c9fac7685c3eee2c2417133bb1e038d0f2939703a393c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9997-2560
0000-0002-2890-4808
0000-0002-6519-9511
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405040/
PMID 36004916
PQID 2706107280
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_3b7a88f464e44437829898a9d040b0b1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9405040
proquest_miscellaneous_2706717209
proquest_journals_2706107280
gale_infotracmisc_A744274592
gale_infotracacademiconefile_A744274592
crossref_primary_10_3390_bioengineering9080391
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Bioengineering (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Javaeed (ref_6) 2018; 5
ref_13
Tahir (ref_30) 2019; 7
ref_11
ref_32
Bardou (ref_12) 2018; 6
ref_19
ref_18
ref_17
ref_16
ref_15
Basha (ref_26) 2019; 378
Shallu (ref_14) 2018; 4
He (ref_7) 2012; 107
Hussain (ref_25) 2018; 2017
Shorten (ref_24) 2019; 6
Davoudi (ref_10) 2021; 97
Baldi (ref_31) 2000; 16
Qu (ref_33) 2018; 2018
ref_23
ref_22
Tan (ref_27) 2018; 6
ref_21
Sung (ref_3) 2021; 71
ref_20
Khamparia (ref_1) 2021; 32
Spanhol (ref_9) 2016; 63
Zerouaoui (ref_2) 2021; 45
ref_29
ref_8
Garbin (ref_28) 2020; 79
ref_5
ref_4
References_xml – ident: ref_5
– volume: 6
  start-page: 60
  year: 2019
  ident: ref_24
  article-title: A survey on Image Data Augmentation for Deep Learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
  contributor:
    fullname: Shorten
– volume: 6
  start-page: 1
  year: 2018
  ident: ref_27
  article-title: Optimize Transfer Learning for Lung Diseases in Bronchoscopy Using a New Concept: Sequential Fine-Tuning
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2018.2865787
  contributor:
    fullname: Tan
– volume: 5
  start-page: 4997
  year: 2018
  ident: ref_6
  article-title: Breast cancer screening and diagnosis: A glance back and a look forward
  publication-title: Int. J. Community Med. Public Health
  doi: 10.18203/2394-6040.ijcmph20184605
  contributor:
    fullname: Javaeed
– ident: ref_16
– ident: ref_20
  doi: 10.1109/CVPR.2017.195
– ident: ref_13
  doi: 10.1109/CCDC.2019.8833431
– volume: 7
  start-page: 71013
  year: 2019
  ident: ref_30
  article-title: A Classification Model for Class Imbalance Dataset Using Genetic Programming
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915611
  contributor:
    fullname: Tahir
– ident: ref_23
– volume: 107
  start-page: 538
  year: 2012
  ident: ref_7
  article-title: Histology image analysis for carcinoma detection and grading
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.12.007
  contributor:
    fullname: He
– ident: ref_15
  doi: 10.1109/JBHI.2022.3187765
– ident: ref_22
  doi: 10.3390/app11020796
– volume: 16
  start-page: 412
  year: 2000
  ident: ref_31
  article-title: Assessing the accuracy of prediction algorithms for classification: An overview
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.5.412
  contributor:
    fullname: Baldi
– volume: 97
  start-page: 511
  year: 2021
  ident: ref_10
  article-title: Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem
  publication-title: Simulation
  doi: 10.1177/0037549721996031
  contributor:
    fullname: Davoudi
– volume: 71
  start-page: 209
  year: 2021
  ident: ref_3
  article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
  contributor:
    fullname: Sung
– ident: ref_8
  doi: 10.1016/j.bspc.2020.102192
– volume: 63
  start-page: 1455
  year: 2016
  ident: ref_9
  article-title: A Dataset for Breast Cancer Histopathological Image Classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2496264
  contributor:
    fullname: Spanhol
– volume: 4
  start-page: 247
  year: 2018
  ident: ref_14
  article-title: Breast cancer histology images classification: Training from scratch or transfer learning?
  publication-title: ICT Express
  doi: 10.1016/j.icte.2018.10.007
  contributor:
    fullname: Shallu
– ident: ref_17
  doi: 10.1109/CVPR.2016.90
– volume: 32
  start-page: 747
  year: 2021
  ident: ref_1
  article-title: Diagnosis of breast cancer based on modern mammography using hybrid transfer learning
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-020-00756-7
  contributor:
    fullname: Khamparia
– volume: 378
  start-page: 112
  year: 2019
  ident: ref_26
  article-title: Impact of fully connected layers on performance of convolutional neural networks for image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.008
  contributor:
    fullname: Basha
– volume: 6
  start-page: 24680
  year: 2018
  ident: ref_12
  article-title: Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2831280
  contributor:
    fullname: Bardou
– volume: 2018
  start-page: 8961781
  year: 2018
  ident: ref_33
  article-title: Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/8961781
  contributor:
    fullname: Qu
– ident: ref_4
– ident: ref_29
– ident: ref_21
  doi: 10.1145/3411408.3411416
– volume: 79
  start-page: 12777
  year: 2020
  ident: ref_28
  article-title: Dropout vs. batch normalization: An empirical study of their impact to deep learning
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-08453-9
  contributor:
    fullname: Garbin
– ident: ref_18
  doi: 10.1609/aaai.v31i1.11231
– ident: ref_19
  doi: 10.1109/CVPR.2017.243
– ident: ref_11
  doi: 10.1109/SMC.2017.8122889
– ident: ref_32
  doi: 10.1371/journal.pone.0240530
– volume: 2017
  start-page: 979
  year: 2018
  ident: ref_25
  article-title: Differential Data Augmentation Techniques for Medical Imaging Classification Tasks
  publication-title: Annu. Symp. Proc.
  contributor:
    fullname: Hussain
– volume: 45
  start-page: 1
  year: 2021
  ident: ref_2
  article-title: Reviewing Machine Learning and Image Processing Based Decision-Making Systems for Breast Cancer Imaging
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01689-1
  contributor:
    fullname: Zerouaoui
SSID ssj0001325264
Score 2.3380911
Snippet Breast cancer is a gigantic burden on humanity, causing the loss of enormous numbers of lives and amounts of money. It is the world’s leading type of cancer...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 391
SubjectTerms Accuracy
Artificial neural networks
Bioengineering
Biopsy
BreakHis
Breast cancer
CAI
Cancer
Classification
Computer assisted instruction
computer-aided diagnosis
Datasets
Deep learning
Diagnosis
Disease
Experiments
histopathological images
Machine learning
Morbidity
Neural networks
Performance evaluation
Transfer learning
Womens health
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB1VnNpDRUsRoRQZCamnFK_tbOxjWEAIiZ6KxM2K7QnsJYvY5f-ZSbJ0Uypx4Ro7kvPG45kXjd8AHGOcRJ0M93ehI5DyW5tbZ1PuAqKZNlalCd9Gvv49vbwxV7fF7UarL64J6-WBe-BOdChraxszNWiM0RTQuONh7RLtviBDT3yk2yBT3d8VrQoK9f2VHU28_iTMF_hX4c9RoqTdZBSMOs3-1yfzv9WSG-HnYhs-D3mjqPr1foEP2H6FTxtqgjswq8QZ4oMYJFPvxLpjQ17NEyZx1lfVzZeiGoTEBWWs4pTL0ldixuZ__AY3F-d_Zpf50CMhj8TsVnkhsQnTUtmARCaUkia6po5EIoqoEVFFCtFMREOYoNQ2yYYCvCM_r7XT0epd2GoXLe6BKKOLjSavSUmZmnUGlSSzBY1S1jrFDH6twfIPvRSGJwrB6Pr_opvBKUP6MpmVrLsHZF8_2Ne_Zd8MfrJBPPsbwR_r4doArZmVq3xVGkPMunAqg4PRTPKTOB5em9QPfrr0qqR8RnKLrgyOXob5Ta49a3Hx1M8h0ktgZFCOtsLoy8Yj7fy-0-p2lBDTl-y_BxTf4aPiyxdd-eEBbK0en_AHpUSrcNjt_mdZcQhO
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHVF4iUJCRkDiFem1nE5-q7LZVhUSFEJV6i2J7UvaSbHe3_5-ZxNttAHGNnYfHnsfnjL8B-IR-6nUwXN-FTCDFt0Va2CKk1iGaWVOoMOXTyN8uZxdX5ut1dh033DYxrXJnE3tDHTrPe-THKifPI7mY0snqNuWqUfx3NZbQeAwHipCCmsDB_Ozy-4_9LotWGbn84eiOJnx_7JYd7pn-LAVM2k5HTqnn7v_bQv-ZNfnADZ0fwrMYP4pymPDn8AjbF_D0AavgS1iU4hRxJSJ16o3YVW5Iy2XAIE6H7LrlRpSRUFxQ5CrmnJ6-FQteButXcHV-9nNxkcZaCaknhLdNM4mNm5F4HBKoUEoab5vaE5jIvEZE5clVMyB1bopSF0E25Ogt6XutrfaFfg2TtmvxDYjcW99o0p4QlKmZb1BJmj6nUcpaB5_Al52wqtVAiVERlGDpVv-UbgJzFul9Z2a07i9065sqKkilXV4XRWNmBo0xmgIXrmxZ20BWxklHD_nME1Kx3pH4fR2PD9A3M4NVVebGEMLOrErgaNST9MWPm3dTWkV93VT71ZXAx_tmvpNz0Frs7oY-BH5JGAnko6UwGtm4pV3-6jm7LQXGNJK3_3_5O3ii-HhFn2B4BJPt-g7fU9CzdR_iyv4NU0cCZA
  priority: 102
  providerName: ProQuest
Title A Deep Learning Computer-Aided Diagnosis Approach for Breast Cancer
URI https://www.proquest.com/docview/2706107280
https://search.proquest.com/docview/2706717209
https://pubmed.ncbi.nlm.nih.gov/PMC9405040
https://doaj.org/article/3b7a88f464e44437829898a9d040b0b1
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB415QIHxFOYlmiRkDg5cXbXjz3aTkNBaqkQRb1Z3oeLJepEafr_O-NHiYETJ0vetWXPw_ONNfMNwAdnFkZYSfNd8BOI-DbxE5VYX2nnZFQl3C6oG_nsPDq9lF-uwqsDCIdemLZo3-h61vy6mTX1z7a2cnNj5kOd2PziLFeIMtD45hOYoIHupejtjxXBQ4zyXbeOwJR-ruu1-03upxAjCUUTYkRE-Jgmne-FpJa5_-_v8581k3tBaPUMnvbokaXdUz6HA9e8gCd7nIIvIU_Z0rkN64lTr9kwt8FPa-ssW3a1dfUtS3s6cYa4lWVUnL5jORnB9hVcrk6-56d-PynBN5jf7fwwcJWOYp5ohykF54E0qioNphKhEc45bjBQUzqq9cIFIrFBhWFeobeXQgmTiNdw2Kwb9wZYbJSpBPqOtVyWxDbIA1SeFi4ISmGNB7NBWMWmI8QoMJEgQRf_FLQHGYn0YTPxWbcn1tvrotdqIXRcJkklI-mklAJhC821LJVFNetA400-kkIK8joUvyn75gF8ZuKvKtJYSsyvQ8U9OB7tRG8x4-VBpUXvrbcFjxHVBDSoy4P3D8t0JVWgNW591-3B1BeF4UE8MoXRm41X0IBbxu7eYN_-95VH8JhT30VbeXgMh7vtnXuHaGinpzBJVp-m8CjNltkKj9nJ-cU3POZff3xeTtt_DNPWQ-4BRM0QdQ
link.rule.ids 230,315,730,783,787,867,888,2109,12779,21402,27938,27939,33387,33388,33758,33759,38530,43614,43819,43909,53806,53808,74371,74638,74748
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgOwAHvicCA4yExCmdaztNfEJZy9TBNi4b2s2KPzIqpKS06YW_nvcSZ10G4sA1dj7c9_V77vPvEfLe27EVTmJ_F3CBgG-zOFOZi5XxXk7KjLsxnkY-PZvML-Tny-QybLitQ1ll7xNbR-1qi3vkBzyFyMOwmdLH5c8Yu0bhv6uhhcZdsguBlYFW706_fjuebXdZBE8g5HdHdwRMOTCL2m-Z_hQAJqHGg6DUcvf_6aFvV03eCENHj4juF9BVn_wYbRozsr9ucTv-_wofk4cBodK8U6kn5I6vnpIHN3gLn5FpTmfeL2kgZ72ifW-IOF847-isq99brGkeKMspYGN6iAXwDZ2ioq2ek4ujT-fTeRy6McQWcsgmTpgvzQQ-z3hIWzhn0qqysJCuJFZ477kFMIAprzFjz0TmWAlQQoFHKYQSNhN7ZKeqK_-C0NQqWwqwT-e4LJDRkDNQECM8Y4VwNiKjXhx62ZFuaEhWUH76r_KLyCEK7Xoycma3F-rVlQ4mqIVJiywr5UR6KaUAaIS9MwvlwI8ZZuAhH1DkGi0bBGyLcEABvhk5snSeSgk5fKJ4RPYHM8Ei7XC4F7AOHmGtt9KNyLvrYbwTq9wqX2-6OZBew48RkXSgbIOVDUeqxfeWFVwB9IaVvPz3y9-Se_Pz0xN9cnz25RW5z_EwR1vOuE92mtXGvwaI1Zg3wY5-A5xKKDc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BKiE48Ea4FDASEicnzu469p6QmxC1PAoHinpbeR8uUSU7zePCr2fGXjd1QZy4ZteON_PYb5xvvwF468zYcCuovwumQMS3WZTJzEZSOycmZcbsmE4jfzmZHJ2Kj2fJmec_rT2tssuJTaK2taF35COW4s4TUzOlUelpEd9m8_fLy4g6SNE_rb6dxm3YQ4gssgHsTb_-OJ7t3rhwluD23x7j4Vjrj_SidjvVP4ngictxb4NqdPz_zNY3GZTXtqT5A7joFtMyUS6G240eml83dB7_z2ofwn2PXMO8dbVHcMtVj-HeNT3DJzDNw5lzy9CLtp6HXc-IKF9YZ8NZy-tbrMPcS5mHiJnDQyLGb8IpOeDqKZzOP3yfHkW-S0NksLbcREnsSj3BR9UOyxnGYmFkWRgsYxLDnXPMIEigUljrsYt5ZuMSIYbETFNwyU3Gn8Ggqiv3HMLUSFNyjFtrmShI6ZDF6DiauzguuDUBDDvTqGUrxqGwiCFbqr_aMoBDMuDVZNLSbj6oV-fKh6biOi2yrBQT4YQQHCET9dQspMX8pmONN3lH5lcU8WhsU_iDC_jMpJ2l8lQIrO0TyQI46M3ESDX94c7YymeKtdpZOoA3V8N0JbHfKldv2zlYduOPEUDac7zeyvoj1eJnoxYuEZLjSvb__eWv4Q46mPp8fPLpBdxldMajYTkewGCz2rqXiLw2-pUPqd-x3jD6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Computer-Aided+Diagnosis+Approach+for+Breast+Cancer&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Zaalouk%2C+Ahmed+M&rft.au=Ebrahim%2C+Gamal+A&rft.au=Mohamed%2C+Hoda+K&rft.au=Hassan%2C+Hoda+Mamdouh&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2306-5354&rft.volume=9&rft.issue=8&rft.spage=391&rft_id=info:doi/10.3390%2Fbioengineering9080391&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon