Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies
Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT da...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; p. 10425 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.09.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT data. The study comprised 107 subjects examined in the Swedish CArdioPulmonary BioImage Study (SCAPIS) using a 3-slice CT protocol covering liver, abdomen, and thighs. Algorithms were developed for automated assessment of liver attenuation, visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, thigh muscles, subcutaneous, subfascial (SFAT) and intermuscular adipose tissue. These were validated using manual reference measurements. SFAT was studied in selected subjects were the fascia lata could be visually identified (approx. 5%). In addition, precision of manual measurements of intra- (IPAT) and retroperitoneal adipose tissue (RPAT) and deep- and superficial SAT was evaluated using repeated measurements. Automated measurements correlated strongly to manual reference measurements. The SFAT depot showed the weakest correlation (r = 0.744). Automated VAT and SAT measurements were slightly, but significantly overestimated (≤4.6%, p ≤ 0.001). Manual segmentation of abdominal sub-depots showed high repeatability (CV ≤ 8.1%, r ≥ 0.930). We conclude that the low dose CT-scanning and automated analysis makes the setup suitable for large-scale studies. |
---|---|
AbstractList | Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT data. The study comprised 107 subjects examined in the Swedish CArdioPulmonary BioImage Study (SCAPIS) using a 3-slice CT protocol covering liver, abdomen, and thighs. Algorithms were developed for automated assessment of liver attenuation, visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, thigh muscles, subcutaneous, subfascial (SFAT) and intermuscular adipose tissue. These were validated using manual reference measurements. SFAT was studied in selected subjects were the fascia lata could be visually identified (approx. 5%). In addition, precision of manual measurements of intra-(IPAT) and retroperitoneal adipose tissue (RPAT) and deep-and superficial SAT was evaluated using repeated measurements. Automated measurements correlated strongly to manual reference measurements. The SFAT depot showed the weakest correlation (r = 0.744). Automated VAT and SAT measurements were slightly, but significantly overestimated (<= 4.6%, p <= 0.001). Manual segmentation of abdominal sub-depots showed high repeatability (CV <= 8.1%, r >= 0.930). We conclude that the low dose CT-scanning and automated analysis makes the setup suitable for large-scale studies. Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT data. The study comprised 107 subjects examined in the Swedish CArdioPulmonary BioImage Study (SCAPIS) using a 3-slice CT protocol covering liver, abdomen, and thighs. Algorithms were developed for automated assessment of liver attenuation, visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, thigh muscles, subcutaneous, subfascial (SFAT) and intermuscular adipose tissue. These were validated using manual reference measurements. SFAT was studied in selected subjects were the fascia lata could be visually identified (approx. 5%). In addition, precision of manual measurements of intra- (IPAT) and retroperitoneal adipose tissue (RPAT) and deep- and superficial SAT was evaluated using repeated measurements. Automated measurements correlated strongly to manual reference measurements. The SFAT depot showed the weakest correlation (r = 0.744). Automated VAT and SAT measurements were slightly, but significantly overestimated (≤4.6%, p ≤ 0.001). Manual segmentation of abdominal sub-depots showed high repeatability (CV ≤ 8.1%, r ≥ 0.930). We conclude that the low dose CT-scanning and automated analysis makes the setup suitable for large-scale studies. Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT data. The study comprised 107 subjects examined in the Swedish CArdioPulmonary BioImage Study (SCAPIS) using a 3-slice CT protocol covering liver, abdomen, and thighs. Algorithms were developed for automated assessment of liver attenuation, visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, thigh muscles, subcutaneous, subfascial (SFAT) and intermuscular adipose tissue. These were validated using manual reference measurements. SFAT was studied in selected subjects were the fascia lata could be visually identified (approx. 5%). In addition, precision of manual measurements of intra- (IPAT) and retroperitoneal adipose tissue (RPAT) and deep- and superficial SAT was evaluated using repeated measurements. Automated measurements correlated strongly to manual reference measurements. The SFAT depot showed the weakest correlation (r = 0.744). Automated VAT and SAT measurements were slightly, but significantly overestimated (≤4.6%, p ≤ 0.001). Manual segmentation of abdominal sub-depots showed high repeatability (CV ≤ 8.1%, r ≥ 0.930). We conclude that the low dose CT-scanning and automated analysis makes the setup suitable for large-scale studies.Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work was to develop and validate automated and manual image processing techniques for detailed and efficient analysis of body composition from CT data. The study comprised 107 subjects examined in the Swedish CArdioPulmonary BioImage Study (SCAPIS) using a 3-slice CT protocol covering liver, abdomen, and thighs. Algorithms were developed for automated assessment of liver attenuation, visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, thigh muscles, subcutaneous, subfascial (SFAT) and intermuscular adipose tissue. These were validated using manual reference measurements. SFAT was studied in selected subjects were the fascia lata could be visually identified (approx. 5%). In addition, precision of manual measurements of intra- (IPAT) and retroperitoneal adipose tissue (RPAT) and deep- and superficial SAT was evaluated using repeated measurements. Automated measurements correlated strongly to manual reference measurements. The SFAT depot showed the weakest correlation (r = 0.744). Automated VAT and SAT measurements were slightly, but significantly overestimated (≤4.6%, p ≤ 0.001). Manual segmentation of abdominal sub-depots showed high repeatability (CV ≤ 8.1%, r ≥ 0.930). We conclude that the low dose CT-scanning and automated analysis makes the setup suitable for large-scale studies. |
ArticleNumber | 10425 |
Author | Hedström, Anders Strand, Robin Johansson, Lars Bergström, Göran Kullberg, Joel Brandberg, John Ahlström, Håkan |
Author_xml | – sequence: 1 givenname: Joel surname: Kullberg fullname: Kullberg, Joel email: joel.kullberg@radiol.uu.se organization: Department of Radiology, Uppsala University, Antaros Medical, BioVenture Hub – sequence: 2 givenname: Anders surname: Hedström fullname: Hedström, Anders organization: Department of Radiology, Uppsala University, Antaros Medical, BioVenture Hub – sequence: 3 givenname: John surname: Brandberg fullname: Brandberg, John organization: Department of Radiology, Sahlgrenska University Hospital – sequence: 4 givenname: Robin surname: Strand fullname: Strand, Robin organization: Department of Radiology, Uppsala University – sequence: 5 givenname: Lars surname: Johansson fullname: Johansson, Lars organization: Department of Radiology, Uppsala University, Antaros Medical, BioVenture Hub – sequence: 6 givenname: Göran surname: Bergström fullname: Bergström, Göran organization: Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg – sequence: 7 givenname: Håkan surname: Ahlström fullname: Ahlström, Håkan organization: Department of Radiology, Uppsala University, Antaros Medical, BioVenture Hub |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28874743$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329273$$DView record from Swedish Publication Index https://gup.ub.gu.se/publication/258809$$DView record from Swedish Publication Index |
BookMark | eNp9kstu3CAUhq0qVXNpXqCLCqmbLuIWMBjYVBpN04sUqZu0W4RtcIlsM-VAqrx9mc40mkRK2XA533848J_T6mgJi62qVwS_I7iR74ERrmSNiaixVJTX8ll1QjHjNW0oPTpYH1fnADe4DE4VI-pFdUylFEyw5qTarHIKs0l2QGYx0x14QMGhyd_aiJxJF2jO0E-2RAsx-E0Ai5IHyBYNHlL0XU4-LMjFMKP1NYLsk-mKwIWIJhNHW0Nvyh5SHryFl9VzZyaw5_v5rPr-6fJ6_aW--vb563p1VfecqVQ3nRhki51pheBS9A2jHXFWGd72uOtIY4RyRGKGRWtw61oimHMdoQZbodjQnFX1Li_8tpvc6U30s4l3Ohivx7zR5WjMGqymXEqsCn_xJP_R_1jpEEeds26ooqIp-IcdXtjZDr1dUjTTA9XDyOJ_6jHcas4lZ5iXBG_3CWL4lS0kPXvo7TSZxYYMmqimpa0kZIu-eYTehByLW1uKC4FbykmhXh9WdF_KP68LQHdAHwNAtO4eIVhve0rvekqXntJ_e0rLIpKPRH3xd-t4eZWf_i9t9j9a7llGGw_Kflr1BxoK4gc |
CitedBy_id | crossref_primary_10_1159_000496460 crossref_primary_10_1016_j_ejrad_2021_109943 crossref_primary_10_1038_s41598_024_73406_8 crossref_primary_10_2214_AJR_20_22874 crossref_primary_10_1016_j_dsx_2022_102589 crossref_primary_10_1016_j_compbiomed_2023_107608 crossref_primary_10_1016_j_clnu_2020_01_008 crossref_primary_10_1016_j_ejrad_2019_108723 crossref_primary_10_1002_oby_22453 crossref_primary_10_1016_j_nut_2021_111227 crossref_primary_10_1111_exd_13549 crossref_primary_10_1002_ird3_24 crossref_primary_10_1186_s41747_023_00387_0 crossref_primary_10_3390_healthcare10112166 crossref_primary_10_1111_ijpo_12531 crossref_primary_10_1148_radiol_2021204288 crossref_primary_10_3390_diagnostics13050968 crossref_primary_10_1007_s00414_017_1757_5 crossref_primary_10_1002_jcsm_12573 crossref_primary_10_1007_s10439_019_02349_3 crossref_primary_10_1002_pds_5648 crossref_primary_10_1007_s00261_024_04448_9 crossref_primary_10_1148_radiol_2018181432 crossref_primary_10_1016_j_bspc_2021_103172 crossref_primary_10_1007_s10278_019_00178_3 crossref_primary_10_1002_mp_13675 crossref_primary_10_1186_s41747_021_00210_8 crossref_primary_10_1007_s00256_019_03289_8 crossref_primary_10_3389_fnut_2024_1422663 crossref_primary_10_20862_0042_4676_2020_101_1_58_66 crossref_primary_10_1186_s13098_020_00612_5 crossref_primary_10_3390_diagnostics13111852 crossref_primary_10_1016_j_acra_2019_06_017 crossref_primary_10_1371_journal_pone_0202666 crossref_primary_10_1038_s41598_022_24358_4 crossref_primary_10_1038_s41598_023_39390_1 crossref_primary_10_1038_s41598_023_28679_w crossref_primary_10_3390_cancers16132364 crossref_primary_10_20862_0042_4676_2023_104_1_40_46 crossref_primary_10_1016_j_clnu_2020_11_030 crossref_primary_10_1002_mrm_27550 crossref_primary_10_1259_bjr_20170968 crossref_primary_10_1007_s00330_020_07147_3 crossref_primary_10_1016_j_heliyon_2024_e41038 crossref_primary_10_1148_radiol_2019190512 crossref_primary_10_1038_s41598_024_62887_2 crossref_primary_10_1007_s00330_024_10660_4 crossref_primary_10_1148_ryai_2021200304 crossref_primary_10_1002_ehf2_13021 crossref_primary_10_1016_j_bbe_2020_02_009 crossref_primary_10_1002_mp_14141 crossref_primary_10_1186_s12859_023_05462_2 crossref_primary_10_1002_mp_14465 crossref_primary_10_1259_bjr_20190327 crossref_primary_10_1016_j_mri_2019_02_001 crossref_primary_10_1007_s00261_023_04062_1 crossref_primary_10_1002_oby_22945 crossref_primary_10_1038_s41430_018_0110_5 |
Cites_doi | 10.2337/diacare.46.10.1579 10.1038/oby.2008.292 10.1109/TMI.2009.2013851 10.1016/j.soard.2006.02.009 10.1111/joim.12384 10.1016/j.cviu.2005.03.003 10.1038/oby.2003.3 10.1155/2011/154672 10.1038/sj.ijo.0803671 10.1016/j.acra.2014.01.009 10.1002/jmri.23775 10.1148/130.2.511 10.1038/ijo.2012.72 10.2337/dc13-1353 10.1097/01.rct.0000228164.08968.e8 10.1259/0007-1285-65-777-774 10.1093/ije/dyl245 10.2337/diab.35.4.411 10.1002/jmri.21699 10.1016/j.acra.2013.08.007 10.1002/jmri.20167 10.1152/ajpendo.00469.2001 10.1152/ajpendo.2000.278.5.E941 10.1259/bjr.20151024 10.1117/12.812412 10.1097/RLI.0b013e3181f10fe1 10.1093/ajcn/71.4.885 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Scientific Reports is a copyright of Springer, 2017. |
Copyright_xml | – notice: The Author(s) 2017 – notice: Scientific Reports is a copyright of Springer, 2017. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC F1U |
DOI | 10.1038/s41598-017-08925-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (UHCL Subscription) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text SWEPUB Göteborgs universitet |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | oai_gup_ub_gu_se_258809 oai_DiVA_org_uu_329273 PMC5585405 28874743 10_1038_s41598_017_08925_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI Q9U 7X8 5PM ACNBI ADTPV AOWAS D8T DF2 IPNFZ RIG ZZAVC F1U |
ID | FETCH-LOGICAL-c549t-3b7d860fa677587c342b1fe9a56c0bb13a79f1804076a06f6174ffb12a0e794d3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 06:39:53 EDT 2025 Thu Aug 21 07:04:45 EDT 2025 Thu Aug 21 18:28:51 EDT 2025 Fri Jul 11 11:48:24 EDT 2025 Wed Aug 13 08:10:35 EDT 2025 Mon Jul 21 05:53:06 EDT 2025 Thu Apr 24 23:12:47 EDT 2025 Tue Jul 01 02:40:57 EDT 2025 Fri Feb 21 02:40:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-3b7d860fa677587c342b1fe9a56c0bb13a79f1804076a06f6174ffb12a0e794d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1957706251?pq-origsite=%requestingapplication% |
PMID | 28874743 |
PQID | 1957706251 |
PQPubID | 2041939 |
ParticipantIDs | swepub_primary_oai_gup_ub_gu_se_258809 swepub_primary_oai_DiVA_org_uu_329273 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5585405 proquest_miscellaneous_1936268115 proquest_journals_1957706251 pubmed_primary_28874743 crossref_primary_10_1038_s41598_017_08925_8 crossref_citationtrail_10_1038_s41598_017_08925_8 springer_journals_10_1038_s41598_017_08925_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-05 |
PublicationDateYYYYMMDD | 2017-09-05 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Rocha (CR17) 2011; 2011 El-Hassan, Ibrahim, Al-Mulhim, Nabhan, Chammas (CR27) 1992; 65 Sniderman, Bhopal, Prabhakaran, Sarrafzadegan, Tchernof (CR11) 2007; 36 Mantatzis (CR8) 2014; 21 Livingston (CR16) 2006; 2 Bergström (CR18) 2015; 278 Saha (CR21) 2005; 99 Kelley, Thaete, Troost, Huwe, Goodpaster (CR5) 2000; 278 Zhao (CR22) 2006; 30 Positano (CR26) 2009; 29 Ducommun, Goldberg, Korobkin, Moss, Kressel (CR19) 1979; 130 Positano (CR1) 2004; 20 Heimann (CR23) 2009; 28 Goodpaster, Thaete, Kelley (CR15) 2000; 71 Lundbom, Hakkarainen, Lundbom, Taskinen (CR13) 2013; 37 Wald (CR4) 2012; 36 CR3 CR6 Makrogiannis, Caturegli, Davatzikos, Ferrucci (CR25) 2013; 20 Marinou (CR12) 2014; 37 CR24 Kullberg, Ahlström, Johansson, Frimmel (CR2) 2007; 31 Shen (CR20) 2003; 11 Sparrow, Borkan, Gerzof, Wisniewski, Silbert (CR7) 1986; 35 Koska (CR10) 2008; 16 Goodpaster, Thaete, Simoneau, Kelley (CR14) 1997; 46 Ross, Aru, Freeman, Hudson, Janssen (CR9) 2002; 282 8925_CR6 BH Goodpaster (8925_CR15) 2000; 71 DE Kelley (8925_CR5) 2000; 278 8925_CR3 J-C Ducommun (8925_CR19) 1979; 130 G Bergström (8925_CR18) 2015; 278 EH Livingston (8925_CR16) 2006; 2 8925_CR24 R Ross (8925_CR9) 2002; 282 AY El-Hassan (8925_CR27) 1992; 65 S Makrogiannis (8925_CR25) 2013; 20 M Mantatzis (8925_CR8) 2014; 21 B Zhao (8925_CR22) 2006; 30 V Positano (8925_CR26) 2009; 29 PM Rocha (8925_CR17) 2011; 2011 BH Goodpaster (8925_CR14) 1997; 46 J Kullberg (8925_CR2) 2007; 31 J Koska (8925_CR10) 2008; 16 J Lundbom (8925_CR13) 2013; 37 D Wald (8925_CR4) 2012; 36 K Marinou (8925_CR12) 2014; 37 T Heimann (8925_CR23) 2009; 28 PK Saha (8925_CR21) 2005; 99 V Positano (8925_CR1) 2004; 20 W Shen (8925_CR20) 2003; 11 AD Sniderman (8925_CR11) 2007; 36 D Sparrow (8925_CR7) 1986; 35 |
References_xml | – volume: 46 start-page: 1579 year: 1997 end-page: 85 ident: CR14 article-title: Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat publication-title: Diabetes doi: 10.2337/diacare.46.10.1579 – volume: 16 start-page: 2003 year: 2008 end-page: 9 ident: CR10 article-title: Distribution of subcutaneous fat predicts insulin action in obesity in sex-specific manner publication-title: Obesity (Silver Spring). doi: 10.1038/oby.2008.292 – volume: 28 start-page: 1251 year: 2009 end-page: 65 ident: CR23 article-title: Comparison and evaluation of methods for liver segmentation from CT datasets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2013851 – volume: 2 start-page: 362 year: 2006 end-page: 8 ident: CR16 article-title: Lower body subcutaneous fat accumulation and diabetes mellitus risk publication-title: Surg. Obes. Relat. Dis. doi: 10.1016/j.soard.2006.02.009 – volume: 278 start-page: 645 year: 2015 end-page: 659 ident: CR18 article-title: The Swedish CArdioPulmonary BioImage Study: Objectives and design publication-title: J. Intern. Med. doi: 10.1111/joim.12384 – ident: CR6 – volume: 99 start-page: 384 year: 2005 end-page: 413 ident: CR21 article-title: Tensor scale: A local morphometric parameter with applications to computer vision and image processing publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2005.03.003 – volume: 11 start-page: 5 year: 2003 end-page: 16 ident: CR20 article-title: Adipose tissue quantification by imaging methods: a proposed classification publication-title: Obes. Res. doi: 10.1038/oby.2003.3 – volume: 2011 year: 2011 ident: CR17 article-title: Visceral abdominal and subfascial femoral adipose tissue have opposite associations with liver fat in overweight and obese premenopausal caucasian women publication-title: J Lipids doi: 10.1155/2011/154672 – volume: 31 start-page: 1806 year: 2007 end-page: 1817 ident: CR2 article-title: Automated and reproducible segmentation of visceral and subcutaneous adipose tissue from abdominal MRI publication-title: Int. J. Obes. (Lond). doi: 10.1038/sj.ijo.0803671 – volume: 21 start-page: 667 year: 2014 end-page: 74 ident: CR8 article-title: Abdominal adipose tissue distribution on MRI and diabetes publication-title: Acad. Radiol. doi: 10.1016/j.acra.2014.01.009 – volume: 36 start-page: 1421 year: 2012 end-page: 34 ident: CR4 article-title: Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.23775 – volume: 130 start-page: 511 year: 1979 end-page: 513 ident: CR19 article-title: The Relation of Liver Fat to Computed Tomography Numbers: A Preliminary Experimental Study in Rabbits publication-title: Radiology doi: 10.1148/130.2.511 – volume: 278 start-page: E941 year: 2000 end-page: 8 ident: CR5 article-title: Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance publication-title: Am. J. Physiol. Endocrinol. Metab. – ident: CR3 – volume: 37 start-page: 620 year: 2013 end-page: 2 ident: CR13 article-title: Deep subcutaneous adipose tissue is more saturated than superficial subcutaneous adipose tissue publication-title: Int. J. Obes. (Lond). doi: 10.1038/ijo.2012.72 – volume: 71 start-page: 885 year: 2000 end-page: 92 ident: CR15 article-title: Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus publication-title: Am. J. Clin. Nutr. – volume: 37 start-page: 821 year: 2014 end-page: 9 ident: CR12 article-title: Structural and functional properties of deep abdominal subcutaneous adipose tissue explain its association with insulin resistance and cardiovascular risk in men publication-title: Diabetes Care doi: 10.2337/dc13-1353 – volume: 30 start-page: 777 year: 2006 end-page: 83 ident: CR22 article-title: Automated quantification of body fat distribution on volumetric computed tomography publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/01.rct.0000228164.08968.e8 – volume: 65 start-page: 774 year: 1992 end-page: 778 ident: CR27 article-title: Fatty infiltration of the liver: Analysis of prevalence, radiological and clinical features and influence on patient management publication-title: Br. J. Radiol. doi: 10.1259/0007-1285-65-777-774 – volume: 36 start-page: 220 year: 2007 end-page: 5 ident: CR11 article-title: Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyl245 – volume: 35 start-page: 411 year: 1986 end-page: 415 ident: CR7 article-title: Relationship of Fat Distribution to Glucose Tolerance Results of Computed Tomography in Male Participants of the Normative Aging Study publication-title: Diabetes doi: 10.2337/diab.35.4.411 – ident: CR24 – volume: 29 start-page: 677 year: 2009 end-page: 84 ident: CR26 article-title: Accurate segmentation of subcutaneous and intermuscular adipose tissue from MR images of the thigh publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21699 – volume: 20 start-page: 1413 year: 2013 end-page: 1421 ident: CR25 article-title: Computer-aided assessment of regional abdominal fat with food residue removal in CT publication-title: Acad. Radiol. doi: 10.1016/j.acra.2013.08.007 – volume: 20 start-page: 684 year: 2004 end-page: 9 ident: CR1 article-title: An accurate and robust method for unsupervised assessment of abdominal fat by MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20167 – volume: 282 start-page: E657 year: 2002 end-page: 63 ident: CR9 article-title: Abdominal adiposity and insulin resistance in obese men publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00469.2001 – volume: 31 start-page: 1806 year: 2007 ident: 8925_CR2 publication-title: Int. J. Obes. (Lond). doi: 10.1038/sj.ijo.0803671 – volume: 65 start-page: 774 year: 1992 ident: 8925_CR27 publication-title: Br. J. Radiol. doi: 10.1259/0007-1285-65-777-774 – volume: 278 start-page: 645 year: 2015 ident: 8925_CR18 publication-title: J. Intern. Med. doi: 10.1111/joim.12384 – volume: 2011 year: 2011 ident: 8925_CR17 publication-title: J Lipids doi: 10.1155/2011/154672 – volume: 37 start-page: 821 year: 2014 ident: 8925_CR12 publication-title: Diabetes Care doi: 10.2337/dc13-1353 – volume: 278 start-page: E941 year: 2000 ident: 8925_CR5 publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.2000.278.5.E941 – volume: 16 start-page: 2003 year: 2008 ident: 8925_CR10 publication-title: Obesity (Silver Spring). doi: 10.1038/oby.2008.292 – ident: 8925_CR6 doi: 10.1259/bjr.20151024 – volume: 2 start-page: 362 year: 2006 ident: 8925_CR16 publication-title: Surg. Obes. Relat. Dis. doi: 10.1016/j.soard.2006.02.009 – volume: 46 start-page: 1579 year: 1997 ident: 8925_CR14 publication-title: Diabetes doi: 10.2337/diacare.46.10.1579 – volume: 11 start-page: 5 year: 2003 ident: 8925_CR20 publication-title: Obes. Res. doi: 10.1038/oby.2003.3 – ident: 8925_CR24 doi: 10.1117/12.812412 – volume: 37 start-page: 620 year: 2013 ident: 8925_CR13 publication-title: Int. J. Obes. (Lond). doi: 10.1038/ijo.2012.72 – volume: 20 start-page: 684 year: 2004 ident: 8925_CR1 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20167 – volume: 130 start-page: 511 year: 1979 ident: 8925_CR19 publication-title: Radiology doi: 10.1148/130.2.511 – volume: 30 start-page: 777 year: 2006 ident: 8925_CR22 publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/01.rct.0000228164.08968.e8 – volume: 35 start-page: 411 year: 1986 ident: 8925_CR7 publication-title: Diabetes doi: 10.2337/diab.35.4.411 – volume: 28 start-page: 1251 year: 2009 ident: 8925_CR23 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2013851 – volume: 20 start-page: 1413 year: 2013 ident: 8925_CR25 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2013.08.007 – ident: 8925_CR3 doi: 10.1097/RLI.0b013e3181f10fe1 – volume: 21 start-page: 667 year: 2014 ident: 8925_CR8 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2014.01.009 – volume: 29 start-page: 677 year: 2009 ident: 8925_CR26 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21699 – volume: 36 start-page: 220 year: 2007 ident: 8925_CR11 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyl245 – volume: 36 start-page: 1421 year: 2012 ident: 8925_CR4 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.23775 – volume: 282 start-page: E657 year: 2002 ident: 8925_CR9 publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00469.2001 – volume: 71 start-page: 885 year: 2000 ident: 8925_CR15 publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/71.4.885 – volume: 99 start-page: 384 year: 2005 ident: 8925_CR21 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2005.03.003 |
SSID | ssj0000529419 |
Score | 2.4808502 |
Snippet | Computed Tomography (CT) allows detailed studies of body composition and its association with metabolic and cardiovascular disease. The purpose of this work... |
SourceID | swepub pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10425 |
SubjectTerms | 59 639/705/1042 639/705/258 692/308/174 Abdomen abdominal fat accurate Adipose tissue Automation Body composition Cardiovascular diseases Computed tomography Fascia Humanities and Social Sciences Image processing insulin-resistance Liver mri multidisciplinary Muscles obesity quantification Radiologi och bildbehandling Radiology and Medical Imaging Science Science & Technology - Other Topics Science (multidisciplinary) Segmentation Studies thigh |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUYCLjSq4yR-nNCqUFVIcGrR3iw7trcrLUlokkP_PePEG1iK9hqPlcTjGX_jeSH0jplShuwuECRD00KKKpVSU7BSZF6xnPiyCrnD376z88vi67Jcxgu3LoZVbnXiqKhtU4U78pNMlpwTQOvZp_ZXGrpGBe9qbKFxF90LpctCSBdf8vmOJXixikzGXBmSi5MOzquQUwaqmQhJy1Tsnke3QObtWMnZYfpPcdHxQDp7hB5GJIkXE-sfozuufoLuT70lb56idjH0DcBRZ7GOhUdw4_EmxGFgr_tj_HPoYCKMAoVdt03ncD-yAdtQTTc2wsIhAQWfXuBuWPchzwoDzMWbEECedsBgh7spFPEZujz7cnF6nsb2CmkFRmGf5oZbwYjXjIPRwKu8oCbzTuqSVcSYLNdc-kyAlHOmCfOAdQrvTUY1cSDFNn-ODuqmdi8RtoJYZgBLEW4KyQpNDdhB1hNZeUdslaBsu8iqirXHQwuMjRp94LlQE2MUMEaNjFEiQR_nOe1UeWMv9dGWdypKYaf-7JkEvZ2HQX6CU0TXrhkCTSjIIwAYJ-jFxOr5dRQ0cAEQK0F8ZxPMBKE29-5Ivb4aa3SXYIYBFk7Q8Xa7_PVZe_7i_bSldt7wef1joZrrlRoGlVMJgDNBH_5DtxpaBY9Wg-qcoiVoZnm4f1leoQd0lAWZkvIIHfTXg3sNIKs3b0ZJ-g2kjCaq priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuFW9SCjIScKERjpM49nG1bVUhwalFvVl2Yi8rLcmqSQ799x07D7G0qsQ1HsuJx2N_k5n5DPCJm1z66i40JMPiTIoyllIz9FJkWvKUurz0tcM_fvLzy-z7VX61B2yqhQlJ-4HSMmzTU3bYtxYPGl8MhnsqFZLlsXgEjz11u1_VS76c_6v4yFWWyLE-hqbinq67Z9AdYHk3P3IOkv5DKBoOobNncDCiR7IY3vc57Nn6BTwZ7pO8eQnbRd81CEFtRfRINkIaRzY-94I43R2TP32LHbEVJar1tmkt6cLUk8oz6I6XXxFfdEKWF6Tt152vrSIIbcnGJ43HLSrVknZIP3wFl2enF8vzeLxSIS7REezi1BSV4NRpXqCjUJRpxkzirNQ5L6kxSaoL6RKBll1wTblDfJM5ZxKmqUXLrdLXsF83tX0LpBK04gbxEy1MJnmmmUHfp3JUls7SqowgmSZZlSPfuL_2YqNC3DsValCMQsWooBglIvg699kObBsPSh9NulOj5bUqkXlRUPTqkgg-zs1oMz4Qomvb9F7Gk_AIBMMRvBlUPQ_HcNfNEFZFUOwsglnA83HvttTr34GXO0fXC_FvBMfTcvnrtR74is_DktoZ4WT9a6Ga65Xqe5UyiSAzgi_3yK36rcJHq161VrEcd2N5-H_jv4OnLNiGjGl-BPvddW_fI9DqzIdgWbcgZCSO priority: 102 providerName: Springer Nature |
Title | Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies |
URI | https://link.springer.com/article/10.1038/s41598-017-08925-8 https://www.ncbi.nlm.nih.gov/pubmed/28874743 https://www.proquest.com/docview/1957706251 https://www.proquest.com/docview/1936268115 https://pubmed.ncbi.nlm.nih.gov/PMC5585405 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329273 https://gup.ub.gu.se/publication/258809 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4JjMpIwAsLc5zEjh8QKmXTVGkTghX1zYoTu1QqSWkSif33nJO0oqyaeIpkXz7vzv5d7PsdwGuuY-myu9CRNPMjmWS-lCnDKEWGGQ-pjTOXO3xxyc8n0XgaT_dgXe6o_4DVztDO1ZOarBbvf_-6_ogO_6FLGU9OKpyEXKIYjrc0kSz2k304xJlJOEe96OF-x_XNZNTW-nAk7D6CCdbn0ey-zPZcdQOA3txHuVlM_Yd4tJ2szu7DvR5lkmFnFg9gzxQP4U5Xd_L6ESyHTV0iVDU5SXtSElJasnB7NIhN62Pys6nwROxFiXy-LCtD6lZFJHdMu32RLOKSU8joilTNvHY5WAQhMFm4zeV-hco3pOq2KT6Gydnp1ejc70sv-BkGjLUfapEnnNqUCwwoRBZGTAfWyDTmGdU6CFMhbZDgCCB4SrlFHBRZqwOWUoMenodP4KAoC_MMSJ7QnGvEWVToSPIoZRpjpNxSmVlD88yDYP2RVdbzkrvyGAvVro-HieoUo1AxqlWMSjx4tzln2bFy3Cp9tNadWhuYCmQsBMXoL_Dg1aYbfcstmKSFKRsn48h6EgTNHjztVL25HcPROUL45YHYMoKNgOPt3u4p5j9a_u4YQzTEyR4cr83lr8e65S3edCa1dYfP8-9DVa5mqmlUyCSCUQ_e7pCbNUuFTbNGVUaxGEdt-fw_3vsF3GWtQ0ifxkdwUK8a8xJRWK0HsC-mYgCHw-H42xiPn04vv3zF1hEfDdo_G4PW-f4AgCAzmw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYxEudCojvP0AaGlD21pu0Joi3ozcWIvKy1JaBKh_il-I-O8YCnaW6_xZJP1zHi-ybwAXgfS56a6CxVJMtvjUWJzHjP0UribBC7VfmJqh0-nweTM-3jun2_Ar74WxqRV9mdic1CneWK-ke863A9DimjdeV_8sM3UKBNd7UdotGJxrC5_ostWvjvaR_5uM3Z4MNub2N1UATtBX6iyXRmmUUB1HISIlcPE9Zh0tOKxHyRUSseNQ66dCIU7DGIaaDTxntbSYTFVKLypi797AzY9F12ZEWx-OJh--jx81TFxM8_hXXUOdaPdEi2kqWJDY0Ajznw7WrWAV2Dt1ezMIUT7TzvTxgQe3oU7HXYl41bY7sGGyu7DzXaa5eUDKMZ1lSMAVimJu1YnJNdkaTI_iI6rHfK9LvFGXEWKdFHkpSJVw3iSmv693egtYkpeyN6MlPWiMpVdBIE1WZqUdbtEkVKkbJMfH8LZtWz9IxhleaaeAEkjmgYS0RsNpccDL2YSPa9UU55oRdPEAqffZJF03c7N0I2laKLubiRaxghkjGgYIyIL3g73FG2vj7XUWz3vRKf3pfgjpRa8GpZRY00YJs5UXhsa0wIoQihuweOW1cPjGJ75HoI6C8IVIRgITDfw1ZVs8a3pCu6j44fo24KdXlz-eq01_2K7FamVJ-wvvoxFfjEXdS1cxhHiWvDmP3TzuhB4aV6LUgnmoy3gT9dvy0u4NZmdnoiTo-nxM7jNGr3gNvW3YFRd1Oo5QrxKvuj0isDX61bl34poY_0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASNRLjRax3k4PiC06rJqKVQcWrQ3Eyf2dqVtsjSJUP8av45xXrAU7a3XeLLJemY832ReAG8iFQpb3YWKpJgbiDh1hUgYeinCTyOfmjC1tcNfjqOD0-DTLJxtwa--FsamVfZnYnNQZ0Vqv5GPPBFyThGteyPTpUV8nUw_rH64doKUjbT24zRaETnSlz_RfSvfH06Q17uMTT-e7B-43YQBN0W_qHJ9xbM4oiaJOOJmnvoBU57RIgmjlCrl-QkXxotR0HmU0MiguQ-MUR5LqEZBznz83Rtwk_uhZ3WMz_jwfcdG0AJPdHU61I9HJdpKW8-GZoHGgoVuvG4LrwDcq3maQ7D2n8amjTGc3oO7HYol41bs7sOWzh_ArXau5eVDWI3rqkAorDOSdE1PSGHI0uaAEJNUe-S8LvFGXEWKbLEqSk2qRgRIZjv5dkO4iC1-IfsnpKwXla3xIgixydImr7slCpcmZZsG-QhOr2XjH8N2XuT6KZAsplmkEMdRrgIRBQlT6INlhorUaJqlDnj9Jsu063tux28sZRN_92PZMkYiY2TDGBk78G64Z9V2_dhIvdPzTnYnQCn_yKsDr4dl1F0bkElyXdSWxjYDihGUO_CkZfXwOIanf4DwzgG-JgQDge0Lvr6SL86a_uAhuoCIwx3Y68Xlr9fa8C92W5Fae8Jk8W0si4u5rGvpM4Fg14G3_6Gb1yuJl-a1LLVkIVoF8WzztryC26jA8vPh8dFzuMMatRAuDXdgu7qo9QvEepV62SgVge_XrcW_ARqqZs0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+analysis+of+liver+fat%2C+muscle+and+adipose+tissue+distribution+from+CT+suitable+for+large-scale+studies&rft.jtitle=Scientific+reports&rft.au=Kullberg%2C+Joel&rft.au=Hedstr%C3%B6m%2C+Anders&rft.au=Brandberg%2C+John&rft.au=Strand%2C+Robin&rft.date=2017-09-05&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=10425&rft_id=info:doi/10.1038%2Fs41598-017-08925-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |