The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo

Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we r...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 11; no. 9; p. e1005142
Main Authors Søgaard, Ole S, Graversen, Mette E, Leth, Steffen, Olesen, Rikke, Brinkmann, Christel R, Nissen, Sara K, Kjaer, Anne Sofie, Schleimann, Mariane H, Denton, Paul W, Hey-Cunningham, William J, Koelsch, Kersten K, Pantaleo, Giuseppe, Krogsgaard, Kim, Sommerfelt, Maja, Fromentin, Remi, Chomont, Nicolas, Rasmussen, Thomas A, Østergaard, Lars, Tolstrup, Martin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.09.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7–7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4–5.0; p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46–103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1–2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir. clinicaltrials.gov NTC02092116.
AbstractList Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m 2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7–7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4–5.0; p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46–103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1–2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir. One proposed way of curing HIV is to activate virus transcription and kill latently infected cells while the presence of antiretroviral therapy prevents spreading the infection. Induction of global T cell activation by mitogenic or other potent activators effectively reverses HIV-1 from latency ex vivo , but such compounds are generally too toxic for clinical use. Therefore, investigating the capacity of small molecule latency reversing agents to induce production of virus without causing global T cell activation has been a top research priority for scientists in recent years. In the present clinical trial, we demonstrate that significant viral reactivation can be safely induced using the depsipeptide romidepsin (HDAC inhibitor) in long-term suppressed HIV-1 individuals on antiretroviral therapy. Following each romidepsin infusion, we observed clear increases in lymphocyte H3 acetylation, HIV-1 transcription, and plasma HIV-1 RNA. Importantly, this reversal of HIV-1 latency could be measured using standard clinical assays for detection of plasma HIV-1 RNA. Furthermore, romidepsin did not alter the proportion of HIV-specific T cells or inhibit T cell cytokine production which is critically important for future trials combining HDAC inhibitors with interventions (e.g. therapeutic HIV-1 vaccination) designed to enhance killing of latently infected cells.
  Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7-7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4-5.0; p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46-103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1-2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir. Trial Registration clinicaltrials.gov NTC02092116
UNLABELLEDPharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7–7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4–5.0; p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46–103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1–2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir.TRIAL REGISTRATIONclinicaltrials.gov NTC02092116.
Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7–7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4–5.0; p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46–103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1–2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir. clinicaltrials.gov NTC02092116.
Author Søgaard, Ole S
Fromentin, Remi
Graversen, Mette E
Denton, Paul W
Nissen, Sara K
Brinkmann, Christel R
Kjaer, Anne Sofie
Chomont, Nicolas
Sommerfelt, Maja
Hey-Cunningham, William J
Krogsgaard, Kim
Schleimann, Mariane H
Pantaleo, Giuseppe
Olesen, Rikke
Rasmussen, Thomas A
Østergaard, Lars
Tolstrup, Martin
Koelsch, Kersten K
Leth, Steffen
AuthorAffiliation 7 Centre de Recherche du CHUM, Montreal, Quebec, Canada
John Hopkins University, UNITED STATES
2 Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
5 Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
1 Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
4 Kirby Institute, University of New South Wales Medicine, University of New South Wales Australia, Sydney, Australia
8 Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal, Quebec, Canada
6 Bionor Pharma ASA, Oslo, Norway
3 Aarhus Institute for Advanced Studies, Aarhus University, Denmark
AuthorAffiliation_xml – name: 4 Kirby Institute, University of New South Wales Medicine, University of New South Wales Australia, Sydney, Australia
– name: 6 Bionor Pharma ASA, Oslo, Norway
– name: 1 Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
– name: 7 Centre de Recherche du CHUM, Montreal, Quebec, Canada
– name: 5 Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
– name: 3 Aarhus Institute for Advanced Studies, Aarhus University, Denmark
– name: 2 Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
– name: John Hopkins University, UNITED STATES
– name: 8 Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal, Quebec, Canada
Author_xml – sequence: 1
  givenname: Ole S
  surname: Søgaard
  fullname: Søgaard, Ole S
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
– sequence: 2
  givenname: Mette E
  surname: Graversen
  fullname: Graversen, Mette E
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
– sequence: 3
  givenname: Steffen
  surname: Leth
  fullname: Leth, Steffen
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
– sequence: 4
  givenname: Rikke
  surname: Olesen
  fullname: Olesen, Rikke
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
– sequence: 5
  givenname: Christel R
  surname: Brinkmann
  fullname: Brinkmann, Christel R
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
– sequence: 6
  givenname: Sara K
  surname: Nissen
  fullname: Nissen, Sara K
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
– sequence: 7
  givenname: Anne Sofie
  surname: Kjaer
  fullname: Kjaer, Anne Sofie
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
– sequence: 8
  givenname: Mariane H
  surname: Schleimann
  fullname: Schleimann, Mariane H
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
– sequence: 9
  givenname: Paul W
  surname: Denton
  fullname: Denton, Paul W
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark; Aarhus Institute for Advanced Studies, Aarhus University, Denmark
– sequence: 10
  givenname: William J
  surname: Hey-Cunningham
  fullname: Hey-Cunningham, William J
  organization: Kirby Institute, University of New South Wales Medicine, University of New South Wales Australia, Sydney, Australia
– sequence: 11
  givenname: Kersten K
  surname: Koelsch
  fullname: Koelsch, Kersten K
  organization: Kirby Institute, University of New South Wales Medicine, University of New South Wales Australia, Sydney, Australia
– sequence: 12
  givenname: Giuseppe
  surname: Pantaleo
  fullname: Pantaleo, Giuseppe
  organization: Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
– sequence: 13
  givenname: Kim
  surname: Krogsgaard
  fullname: Krogsgaard, Kim
  organization: Bionor Pharma ASA, Oslo, Norway
– sequence: 14
  givenname: Maja
  surname: Sommerfelt
  fullname: Sommerfelt, Maja
  organization: Bionor Pharma ASA, Oslo, Norway
– sequence: 15
  givenname: Remi
  surname: Fromentin
  fullname: Fromentin, Remi
  organization: Centre de Recherche du CHUM, Montreal, Quebec, Canada
– sequence: 16
  givenname: Nicolas
  surname: Chomont
  fullname: Chomont, Nicolas
  organization: Centre de Recherche du CHUM, Montreal, Quebec, Canada; Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal, Quebec, Canada
– sequence: 17
  givenname: Thomas A
  surname: Rasmussen
  fullname: Rasmussen, Thomas A
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
– sequence: 18
  givenname: Lars
  surname: Østergaard
  fullname: Østergaard, Lars
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
– sequence: 19
  givenname: Martin
  surname: Tolstrup
  fullname: Tolstrup, Martin
  organization: Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26379282$$D View this record in MEDLINE/PubMed
BookMark eNpVkVtr3DAQhUVJaS7tPyitH_virUYaSXYfCiW9ZGGhENK8Cq08Trx4JVfyLuTf19t1QvI0YvTNmTOcc3YSYiDG3gNfgDTweRN3Kbh-MQxuXADnClC8YmeglCyNNHjy7H3KznPecI4gQb9hp0JLU4tKnLEvN_dUfKchdwMNY9dQcR23U5kaobimPaVMubha3pZQrNxIwT8Uy1Dcdvv4lr1uXZ_p3Vwv2J-fP24ur8rV71_Ly2-r0iusxxIBSa45UevQ-NoB97rl3rhGthU0pAHrirA2BhR3yjujG6wURy7VGgyXF-zjUXfoY7bz2dmCEVyZimsxEcsj0US3sUPqti492Og6-78R0511aex8T9ZXSjSenJIaUQtVtYSChEGjoG5rNWl9nbft1lua0DAm178QffkTunt7F_cWlVFcHsx8mgVS_LujPNptlz31vQsUdwffIOsJ1jCheER9ijknap_WALeHkB-vtYeQ7RzyNPbhucWnocdU5T8h16U3
CitedBy_id crossref_primary_10_1002_cpt_2237
crossref_primary_10_1016_S0140_6736_20_30264_6
crossref_primary_10_1016_j_bcp_2020_114231
crossref_primary_10_1038_s41598_020_79002_w
crossref_primary_10_1126_sciadv_ade6675
crossref_primary_10_1007_s00705_023_05800_y
crossref_primary_10_3389_fimmu_2019_01842
crossref_primary_10_3389_fimmu_2019_01966
crossref_primary_10_1186_s12977_021_00565_1
crossref_primary_10_1097_COH_0000000000000439
crossref_primary_10_1038_s41467_022_32376_z
crossref_primary_10_1097_QAD_0000000000002465
crossref_primary_10_1016_j_smim_2020_101412
crossref_primary_10_1038_s41586_020_1946_0
crossref_primary_10_1371_journal_ppat_1009346
crossref_primary_10_1007_s11908_017_0601_x
crossref_primary_10_1128_JVI_00816_21
crossref_primary_10_1038_s41586_019_1841_8
crossref_primary_10_1093_infdis_jiaa223
crossref_primary_10_1186_s12977_018_0421_6
crossref_primary_10_1007_s11904_017_0355_y
crossref_primary_10_1097_QAD_0000000000002112
crossref_primary_10_1016_j_tim_2015_11_003
crossref_primary_10_1097_COH_0000000000000328
crossref_primary_10_1038_s42003_020_1103_1
crossref_primary_10_1128_jvi_00577_22
crossref_primary_10_1097_COH_0000000000000687
crossref_primary_10_3389_fmicb_2019_00224
crossref_primary_10_1074_jbc_M116_743906
crossref_primary_10_1128_JVI_03179_15
crossref_primary_10_3390_v13071197
crossref_primary_10_1016_j_bmcl_2021_128168
crossref_primary_10_1128_iai_00522_21
crossref_primary_10_2174_1570162X18999200819172009
crossref_primary_10_1016_S2055_6640_20_30460_X
crossref_primary_10_1002_ctd2_129
crossref_primary_10_1155_2022_6952286
crossref_primary_10_1128_JVI_01845_19
crossref_primary_10_1038_s41467_020_16084_0
crossref_primary_10_4049_jimmunol_1900811
crossref_primary_10_2217_fvl_2018_0070
crossref_primary_10_3389_fimmu_2021_636775
crossref_primary_10_1128_mbio_03384_21
crossref_primary_10_1097_QAI_0000000000002577
crossref_primary_10_1002_1873_3468_12226
crossref_primary_10_1126_science_aaf6517
crossref_primary_10_1371_journal_ppat_1007498
crossref_primary_10_1002_adtp_201800054
crossref_primary_10_1038_s41598_019_42253_3
crossref_primary_10_3390_pathogens9110896
crossref_primary_10_1007_s11904_019_00438_5
crossref_primary_10_1128_jvi_01179_23
crossref_primary_10_3389_fmicb_2021_661446
crossref_primary_10_1007_s40124_016_0108_1
crossref_primary_10_1073_pnas_2123406119
crossref_primary_10_1016_j_virol_2017_03_002
crossref_primary_10_1016_j_bulcan_2020_01_001
crossref_primary_10_1128_JVI_01194_19
crossref_primary_10_1186_s13148_019_0654_9
crossref_primary_10_1021_acs_jproteome_1c00906
crossref_primary_10_1128_JVI_02597_15
crossref_primary_10_1016_S2055_6640_20_30250_8
crossref_primary_10_1038_s41591_023_02570_7
crossref_primary_10_1016_j_cell_2020_03_005
crossref_primary_10_1038_nm_4108
crossref_primary_10_1097_QAD_0000000000002397
crossref_primary_10_1016_j_xcrm_2020_100037
crossref_primary_10_1097_COH_0000000000000641
crossref_primary_10_1097_QAD_0000000000001064
crossref_primary_10_1093_immadv_ltaa006
crossref_primary_10_1186_s12977_020_00545_x
crossref_primary_10_1371_journal_ppat_1008442
crossref_primary_10_1016_j_antiviral_2018_02_001
crossref_primary_10_1128_JVI_00222_16
crossref_primary_10_1111_bcp_14889
crossref_primary_10_1038_s41598_022_23010_5
crossref_primary_10_1016_S2055_6640_20_30042_X
crossref_primary_10_1128_JVI_02359_15
crossref_primary_10_1038_s41579_024_01010_8
crossref_primary_10_1038_s41577_021_00649_1
crossref_primary_10_15252_emmm_201505557
crossref_primary_10_1002_iid3_590
crossref_primary_10_1038_s41591_022_02023_7
crossref_primary_10_1128_AAC_01361_18
crossref_primary_10_1111_hiv_13027
crossref_primary_10_3390_microorganisms8101505
crossref_primary_10_1172_JCI132374
crossref_primary_10_1016_j_ejmech_2023_115449
crossref_primary_10_1038_srep24100
crossref_primary_10_1016_j_addr_2016_04_016
crossref_primary_10_3389_fimmu_2020_00418
crossref_primary_10_1016_j_ebiom_2022_103956
crossref_primary_10_1186_s12977_018_0455_9
crossref_primary_10_3389_fimmu_2017_00995
crossref_primary_10_1007_s11904_022_00604_2
crossref_primary_10_3390_v12010084
crossref_primary_10_1089_aid_2018_0118
crossref_primary_10_2174_1568026619666190712204603
crossref_primary_10_1038_s41591_022_02060_2
crossref_primary_10_3390_v15081677
crossref_primary_10_1016_j_idc_2024_06_001
crossref_primary_10_1186_s12977_018_0392_7
crossref_primary_10_1371_journal_ppat_1011824
crossref_primary_10_1186_s12981_017_0177_4
crossref_primary_10_1371_journal_ppat_1011821
crossref_primary_10_1186_s13148_020_00829_1
crossref_primary_10_1016_j_ebiom_2021_103241
crossref_primary_10_1038_s41598_024_64902_y
crossref_primary_10_1097_COH_0000000000000279
crossref_primary_10_1186_s13148_016_0185_6
crossref_primary_10_1097_COH_0000000000000286
crossref_primary_10_7554_eLife_57246
crossref_primary_10_1097_COH_0000000000000282
crossref_primary_10_3389_fimmu_2018_02429
crossref_primary_10_3390_v12050529
crossref_primary_10_3389_fimmu_2018_01452
crossref_primary_10_3389_fimmu_2019_01435
crossref_primary_10_1080_22221751_2024_2327371
crossref_primary_10_1097_CM9_0000000000001797
crossref_primary_10_3389_fimmu_2020_00361
crossref_primary_10_1111_imr_12698
crossref_primary_10_1016_j_celrep_2017_09_080
crossref_primary_10_1097_QAD_0000000000002083
crossref_primary_10_1128_JVI_01080_17
crossref_primary_10_1016_j_jve_2021_100045
crossref_primary_10_1093_nar_gkac407
crossref_primary_10_1073_pnas_2217476120
crossref_primary_10_1097_COH_0000000000000490
crossref_primary_10_1016_j_cell_2021_12_011
crossref_primary_10_1097_COH_0000000000000491
crossref_primary_10_1093_infdis_jix005
crossref_primary_10_1007_s43440_021_00257_9
crossref_primary_10_1016_j_bmcl_2020_127197
crossref_primary_10_1016_j_antiviral_2019_03_008
crossref_primary_10_3390_v13091750
crossref_primary_10_1128_AAC_01815_20
crossref_primary_10_3389_fimmu_2022_885272
crossref_primary_10_3389_fmicb_2019_01956
crossref_primary_10_3390_v13091751
crossref_primary_10_1016_j_coviro_2019_04_004
crossref_primary_10_1021_acsmedchemlett_8b00012
crossref_primary_10_1016_j_coviro_2023_101301
crossref_primary_10_1080_14760584_2017_1322513
crossref_primary_10_1371_journal_pone_0244771
crossref_primary_10_1016_j_micinf_2017_10_003
crossref_primary_10_1016_j_molmed_2015_11_004
crossref_primary_10_1128_JCM_01400_20
crossref_primary_10_1038_nrd_2016_173
crossref_primary_10_3389_fmicb_2022_862270
crossref_primary_10_3389_fimmu_2018_00020
crossref_primary_10_4049_jimmunol_1901191
crossref_primary_10_3390_v10120677
crossref_primary_10_1016_j_chembiol_2018_08_004
crossref_primary_10_1155_2015_120605
crossref_primary_10_1093_cid_ciac136
crossref_primary_10_1016_j_jve_2023_100342
crossref_primary_10_1016_j_isci_2023_108015
crossref_primary_10_1016_S2352_3018_18_30039_0
crossref_primary_10_3390_v15010032
crossref_primary_10_1126_scitranslmed_abn2038
crossref_primary_10_1371_journal_ppat_1005237
crossref_primary_10_1038_s41586_022_05556_6
crossref_primary_10_3389_fbioe_2022_797440
crossref_primary_10_1016_j_antiviral_2016_11_014
crossref_primary_10_1016_j_chaos_2023_113702
crossref_primary_10_1016_j_immuni_2018_04_004
crossref_primary_10_1089_aid_2022_0180
crossref_primary_10_1128_AAC_01744_18
crossref_primary_10_3389_fviro_2021_736395
crossref_primary_10_3389_fimmu_2018_02861
crossref_primary_10_1080_14760584_2022_2059467
crossref_primary_10_3389_fimmu_2023_1219250
crossref_primary_10_1186_s12985_016_0637_9
crossref_primary_10_1128_JVI_02092_16
crossref_primary_10_1172_JCI136227
crossref_primary_10_3389_fviro_2022_957124
crossref_primary_10_1097_COH_0000000000000487
crossref_primary_10_1016_j_celrep_2018_09_020
crossref_primary_10_1097_COH_0000000000000368
crossref_primary_10_3389_fimmu_2023_1253395
crossref_primary_10_1128_JVI_00351_20
crossref_primary_10_1371_journal_ppat_1007991
crossref_primary_10_1097_QAD_0000000000003091
crossref_primary_10_1016_j_imlet_2018_02_004
crossref_primary_10_3389_fimmu_2020_01112
crossref_primary_10_1016_S0140_6736_18_31311_4
crossref_primary_10_1097_QAD_0000000000001904
crossref_primary_10_1016_j_bjid_2020_01_005
crossref_primary_10_1016_j_celrep_2020_108502
crossref_primary_10_1016_j_virusres_2019_05_009
crossref_primary_10_1128_JVI_00235_18
crossref_primary_10_1016_j_immuni_2018_04_030
crossref_primary_10_1016_j_it_2016_12_003
crossref_primary_10_3389_fcimb_2020_00410
crossref_primary_10_3390_v12010037
crossref_primary_10_1016_j_ebiom_2019_02_014
crossref_primary_10_1186_s12977_016_0268_7
crossref_primary_10_1128_JVI_01923_19
crossref_primary_10_1007_s12223_016_0474_7
crossref_primary_10_1126_scitranslmed_aar6759
crossref_primary_10_1128_jvi_00445_22
crossref_primary_10_3390_v14010135
crossref_primary_10_1016_j_tim_2016_01_006
crossref_primary_10_3390_v10040157
crossref_primary_10_1021_acsmedchemlett_0c00302
crossref_primary_10_1038_s41590_023_01741_5
crossref_primary_10_1097_QAI_0000000000001958
crossref_primary_10_3917_esra_002_0073
crossref_primary_10_1371_journal_ppat_1005677
crossref_primary_10_1128_JVI_02717_15
crossref_primary_10_1016_j_ebiom_2018_09_036
crossref_primary_10_1039_C7RA13712E
crossref_primary_10_1038_s41401_018_0027_5
crossref_primary_10_1016_j_bcp_2020_113937
crossref_primary_10_3390_cancers13205066
crossref_primary_10_7554_eLife_34655
crossref_primary_10_1016_j_celrep_2019_10_101
crossref_primary_10_1080_07391102_2022_2112078
crossref_primary_10_1016_S2055_6640_20_30478_7
crossref_primary_10_1007_s00705_018_3894_7
crossref_primary_10_1097_QAD_0000000000001937
crossref_primary_10_1371_journal_pone_0158294
crossref_primary_10_1097_QAD_0000000000000974
crossref_primary_10_3389_fimmu_2021_688747
crossref_primary_10_1016_j_jve_2020_100004
crossref_primary_10_1073_pnas_1811195115
crossref_primary_10_1002_jia2_25185
crossref_primary_10_1016_j_ebiom_2017_07_019
crossref_primary_10_1111_jmp_12613
crossref_primary_10_1002_rmv_2139
crossref_primary_10_1155_2017_6096134
crossref_primary_10_3390_v12121443
crossref_primary_10_1128_jvi_01953_21
crossref_primary_10_1172_JCI86047
crossref_primary_10_7717_peerj_10321
crossref_primary_10_1186_s12981_017_0157_8
crossref_primary_10_1093_ofid_ofw189
crossref_primary_10_1186_s12977_018_0397_2
crossref_primary_10_3389_fmicb_2019_03060
crossref_primary_10_1371_journal_pcbi_1008241
crossref_primary_10_1016_j_smim_2021_101472
crossref_primary_10_1016_j_ejpb_2018_06_002
crossref_primary_10_1021_acsinfecdis_4c00194
crossref_primary_10_3389_fmicb_2021_636642
crossref_primary_10_3389_fimmu_2018_01514
crossref_primary_10_1038_nri_2016_19
crossref_primary_10_3389_fonc_2019_00081
crossref_primary_10_1177_2472555220983810
crossref_primary_10_15252_embr_201949305
crossref_primary_10_1371_journal_ppat_1008906
crossref_primary_10_1016_S2352_3018_16_30088_1
crossref_primary_10_3390_v11010012
crossref_primary_10_1080_17512433_2019_1561272
crossref_primary_10_1016_j_phrs_2018_10_023
crossref_primary_10_3390_v13081451
crossref_primary_10_1016_j_ebiom_2016_04_019
crossref_primary_10_1172_jci_insight_123052
crossref_primary_10_1128_JVI_01955_16
crossref_primary_10_1371_journal_ppat_1012281
crossref_primary_10_3389_fimmu_2019_02450
crossref_primary_10_1097_QAD_0000000000003908
crossref_primary_10_3390_ijms22136654
crossref_primary_10_3390_microorganisms12040752
crossref_primary_10_1128_JVI_01448_16
crossref_primary_10_1371_journal_ppat_1005879
crossref_primary_10_1089_aid_2018_0153
crossref_primary_10_1371_journal_pcbi_1006004
crossref_primary_10_3389_fimmu_2015_00506
crossref_primary_10_1007_s12033_018_0114_3
crossref_primary_10_1128_JVI_01360_16
crossref_primary_10_1016_j_ebiom_2022_104012
crossref_primary_10_18632_oncotarget_7793
crossref_primary_10_1128_JVI_00755_20
crossref_primary_10_1038_s41577_018_0085_4
crossref_primary_10_1074_jbc_RA118_005185
crossref_primary_10_1128_AAC_02625_15
crossref_primary_10_1097_QAD_0000000000001861
crossref_primary_10_1002_med_21638
crossref_primary_10_1089_aid_2017_0026
crossref_primary_10_1128_JVI_02214_20
crossref_primary_10_1021_acs_jmedchem_0c02150
crossref_primary_10_1016_S2055_6640_20_30320_4
crossref_primary_10_3389_fimmu_2019_00291
crossref_primary_10_1021_acs_jmedchem_5b01233
crossref_primary_10_3390_ijms25052621
crossref_primary_10_3390_genes7120119
crossref_primary_10_1073_pnas_1919408117
crossref_primary_10_1172_jci_insight_169028
crossref_primary_10_1371_journal_pone_0210965
crossref_primary_10_1126_scitranslmed_aap9927
crossref_primary_10_1016_S2352_3018_16_30055_8
crossref_primary_10_1371_journal_pone_0186101
crossref_primary_10_1128_JVI_02166_16
crossref_primary_10_1093_cid_ciaa1534
crossref_primary_10_1016_j_cell_2024_01_037
crossref_primary_10_1016_j_antiviral_2018_07_016
crossref_primary_10_1016_j_cell_2016_06_039
crossref_primary_10_1021_acsmedchemlett_0c00551
crossref_primary_10_1128_JVI_01541_18
crossref_primary_10_1007_s40265_020_01322_y
crossref_primary_10_1097_HM9_0000000000000004
crossref_primary_10_1177_2040622319862697
crossref_primary_10_1097_QAD_0000000000001400
crossref_primary_10_12688_f1000research_11881_1
crossref_primary_10_1128_aac_00201_24
crossref_primary_10_1021_acs_jafc_7b00418
crossref_primary_10_3390_pathogens10111517
crossref_primary_10_1007_s00253_022_11821_5
crossref_primary_10_3904_kjm_2016_90_6_481
crossref_primary_10_1093_nar_gkx550
crossref_primary_10_3389_fviro_2021_756635
crossref_primary_10_1007_s11904_016_0304_1
crossref_primary_10_1186_s12977_017_0386_x
crossref_primary_10_1073_pnas_1803468115
crossref_primary_10_3390_v11121162
crossref_primary_10_1128_JVI_01429_20
crossref_primary_10_1016_j_virol_2017_06_033
crossref_primary_10_1146_annurev_virology_091919_103029
crossref_primary_10_1172_JCI92684
crossref_primary_10_1111_cmi_12654
crossref_primary_10_1128_JCM_02904_15
crossref_primary_10_1146_annurev_med_052716_031710
crossref_primary_10_1007_s11904_020_00540_z
crossref_primary_10_1172_JCI98071
crossref_primary_10_1016_j_chom_2017_12_004
crossref_primary_10_1128_mSphere_00616_17
crossref_primary_10_1016_j_virol_2017_05_008
crossref_primary_10_1136_medethics_2015_103113
crossref_primary_10_1016_j_chom_2017_03_008
crossref_primary_10_1128_JVI_02086_18
crossref_primary_10_1136_medethics_2015_103116
crossref_primary_10_1016_j_bcp_2023_115679
crossref_primary_10_1097_COH_0000000000000812
crossref_primary_10_1038_s41598_020_61878_3
crossref_primary_10_1038_s41598_020_62375_3
crossref_primary_10_1186_s12916_015_0517_y
crossref_primary_10_1371_journal_ppat_1010034
crossref_primary_10_1126_scitranslmed_abh3351
crossref_primary_10_1093_cid_cix201
crossref_primary_10_1093_cid_cix204
crossref_primary_10_1016_j_jinf_2017_09_004
crossref_primary_10_3390_pathogens11060611
crossref_primary_10_1097_ID9_0000000000000025
crossref_primary_10_1097_QAD_0000000000001201
crossref_primary_10_1038_s42003_021_01800_3
crossref_primary_10_1097_QAD_0000000000001442
crossref_primary_10_1586_14787210_2016_1164031
crossref_primary_10_1093_infdis_jiaa777
crossref_primary_10_1038_srep37225
crossref_primary_10_1371_journal_pone_0179100
crossref_primary_10_1186_s40168_022_01247_6
crossref_primary_10_1016_S2055_6640_20_30047_9
crossref_primary_10_1093_jac_dkaa523
crossref_primary_10_15252_emmm_201708193
crossref_primary_10_1089_adt_2023_030
crossref_primary_10_1097_QAD_0000000000001695
crossref_primary_10_1186_s13072_019_0267_8
crossref_primary_10_3389_fimmu_2018_03162
crossref_primary_10_1128_jvi_02217_21
crossref_primary_10_3389_fcimb_2022_855092
crossref_primary_10_1016_j_eclinm_2021_101225
crossref_primary_10_7554_eLife_49022
crossref_primary_10_1080_14787210_2023_2273919
crossref_primary_10_3390_ph15030338
crossref_primary_10_2139_ssrn_3385137
crossref_primary_10_1172_jci_insight_92901
crossref_primary_10_1080_15384101_2020_1796268
crossref_primary_10_1128_JVI_00603_17
crossref_primary_10_1093_infdis_jiw618
crossref_primary_10_1038_s41586_020_1951_3
crossref_primary_10_3389_fmicb_2021_686690
crossref_primary_10_3389_fimmu_2020_00823
crossref_primary_10_1371_journal_ppat_1010245
crossref_primary_10_1016_S2055_6640_20_30057_1
crossref_primary_10_1093_infdis_jiaa634
crossref_primary_10_1002_jmv_25207
crossref_primary_10_1016_j_virol_2020_01_006
crossref_primary_10_1172_JCI142421
crossref_primary_10_1038_s41598_022_11122_x
crossref_primary_10_1038_s41598_018_33481_0
crossref_primary_10_1128_mBio_00795_21
crossref_primary_10_1097_QAD_0000000000001114
crossref_primary_10_1186_s12977_018_0399_0
crossref_primary_10_1097_QAD_0000000000002684
crossref_primary_10_1007_s11904_018_0383_2
crossref_primary_10_1016_S2666_5247_21_00239_1
crossref_primary_10_1093_infdis_jiaa649
crossref_primary_10_1038_s41467_023_44020_5
crossref_primary_10_1371_journal_ppat_1010354
crossref_primary_10_1016_j_mbs_2022_108954
crossref_primary_10_1016_j_eclinm_2019_05_009
crossref_primary_10_3390_ijms22115545
crossref_primary_10_1093_infdis_jiw637
crossref_primary_10_3389_fimmu_2020_579158
crossref_primary_10_1038_s41577_018_0042_2
crossref_primary_10_3390_v15122435
crossref_primary_10_1097_QAD_0000000000002213
crossref_primary_10_1186_s12879_020_4785_6
crossref_primary_10_1016_j_coviro_2016_02_001
crossref_primary_10_1128_JVI_02124_20
crossref_primary_10_1002_jcp_29979
crossref_primary_10_1038_srep30749
Cites_doi 10.1038/387183a0
10.2146/ajhp120163
10.1182/blood-2008-07-168393
10.1002/j.1460-2075.1990.tb08274.x
10.4161/hv.23800
10.1371/journal.ppat.1004473
10.1002/j.1460-2075.1996.tb00449.x
10.1093/infdis/jiu155
10.1172/JCI80142
10.1097/00002030-199912030-00012
10.1097/00002030-200405210-00003
10.1016/S0140-6736(97)10291-4
10.1126/science.1256304
10.1371/journal.ppat.1004156
10.1016/j.immuni.2012.08.010
10.1038/icb.2011.95
10.1038/nm.1972
10.1016/j.jim.2009.06.008
10.1016/S1473-3099(13)70343-8
10.1038/nm.3489
10.4161/epi.20983
10.1126/science.1165706
10.1038/nature14053
10.1097/QAD.0b013e32834b9658
10.1128/JCM.41.10.4531-4536.2003
10.1016/j.immuni.2012.01.014
10.1111/trf.12178
10.1128/AAC.46.6.1896-1905.2002
10.1016/S2352-3018(14)70014-1
10.1038/nature13594
10.1038/nrd4360
10.1016/j.it.2011.04.001
10.1371/journal.ppat.1004287
10.1038/nature11286
10.1126/science.1254194
10.1101/cshperspect.a006916
10.1128/JCM.00055-08
10.1146/annurev.immunol.18.1.665
10.1186/1742-4690-10-41
10.1038/nm.3445
10.1126/science.278.5341.1295
10.1371/journal.ppat.1003398
10.1038/487439a
10.1371/journal.ppat.1004071
10.1016/j.canlet.2010.02.024
ContentType Journal Article
Copyright 2015 Søgaard et al 2015 Søgaard et al
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Pathog 11(9): e1005142. doi:10.1371/journal.ppat.1005142
Copyright_xml – notice: 2015 Søgaard et al 2015 Søgaard et al
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Pathog 11(9): e1005142. doi:10.1371/journal.ppat.1005142
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1005142
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Romidepsin Reverses HIV-1 Latency In Vivo
EISSN 1553-7374
Editor Siliciano, Robert F.
Editor_xml – sequence: 1
  givenname: Robert F.
  surname: Siliciano
  fullname: Siliciano, Robert F.
EndPage e1005142
ExternalDocumentID 1720578062
oai_doaj_org_article_c852dcea536446258fe42e2747519f95
10_1371_journal_ppat_1005142
26379282
Genre Clinical Trial, Phase II
Clinical Trial, Phase I
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAP
EAS
EBD
ECM
EIF
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RIG
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
CITATION
7X8
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c549t-414e3b0eefa47c9a10c6f0c7ad3f81de61498e4977150a5ca76d48504035b1703
IEDL.DBID RPM
ISSN 1553-7374
1553-7366
IngestDate Fri Nov 26 17:14:08 EST 2021
Tue Oct 22 14:43:36 EDT 2024
Tue Sep 17 21:17:32 EDT 2024
Fri Aug 16 00:59:10 EDT 2024
Fri Aug 23 00:45:48 EDT 2024
Sat Sep 28 07:59:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-414e3b0eefa47c9a10c6f0c7ad3f81de61498e4977150a5ca76d48504035b1703
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Conceived and designed the experiments: OSS TAR LØ MT SL. Performed the experiments: OSS SL MEG CRB RO ASK MHS PWD SKN WJHC KKK GP MS KK RF NC TAR MT. Analyzed the data: OSS SL CRB RO ASK MHS PWD SKN WJHC KKK GP RF NC TAR MT. Contributed reagents/materials/analysis tools: CRB RO ASK MHS PWD SKN WJHC KKK GP MS KK RF NC. Wrote the paper: OSS TAR LØ MT RO PWD.
I have read the journal's policy and the authors of this manuscript have the following competing interests: MS is an employee of Bionor Pharma ASA and has shares in the company. KK is a consultant to Bionor Pharma ASA. The other authors declare no competing interests. This does not alter our adherence to all PLOS policies on sharing data and materials.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575032/
PMID 26379282
PQID 1713945761
PQPubID 23479
ParticipantIDs plos_journals_1720578062
doaj_primary_oai_doaj_org_article_c852dcea536446258fe42e2747519f95
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4575032
proquest_miscellaneous_1713945761
crossref_primary_10_1371_journal_ppat_1005142
pubmed_primary_26379282
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References 23370291 - Hum Vaccin Immunother. 2013 May;9(5):993-1001
25131830 - Nat Rev Drug Discov. 2014 Sep;13(9):673-91
15166525 - AIDS. 2004 May 21;18(8):1101-8
25393648 - PLoS Pathog. 2014 Oct;10(10):e1004473
25822022 - J Clin Invest. 2015 May;125(5):1901-12
10837072 - Annu Rev Immunol. 2000;18:665-708
24412925 - Nat Med. 2014 Feb;20(2):139-42
26423811 - Lancet HIV. 2014 Oct;1(1):e13-21
23587031 - Retrovirology. 2013;10:41
22772164 - Epigenetics. 2012 Aug;7(8):875-82
22083528 - Immunol Cell Biol. 2012 Jan;90(1):47-54
22999944 - Immunity. 2012 Sep 21;37(3):377-88
12019106 - Antimicrob Agents Chemother. 2002 Jun;46(6):1896-905
20346580 - Cancer Lett. 2010 Sep 28;295(2):173-81
25561180 - Nature. 2015 Jan 15;517(7534):381-5
24852789 - Clin Adv Hematol Oncol. 2014 Feb;12(2 Suppl 5):8
9360927 - Science. 1997 Nov 14;278(5341):1295-300
16061962 - Methods Mol Biol. 2005;304:3-15
2184033 - EMBO J. 1990 May;9(5):1551-60
18463204 - J Clin Microbiol. 2008 Jul;46(7):2206-11
24525316 - Lancet Infect Dis. 2014 Apr;14(4):291-300
26053962 - J Clin Pharmacol. 2015 Dec;55(12):1378-85
19265012 - Science. 2009 Mar 6;323(5919):1304-7
22406268 - Immunity. 2012 Mar 23;36(3):491-501
23784158 - Am J Health Syst Pharm. 2013 Jul 1;70(13):1115-22
19543283 - Nat Med. 2009 Aug;15(8):893-900
23737751 - PLoS Pathog. 2013;9(5):e1003398
8605881 - EMBO J. 1996 Mar 1;15(5):1112-20
25042999 - Nature. 2014 Aug 7;512(7512):74-7
23550838 - Transfusion. 2013 Oct;53(10 Pt 2):2525-37
25011556 - Science. 2014 Aug 1;345(6196):570-3
21860347 - AIDS. 2011 Nov 13;25(17):2069-78
21570914 - Trends Immunol. 2011 Jul;32(7):335-43
14532178 - J Clin Microbiol. 2003 Oct;41(10):4531-6
25122219 - PLoS Pathog. 2014 Aug;10(8):e1004287
18849485 - Blood. 2009 Jan 1;113(1):58-65
9144289 - Nature. 1997 May 8;387(6629):183-8
22836995 - Nature. 2012 Jul 26;487(7408):439-40
24658076 - Nat Med. 2014 Apr;20(4):425-9
24875931 - PLoS Pathog. 2014 May;10(5):e1004156
9734884 - Lancet. 1998 Jun 6;351(9117):1682-6
24620025 - J Infect Dis. 2014 Sep 1;210(5):728-35
22837004 - Nature. 2012 Jul 26;487(7408):482-5
26645606 - AIDS. 2016 Mar 13;30(5):N3
19567251 - J Immunol Methods. 2009 Aug 15;347(1-2):70-8
10597782 - AIDS. 1999 Dec 3;13(17):2405-10
24722454 - PLoS Pathog. 2014 Apr;10(4):e1004071
24968937 - Science. 2014 Jul 11;345(6193):179-83
22355797 - Cold Spring Harb Perspect Med. 2012 Feb;2(2):a006916
(ref38) 2014; 12
MR Shakespear (ref37) 2011; 32
E Eisele (ref10) 2012; 37
F Maldarelli (ref9) 2014; 345
RB Pollard (ref28) 2014; 14
GM Laird (ref12) 2015; 125
TS Li (ref1) 1998; 351
SG Deeks (ref11) 2012; 487
Y Hu (ref44) 2009; 347
TW Chun (ref6) 1997; 387
TA Rasmussen (ref15) 2013; 9
JD Siliciano (ref46) 2005; 304
T Pierson (ref4) 2000; 18
JB Whitney (ref7) 2014; 512
L Rigby (ref49) 2012; 7
NM Archin (ref23) 2014; 210
L Shan (ref21) 2012; 36
X Wei (ref48) 2002; 46
ref40
KK Koelsch (ref42) 2011; 25
M Schmudde (ref34) 2010; 295
TA Rasmussen (ref25) 2014; 1
D Finzi (ref5) 1997; 278
RB Jones (ref27) 2014; 10
P Mohammadi (ref32) 2014; 10
AO Pasternak (ref43) 2008; 46
DG Wei (ref26) 2014; 10
DD Richman (ref17) 2009; 323
MJ Buzon (ref47) 2014; 20
NM Archin (ref22) 2012; 487
JM Prins (ref14) 1999; 13
L Ylisastigui (ref19) 2004; 18
S Palmer (ref31) 2003; 41
SL Stramer (ref30) 2013; 53
TA Wagner (ref8) 2014; 345
KJ Falkenberg (ref33) 2014; 13
C Van Lint (ref18) 1996; 15
M Stevenson (ref2) 1990; 9
GM Laird (ref45) 2013; 9
CK Bullen (ref13) 2014; 20
AL McGraw (ref36) 2013; 70
JH Elliott (ref24) 2014; 10
AO Pasternak (ref29) 2013; 10
J Karn (ref3) 2012; 2
A Bosque (ref16) 2009; 113
N Chomont (ref41) 2009; 15
F Wightman (ref20) 2012; 90
E Laille (ref39) 2015
K Deng (ref35) 2015; 517
References_xml – volume: 387
  start-page: 183
  issue: 6629
  year: 1997
  ident: ref6
  article-title: Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection
  publication-title: Nature
  doi: 10.1038/387183a0
  contributor:
    fullname: TW Chun
– year: 2015
  ident: ref39
  article-title: Evaluation of CYP3A-mediated drug-drug Interactions with romidepsin in patients with advanced cancer
  publication-title: J Clin Pharmacol
  contributor:
    fullname: E Laille
– volume: 70
  start-page: 1115
  issue: 13
  year: 2013
  ident: ref36
  article-title: Romidepsin for the treatment of T-cell lymphomas
  publication-title: American journal of health-system pharmacy: AJHP: official journal of the American Society of Health-System Pharmacists
  doi: 10.2146/ajhp120163
  contributor:
    fullname: AL McGraw
– volume: 113
  start-page: 58
  issue: 1
  year: 2009
  ident: ref16
  article-title: Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells
  publication-title: Blood
  doi: 10.1182/blood-2008-07-168393
  contributor:
    fullname: A Bosque
– volume: 9
  start-page: 1551
  issue: 5
  year: 1990
  ident: ref2
  article-title: HIV-1 replication is controlled at the level of T cell activation and proviral integration
  publication-title: Embo J
  doi: 10.1002/j.1460-2075.1990.tb08274.x
  contributor:
    fullname: M Stevenson
– volume: 9
  issue: 5
  year: 2013
  ident: ref15
  article-title: Comparison of HDAC inhibitors in clinical development: Effect on HIV production in latently infected cells and T-cell activation
  publication-title: Hum Vaccin Immunother
  doi: 10.4161/hv.23800
  contributor:
    fullname: TA Rasmussen
– volume: 10
  start-page: e1004473
  issue: 10
  year: 2014
  ident: ref24
  article-title: Activation of HIV Transcription with Short-Course Vorinostat in HIV-Infected Patients on Suppressive Antiretroviral Therapy
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004473
  contributor:
    fullname: JH Elliott
– volume: 304
  start-page: 3
  year: 2005
  ident: ref46
  article-title: Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals
  publication-title: Methods Mol Biol
  contributor:
    fullname: JD Siliciano
– volume: 15
  start-page: 1112
  issue: 5
  year: 1996
  ident: ref18
  article-title: Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation
  publication-title: Embo J
  doi: 10.1002/j.1460-2075.1996.tb00449.x
  contributor:
    fullname: C Van Lint
– volume: 210
  start-page: 728
  issue: 5
  year: 2014
  ident: ref23
  article-title: HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiu155
  contributor:
    fullname: NM Archin
– volume: 125
  start-page: 1901
  issue: 5
  year: 2015
  ident: ref12
  article-title: Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations
  publication-title: J Clin Invest
  doi: 10.1172/JCI80142
  contributor:
    fullname: GM Laird
– volume: 13
  start-page: 2405
  issue: 17
  year: 1999
  ident: ref14
  article-title: Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy
  publication-title: Aids
  doi: 10.1097/00002030-199912030-00012
  contributor:
    fullname: JM Prins
– volume: 18
  start-page: 1101
  issue: 8
  year: 2004
  ident: ref19
  article-title: Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression
  publication-title: Aids
  doi: 10.1097/00002030-200405210-00003
  contributor:
    fullname: L Ylisastigui
– volume: 351
  start-page: 1682
  issue: 9117
  year: 1998
  ident: ref1
  article-title: Long-lasting recovery in CD4 T-cell function and viral-load reduction after highly active antiretroviral therapy in advanced HIV-1 disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(97)10291-4
  contributor:
    fullname: TS Li
– volume: 345
  start-page: 570
  issue: 6196
  year: 2014
  ident: ref8
  article-title: HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection
  publication-title: Science
  doi: 10.1126/science.1256304
  contributor:
    fullname: TA Wagner
– ident: ref40
– volume: 10
  start-page: e1004156
  issue: 5
  year: 2014
  ident: ref32
  article-title: Dynamics of HIV latency and reactivation in a primary CD4+ T cell model
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004156
  contributor:
    fullname: P Mohammadi
– volume: 37
  start-page: 377
  issue: 3
  year: 2012
  ident: ref10
  article-title: Redefining the viral reservoirs that prevent HIV-1 eradication
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.08.010
  contributor:
    fullname: E Eisele
– volume: 90
  start-page: 47
  issue: 1
  year: 2012
  ident: ref20
  article-title: HDAC inhibitors in HIV
  publication-title: Immunol Cell Biol
  doi: 10.1038/icb.2011.95
  contributor:
    fullname: F Wightman
– volume: 15
  start-page: 893
  issue: 8
  year: 2009
  ident: ref41
  article-title: HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation
  publication-title: Nat Med
  doi: 10.1038/nm.1972
  contributor:
    fullname: N Chomont
– volume: 347
  start-page: 70
  issue: 1–2
  year: 2009
  ident: ref44
  article-title: ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays
  publication-title: Journal of immunological methods
  doi: 10.1016/j.jim.2009.06.008
  contributor:
    fullname: Y Hu
– volume: 14
  start-page: 291
  issue: 4
  year: 2014
  ident: ref28
  article-title: Safety and efficacy of the peptide-based therapeutic vaccine for HIV-1, Vacc-4x: a phase 2 randomised, double-blind, placebo-controlled trial
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(13)70343-8
  contributor:
    fullname: RB Pollard
– volume: 20
  start-page: 425
  issue: 4
  year: 2014
  ident: ref13
  article-title: New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo
  publication-title: Nat Med
  doi: 10.1038/nm.3489
  contributor:
    fullname: CK Bullen
– volume: 7
  start-page: 875
  issue: 8
  year: 2012
  ident: ref49
  article-title: Methods for the analysis of histone H3 and H4 acetylation in blood
  publication-title: Epigenetics
  doi: 10.4161/epi.20983
  contributor:
    fullname: L Rigby
– volume: 323
  start-page: 1304
  issue: 5919
  year: 2009
  ident: ref17
  article-title: The challenge of finding a cure for HIV infection
  publication-title: Science
  doi: 10.1126/science.1165706
  contributor:
    fullname: DD Richman
– volume: 517
  start-page: 381
  issue: 7534
  year: 2015
  ident: ref35
  article-title: Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations
  publication-title: Nature
  doi: 10.1038/nature14053
  contributor:
    fullname: K Deng
– volume: 25
  start-page: 2069
  issue: 17
  year: 2011
  ident: ref42
  article-title: Impact of treatment with raltegravir during primary or chronic HIV infection on RNA decay characteristics and the HIV viral reservoir
  publication-title: Aids
  doi: 10.1097/QAD.0b013e32834b9658
  contributor:
    fullname: KK Koelsch
– volume: 41
  start-page: 4531
  issue: 10
  year: 2003
  ident: ref31
  article-title: New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma
  publication-title: Journal of clinical microbiology
  doi: 10.1128/JCM.41.10.4531-4536.2003
  contributor:
    fullname: S Palmer
– volume: 36
  start-page: 491
  issue: 3
  year: 2012
  ident: ref21
  article-title: Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.01.014
  contributor:
    fullname: L Shan
– volume: 53
  start-page: 2525
  issue: 10 Pt 2
  year: 2013
  ident: ref30
  article-title: Comparative analysis of triplex nucleic acid test assays in United States blood donors
  publication-title: Transfusion
  doi: 10.1111/trf.12178
  contributor:
    fullname: SL Stramer
– volume: 46
  start-page: 1896
  issue: 6
  year: 2002
  ident: ref48
  article-title: Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.46.6.1896-1905.2002
  contributor:
    fullname: X Wei
– volume: 1
  start-page: e13
  issue: 1
  year: 2014
  ident: ref25
  article-title: Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial
  publication-title: The Lancet HIV
  doi: 10.1016/S2352-3018(14)70014-1
  contributor:
    fullname: TA Rasmussen
– volume: 512
  start-page: 74
  issue: 7512
  year: 2014
  ident: ref7
  article-title: Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys
  publication-title: Nature
  doi: 10.1038/nature13594
  contributor:
    fullname: JB Whitney
– volume: 13
  start-page: 673
  issue: 9
  year: 2014
  ident: ref33
  article-title: Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders
  publication-title: Nature reviews Drug discovery
  doi: 10.1038/nrd4360
  contributor:
    fullname: KJ Falkenberg
– volume: 32
  start-page: 335
  issue: 7
  year: 2011
  ident: ref37
  article-title: Histone deacetylases as regulators of inflammation and immunity
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2011.04.001
  contributor:
    fullname: MR Shakespear
– volume: 10
  start-page: e1004287
  issue: 8
  year: 2014
  ident: ref27
  article-title: Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004287
  contributor:
    fullname: RB Jones
– volume: 487
  start-page: 482
  issue: 7408
  year: 2012
  ident: ref22
  article-title: Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy
  publication-title: Nature
  doi: 10.1038/nature11286
  contributor:
    fullname: NM Archin
– volume: 345
  start-page: 179
  issue: 6193
  year: 2014
  ident: ref9
  article-title: HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells
  publication-title: Science
  doi: 10.1126/science.1254194
  contributor:
    fullname: F Maldarelli
– volume: 2
  start-page: a006916
  issue: 2
  year: 2012
  ident: ref3
  article-title: Transcriptional and Posttranscriptional Regulation of HIV-1 Gene Expression
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a006916
  contributor:
    fullname: J Karn
– volume: 46
  start-page: 2206
  issue: 7
  year: 2008
  ident: ref43
  article-title: Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00055-08
  contributor:
    fullname: AO Pasternak
– volume: 18
  start-page: 665
  year: 2000
  ident: ref4
  article-title: Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.18.1.665
  contributor:
    fullname: T Pierson
– volume: 10
  start-page: 41
  year: 2013
  ident: ref29
  article-title: Cell-associated HIV RNA: a dynamic biomarker of viral persistence
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-10-41
  contributor:
    fullname: AO Pasternak
– volume: 20
  start-page: 139
  issue: 2
  year: 2014
  ident: ref47
  article-title: HIV-1 persistence in CD4+ T cells with stem cell-like properties
  publication-title: Nat Med
  doi: 10.1038/nm.3445
  contributor:
    fullname: MJ Buzon
– volume: 278
  start-page: 1295
  issue: 5341
  year: 1997
  ident: ref5
  article-title: Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy
  publication-title: Science
  doi: 10.1126/science.278.5341.1295
  contributor:
    fullname: D Finzi
– volume: 9
  start-page: e1003398
  issue: 5
  year: 2013
  ident: ref45
  article-title: Rapid Quantification of the Latent Reservoir for HIV-1 Using a Viral Outgrowth Assay
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003398
  contributor:
    fullname: GM Laird
– volume: 487
  start-page: 439
  issue: 7408
  year: 2012
  ident: ref11
  article-title: HIV: Shock and kill
  publication-title: Nature
  doi: 10.1038/487439a
  contributor:
    fullname: SG Deeks
– volume: 10
  start-page: e1004071
  issue: 4
  year: 2014
  ident: ref26
  article-title: Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004071
  contributor:
    fullname: DG Wei
– volume: 295
  start-page: 173
  issue: 2
  year: 2010
  ident: ref34
  article-title: Histone deacetylase inhibitors prevent activation of tumour-reactive NK cells and T cells but do not interfere with their cytolytic effector functions
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2010.02.024
  contributor:
    fullname: M Schmudde
– volume: 12
  start-page: 8
  issue: 2 Suppl 5
  year: 2014
  ident: ref38
  article-title: Analysis of peripheral T-cell lymphoma (PTCL) subtype by race and geography using the Comprehensive Oncology Measures for Peripheral T-Cell Lymphoma Treatment (COMPLETE) dataset
  publication-title: Clinical advances in hematology & oncology: H&O
SSID ssj0041316
Score 2.6580975
Snippet Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a...
UNLABELLEDPharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been...
UnlabelledPharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been...
  Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as...
SourceID plos
doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1005142
SubjectTerms Acetylation - drug effects
Acquired immune deficiency syndrome
Adult
AIDS
AIDS Vaccines - adverse effects
AIDS Vaccines - therapeutic use
Anti-HIV Agents - administration & dosage
Anti-HIV Agents - adverse effects
Anti-HIV Agents - therapeutic use
Antiretroviral Therapy, Highly Active - adverse effects
Biomarkers - blood
Biomarkers - metabolism
Cohort Studies
Curing
Cytokines
Depsipeptides - administration & dosage
Depsipeptides - adverse effects
Depsipeptides - therapeutic use
Drug Interactions
Drug therapy
Female
Follow-Up Studies
Histones - blood
Histones - metabolism
HIV
HIV Infections - drug therapy
HIV Infections - immunology
HIV Infections - metabolism
HIV Infections - virology
HIV-1 - drug effects
HIV-1 - immunology
HIV-1 - isolation & purification
HIV-1 - physiology
Human immunodeficiency virus
Humans
Infections
Infusions, Intravenous
Lymphocytes
Lymphocytes - drug effects
Lymphocytes - immunology
Lymphocytes - metabolism
Male
Middle Aged
Plasma
Protein Processing, Post-Translational - drug effects
RNA, Viral - blood
RNA, Viral - metabolism
Studies
Viral Load - drug effects
Virus Activation - drug effects
Virus Latency - drug effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et_VFBK_Rtnm13nyyK-pBVLyVNJ3igrbF3RX8906aruyK4MVTIQ1pM1-S-YZOvyHkUIK2BkpgVheGCezEcikTJiKIcQ0Aenz37_Dtneo9iutn-TxV6svlhHl5YG-4Y5vIuLBgJEfPjWQ9KUHE4GIp5B5l6tVLIzkJpvwZjCdzW_TUFcVhmivV_TTHdXTcYXTUNMbJRzv973jGKbXa_U7r9LUe_sY7f6ZPTvmjq2Wy1BFJeuonsELmoFolC7605OcaOUH86QU0w0Hj8lYKoPf1G16woaL34JIxYEh7_ScW0RvjiPMn7Vf0afBRr5PHq8uH8x7r6iQwi9HdCO0qgOchQGmEtqmJQqvK0GpT8BLpKKAHThMQyPSQ_RlpjVaFSCRuXy7zCLf8Bpmv6gq2CEU_ZnSONEyAEKBMaoQpLZRcKMjzWAWETQyVNV4OI2u_iWkMI_zEM2fYrDNsQM6cNb_7OjHrtgEhzjqIs78gDsiWw2LygGGGpAtpZhIqHP9ggk-G-8J97DAV1GPXB7mtwGgqCsimx-v7LWLFdYqxZkD0DJIzrzl7pxq8tNrbOKIMebz9H_PaIYtIv6TPWNsl86P3MewhxRnl--1q_gJnD_bD
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhpdBL6TvuCxV6VfBDsuxCKX2FTWl6CN2Qm5G143Qhtd31pnT_fb_xY-mW9NCTwZZl-ZuR5hs0mhHipSHrHVWkvF04pdFIlcZkSkcUQwcIFp_PDp98SWdz_encnO-JqWbrCGB3rWvH9aTmq8vDXz82bzDhX_dVG2w0vXTYto4TQnNGbyzKN2KdaNb5E73dV8CK3RdD5WI5yiZWj4fp_tXLjrHqc_pzDtTLpruOj_4dVvmHnTq6I26PBFO-HTTirtij-p64OZSc3NwXr6AX8gO13bLleJYFydPmOy64UctT4iAN6uTs-ExF8rNjQr2Rx7U8W_5sHoj50cev72dqrJ-gPLy-NfDWlJQhUeW09bmLQp9WobdukVSgqQTLnGekwQDBCp3xzqYLnRlM68SUEZaCh2K_bmo6EBL2zdkS9EyT1pS63GlXeaqAMJVlnAZCTUAV7ZAmo-j3yizci-HHCwa2GIENxDtGc9uWk1z3N5rVRTHOmcJnJgaYziQgbfDTsop0TOxGg3ZWuQnEActi-kBXgIyBfmZhiv5fTPIpMF94E8TV1FxxG3BeDS8rCsSjQV7bUcRpYnP4oIGwO5LcGebuk3r5rc_JjR5NmMSP_xOHJ-IWGJgZgtaeiv316oqegeWsy-e94v4GE7X7KA
  priority: 102
  providerName: Scholars Portal
Title The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/26379282
https://search.proquest.com/docview/1713945761
https://pubmed.ncbi.nlm.nih.gov/PMC4575032
https://doaj.org/article/c852dcea536446258fe42e2747519f95
http://dx.doi.org/10.1371/journal.ppat.1005142
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ajsFexrqveh9Bg70qia0ve29r15KOpZSwlrwZWTl3gcY2TTrof7-TbJel9KkvNsiyfb476X5nne4Avio0zmKJ3JmF5ZI68UKplMsYE9IBJIvv9w5Pz_TkQv6cq_kOqH4vTAjad8VyWF2vhtXyT4itbFZu1MeJjc6nR1L51bdktAu7RojeRW-nX5qUQ71TXw-HG6F1t19OmHjUiWfYNNZnjvapv301m0QLkyVpsmWaQgZ_n_H0ul4_hj4fBlH-Z5VOXsHLDk6y7y3Z-7CD1Wt43haYvHsD30gL2A9s1svGR68skM3qFZ2ooWIz9CEZuGaT00ses1_Ww-c7dlqxy-Xf-i1cnBz_PprwrloCd-TjbYi7EkUxRiytNC6z8djpcuyMXYiSQCmSHc5SlIT3CANa5azRC5kqGsRCFTEN_HewV9UVHgAja2ZNQWBMopSobWalLR2WQmosikRHwHtG5U2bFCMPK2OGnIn2w3PP47zjcQSHnpv3fX1K69BQ31zlnWBzl6qEmGmVIIhGXllaokzQO80EMstMRXDgZdG_YJ0T9CKwmY41Pf9LL5-cRodf8rAV1re-DyFcUhcdR_C-ldc9Fb3YIzBbktwic_sKKWTIwN0p4Icn3_kRXhDyUm2w2ifY29zc4mdCN5tiQDo9NwN4dnh8dj4bhH8EdJzKdBD0_B-22Pxj
link.rule.ids 230,315,733,786,790,870,891,2115,2236,24346,27955,27956,31753,33778,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIcRe-IaFTyPxmrRJ_JHwBoOphXZC01btzbLdC1Rbk2htkcZfzzkfE514gadIjpPY-Z3vfief7wDeCVTOYIGhU3MTcuoUWiGykMeYkAwgWXx_dnh6JEen_MuZONsB0Z-FaYL2nV1E5cUyKhc_mtjKeukGfZzY4Nv0gAu_-5YMbsFtWq-J6J30VgGTWm4qnvqKOKFKpexOzKUqHnQARXVtfO5on_zb17NJZKryJEu2jFOTw9_nPL2oVn_jnzfDKP-wS4f3YdbPqA1HOY82axu5XzeSPf7zlB_AvY6psg_t7Yewg-UjuNPWrrx6DO9JwNgnrFeL2gfGzJEdV0u6UEPJjtFHe-CKjcazMGYT45n5FRuXbLb4WT2B08PPJwejsCvEEDpyH9cEHMfUDhELw5XLTTx0shg6ZeZpQXwXycTnGXKikkQvjXBGyTnPBOmHVNiYdMpT2C2rEveBkaE0yhLP48g5SpMbbgqHRcolWpvIAMIeAV23-TZ0s-mmyE9pJ649eLoDL4CPHqbrvj5bdtNQXX7X3Q_ULhMJoWRESuyPHL6sQJ6g98eJvxa5CGDfg9x_YKWJ1RGPzYaS3v-2B17TwvO7KabEauP7EHkmWGQcwLNWEK5H0ctTAGpLRLaGuX2HgG-Se3dAP__vJ9_A3dHJdKIn46OvL2CPCJ5oY-Jewu76coOviESt7etmyfwG9PIaEg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYgL5d1QHkbimmST-JFw64PVLrRVVdGq4hLZzgRWdJOou4tUfj3jPKpuxamnSM4ksfONPd_I4xmATwKV1Viib1WhfU5CvhEi9XmEMekAksV3Z4cPj-TklH89F-c3Sn21QfvWzILqYh5Us19tbGUzt-EQJxYeH-5x4Xbf4rApyvA-PKA5G6vBUe8WYVqa26qnriqOrxIp-1NziYrCHqSgabTLH-0SgLuaNrFMVBan8ZqBavP4u7ynF_Xifxz0dijlDds03oQfw6i6kJTfwWppAvv3VsLHOw37KTzpGSvb6USewT2snsPDrobl1Qv4TIrG9rFZzBoXIFMgO6nndKGGip2gi_rABZtMz_yIHWjH0K_YtGJnsz_1Szgdf_m-N_H7ggy-JTdySQByTMwIsdRc2UxHIyvLkVW6SErivUimPkuRE6UkmqmF1UoWPBW0TiTCRLS2vIKNqq5wCxgZTK0M8T2OnKPUmea6tFgmXKIxsfTAH1DImy7vRt5uvinyV7qB5w7AvAfQg10H1bWsy5rdNtSXP_P-J-Y2FTEhpUVCLJAcv7REHqPzy4nHlpnwYMsBPXxgkRO7Iz6bjiS9_-MAfk4T0O2q6ArrlZMhEk3QyMiD150yXPdi0CkP1JqarHVz_Q6B3yb57sF-c-cnP8Cj4_1xfjA9-rYNj4nniS407i1sLC9X-I641NK8b2fNP9sBHJI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Depsipeptide+Romidepsin+Reverses+HIV-1+Latency+In+Vivo&rft.jtitle=PLoS+pathogens&rft.au=S%C3%B8gaard%2C+Ole+S.&rft.au=Graversen%2C+Mette+E.&rft.au=Leth%2C+Steffen&rft.au=Olesen%2C+Rikke&rft.date=2015-09-01&rft.issn=1553-7374&rft.eissn=1553-7374&rft.volume=11&rft.issue=9&rft.spage=e1005142&rft_id=info:doi/10.1371%2Fjournal.ppat.1005142&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_ppat_1005142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon