Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies

Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT da...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; p. 10425
Main Authors Kullberg, Joel, Hedström, Anders, Brandberg, John, Strand, Robin, Johansson, Lars, Bergström, Göran, Ahlström, Håkan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.09.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT data. The study comprised 107 subjects examined in the Swedish CArdioPulmonary BioImage Study (SCAPIS) using a 3-slice CT protocol covering liver, abdomen, and thighs. Algorithms were developed for automated assessment of liver attenuation, visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, thigh muscles, subcutaneous, subfascial (SFAT) and intermuscular adipose tissue. These were validated using manual reference measurements. SFAT was studied in selected subjects were the fascia lata could be visually identified (approx. 5%). In addition, precision of manual measurements of intra- (IPAT) and retroperitoneal adipose tissue (RPAT) and deep- and superficial SAT was evaluated using repeated measurements. Automated measurements correlated strongly to manual reference measurements. The SFAT depot showed the weakest correlation (r = 0.744). Automated VAT and SAT measurements were slightly, but significantly overestimated (≤4.6%, p ≤ 0.001). Manual segmentation of abdominal sub-depots showed high repeatability (CV ≤ 8.1%, r ≥ 0.930). We conclude that the low dose CT-scanning and automated analysis makes the setup suitable for large-scale studies.
AbstractList Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT data. The study comprised 107 subjects examined in the Swedish CArdioPulmonary BioImage Study (SCAPIS) using a 3-slice CT protocol covering liver, abdomen, and thighs. Algorithms were developed for automated assessment of liver attenuation, visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, thigh muscles, subcutaneous, subfascial (SFAT) and intermuscular adipose tissue. These were validated using manual reference measurements. SFAT was studied in selected subjects were the fascia lata could be visually identified (approx. 5%). In addition, precision of manual measurements of intra-(IPAT) and retroperitoneal adipose tissue (RPAT) and deep-and superficial SAT was evaluated using repeated measurements. Automated measurements correlated strongly to manual reference measurements. The SFAT depot showed the weakest correlation (r = 0.744). Automated VAT and SAT measurements were slightly, but significantly overestimated (<= 4.6%, p <= 0.001). Manual segmentation of abdominal sub-depots showed high repeatability (CV <= 8.1%, r >= 0.930). We conclude that the low dose CT-scanning and automated analysis makes the setup suitable for large-scale studies.
Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT data. The study comprised 107 subjects examined in the Swedish CArdioPulmonary BioImage Study (SCAPIS) using a 3-slice CT protocol covering liver, abdomen, and thighs. Algorithms were developed for automated assessment of liver attenuation, visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, thigh muscles, subcutaneous, subfascial (SFAT) and intermuscular adipose tissue. These were validated using manual reference measurements. SFAT was studied in selected subjects were the fascia lata could be visually identified (approx. 5%). In addition, precision of manual measurements of intra- (IPAT) and retroperitoneal adipose tissue (RPAT) and deep- and superficial SAT was evaluated using repeated measurements. Automated measurements correlated strongly to manual reference measurements. The SFAT depot showed the weakest correlation (r = 0.744). Automated VAT and SAT measurements were slightly, but significantly overestimated (≤4.6%, p ≤ 0.001). Manual segmentation of abdominal sub-depots showed high repeatability (CV ≤ 8.1%, r ≥ 0.930). We conclude that the low dose CT-scanning and automated analysis makes the setup suitable for large-scale studies.
Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT data. The study comprised 107 subjects examined in the Swedish CArdioPulmonary BioImage Study (SCAPIS) using a 3-slice CT protocol covering liver, abdomen, and thighs. Algorithms were developed for automated assessment of liver attenuation, visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, thigh muscles, subcutaneous, subfascial (SFAT) and intermuscular adipose tissue. These were validated using manual reference measurements. SFAT was studied in selected subjects were the fascia lata could be visually identified (approx. 5%). In addition, precision of manual measurements of intra- (IPAT) and retroperitoneal adipose tissue (RPAT) and deep- and superficial SAT was evaluated using repeated measurements. Automated measurements correlated strongly to manual reference measurements. The SFAT depot showed the weakest correlation (r = 0.744). Automated VAT and SAT measurements were slightly, but significantly overestimated (≤4.6%, p ≤ 0.001). Manual segmentation of abdominal sub-depots showed high repeatability (CV ≤ 8.1%, r ≥ 0.930). We conclude that the low dose CT-scanning and automated analysis makes the setup suitable for large-scale studies.Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT data. The study comprised 107 subjects examined in the Swedish CArdioPulmonary BioImage Study (SCAPIS) using a 3-slice CT protocol covering liver, abdomen, and thighs. Algorithms were developed for automated assessment of liver attenuation, visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, thigh muscles, subcutaneous, subfascial (SFAT) and intermuscular adipose tissue. These were validated using manual reference measurements. SFAT was studied in selected subjects were the fascia lata could be visually identified (approx. 5%). In addition, precision of manual measurements of intra- (IPAT) and retroperitoneal adipose tissue (RPAT) and deep- and superficial SAT was evaluated using repeated measurements. Automated measurements correlated strongly to manual reference measurements. The SFAT depot showed the weakest correlation (r = 0.744). Automated VAT and SAT measurements were slightly, but significantly overestimated (≤4.6%, p ≤ 0.001). Manual segmentation of abdominal sub-depots showed high repeatability (CV ≤ 8.1%, r ≥ 0.930). We conclude that the low dose CT-scanning and automated analysis makes the setup suitable for large-scale studies.
ArticleNumber 10425
Author Hedström, Anders
Strand, Robin
Johansson, Lars
Bergström, Göran
Kullberg, Joel
Brandberg, John
Ahlström, Håkan
Author_xml – sequence: 1
  givenname: Joel
  surname: Kullberg
  fullname: Kullberg, Joel
  email: joel.kullberg@radiol.uu.se
  organization: Department of Radiology, Uppsala University, Antaros Medical, BioVenture Hub
– sequence: 2
  givenname: Anders
  surname: Hedström
  fullname: Hedström, Anders
  organization: Department of Radiology, Uppsala University, Antaros Medical, BioVenture Hub
– sequence: 3
  givenname: John
  surname: Brandberg
  fullname: Brandberg, John
  organization: Department of Radiology, Sahlgrenska University Hospital
– sequence: 4
  givenname: Robin
  surname: Strand
  fullname: Strand, Robin
  organization: Department of Radiology, Uppsala University
– sequence: 5
  givenname: Lars
  surname: Johansson
  fullname: Johansson, Lars
  organization: Department of Radiology, Uppsala University, Antaros Medical, BioVenture Hub
– sequence: 6
  givenname: Göran
  surname: Bergström
  fullname: Bergström, Göran
  organization: Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg
– sequence: 7
  givenname: Håkan
  surname: Ahlström
  fullname: Ahlström, Håkan
  organization: Department of Radiology, Uppsala University, Antaros Medical, BioVenture Hub
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28874743$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329273$$DView record from Swedish Publication Index
https://gup.ub.gu.se/publication/258809$$DView record from Swedish Publication Index
BookMark eNp9kstu3CAUhq0qVXNpXqCLCqmbLuIWMBjYVBpN04sUqZu0W4RtcIlsM-VAqrx9mc40mkRK2XA533848J_T6mgJi62qVwS_I7iR74ERrmSNiaixVJTX8ll1QjHjNW0oPTpYH1fnADe4DE4VI-pFdUylFEyw5qTarHIKs0l2QGYx0x14QMGhyd_aiJxJF2jO0E-2RAsx-E0Ai5IHyBYNHlL0XU4-LMjFMKP1NYLsk-mKwIWIJhNHW0Nvyh5SHryFl9VzZyaw5_v5rPr-6fJ6_aW--vb563p1VfecqVQ3nRhki51pheBS9A2jHXFWGd72uOtIY4RyRGKGRWtw61oimHMdoQZbodjQnFX1Li_8tpvc6U30s4l3Ohivx7zR5WjMGqymXEqsCn_xJP_R_1jpEEeds26ooqIp-IcdXtjZDr1dUjTTA9XDyOJ_6jHcas4lZ5iXBG_3CWL4lS0kPXvo7TSZxYYMmqimpa0kZIu-eYTehByLW1uKC4FbykmhXh9WdF_KP68LQHdAHwNAtO4eIVhve0rvekqXntJ_e0rLIpKPRH3xd-t4eZWf_i9t9j9a7llGGw_Kflr1BxoK4gc
CitedBy_id crossref_primary_10_1159_000496460
crossref_primary_10_1016_j_ejrad_2021_109943
crossref_primary_10_1038_s41598_024_73406_8
crossref_primary_10_2214_AJR_20_22874
crossref_primary_10_1016_j_dsx_2022_102589
crossref_primary_10_1016_j_compbiomed_2023_107608
crossref_primary_10_1016_j_clnu_2020_01_008
crossref_primary_10_1016_j_ejrad_2019_108723
crossref_primary_10_1002_oby_22453
crossref_primary_10_1016_j_nut_2021_111227
crossref_primary_10_1111_exd_13549
crossref_primary_10_1002_ird3_24
crossref_primary_10_1186_s41747_023_00387_0
crossref_primary_10_3390_healthcare10112166
crossref_primary_10_1111_ijpo_12531
crossref_primary_10_1148_radiol_2021204288
crossref_primary_10_3390_diagnostics13050968
crossref_primary_10_1007_s00414_017_1757_5
crossref_primary_10_1002_jcsm_12573
crossref_primary_10_1007_s10439_019_02349_3
crossref_primary_10_1002_pds_5648
crossref_primary_10_1007_s00261_024_04448_9
crossref_primary_10_1148_radiol_2018181432
crossref_primary_10_1016_j_bspc_2021_103172
crossref_primary_10_1007_s10278_019_00178_3
crossref_primary_10_1002_mp_13675
crossref_primary_10_1186_s41747_021_00210_8
crossref_primary_10_1007_s00256_019_03289_8
crossref_primary_10_3389_fnut_2024_1422663
crossref_primary_10_20862_0042_4676_2020_101_1_58_66
crossref_primary_10_1186_s13098_020_00612_5
crossref_primary_10_3390_diagnostics13111852
crossref_primary_10_1016_j_acra_2019_06_017
crossref_primary_10_1371_journal_pone_0202666
crossref_primary_10_1038_s41598_022_24358_4
crossref_primary_10_1038_s41598_023_39390_1
crossref_primary_10_1038_s41598_023_28679_w
crossref_primary_10_3390_cancers16132364
crossref_primary_10_20862_0042_4676_2023_104_1_40_46
crossref_primary_10_1016_j_clnu_2020_11_030
crossref_primary_10_1002_mrm_27550
crossref_primary_10_1259_bjr_20170968
crossref_primary_10_1007_s00330_020_07147_3
crossref_primary_10_1016_j_heliyon_2024_e41038
crossref_primary_10_1148_radiol_2019190512
crossref_primary_10_1038_s41598_024_62887_2
crossref_primary_10_1007_s00330_024_10660_4
crossref_primary_10_1148_ryai_2021200304
crossref_primary_10_1002_ehf2_13021
crossref_primary_10_1016_j_bbe_2020_02_009
crossref_primary_10_1002_mp_14141
crossref_primary_10_1186_s12859_023_05462_2
crossref_primary_10_1002_mp_14465
crossref_primary_10_1259_bjr_20190327
crossref_primary_10_1016_j_mri_2019_02_001
crossref_primary_10_1007_s00261_023_04062_1
crossref_primary_10_1002_oby_22945
crossref_primary_10_1038_s41430_018_0110_5
Cites_doi 10.2337/diacare.46.10.1579
10.1038/oby.2008.292
10.1109/TMI.2009.2013851
10.1016/j.soard.2006.02.009
10.1111/joim.12384
10.1016/j.cviu.2005.03.003
10.1038/oby.2003.3
10.1155/2011/154672
10.1038/sj.ijo.0803671
10.1016/j.acra.2014.01.009
10.1002/jmri.23775
10.1148/130.2.511
10.1038/ijo.2012.72
10.2337/dc13-1353
10.1097/01.rct.0000228164.08968.e8
10.1259/0007-1285-65-777-774
10.1093/ije/dyl245
10.2337/diab.35.4.411
10.1002/jmri.21699
10.1016/j.acra.2013.08.007
10.1002/jmri.20167
10.1152/ajpendo.00469.2001
10.1152/ajpendo.2000.278.5.E941
10.1259/bjr.20151024
10.1117/12.812412
10.1097/RLI.0b013e3181f10fe1
10.1093/ajcn/71.4.885
ContentType Journal Article
Copyright The Author(s) 2017
Scientific Reports is a copyright of Springer, 2017.
Copyright_xml – notice: The Author(s) 2017
– notice: Scientific Reports is a copyright of Springer, 2017.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
F1U
DOI 10.1038/s41598-017-08925-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (UHCL Subscription)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
SWEPUB Göteborgs universitet
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID oai_gup_ub_gu_se_258809
oai_DiVA_org_uu_329273
PMC5585405
28874743
10_1038_s41598_017_08925_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
IPNFZ
RIG
ZZAVC
F1U
ID FETCH-LOGICAL-c549t-3b7d860fa677587c342b1fe9a56c0bb13a79f1804076a06f6174ffb12a0e794d3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 06:39:53 EDT 2025
Thu Aug 21 07:04:45 EDT 2025
Thu Aug 21 18:28:51 EDT 2025
Fri Jul 11 11:48:24 EDT 2025
Wed Aug 13 08:10:35 EDT 2025
Mon Jul 21 05:53:06 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
Tue Jul 01 02:40:57 EDT 2025
Fri Feb 21 02:40:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-3b7d860fa677587c342b1fe9a56c0bb13a79f1804076a06f6174ffb12a0e794d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1957706251?pq-origsite=%requestingapplication%
PMID 28874743
PQID 1957706251
PQPubID 2041939
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_258809
swepub_primary_oai_DiVA_org_uu_329273
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5585405
proquest_miscellaneous_1936268115
proquest_journals_1957706251
pubmed_primary_28874743
crossref_primary_10_1038_s41598_017_08925_8
crossref_citationtrail_10_1038_s41598_017_08925_8
springer_journals_10_1038_s41598_017_08925_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-05
PublicationDateYYYYMMDD 2017-09-05
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-05
  day: 05
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Rocha (CR17) 2011; 2011
El-Hassan, Ibrahim, Al-Mulhim, Nabhan, Chammas (CR27) 1992; 65
Sniderman, Bhopal, Prabhakaran, Sarrafzadegan, Tchernof (CR11) 2007; 36
Mantatzis (CR8) 2014; 21
Livingston (CR16) 2006; 2
Bergström (CR18) 2015; 278
Saha (CR21) 2005; 99
Kelley, Thaete, Troost, Huwe, Goodpaster (CR5) 2000; 278
Zhao (CR22) 2006; 30
Positano (CR26) 2009; 29
Ducommun, Goldberg, Korobkin, Moss, Kressel (CR19) 1979; 130
Positano (CR1) 2004; 20
Heimann (CR23) 2009; 28
Goodpaster, Thaete, Kelley (CR15) 2000; 71
Lundbom, Hakkarainen, Lundbom, Taskinen (CR13) 2013; 37
Wald (CR4) 2012; 36
CR3
CR6
Makrogiannis, Caturegli, Davatzikos, Ferrucci (CR25) 2013; 20
Marinou (CR12) 2014; 37
CR24
Kullberg, Ahlström, Johansson, Frimmel (CR2) 2007; 31
Shen (CR20) 2003; 11
Sparrow, Borkan, Gerzof, Wisniewski, Silbert (CR7) 1986; 35
Koska (CR10) 2008; 16
Goodpaster, Thaete, Simoneau, Kelley (CR14) 1997; 46
Ross, Aru, Freeman, Hudson, Janssen (CR9) 2002; 282
8925_CR6
BH Goodpaster (8925_CR15) 2000; 71
DE Kelley (8925_CR5) 2000; 278
8925_CR3
J-C Ducommun (8925_CR19) 1979; 130
G Bergström (8925_CR18) 2015; 278
EH Livingston (8925_CR16) 2006; 2
8925_CR24
R Ross (8925_CR9) 2002; 282
AY El-Hassan (8925_CR27) 1992; 65
S Makrogiannis (8925_CR25) 2013; 20
M Mantatzis (8925_CR8) 2014; 21
B Zhao (8925_CR22) 2006; 30
V Positano (8925_CR26) 2009; 29
PM Rocha (8925_CR17) 2011; 2011
BH Goodpaster (8925_CR14) 1997; 46
J Kullberg (8925_CR2) 2007; 31
J Koska (8925_CR10) 2008; 16
J Lundbom (8925_CR13) 2013; 37
D Wald (8925_CR4) 2012; 36
K Marinou (8925_CR12) 2014; 37
T Heimann (8925_CR23) 2009; 28
PK Saha (8925_CR21) 2005; 99
V Positano (8925_CR1) 2004; 20
W Shen (8925_CR20) 2003; 11
AD Sniderman (8925_CR11) 2007; 36
D Sparrow (8925_CR7) 1986; 35
References_xml – volume: 46
  start-page: 1579
  year: 1997
  end-page: 85
  ident: CR14
  article-title: Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat
  publication-title: Diabetes
  doi: 10.2337/diacare.46.10.1579
– volume: 16
  start-page: 2003
  year: 2008
  end-page: 9
  ident: CR10
  article-title: Distribution of subcutaneous fat predicts insulin action in obesity in sex-specific manner
  publication-title: Obesity (Silver Spring).
  doi: 10.1038/oby.2008.292
– volume: 28
  start-page: 1251
  year: 2009
  end-page: 65
  ident: CR23
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2013851
– volume: 2
  start-page: 362
  year: 2006
  end-page: 8
  ident: CR16
  article-title: Lower body subcutaneous fat accumulation and diabetes mellitus risk
  publication-title: Surg. Obes. Relat. Dis.
  doi: 10.1016/j.soard.2006.02.009
– volume: 278
  start-page: 645
  year: 2015
  end-page: 659
  ident: CR18
  article-title: The Swedish CArdioPulmonary BioImage Study: Objectives and design
  publication-title: J. Intern. Med.
  doi: 10.1111/joim.12384
– ident: CR6
– volume: 99
  start-page: 384
  year: 2005
  end-page: 413
  ident: CR21
  article-title: Tensor scale: A local morphometric parameter with applications to computer vision and image processing
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2005.03.003
– volume: 11
  start-page: 5
  year: 2003
  end-page: 16
  ident: CR20
  article-title: Adipose tissue quantification by imaging methods: a proposed classification
  publication-title: Obes. Res.
  doi: 10.1038/oby.2003.3
– volume: 2011
  year: 2011
  ident: CR17
  article-title: Visceral abdominal and subfascial femoral adipose tissue have opposite associations with liver fat in overweight and obese premenopausal caucasian women
  publication-title: J Lipids
  doi: 10.1155/2011/154672
– volume: 31
  start-page: 1806
  year: 2007
  end-page: 1817
  ident: CR2
  article-title: Automated and reproducible segmentation of visceral and subcutaneous adipose tissue from abdominal MRI
  publication-title: Int. J. Obes. (Lond).
  doi: 10.1038/sj.ijo.0803671
– volume: 21
  start-page: 667
  year: 2014
  end-page: 74
  ident: CR8
  article-title: Abdominal adipose tissue distribution on MRI and diabetes
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2014.01.009
– volume: 36
  start-page: 1421
  year: 2012
  end-page: 34
  ident: CR4
  article-title: Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23775
– volume: 130
  start-page: 511
  year: 1979
  end-page: 513
  ident: CR19
  article-title: The Relation of Liver Fat to Computed Tomography Numbers: A Preliminary Experimental Study in Rabbits
  publication-title: Radiology
  doi: 10.1148/130.2.511
– volume: 278
  start-page: E941
  year: 2000
  end-page: 8
  ident: CR5
  article-title: Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– ident: CR3
– volume: 37
  start-page: 620
  year: 2013
  end-page: 2
  ident: CR13
  article-title: Deep subcutaneous adipose tissue is more saturated than superficial subcutaneous adipose tissue
  publication-title: Int. J. Obes. (Lond).
  doi: 10.1038/ijo.2012.72
– volume: 71
  start-page: 885
  year: 2000
  end-page: 92
  ident: CR15
  article-title: Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus
  publication-title: Am. J. Clin. Nutr.
– volume: 37
  start-page: 821
  year: 2014
  end-page: 9
  ident: CR12
  article-title: Structural and functional properties of deep abdominal subcutaneous adipose tissue explain its association with insulin resistance and cardiovascular risk in men
  publication-title: Diabetes Care
  doi: 10.2337/dc13-1353
– volume: 30
  start-page: 777
  year: 2006
  end-page: 83
  ident: CR22
  article-title: Automated quantification of body fat distribution on volumetric computed tomography
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/01.rct.0000228164.08968.e8
– volume: 65
  start-page: 774
  year: 1992
  end-page: 778
  ident: CR27
  article-title: Fatty infiltration of the liver: Analysis of prevalence, radiological and clinical features and influence on patient management
  publication-title: Br. J. Radiol.
  doi: 10.1259/0007-1285-65-777-774
– volume: 36
  start-page: 220
  year: 2007
  end-page: 5
  ident: CR11
  article-title: Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyl245
– volume: 35
  start-page: 411
  year: 1986
  end-page: 415
  ident: CR7
  article-title: Relationship of Fat Distribution to Glucose Tolerance Results of Computed Tomography in Male Participants of the Normative Aging Study
  publication-title: Diabetes
  doi: 10.2337/diab.35.4.411
– ident: CR24
– volume: 29
  start-page: 677
  year: 2009
  end-page: 84
  ident: CR26
  article-title: Accurate segmentation of subcutaneous and intermuscular adipose tissue from MR images of the thigh
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21699
– volume: 20
  start-page: 1413
  year: 2013
  end-page: 1421
  ident: CR25
  article-title: Computer-aided assessment of regional abdominal fat with food residue removal in CT
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2013.08.007
– volume: 20
  start-page: 684
  year: 2004
  end-page: 9
  ident: CR1
  article-title: An accurate and robust method for unsupervised assessment of abdominal fat by MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20167
– volume: 282
  start-page: E657
  year: 2002
  end-page: 63
  ident: CR9
  article-title: Abdominal adiposity and insulin resistance in obese men
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00469.2001
– volume: 31
  start-page: 1806
  year: 2007
  ident: 8925_CR2
  publication-title: Int. J. Obes. (Lond).
  doi: 10.1038/sj.ijo.0803671
– volume: 65
  start-page: 774
  year: 1992
  ident: 8925_CR27
  publication-title: Br. J. Radiol.
  doi: 10.1259/0007-1285-65-777-774
– volume: 278
  start-page: 645
  year: 2015
  ident: 8925_CR18
  publication-title: J. Intern. Med.
  doi: 10.1111/joim.12384
– volume: 2011
  year: 2011
  ident: 8925_CR17
  publication-title: J Lipids
  doi: 10.1155/2011/154672
– volume: 37
  start-page: 821
  year: 2014
  ident: 8925_CR12
  publication-title: Diabetes Care
  doi: 10.2337/dc13-1353
– volume: 278
  start-page: E941
  year: 2000
  ident: 8925_CR5
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.2000.278.5.E941
– volume: 16
  start-page: 2003
  year: 2008
  ident: 8925_CR10
  publication-title: Obesity (Silver Spring).
  doi: 10.1038/oby.2008.292
– ident: 8925_CR6
  doi: 10.1259/bjr.20151024
– volume: 2
  start-page: 362
  year: 2006
  ident: 8925_CR16
  publication-title: Surg. Obes. Relat. Dis.
  doi: 10.1016/j.soard.2006.02.009
– volume: 46
  start-page: 1579
  year: 1997
  ident: 8925_CR14
  publication-title: Diabetes
  doi: 10.2337/diacare.46.10.1579
– volume: 11
  start-page: 5
  year: 2003
  ident: 8925_CR20
  publication-title: Obes. Res.
  doi: 10.1038/oby.2003.3
– ident: 8925_CR24
  doi: 10.1117/12.812412
– volume: 37
  start-page: 620
  year: 2013
  ident: 8925_CR13
  publication-title: Int. J. Obes. (Lond).
  doi: 10.1038/ijo.2012.72
– volume: 20
  start-page: 684
  year: 2004
  ident: 8925_CR1
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20167
– volume: 130
  start-page: 511
  year: 1979
  ident: 8925_CR19
  publication-title: Radiology
  doi: 10.1148/130.2.511
– volume: 30
  start-page: 777
  year: 2006
  ident: 8925_CR22
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/01.rct.0000228164.08968.e8
– volume: 35
  start-page: 411
  year: 1986
  ident: 8925_CR7
  publication-title: Diabetes
  doi: 10.2337/diab.35.4.411
– volume: 28
  start-page: 1251
  year: 2009
  ident: 8925_CR23
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2013851
– volume: 20
  start-page: 1413
  year: 2013
  ident: 8925_CR25
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2013.08.007
– ident: 8925_CR3
  doi: 10.1097/RLI.0b013e3181f10fe1
– volume: 21
  start-page: 667
  year: 2014
  ident: 8925_CR8
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2014.01.009
– volume: 29
  start-page: 677
  year: 2009
  ident: 8925_CR26
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21699
– volume: 36
  start-page: 220
  year: 2007
  ident: 8925_CR11
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyl245
– volume: 36
  start-page: 1421
  year: 2012
  ident: 8925_CR4
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23775
– volume: 282
  start-page: E657
  year: 2002
  ident: 8925_CR9
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00469.2001
– volume: 71
  start-page: 885
  year: 2000
  ident: 8925_CR15
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/71.4.885
– volume: 99
  start-page: 384
  year: 2005
  ident: 8925_CR21
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2005.03.003
SSID ssj0000529419
Score 2.4808502
Snippet Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10425
SubjectTerms 59
639/705/1042
639/705/258
692/308/174
Abdomen
abdominal fat
accurate
Adipose tissue
Automation
Body composition
Cardiovascular diseases
Computed tomography
Fascia
Humanities and Social Sciences
Image processing
insulin-resistance
Liver
mri
multidisciplinary
Muscles
obesity
quantification
Radiologi och bildbehandling
Radiology and Medical Imaging
Science
Science & Technology - Other Topics
Science (multidisciplinary)
Segmentation
Studies
thigh
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUYCLjSq4yR-nNCqUFVIcGrR3iw7trcrLUlokkP_PePEG1iK9hqPlcTjGX_jeSH0jplShuwuECRD00KKKpVSU7BSZF6xnPiyCrnD376z88vi67Jcxgu3LoZVbnXiqKhtU4U78pNMlpwTQOvZp_ZXGrpGBe9qbKFxF90LpctCSBdf8vmOJXixikzGXBmSi5MOzquQUwaqmQhJy1Tsnke3QObtWMnZYfpPcdHxQDp7hB5GJIkXE-sfozuufoLuT70lb56idjH0DcBRZ7GOhUdw4_EmxGFgr_tj_HPoYCKMAoVdt03ncD-yAdtQTTc2wsIhAQWfXuBuWPchzwoDzMWbEECedsBgh7spFPEZujz7cnF6nsb2CmkFRmGf5oZbwYjXjIPRwKu8oCbzTuqSVcSYLNdc-kyAlHOmCfOAdQrvTUY1cSDFNn-ODuqmdi8RtoJYZgBLEW4KyQpNDdhB1hNZeUdslaBsu8iqirXHQwuMjRp94LlQE2MUMEaNjFEiQR_nOe1UeWMv9dGWdypKYaf-7JkEvZ2HQX6CU0TXrhkCTSjIIwAYJ-jFxOr5dRQ0cAEQK0F8ZxPMBKE29-5Ivb4aa3SXYIYBFk7Q8Xa7_PVZe_7i_bSldt7wef1joZrrlRoGlVMJgDNBH_5DtxpaBY9Wg-qcoiVoZnm4f1leoQd0lAWZkvIIHfTXg3sNIKs3b0ZJ-g2kjCaq
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuFW9SCjIScKERjpM49nG1bVUhwalFvVl2Yi8rLcmqSQ799x07D7G0qsQ1HsuJx2N_k5n5DPCJm1z66i40JMPiTIoyllIz9FJkWvKUurz0tcM_fvLzy-z7VX61B2yqhQlJ-4HSMmzTU3bYtxYPGl8MhnsqFZLlsXgEjz11u1_VS76c_6v4yFWWyLE-hqbinq67Z9AdYHk3P3IOkv5DKBoOobNncDCiR7IY3vc57Nn6BTwZ7pO8eQnbRd81CEFtRfRINkIaRzY-94I43R2TP32LHbEVJar1tmkt6cLUk8oz6I6XXxFfdEKWF6Tt152vrSIIbcnGJ43HLSrVknZIP3wFl2enF8vzeLxSIS7REezi1BSV4NRpXqCjUJRpxkzirNQ5L6kxSaoL6RKBll1wTblDfJM5ZxKmqUXLrdLXsF83tX0LpBK04gbxEy1MJnmmmUHfp3JUls7SqowgmSZZlSPfuL_2YqNC3DsValCMQsWooBglIvg699kObBsPSh9NulOj5bUqkXlRUPTqkgg-zs1oMz4Qomvb9F7Gk_AIBMMRvBlUPQ_HcNfNEFZFUOwsglnA83HvttTr34GXO0fXC_FvBMfTcvnrtR74is_DktoZ4WT9a6Ga65Xqe5UyiSAzgi_3yK36rcJHq161VrEcd2N5-H_jv4OnLNiGjGl-BPvddW_fI9DqzIdgWbcgZCSO
  priority: 102
  providerName: Springer Nature
Title Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies
URI https://link.springer.com/article/10.1038/s41598-017-08925-8
https://www.ncbi.nlm.nih.gov/pubmed/28874743
https://www.proquest.com/docview/1957706251
https://www.proquest.com/docview/1936268115
https://pubmed.ncbi.nlm.nih.gov/PMC5585405
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329273
https://gup.ub.gu.se/publication/258809
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4JjMpIwAsLc5zEjh8QKmXTVGkTghX1zYoTu1QqSWkSif33nJO0oqyaeIpkXz7vzv5d7PsdwGuuY-myu9CRNPMjmWS-lCnDKEWGGQ-pjTOXO3xxyc8n0XgaT_dgXe6o_4DVztDO1ZOarBbvf_-6_ogO_6FLGU9OKpyEXKIYjrc0kSz2k304xJlJOEe96OF-x_XNZNTW-nAk7D6CCdbn0ey-zPZcdQOA3txHuVlM_Yd4tJ2szu7DvR5lkmFnFg9gzxQP4U5Xd_L6ESyHTV0iVDU5SXtSElJasnB7NIhN62Pys6nwROxFiXy-LCtD6lZFJHdMu32RLOKSU8joilTNvHY5WAQhMFm4zeV-hco3pOq2KT6Gydnp1ejc70sv-BkGjLUfapEnnNqUCwwoRBZGTAfWyDTmGdU6CFMhbZDgCCB4SrlFHBRZqwOWUoMenodP4KAoC_MMSJ7QnGvEWVToSPIoZRpjpNxSmVlD88yDYP2RVdbzkrvyGAvVro-HieoUo1AxqlWMSjx4tzln2bFy3Cp9tNadWhuYCmQsBMXoL_Dg1aYbfcstmKSFKRsn48h6EgTNHjztVL25HcPROUL45YHYMoKNgOPt3u4p5j9a_u4YQzTEyR4cr83lr8e65S3edCa1dYfP8-9DVa5mqmlUyCSCUQ_e7pCbNUuFTbNGVUaxGEdt-fw_3vsF3GWtQ0ifxkdwUK8a8xJRWK0HsC-mYgCHw-H42xiPn04vv3zF1hEfDdo_G4PW-f4AgCAzmw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYxEudCojvP0AaGlD21pu0Joi3ozcWIvKy1JaBKh_il-I-O8YCnaW6_xZJP1zHi-ybwAXgfS56a6CxVJMtvjUWJzHjP0UribBC7VfmJqh0-nweTM-3jun2_Ar74WxqRV9mdic1CneWK-ke863A9DimjdeV_8sM3UKBNd7UdotGJxrC5_ostWvjvaR_5uM3Z4MNub2N1UATtBX6iyXRmmUUB1HISIlcPE9Zh0tOKxHyRUSseNQ66dCIU7DGIaaDTxntbSYTFVKLypi797AzY9F12ZEWx-OJh--jx81TFxM8_hXXUOdaPdEi2kqWJDY0Ajznw7WrWAV2Dt1ezMIUT7TzvTxgQe3oU7HXYl41bY7sGGyu7DzXaa5eUDKMZ1lSMAVimJu1YnJNdkaTI_iI6rHfK9LvFGXEWKdFHkpSJVw3iSmv693egtYkpeyN6MlPWiMpVdBIE1WZqUdbtEkVKkbJMfH8LZtWz9IxhleaaeAEkjmgYS0RsNpccDL2YSPa9UU55oRdPEAqffZJF03c7N0I2laKLubiRaxghkjGgYIyIL3g73FG2vj7XUWz3vRKf3pfgjpRa8GpZRY00YJs5UXhsa0wIoQihuweOW1cPjGJ75HoI6C8IVIRgITDfw1ZVs8a3pCu6j44fo24KdXlz-eq01_2K7FamVJ-wvvoxFfjEXdS1cxhHiWvDmP3TzuhB4aV6LUgnmoy3gT9dvy0u4NZmdnoiTo-nxM7jNGr3gNvW3YFRd1Oo5QrxKvuj0isDX61bl34poY_0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASNRLjRax3k4PiC06rJqKVQcWrQ3Eyf2dqVtsjSJUP8av45xXrAU7a3XeLLJemY832ReAG8iFQpb3YWKpJgbiDh1hUgYeinCTyOfmjC1tcNfjqOD0-DTLJxtwa--FsamVfZnYnNQZ0Vqv5GPPBFyThGteyPTpUV8nUw_rH64doKUjbT24zRaETnSlz_RfSvfH06Q17uMTT-e7B-43YQBN0W_qHJ9xbM4oiaJOOJmnvoBU57RIgmjlCrl-QkXxotR0HmU0MiguQ-MUR5LqEZBznz83Rtwk_uhZ3WMz_jwfcdG0AJPdHU61I9HJdpKW8-GZoHGgoVuvG4LrwDcq3maQ7D2n8amjTGc3oO7HYol41bs7sOWzh_ArXau5eVDWI3rqkAorDOSdE1PSGHI0uaAEJNUe-S8LvFGXEWKbLEqSk2qRgRIZjv5dkO4iC1-IfsnpKwXla3xIgixydImr7slCpcmZZsG-QhOr2XjH8N2XuT6KZAsplmkEMdRrgIRBQlT6INlhorUaJqlDnj9Jsu063tux28sZRN_92PZMkYiY2TDGBk78G64Z9V2_dhIvdPzTnYnQCn_yKsDr4dl1F0bkElyXdSWxjYDihGUO_CkZfXwOIanf4DwzgG-JgQDge0Lvr6SL86a_uAhuoCIwx3Y68Xlr9fa8C92W5Fae8Jk8W0si4u5rGvpM4Fg14G3_6Gb1yuJl-a1LLVkIVoF8WzztryC26jA8vPh8dFzuMMatRAuDXdgu7qo9QvEepV62SgVge_XrcW_ARqqZs0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+analysis+of+liver+fat%2C+muscle+and+adipose+tissue+distribution+from+CT+suitable+for+large-scale+studies&rft.jtitle=Scientific+reports&rft.au=Kullberg%2C+Joel&rft.au=Hedstr%C3%B6m%2C+Anders&rft.au=Brandberg%2C+John&rft.au=Strand%2C+Robin&rft.date=2017-09-05&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=10425&rft_id=info:doi/10.1038%2Fs41598-017-08925-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon