A Deep Learning Computer-Aided Diagnosis Approach for Breast Cancer
Breast cancer is a gigantic burden on humanity, causing the loss of enormous numbers of lives and amounts of money. It is the world’s leading type of cancer among women and a leading cause of mortality and morbidity. The histopathological examination of breast tissue biopsies is the gold standard fo...
Saved in:
Published in | Bioengineering (Basel) Vol. 9; no. 8; p. 391 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Breast cancer is a gigantic burden on humanity, causing the loss of enormous numbers of lives and amounts of money. It is the world’s leading type of cancer among women and a leading cause of mortality and morbidity. The histopathological examination of breast tissue biopsies is the gold standard for diagnosis. In this paper, a computer-aided diagnosis (CAD) system based on deep learning is developed to ease the pathologist’s mission. For this target, five pre-trained convolutional neural network (CNN) models are analyzed and tested—Xception, DenseNet201, InceptionResNetV2, VGG19, and ResNet152—with the help of data augmentation techniques, and a new approach is introduced for transfer learning. These models are trained and tested with histopathological images obtained from the BreakHis dataset. Multiple experiments are performed to analyze the performance of these models through carrying out magnification-dependent and magnification-independent binary and eight-class classifications. The Xception model has shown promising performance through achieving the highest classification accuracies for all the experiments. It has achieved a range of classification accuracies from 93.32% to 98.99% for magnification-independent experiments and from 90.22% to 100% for magnification-dependent experiments. |
---|---|
AbstractList | Breast cancer is a gigantic burden on humanity, causing the loss of enormous numbers of lives and amounts of money. It is the world’s leading type of cancer among women and a leading cause of mortality and morbidity. The histopathological examination of breast tissue biopsies is the gold standard for diagnosis. In this paper, a computer-aided diagnosis (CAD) system based on deep learning is developed to ease the pathologist’s mission. For this target, five pre-trained convolutional neural network (CNN) models are analyzed and tested—Xception, DenseNet201, InceptionResNetV2, VGG19, and ResNet152—with the help of data augmentation techniques, and a new approach is introduced for transfer learning. These models are trained and tested with histopathological images obtained from the BreakHis dataset. Multiple experiments are performed to analyze the performance of these models through carrying out magnification-dependent and magnification-independent binary and eight-class classifications. The Xception model has shown promising performance through achieving the highest classification accuracies for all the experiments. It has achieved a range of classification accuracies from 93.32% to 98.99% for magnification-independent experiments and from 90.22% to 100% for magnification-dependent experiments. |
Audience | Academic |
Author | Hassan, Hoda Mamdouh Zaalouk, Ahmed M Ebrahim, Gamal A Zaalouk, Mohamed M. A Mohamed, Hoda K |
AuthorAffiliation | 4 Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt 3 Department of Information Sciences and Technology, College of Engineering and Computing, George Mason University, Fairfax, VA 22030, USA 2 School of Computing, Coventry University—Egypt Branch, Hosted at the Knowledge Hub Universities, Cairo, Egypt 1 Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt |
AuthorAffiliation_xml | – name: 3 Department of Information Sciences and Technology, College of Engineering and Computing, George Mason University, Fairfax, VA 22030, USA – name: 1 Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt – name: 4 Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt – name: 2 School of Computing, Coventry University—Egypt Branch, Hosted at the Knowledge Hub Universities, Cairo, Egypt |
Author_xml | – sequence: 1 fullname: Zaalouk, Ahmed M – sequence: 2 fullname: Ebrahim, Gamal A – sequence: 3 fullname: Mohamed, Hoda K – sequence: 4 fullname: Hassan, Hoda Mamdouh – sequence: 5 fullname: Zaalouk, Mohamed M. A |
BookMark | eNptkktv1DAQgCNUREvpT0CKxIVLyviR2L4ghZRHpZW4wNlynEnqVWIHO4vEv8ftVsCiygdb428-e0bzsjjzwWNRvCZwzZiCd70L6CfnEaPzkwIJTJFnxQVl0FQ1q_nZP-fz4iqlPQAQRmva8BfFOWsAuCLNRdG15Q3iWu7QRJ9dZReW9bBhrFo34FDeODP5kFwq23WNwdi7cgyx_BDRpK3sjLcYXxXPRzMnvHrcL4vvnz5-675Uu6-fb7t2V9maq62qAce-EVT2mP9GKXCrRmNFI2vLEJFayokgjPU9QWBygJEqpgQwwxSzkl0Wt0fvEMxer9EtJv7SwTj9EAhx0iZuzs6oWS-MlCNvOHLOmZBUSSWNGoBDDz3JrvdH13roFxws-i2a-UR6euPdnZ7CT6041FmSBW8fBTH8OGDa9OKSxXk2HsMhaSqgEURQUBl98x-6D4foc6seKAK5J_CXmkwuwPkx5HftvVS3gnMqeK1opq6foPIacHE2T8nocvwkoT4m2BhSijj-qZGAvh8m_eQwsd-WM70F |
CitedBy_id | crossref_primary_10_3390_bioengineering10121419 crossref_primary_10_59786_bmtj_211 crossref_primary_10_3389_fonc_2023_1240645 crossref_primary_10_1007_s10549_023_07208_3 crossref_primary_10_3390_diagnostics13101753 crossref_primary_10_1016_j_bspc_2024_106607 crossref_primary_10_3390_bioengineering10060639 crossref_primary_10_1080_21681163_2023_2297983 crossref_primary_10_1016_j_eswa_2023_119972 crossref_primary_10_3390_electronics11223767 crossref_primary_10_1016_j_jksuci_2023_01_017 |
Cites_doi | 10.1186/s40537-019-0197-0 10.1109/JTEHM.2018.2865787 10.18203/2394-6040.ijcmph20184605 10.1109/CVPR.2017.195 10.1109/CCDC.2019.8833431 10.1109/ACCESS.2019.2915611 10.1016/j.cmpb.2011.12.007 10.1109/JBHI.2022.3187765 10.3390/app11020796 10.1093/bioinformatics/16.5.412 10.1177/0037549721996031 10.3322/caac.21660 10.1016/j.bspc.2020.102192 10.1109/TBME.2015.2496264 10.1016/j.icte.2018.10.007 10.1109/CVPR.2016.90 10.1007/s11045-020-00756-7 10.1016/j.neucom.2019.10.008 10.1109/ACCESS.2018.2831280 10.1155/2018/8961781 10.1145/3411408.3411416 10.1007/s11042-019-08453-9 10.1609/aaai.v31i1.11231 10.1109/CVPR.2017.243 10.1109/SMC.2017.8122889 10.1371/journal.pone.0240530 10.1007/s10916-020-01689-1 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/bioengineering9080391 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2306-5354 |
ExternalDocumentID | oai_doaj_org_article_3b7a88f464e44437829898a9d040b0b1 A744274592 10_3390_bioengineering9080391 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PIMPY PROAC PTHSS RPM ABUWG AZQEC COVID DWQXO GNUQQ PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c549t-50efb6728be2302204c9fac7685c3eee2c2417133bb1e038d0f2939703a393c83 |
IEDL.DBID | RPM |
ISSN | 2306-5354 |
IngestDate | Tue Oct 22 15:14:07 EDT 2024 Tue Sep 17 21:03:20 EDT 2024 Fri Oct 25 03:30:38 EDT 2024 Thu Oct 10 17:35:16 EDT 2024 Fri Feb 23 00:20:31 EST 2024 Wed Jan 10 04:34:02 EST 2024 Thu Sep 26 20:58:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-50efb6728be2302204c9fac7685c3eee2c2417133bb1e038d0f2939703a393c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9997-2560 0000-0002-2890-4808 0000-0002-6519-9511 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405040/ |
PMID | 36004916 |
PQID | 2706107280 |
PQPubID | 2055440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3b7a88f464e44437829898a9d040b0b1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9405040 proquest_miscellaneous_2706717209 proquest_journals_2706107280 gale_infotracmisc_A744274592 gale_infotracacademiconefile_A744274592 crossref_primary_10_3390_bioengineering9080391 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Bioengineering (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Javaeed (ref_6) 2018; 5 ref_13 Tahir (ref_30) 2019; 7 ref_11 ref_32 Bardou (ref_12) 2018; 6 ref_19 ref_18 ref_17 ref_16 ref_15 Basha (ref_26) 2019; 378 Shallu (ref_14) 2018; 4 He (ref_7) 2012; 107 Hussain (ref_25) 2018; 2017 Shorten (ref_24) 2019; 6 Davoudi (ref_10) 2021; 97 Baldi (ref_31) 2000; 16 Qu (ref_33) 2018; 2018 ref_23 ref_22 Tan (ref_27) 2018; 6 ref_21 Sung (ref_3) 2021; 71 ref_20 Khamparia (ref_1) 2021; 32 Spanhol (ref_9) 2016; 63 Zerouaoui (ref_2) 2021; 45 ref_29 ref_8 Garbin (ref_28) 2020; 79 ref_5 ref_4 |
References_xml | – ident: ref_5 – volume: 6 start-page: 60 year: 2019 ident: ref_24 article-title: A survey on Image Data Augmentation for Deep Learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 contributor: fullname: Shorten – volume: 6 start-page: 1 year: 2018 ident: ref_27 article-title: Optimize Transfer Learning for Lung Diseases in Bronchoscopy Using a New Concept: Sequential Fine-Tuning publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2018.2865787 contributor: fullname: Tan – volume: 5 start-page: 4997 year: 2018 ident: ref_6 article-title: Breast cancer screening and diagnosis: A glance back and a look forward publication-title: Int. J. Community Med. Public Health doi: 10.18203/2394-6040.ijcmph20184605 contributor: fullname: Javaeed – ident: ref_16 – ident: ref_20 doi: 10.1109/CVPR.2017.195 – ident: ref_13 doi: 10.1109/CCDC.2019.8833431 – volume: 7 start-page: 71013 year: 2019 ident: ref_30 article-title: A Classification Model for Class Imbalance Dataset Using Genetic Programming publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915611 contributor: fullname: Tahir – ident: ref_23 – volume: 107 start-page: 538 year: 2012 ident: ref_7 article-title: Histology image analysis for carcinoma detection and grading publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.12.007 contributor: fullname: He – ident: ref_15 doi: 10.1109/JBHI.2022.3187765 – ident: ref_22 doi: 10.3390/app11020796 – volume: 16 start-page: 412 year: 2000 ident: ref_31 article-title: Assessing the accuracy of prediction algorithms for classification: An overview publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.5.412 contributor: fullname: Baldi – volume: 97 start-page: 511 year: 2021 ident: ref_10 article-title: Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem publication-title: Simulation doi: 10.1177/0037549721996031 contributor: fullname: Davoudi – volume: 71 start-page: 209 year: 2021 ident: ref_3 article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 contributor: fullname: Sung – ident: ref_8 doi: 10.1016/j.bspc.2020.102192 – volume: 63 start-page: 1455 year: 2016 ident: ref_9 article-title: A Dataset for Breast Cancer Histopathological Image Classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2496264 contributor: fullname: Spanhol – volume: 4 start-page: 247 year: 2018 ident: ref_14 article-title: Breast cancer histology images classification: Training from scratch or transfer learning? publication-title: ICT Express doi: 10.1016/j.icte.2018.10.007 contributor: fullname: Shallu – ident: ref_17 doi: 10.1109/CVPR.2016.90 – volume: 32 start-page: 747 year: 2021 ident: ref_1 article-title: Diagnosis of breast cancer based on modern mammography using hybrid transfer learning publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-020-00756-7 contributor: fullname: Khamparia – volume: 378 start-page: 112 year: 2019 ident: ref_26 article-title: Impact of fully connected layers on performance of convolutional neural networks for image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.008 contributor: fullname: Basha – volume: 6 start-page: 24680 year: 2018 ident: ref_12 article-title: Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2831280 contributor: fullname: Bardou – volume: 2018 start-page: 8961781 year: 2018 ident: ref_33 article-title: Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks publication-title: J. Healthc. Eng. doi: 10.1155/2018/8961781 contributor: fullname: Qu – ident: ref_4 – ident: ref_29 – ident: ref_21 doi: 10.1145/3411408.3411416 – volume: 79 start-page: 12777 year: 2020 ident: ref_28 article-title: Dropout vs. batch normalization: An empirical study of their impact to deep learning publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-08453-9 contributor: fullname: Garbin – ident: ref_18 doi: 10.1609/aaai.v31i1.11231 – ident: ref_19 doi: 10.1109/CVPR.2017.243 – ident: ref_11 doi: 10.1109/SMC.2017.8122889 – ident: ref_32 doi: 10.1371/journal.pone.0240530 – volume: 2017 start-page: 979 year: 2018 ident: ref_25 article-title: Differential Data Augmentation Techniques for Medical Imaging Classification Tasks publication-title: Annu. Symp. Proc. contributor: fullname: Hussain – volume: 45 start-page: 1 year: 2021 ident: ref_2 article-title: Reviewing Machine Learning and Image Processing Based Decision-Making Systems for Breast Cancer Imaging publication-title: J. Med. Syst. doi: 10.1007/s10916-020-01689-1 contributor: fullname: Zerouaoui |
SSID | ssj0001325264 |
Score | 2.3380911 |
Snippet | Breast cancer is a gigantic burden on humanity, causing the loss of enormous numbers of lives and amounts of money. It is the world’s leading type of cancer... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 391 |
SubjectTerms | Accuracy Artificial neural networks Bioengineering Biopsy BreakHis Breast cancer CAI Cancer Classification Computer assisted instruction computer-aided diagnosis Datasets Deep learning Diagnosis Disease Experiments histopathological images Machine learning Morbidity Neural networks Performance evaluation Transfer learning Womens health |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB1VnNpDRUsRoRQZCamnFK_tbOxjWEAIiZ6KxM2K7QnsJYvY5f-ZSbJ0Uypx4Ro7kvPG45kXjd8AHGOcRJ0M93ehI5DyW5tbZ1PuAqKZNlalCd9Gvv49vbwxV7fF7UarL64J6-WBe-BOdChraxszNWiM0RTQuONh7RLtviBDT3yk2yBT3d8VrQoK9f2VHU28_iTMF_hX4c9RoqTdZBSMOs3-1yfzv9WSG-HnYhs-D3mjqPr1foEP2H6FTxtqgjswq8QZ4oMYJFPvxLpjQ17NEyZx1lfVzZeiGoTEBWWs4pTL0ldixuZ__AY3F-d_Zpf50CMhj8TsVnkhsQnTUtmARCaUkia6po5EIoqoEVFFCtFMREOYoNQ2yYYCvCM_r7XT0epd2GoXLe6BKKOLjSavSUmZmnUGlSSzBY1S1jrFDH6twfIPvRSGJwrB6Pr_opvBKUP6MpmVrLsHZF8_2Ne_Zd8MfrJBPPsbwR_r4doArZmVq3xVGkPMunAqg4PRTPKTOB5em9QPfrr0qqR8RnKLrgyOXob5Ta49a3Hx1M8h0ktgZFCOtsLoy8Yj7fy-0-p2lBDTl-y_BxTf4aPiyxdd-eEBbK0en_AHpUSrcNjt_mdZcQhO priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHVF4iUJCRkDiFem1nE5-q7LZVhUSFEJV6i2J7UvaSbHe3_5-ZxNttAHGNnYfHnsfnjL8B-IR-6nUwXN-FTCDFt0Va2CKk1iGaWVOoMOXTyN8uZxdX5ut1dh033DYxrXJnE3tDHTrPe-THKifPI7mY0snqNuWqUfx3NZbQeAwHipCCmsDB_Ozy-4_9LotWGbn84eiOJnx_7JYd7pn-LAVM2k5HTqnn7v_bQv-ZNfnADZ0fwrMYP4pymPDn8AjbF_D0AavgS1iU4hRxJSJ16o3YVW5Iy2XAIE6H7LrlRpSRUFxQ5CrmnJ6-FQteButXcHV-9nNxkcZaCaknhLdNM4mNm5F4HBKoUEoab5vaE5jIvEZE5clVMyB1bopSF0E25Ogt6XutrfaFfg2TtmvxDYjcW99o0p4QlKmZb1BJmj6nUcpaB5_Al52wqtVAiVERlGDpVv-UbgJzFul9Z2a07i9065sqKkilXV4XRWNmBo0xmgIXrmxZ20BWxklHD_nME1Kx3pH4fR2PD9A3M4NVVebGEMLOrErgaNST9MWPm3dTWkV93VT71ZXAx_tmvpNz0Frs7oY-BH5JGAnko6UwGtm4pV3-6jm7LQXGNJK3_3_5O3ii-HhFn2B4BJPt-g7fU9CzdR_iyv4NU0cCZA priority: 102 providerName: ProQuest |
Title | A Deep Learning Computer-Aided Diagnosis Approach for Breast Cancer |
URI | https://www.proquest.com/docview/2706107280 https://search.proquest.com/docview/2706717209 https://pubmed.ncbi.nlm.nih.gov/PMC9405040 https://doaj.org/article/3b7a88f464e44437829898a9d040b0b1 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB415QIHxFOYlmiRkDg5cXbXjz3aTkNBaqkQRb1Z3oeLJepEafr_O-NHiYETJ0vetWXPw_ONNfMNwAdnFkZYSfNd8BOI-DbxE5VYX2nnZFQl3C6oG_nsPDq9lF-uwqsDCIdemLZo3-h61vy6mTX1z7a2cnNj5kOd2PziLFeIMtD45hOYoIHupejtjxXBQ4zyXbeOwJR-ruu1-03upxAjCUUTYkRE-Jgmne-FpJa5_-_v8581k3tBaPUMnvbokaXdUz6HA9e8gCd7nIIvIU_Z0rkN64lTr9kwt8FPa-ssW3a1dfUtS3s6cYa4lWVUnL5jORnB9hVcrk6-56d-PynBN5jf7fwwcJWOYp5ohykF54E0qioNphKhEc45bjBQUzqq9cIFIrFBhWFeobeXQgmTiNdw2Kwb9wZYbJSpBPqOtVyWxDbIA1SeFi4ISmGNB7NBWMWmI8QoMJEgQRf_FLQHGYn0YTPxWbcn1tvrotdqIXRcJkklI-mklAJhC821LJVFNetA400-kkIK8joUvyn75gF8ZuKvKtJYSsyvQ8U9OB7tRG8x4-VBpUXvrbcFjxHVBDSoy4P3D8t0JVWgNW591-3B1BeF4UE8MoXRm41X0IBbxu7eYN_-95VH8JhT30VbeXgMh7vtnXuHaGinpzBJVp-m8CjNltkKj9nJ-cU3POZff3xeTtt_DNPWQ-4BRM0QdQ |
link.rule.ids | 230,315,730,783,787,867,888,2109,12779,21402,27938,27939,33387,33388,33758,33759,38530,43614,43819,43909,53806,53808,74371,74638,74748 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgOwAHvicCA4yExCmdaztNfEJZy9TBNi4b2s2KPzIqpKS06YW_nvcSZ10G4sA1dj7c9_V77vPvEfLe27EVTmJ_F3CBgG-zOFOZi5XxXk7KjLsxnkY-PZvML-Tny-QybLitQ1ll7xNbR-1qi3vkBzyFyMOwmdLH5c8Yu0bhv6uhhcZdsguBlYFW706_fjuebXdZBE8g5HdHdwRMOTCL2m-Z_hQAJqHGg6DUcvf_6aFvV03eCENHj4juF9BVn_wYbRozsr9ucTv-_wofk4cBodK8U6kn5I6vnpIHN3gLn5FpTmfeL2kgZ72ifW-IOF847-isq99brGkeKMspYGN6iAXwDZ2ioq2ek4ujT-fTeRy6McQWcsgmTpgvzQQ-z3hIWzhn0qqysJCuJFZ477kFMIAprzFjz0TmWAlQQoFHKYQSNhN7ZKeqK_-C0NQqWwqwT-e4LJDRkDNQECM8Y4VwNiKjXhx62ZFuaEhWUH76r_KLyCEK7Xoycma3F-rVlQ4mqIVJiywr5UR6KaUAaIS9MwvlwI8ZZuAhH1DkGi0bBGyLcEABvhk5snSeSgk5fKJ4RPYHM8Ei7XC4F7AOHmGtt9KNyLvrYbwTq9wqX2-6OZBew48RkXSgbIOVDUeqxfeWFVwB9IaVvPz3y9-Se_Pz0xN9cnz25RW5z_EwR1vOuE92mtXGvwaI1Zg3wY5-A5xKKDc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BKiE48Ea4FDASEicnzu469p6QmxC1PAoHinpbeR8uUSU7zePCr2fGXjd1QZy4ZteON_PYb5xvvwF468zYcCuovwumQMS3WZTJzEZSOycmZcbsmE4jfzmZHJ2Kj2fJmec_rT2tssuJTaK2taF35COW4s4TUzOlUelpEd9m8_fLy4g6SNE_rb6dxm3YQ4gssgHsTb_-OJ7t3rhwluD23x7j4Vjrj_SidjvVP4ngictxb4NqdPz_zNY3GZTXtqT5A7joFtMyUS6G240eml83dB7_z2ofwn2PXMO8dbVHcMtVj-HeNT3DJzDNw5lzy9CLtp6HXc-IKF9YZ8NZy-tbrMPcS5mHiJnDQyLGb8IpOeDqKZzOP3yfHkW-S0NksLbcREnsSj3BR9UOyxnGYmFkWRgsYxLDnXPMIEigUljrsYt5ZuMSIYbETFNwyU3Gn8Ggqiv3HMLUSFNyjFtrmShI6ZDF6DiauzguuDUBDDvTqGUrxqGwiCFbqr_aMoBDMuDVZNLSbj6oV-fKh6biOi2yrBQT4YQQHCET9dQspMX8pmONN3lH5lcU8WhsU_iDC_jMpJ2l8lQIrO0TyQI46M3ESDX94c7YymeKtdpZOoA3V8N0JbHfKldv2zlYduOPEUDac7zeyvoj1eJnoxYuEZLjSvb__eWv4Q46mPp8fPLpBdxldMajYTkewGCz2rqXiLw2-pUPqd-x3jD6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Computer-Aided+Diagnosis+Approach+for+Breast+Cancer&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Zaalouk%2C+Ahmed+M&rft.au=Ebrahim%2C+Gamal+A&rft.au=Mohamed%2C+Hoda+K&rft.au=Hassan%2C+Hoda+Mamdouh&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2306-5354&rft.volume=9&rft.issue=8&rft.spage=391&rft_id=info:doi/10.3390%2Fbioengineering9080391&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |