Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2 infection causes dysregulation of the immune system. However, the unique signature of early immune responses remains elusive. We characterized the...
Saved in:
Published in | Cell host & microbe Vol. 29; no. 2; pp. 222 - 235.e4 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
10.02.2021
The Authors. Published by Elsevier Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2 infection causes dysregulation of the immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced in SARS-CoV-2-infected animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could rescue the pneumonia with substantial reduction of viral loads in SARS-CoV-2-infected mice. Remarkably, Paquinimod treatment resulted in almost 100% survival in a lethal model of mouse coronavirus infection using the mouse hepatitis virus (MHV). A group of neutrophils that contributes to the uncontrolled pathological damage and onset of COVID-19 was dramatically induced by coronavirus infection. Paquinimod treatment could reduce these neutrophils and regain anti-viral responses, unveiling key roles of S100A8/A9 and aberrant neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention.
[Display omitted]
•S100A8 is dramatically upregulated in SARS-CoV-2-infected animal models and patients•A group of aberrant immature neutrophils is induced during SARS-CoV-2 infection•Immune disorder is mediated by the S100A8/A9-TLR4 pathway•S100A8/A9 inhibitor, Paquinimod, could prevent COVID-19-associated immune disorder
Guo et al. demonstrate that over-activation of S100A8/A9-TLR4 signaling results in immune imbalance and expansion of aberrant immature neutrophils during SARS-CoV-2 infection. Relevant therapeutic targets were validated in animal infection models. |
---|---|
AbstractList | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2 infection causes dysregulation of the immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced in SARS-CoV-2-infected animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could rescue the pneumonia with substantial reduction of viral loads in SARS-CoV-2-infected mice. Remarkably, Paquinimod treatment resulted in almost 100% survival in a lethal model of mouse coronavirus infection using the mouse hepatitis virus (MHV). A group of neutrophils that contributes to the uncontrolled pathological damage and onset of COVID-19 was dramatically induced by coronavirus infection. Paquinimod treatment could reduce these neutrophils and regain anti-viral responses, unveiling key roles of S100A8/A9 and aberrant neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2 infection causes dysregulation of the immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced in SARS-CoV-2-infected animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could rescue the pneumonia with substantial reduction of viral loads in SARS-CoV-2-infected mice. Remarkably, Paquinimod treatment resulted in almost 100% survival in a lethal model of mouse coronavirus infection using the mouse hepatitis virus (MHV). A group of neutrophils that contributes to the uncontrolled pathological damage and onset of COVID-19 was dramatically induced by coronavirus infection. Paquinimod treatment could reduce these neutrophils and regain anti-viral responses, unveiling key roles of S100A8/A9 and aberrant neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2 infection causes dysregulation of the immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced in SARS-CoV-2-infected animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could rescue the pneumonia with substantial reduction of viral loads in SARS-CoV-2-infected mice. Remarkably, Paquinimod treatment resulted in almost 100% survival in a lethal model of mouse coronavirus infection using the mouse hepatitis virus (MHV). A group of neutrophils that contributes to the uncontrolled pathological damage and onset of COVID-19 was dramatically induced by coronavirus infection. Paquinimod treatment could reduce these neutrophils and regain anti-viral responses, unveiling key roles of S100A8/A9 and aberrant neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention. Guo et al. demonstrate that over-activation of S100A8/A9-TLR4 signaling results in immune imbalance and expansion of aberrant immature neutrophils during SARS-CoV-2 infection. Relevant therapeutic targets were validated in animal infection models. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2 infection causes dysregulation of the immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced in SARS-CoV-2-infected animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could rescue the pneumonia with substantial reduction of viral loads in SARS-CoV-2-infected mice. Remarkably, Paquinimod treatment resulted in almost 100% survival in a lethal model of mouse coronavirus infection using the mouse hepatitis virus (MHV). A group of neutrophils that contributes to the uncontrolled pathological damage and onset of COVID-19 was dramatically induced by coronavirus infection. Paquinimod treatment could reduce these neutrophils and regain anti-viral responses, unveiling key roles of S100A8/A9 and aberrant neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2 infection causes dysregulation of the immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced in SARS-CoV-2-infected animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could rescue the pneumonia with substantial reduction of viral loads in SARS-CoV-2-infected mice. Remarkably, Paquinimod treatment resulted in almost 100% survival in a lethal model of mouse coronavirus infection using the mouse hepatitis virus (MHV). A group of neutrophils that contributes to the uncontrolled pathological damage and onset of COVID-19 was dramatically induced by coronavirus infection. Paquinimod treatment could reduce these neutrophils and regain anti-viral responses, unveiling key roles of S100A8/A9 and aberrant neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention. [Display omitted] •S100A8 is dramatically upregulated in SARS-CoV-2-infected animal models and patients•A group of aberrant immature neutrophils is induced during SARS-CoV-2 infection•Immune disorder is mediated by the S100A8/A9-TLR4 pathway•S100A8/A9 inhibitor, Paquinimod, could prevent COVID-19-associated immune disorder Guo et al. demonstrate that over-activation of S100A8/A9-TLR4 signaling results in immune imbalance and expansion of aberrant immature neutrophils during SARS-CoV-2 infection. Relevant therapeutic targets were validated in animal infection models. |
Author | You, Fuping Guo, Qirui Gao, Ran Wang, Nan Yang, Xiuhong Kuang, Ming Guo, Xuefei Chen, Jingxuan Xia, Huawei Zhang, Zeming Zhu, Hua Qin, Chuan Wang, Xiangxi Luo, Yujie Chen, Luoying Wei, Xuemei Zhao, Yingchi Li, Junhong Liu, Jiangning Cao, Lili Bao, Linlin Deng, Wei Wang, Xiao |
Author_xml | – sequence: 1 givenname: Qirui surname: Guo fullname: Guo, Qirui organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 2 givenname: Yingchi surname: Zhao fullname: Zhao, Yingchi organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 3 givenname: Junhong surname: Li fullname: Li, Junhong organization: University of Chinese Academy of Sciences, CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Jiangning surname: Liu fullname: Liu, Jiangning organization: Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China – sequence: 5 givenname: Xiuhong surname: Yang fullname: Yang, Xiuhong organization: Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China – sequence: 6 givenname: Xuefei surname: Guo fullname: Guo, Xuefei organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 7 givenname: Ming surname: Kuang fullname: Kuang, Ming organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 8 givenname: Huawei surname: Xia fullname: Xia, Huawei organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 9 givenname: Zeming surname: Zhang fullname: Zhang, Zeming organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 10 givenname: Lili surname: Cao fullname: Cao, Lili organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 11 givenname: Yujie surname: Luo fullname: Luo, Yujie organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 12 givenname: Linlin surname: Bao fullname: Bao, Linlin organization: Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China – sequence: 13 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 14 givenname: Xuemei surname: Wei fullname: Wei, Xuemei organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 15 givenname: Wei surname: Deng fullname: Deng, Wei organization: Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China – sequence: 16 givenname: Nan surname: Wang fullname: Wang, Nan organization: University of Chinese Academy of Sciences, CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China – sequence: 17 givenname: Luoying surname: Chen fullname: Chen, Luoying organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 18 givenname: Jingxuan surname: Chen fullname: Chen, Jingxuan organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China – sequence: 19 givenname: Hua surname: Zhu fullname: Zhu, Hua organization: Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China – sequence: 20 givenname: Ran surname: Gao fullname: Gao, Ran organization: Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China – sequence: 21 givenname: Chuan surname: Qin fullname: Qin, Chuan email: qinchuan@pumc.edu.cn organization: Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China – sequence: 22 givenname: Xiangxi surname: Wang fullname: Wang, Xiangxi email: xiangxi@ibp.ac.cn organization: University of Chinese Academy of Sciences, CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China – sequence: 23 givenname: Fuping surname: You fullname: You, Fuping email: fupingyou@hsc.pku.edu.cn organization: Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33388094$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctqGzEUFSWlebQ_0EWZZTfj6DEPCUrBuG1iCGSRtFuh0VxlZGYkV9IY8veV4yQkXWQlcXUeV-ecoiPnHSD0meAFwaQ53yz04KcFxTQP6CKP3qETIlhVNrgRRw93UjJC-TE6jXGDcV3jlnxAx4wxzrGoTtBm7fpZJ-td4U2hRhUm64obgvGSny9FMUFvVYJYqAzaqWdgByEolwoHcwp-O9gxFpmYBii2Kg3-DhxEG_fY1fWf9Y-SiI_ovVFjhE-P5xn6_evn7eqyvLq-WK-WV6WuK5FK1uT_YMVBMQwGQy0opQ3nYBQVfQ1GMK46SoEKxZuOGFH1gkBldCs0dIadoe8H3e3c5fU1uBTUKLfBTircS6-sfP3i7CDv_E62bUNbgrPA10eB4P_OEJOcbNQwjsqBn6OkVVtjzqtaZOiXl17PJk8BZwA_AHTwMQYwUtv0EGO2tqMkWO67lBu571Luu5SEyjzKVPof9Un9TdK3AwlywjsLQUZtwelcYwCdZO_tW_R_Uw-4kQ |
CitedBy_id | crossref_primary_10_1002_cac2_12388 crossref_primary_10_1016_j_jtha_2023_01_018 crossref_primary_10_1038_s41467_023_38842_6 crossref_primary_10_1186_s10020_024_00898_5 crossref_primary_10_3389_fimmu_2022_970287 crossref_primary_10_1007_s00011_024_01985_3 crossref_primary_10_3389_fimmu_2024_1294020 crossref_primary_10_3389_fmicb_2022_854172 crossref_primary_10_1002_jmv_70311 crossref_primary_10_3390_immuno2030033 crossref_primary_10_1093_bib_bbae482 crossref_primary_10_3389_fimmu_2023_1259879 crossref_primary_10_12677_jcpm_2024_34248 crossref_primary_10_3390_ijms23094894 crossref_primary_10_1002_mco2_90 crossref_primary_10_1038_s41467_024_55272_0 crossref_primary_10_3390_diagnostics12061324 crossref_primary_10_1016_j_xcrm_2022_100522 crossref_primary_10_1016_j_jprot_2024_105356 crossref_primary_10_1007_s00011_024_01937_x crossref_primary_10_1007_s40495_023_00328_w crossref_primary_10_1038_s42003_022_03035_2 crossref_primary_10_1126_sciimmunol_adg0033 crossref_primary_10_1016_j_intimp_2024_111788 crossref_primary_10_4110_in_2022_22_e22 crossref_primary_10_1002_btm2_70016 crossref_primary_10_1021_acs_jproteome_2c00219 crossref_primary_10_3389_fmed_2022_970423 crossref_primary_10_1016_j_biopha_2021_112346 crossref_primary_10_1016_j_isci_2022_105748 crossref_primary_10_1038_s42003_024_07025_4 crossref_primary_10_1016_j_ejim_2023_11_001 crossref_primary_10_1172_jci_insight_186133 crossref_primary_10_1007_s00011_023_01757_5 crossref_primary_10_1016_j_jinf_2021_11_017 crossref_primary_10_1007_s12011_021_02869_x crossref_primary_10_1016_j_cyto_2024_156688 crossref_primary_10_1093_procel_pwac027 crossref_primary_10_1371_journal_ppat_1009850 crossref_primary_10_1038_s41467_022_32320_1 crossref_primary_10_2174_1389201023666220404183859 crossref_primary_10_3389_fimmu_2021_701273 crossref_primary_10_1053_j_gastro_2024_03_038 crossref_primary_10_1002_ijc_35128 crossref_primary_10_1126_sciimmunol_abm5505 crossref_primary_10_1016_j_jep_2023_117231 crossref_primary_10_3390_v16010027 crossref_primary_10_1080_1040841X_2024_2384885 crossref_primary_10_1002_jmv_28122 crossref_primary_10_1016_j_cytogfr_2021_10_004 crossref_primary_10_1111_bph_16013 crossref_primary_10_3390_v13122383 crossref_primary_10_3390_ijms24097717 crossref_primary_10_52794_hujpharm_1140957 crossref_primary_10_3390_cells11152274 crossref_primary_10_1167_iovs_66_1_35 crossref_primary_10_1016_j_jcyt_2021_12_003 crossref_primary_10_1161_CIRCULATIONAHA_123_064734 crossref_primary_10_3389_fimmu_2023_1254310 crossref_primary_10_1089_aid_2021_0193 crossref_primary_10_1002_prca_202200070 crossref_primary_10_1016_j_apmt_2024_102110 crossref_primary_10_1186_s40779_023_00462_y crossref_primary_10_1038_s41577_023_00834_4 crossref_primary_10_3389_fimmu_2024_1302163 crossref_primary_10_3390_ijms222413480 crossref_primary_10_1016_j_jid_2023_05_028 crossref_primary_10_1007_s00423_022_02495_8 crossref_primary_10_1182_blood_2021014966 crossref_primary_10_1093_nsr_nwab143 crossref_primary_10_1021_acsinfecdis_3c00249 crossref_primary_10_1128_jvi_00967_22 crossref_primary_10_1038_s44161_022_00108_7 crossref_primary_10_18632_aging_204842 crossref_primary_10_1021_acsami_1c02755 crossref_primary_10_1016_j_smim_2021_101524 crossref_primary_10_4049_jimmunol_2300640 crossref_primary_10_1038_s41592_022_01709_7 crossref_primary_10_1093_jleuko_qiad099 crossref_primary_10_3389_fonc_2024_1344669 crossref_primary_10_3390_biomedicines10020382 crossref_primary_10_1016_j_intimp_2024_112963 crossref_primary_10_3389_fmolb_2022_952626 crossref_primary_10_1016_j_intimp_2023_109716 crossref_primary_10_1158_2326_6066_CIR_21_0675 crossref_primary_10_1016_j_biopha_2023_115674 crossref_primary_10_1073_pnas_2120680119 crossref_primary_10_1049_syb2_12080 crossref_primary_10_1111_cts_13400 crossref_primary_10_1016_j_bbcan_2023_188891 crossref_primary_10_1126_sciadv_adl5762 crossref_primary_10_1111_imr_13114 crossref_primary_10_3390_ijms24032112 crossref_primary_10_1080_1040841X_2024_2340643 crossref_primary_10_1155_2021_5488591 crossref_primary_10_1167_iovs_65_13_29 crossref_primary_10_1186_s12931_025_03181_1 crossref_primary_10_1111_imm_13850 crossref_primary_10_1016_j_intimp_2022_109277 crossref_primary_10_1371_journal_ppat_1011902 crossref_primary_10_3389_fimmu_2022_996637 crossref_primary_10_1016_j_bcp_2021_114847 crossref_primary_10_1016_j_redox_2025_103532 crossref_primary_10_1021_acs_jproteome_1c00506 crossref_primary_10_1128_mBio_02749_21 crossref_primary_10_1038_s41467_024_52818_0 crossref_primary_10_1016_j_cytogfr_2024_10_001 crossref_primary_10_1161_CIRCRESAHA_121_319142 crossref_primary_10_2147_JIR_S460413 crossref_primary_10_1016_j_cellsig_2024_111199 crossref_primary_10_3389_fimmu_2023_1024041 crossref_primary_10_1182_bloodadvances_2022008834 crossref_primary_10_3389_fimmu_2021_738073 crossref_primary_10_2147_JMDH_S495121 crossref_primary_10_1016_j_tim_2024_07_001 crossref_primary_10_3389_fimmu_2024_1479502 crossref_primary_10_1002_JLB_1MR1221_345R crossref_primary_10_1016_j_freeradbiomed_2021_06_018 crossref_primary_10_3389_fcvm_2024_1394137 crossref_primary_10_3390_cells11121979 crossref_primary_10_1038_s41598_022_09343_1 crossref_primary_10_1186_s12943_021_01363_1 crossref_primary_10_3389_fphys_2021_752287 crossref_primary_10_1186_s12935_023_03136_w crossref_primary_10_1016_j_apsb_2023_07_027 crossref_primary_10_1186_s40560_024_00740_4 crossref_primary_10_1016_j_molimm_2024_12_004 crossref_primary_10_1096_fj_202101013 crossref_primary_10_1038_s41392_021_00764_4 crossref_primary_10_1111_imr_13175 crossref_primary_10_1002_eji_202048984 crossref_primary_10_1002_fft2_477 crossref_primary_10_3389_fimmu_2021_697405 crossref_primary_10_1016_j_ebiom_2022_104077 crossref_primary_10_1016_j_phrs_2023_107029 crossref_primary_10_1038_s41598_022_05597_x crossref_primary_10_1126_sciimmunol_abk1741 crossref_primary_10_1038_s41388_025_03276_5 crossref_primary_10_1007_s13258_022_01285_2 crossref_primary_10_1038_s41401_023_01188_2 crossref_primary_10_1097_SLA_0000000000006050 crossref_primary_10_1002_advs_202411823 crossref_primary_10_3389_fphar_2023_1187741 crossref_primary_10_1038_s41467_024_54689_x crossref_primary_10_1038_s41590_021_00901_9 crossref_primary_10_1126_sciadv_abi6802 crossref_primary_10_1016_j_jid_2022_05_1085 crossref_primary_10_3389_fmicb_2023_1146694 crossref_primary_10_3389_fimmu_2021_680134 crossref_primary_10_1016_j_cej_2025_159903 crossref_primary_10_1186_s12951_021_00926_0 crossref_primary_10_1016_j_antiviral_2022_105345 crossref_primary_10_1126_scitranslmed_adh1315 crossref_primary_10_1111_cpr_13591 crossref_primary_10_3389_fimmu_2022_842535 |
Cites_doi | 10.1016/j.mam.2014.05.001 10.1038/nm1638 10.1038/s41423-020-0402-2 10.1056/NEJMoa2001017 10.1093/cid/ciaa410 10.1038/nri2873 10.1136/annrheumdis-2014-206517 10.1126/science.abc6027 10.1038/s41423-020-0401-3 10.3390/ijms17050678 10.1016/j.cmet.2013.04.001 10.1038/s41418-020-00633-7 10.1007/s12250-014-3530-y 10.1007/s10495-015-1200-7 10.3389/fimmu.2020.00827 10.1371/journal.ppat.1000849 10.1093/nar/gkz114 10.1073/pnas.122244799 10.1016/j.immuni.2016.12.012 10.1038/s41467-019-09801-x 10.1016/j.cell.2020.04.026 10.1177/0363546517741127 10.1128/mBio.00638-15 10.1128/JVI.01130-10 10.1038/s41591-020-0901-9 10.1038/s41586-020-2008-3 10.1038/s41392-020-0148-4 10.1017/ice.2020.156 10.1038/nature01320 10.1111/imr.12577 10.1016/j.cell.2006.02.015 10.1016/j.coi.2005.06.002 10.1093/bioinformatics/bts515 10.4049/jimmunol.1402301 10.1371/journal.pone.0235458 10.1002/art.39938 10.1172/JCI62423 10.1016/j.heliyon.2020.e05116 10.1038/ni.2921 10.1001/jamainternmed.2020.0994 10.1007/s11882-018-0817-3 10.1038/s41590-020-0736-z 10.1189/jlb.0306164 10.1016/S0140-6736(20)30183-5 10.1016/j.meegid.2020.104587 10.1177/1535370216681551 10.3389/fimmu.2017.01493 10.1371/journal.pbio.1000097 10.1161/CIRCHEARTFAILURE.117.004125 10.1038/nm1124 10.1038/s41586-020-2312-y 10.1016/j.micinf.2012.10.008 10.1016/j.cell.2020.08.002 10.1172/JCI124804 10.1016/j.chom.2016.01.007 10.1016/j.cccn.2004.02.023 10.1038/s41591-020-0944-y 10.1016/j.cell.2020.08.001 10.1189/jlb.1012534 10.3389/fimmu.2018.01298 10.1038/ni.2756 10.1126/sciimmunol.abd7114 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.chom.2020.12.016 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 235.e4 |
ExternalDocumentID | PMC7762710 33388094 10_1016_j_chom_2020_12_016 S193131282030679X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG K97 M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 53G AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT RIG ZBA CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c549t-360200a8ea30ef0e59222688efa29d5ef938ab22e29a86b1f94d91e4fc79cebf3 |
IEDL.DBID | IXB |
ISSN | 1931-3128 1934-6069 |
IngestDate | Thu Aug 21 18:13:56 EDT 2025 Mon Jul 21 10:33:16 EDT 2025 Thu Apr 03 07:06:36 EDT 2025 Tue Jul 01 02:44:22 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 Fri Feb 23 02:48:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | aberrant neutrophils Paquinimod S100A8/A9 SARS-CoV-2 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-360200a8ea30ef0e59222688efa29d5ef938ab22e29a86b1f94d91e4fc79cebf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work Lead contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S193131282030679X |
PMID | 33388094 |
PQID | 2475088459 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7762710 proquest_miscellaneous_2475088459 pubmed_primary_33388094 crossref_citationtrail_10_1016_j_chom_2020_12_016 crossref_primary_10_1016_j_chom_2020_12_016 elsevier_sciencedirect_doi_10_1016_j_chom_2020_12_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-10 |
PublicationDateYYYYMMDD | 2021-02-10 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2021 |
Publisher | Elsevier Inc The Authors. Published by Elsevier Inc |
Publisher_xml | – name: Elsevier Inc – name: The Authors. Published by Elsevier Inc |
References | Bhattacharya, Sharma, Mallick, Sharma, Lee, Chakraborty (bib4) 2020; 85 Hanifehnezhad, Kehribar, Öztop, Sheraz, Kasırga, Ergünay, Önder, Yılmaz, Engin, Oğuzoğlu (bib21) 2020; 6 Vogl, Tenbrock, Ludwig, Leukert, Ehrhardt, van Zoelen, Nacken, Foell, van der Poll, Sorg, Roth (bib47) 2007; 13 Wang, Song, Wang, Jing, Wang, Ma (bib49) 2018; 9 Feng, Meyer, Wang, Liu, Shirley Liu, Zhang (bib16) 2012; 28 Zornetzer, Frieman, Rosenzweig, Korth, Page, Baric, Katze (bib63) 2010; 84 Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu (bib22) 2020; 395 Li, Wang, Jou, Huang, Hsiao, Wan, Lin, Kung, Lin (bib27) 2016; 17 Zhang, Zhou, Qiu, Song, Feng, Feng, Song, Jia, Wang (bib58) 2020; 15 Narumi, Miyakawa, Ueda, Hashimoto, Yamamoto, Yoshida, Aoki (bib34) 2015; 194 Liao, Smyth, Shi (bib28) 2019; 47 Müller, Vogl, Pappritz, Miteva, Savvatis, Rohde, Most, Lassner, Pieske, Kühl (bib32) 2017; 10 Chu, Chan, Wang, Yuen, Chai, Hou, Shuai, Yang, Hu, Huang (bib13) 2020; 71 You, Wang, Yang, Yang, Zhao, Qian, Walker, Sutton, Montgomery, Lin (bib57) 2013; 14 Diao, Wang, Tan, Chen, Liu, Ning, Chen, Li, Liu, Wang (bib15) 2020; 11 Kang, Chen, Zhang, Hou, Wu, Cao, Huang, Yu, Fan, Yan (bib23) 2014; 40 Giri, Pabelick, Mukherjee, Prakash (bib19) 2016; 21 Totura, Whitmore, Agnihothram, Schäfer, Katze, Heise, Baric (bib46) 2015; 6 Bianchi (bib5) 2007; 81 Wilk, Rustagi, Zhao, Roque, Martínez-Colón, McKechnie, Ivison, Ranganath, Vergara, Hollis (bib50) 2020; 26 Cher, Akbar, Kitson, Crowe, Garcia-Melchor, Hannah, McLean, Fazzi, Kerr, Murrell, Millar (bib12) 2018; 46 Frieman, Chen, Morrison, Whitmore, Funkhouser, Ward, Lamirande, Roberts, Heise, Subbarao, Baric (bib18) 2010; 6 Yadav, Chi, Zhao, Tourdot, Yalavarthi, Jacobs, Banka, Liao, Koonse, Anyanwu (bib54) 2019; 129 Wang, Liao, Ochani, Justiniani, Lin, Yang, Al-Abed, Wang, Metz, Miller (bib48) 2004; 10 Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu (bib62) 2020; 382 Akira, Uematsu, Takeuchi (bib1) 2006; 124 Tan, Wang, Zhang, Ding, Huang, Tang, Wang, Miao (bib45) 2020; 5 Chakraborty, Zenker, Rossaint, Hölscher, Pohlen, Zarbock, Roth, Vogl (bib8) 2017; 8 Kuri-Cervantes, Pampena, Meng, Rosenfeld, Ittner, Weisman, Agyekum, Mathew, Baxter, Vella (bib24) 2020; 5 Nathan (bib35) 2002; 420 Li, Chen, Cao, Zhu, Zheng, Zhou (bib26) 2013; 15 Nagareddy, Murphy, Stirzaker, Hu, Yu, Miller, Ramkhelawon, Distel, Westerterp, Huang (bib33) 2013; 17 Zheng, Gao, Wang, Song, Liu, Sun, Xu, Tian (bib60) 2020; 17 Hadjadj, Yatim, Barnabei, Corneau, Boussier, Smith, Péré, Charbit, Bondet, Chenevier-Gobeaux (bib20) 2020; 369 Björk, Björk, Vogl, Stenström, Liberg, Olsson, Roth, Ivars, Leanderson (bib6) 2009; 7 Blanco-Melo, Nilsson-Payant, Liu, Uhl, Hoagland, Møller, Jordan, Oishi, Panis, Sachs (bib7) 2020; 181 Li, Karlin, Loike, Silverstein (bib25) 2002; 99 Chen, Nuñez (bib11) 2010; 10 Matsuyama, Kubli, Yoshinaga, Pfeffer, Mak (bib30) 2020; 27 Patel (bib40) 2018; 18 Xie, Shi, Wu, Zhang, Kambara, Su, Yu, Park, Guo, Ren (bib53) 2020; 21 Yang, Han, Oppenheim (bib56) 2017; 280 Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao, Tian, Pei (bib52) 2020; 579 Zheng, Zhang, Yang, Zhang, Wang, Yang, Dong, Zheng (bib59) 2020; 17 Ometto, Friso, Astorri, Botsios, Raffeiner, Punzi, Doria (bib38) 2017; 242 Schelbergen, Geven, van den Bosch, Eriksson, Leanderson, Vogl, Roth, van de Loo, Koenders, van der Kraan (bib41) 2015; 74 Shi, Zuo, Yalavarthi, Gockman, Zuo, Madison, Blair, Woodward, Lezak, Lugogo (bib43) 2020 Bao, Deng, Huang, Gao, Liu, Ren, Wei, Yu, Xu, Qi (bib3) 2020; 583 Meng, Yalavarthi, Kanthi, Mazza, Elfline, Luke, Pinsky, Henke, Knight (bib31) 2017; 69 Liao, Liu, Yuan, Wen, Xu, Zhao, Cheng, Li, Wang, Wang (bib29) 2020; 26 Nauseef, Borregaard (bib36) 2014; 15 Yang, Du, Chen, Zhao, Yang, Su, Cheng, Tang (bib55) 2014; 29 Deng, Sarris, Bennin, Green, Herbomel, Huttenlocher (bib14) 2013; 93 Oppenheim, Yang (bib39) 2005; 17 Schulte-Schrepping, Reusch, Paclik, Baßler, Schlickeiser, Zhang, Krämer, Krammer, Brumhard, Bonaguro (bib42) 2020; 182 Zhou, Liu, Chen, Xiao, Huang, Fan (bib61) 2020; 41 Nicolás-Ávila, Adrover, Hidalgo (bib37) 2017; 46 Channappanavar, Fehr, Vijay, Mack, Zhao, Meyerholz, Perlman (bib10) 2016; 19 Foell, Frosch, Sorg, Roth (bib17) 2004; 344 Zuo, Yalavarthi, Shi, Gockman, Zuo, Madison, Blair, Weber, Barnes, Egeblad (bib64) 2020; 5 Chan, Roth, Oppenheim, Tracey, Vogl, Feldmann, Horwood, Nanchahal (bib9) 2012; 122 Ali, Gandhi, Meng, Yalavarthi, Vreede, Estes, Palmer, Bockenstedt, Pinsky, Greve (bib2) 2019; 10 Silvin, Chapuis, Dunsmore, Goubet, Dubuisson, Derosa, Almire, Hénon, Kosmider, Droin (bib44) 2020; 182 Wu, Chen, Cai, Xia, Zhou, Xu, Huang, Zhang, Zhou, Du (bib51) 2020; 180 Xie (10.1016/j.chom.2020.12.016_bib53) 2020; 21 Bianchi (10.1016/j.chom.2020.12.016_bib5) 2007; 81 Giri (10.1016/j.chom.2020.12.016_bib19) 2016; 21 You (10.1016/j.chom.2020.12.016_bib57) 2013; 14 Vogl (10.1016/j.chom.2020.12.016_bib47) 2007; 13 Zuo (10.1016/j.chom.2020.12.016_bib64) 2020; 5 Feng (10.1016/j.chom.2020.12.016_bib16) 2012; 28 Foell (10.1016/j.chom.2020.12.016_bib17) 2004; 344 Kang (10.1016/j.chom.2020.12.016_bib23) 2014; 40 Kuri-Cervantes (10.1016/j.chom.2020.12.016_bib24) 2020; 5 Liao (10.1016/j.chom.2020.12.016_bib28) 2019; 47 Chen (10.1016/j.chom.2020.12.016_bib11) 2010; 10 Nauseef (10.1016/j.chom.2020.12.016_bib36) 2014; 15 Deng (10.1016/j.chom.2020.12.016_bib14) 2013; 93 Zhu (10.1016/j.chom.2020.12.016_bib62) 2020; 382 Liao (10.1016/j.chom.2020.12.016_bib29) 2020; 26 Chan (10.1016/j.chom.2020.12.016_bib9) 2012; 122 Meng (10.1016/j.chom.2020.12.016_bib31) 2017; 69 Li (10.1016/j.chom.2020.12.016_bib26) 2013; 15 Zheng (10.1016/j.chom.2020.12.016_bib59) 2020; 17 Schelbergen (10.1016/j.chom.2020.12.016_bib41) 2015; 74 Frieman (10.1016/j.chom.2020.12.016_bib18) 2010; 6 Wang (10.1016/j.chom.2020.12.016_bib48) 2004; 10 Bao (10.1016/j.chom.2020.12.016_bib3) 2020; 583 Zornetzer (10.1016/j.chom.2020.12.016_bib63) 2010; 84 Cher (10.1016/j.chom.2020.12.016_bib12) 2018; 46 Akira (10.1016/j.chom.2020.12.016_bib1) 2006; 124 Chu (10.1016/j.chom.2020.12.016_bib13) 2020; 71 Wang (10.1016/j.chom.2020.12.016_bib49) 2018; 9 Chakraborty (10.1016/j.chom.2020.12.016_bib8) 2017; 8 Hanifehnezhad (10.1016/j.chom.2020.12.016_bib21) 2020; 6 Zhang (10.1016/j.chom.2020.12.016_bib58) 2020; 15 Zhou (10.1016/j.chom.2020.12.016_bib61) 2020; 41 Yang (10.1016/j.chom.2020.12.016_bib55) 2014; 29 Ometto (10.1016/j.chom.2020.12.016_bib38) 2017; 242 Ali (10.1016/j.chom.2020.12.016_bib2) 2019; 10 Oppenheim (10.1016/j.chom.2020.12.016_bib39) 2005; 17 Matsuyama (10.1016/j.chom.2020.12.016_bib30) 2020; 27 Wu (10.1016/j.chom.2020.12.016_bib52) 2020; 579 Diao (10.1016/j.chom.2020.12.016_bib15) 2020; 11 Müller (10.1016/j.chom.2020.12.016_bib32) 2017; 10 Wu (10.1016/j.chom.2020.12.016_bib51) 2020; 180 Bhattacharya (10.1016/j.chom.2020.12.016_bib4) 2020; 85 Totura (10.1016/j.chom.2020.12.016_bib46) 2015; 6 Tan (10.1016/j.chom.2020.12.016_bib45) 2020; 5 Schulte-Schrepping (10.1016/j.chom.2020.12.016_bib42) 2020; 182 Li (10.1016/j.chom.2020.12.016_bib27) 2016; 17 Wilk (10.1016/j.chom.2020.12.016_bib50) 2020; 26 Li (10.1016/j.chom.2020.12.016_bib25) 2002; 99 Nicolás-Ávila (10.1016/j.chom.2020.12.016_bib37) 2017; 46 Shi (10.1016/j.chom.2020.12.016_bib43) 2020 Björk (10.1016/j.chom.2020.12.016_bib6) 2009; 7 Channappanavar (10.1016/j.chom.2020.12.016_bib10) 2016; 19 Silvin (10.1016/j.chom.2020.12.016_bib44) 2020; 182 Nagareddy (10.1016/j.chom.2020.12.016_bib33) 2013; 17 Huang (10.1016/j.chom.2020.12.016_bib22) 2020; 395 Patel (10.1016/j.chom.2020.12.016_bib40) 2018; 18 Zheng (10.1016/j.chom.2020.12.016_bib60) 2020; 17 Blanco-Melo (10.1016/j.chom.2020.12.016_bib7) 2020; 181 Narumi (10.1016/j.chom.2020.12.016_bib34) 2015; 194 Yang (10.1016/j.chom.2020.12.016_bib56) 2017; 280 Yadav (10.1016/j.chom.2020.12.016_bib54) 2019; 129 Hadjadj (10.1016/j.chom.2020.12.016_bib20) 2020; 369 Nathan (10.1016/j.chom.2020.12.016_bib35) 2002; 420 |
References_xml | – volume: 17 start-page: 695 year: 2013 end-page: 708 ident: bib33 article-title: Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis publication-title: Cell Metab. – volume: 47 start-page: e47 year: 2019 ident: bib28 article-title: The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads publication-title: Nucleic Acids Res. – volume: 5 start-page: 33 year: 2020 ident: bib45 article-title: Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study publication-title: Signal Transduct. Target. Ther. – volume: 40 start-page: 1 year: 2014 end-page: 116 ident: bib23 article-title: HMGB1 in health and disease publication-title: Mol. Aspects Med. – volume: 99 start-page: 8289 year: 2002 end-page: 8294 ident: bib25 article-title: A critical concentration of neutrophils is required for effective bacterial killing in suspension publication-title: Proc. Natl. Acad. Sci. USA – volume: 369 start-page: 718 year: 2020 end-page: 724 ident: bib20 article-title: Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients publication-title: Science – volume: 17 start-page: 541 year: 2020 end-page: 543 ident: bib59 article-title: Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients publication-title: Cell. Mol. Immunol. – volume: 5 start-page: eabd7114 year: 2020 ident: bib24 article-title: Comprehensive mapping of immune perturbations associated with severe COVID-19 publication-title: Sci. Immunol. – year: 2020 ident: bib43 article-title: Neutrophil calprotectin identifies severe pulmonary disease in COVID-19 publication-title: J. Leukoc. Biol. – volume: 10 start-page: 1916 year: 2019 ident: bib2 article-title: Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome publication-title: Nat. Commun. – volume: 69 start-page: 655 year: 2017 end-page: 667 ident: bib31 article-title: In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody-Mediated Venous Thrombosis publication-title: Arthritis Rheumatol. – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: bib22 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet – volume: 85 start-page: 104587 year: 2020 ident: bib4 article-title: Immunoinformatics approach to understand molecular interaction between multi-epitopic regions of SARS-CoV-2 spike-protein with TLR4/MD-2 complex publication-title: Infect. Genet. Evol. – volume: 26 start-page: 842 year: 2020 end-page: 844 ident: bib29 article-title: Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 publication-title: Nat. Med. – volume: 181 start-page: 1036 year: 2020 end-page: 1045.e9 ident: bib7 article-title: Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 publication-title: Cell – volume: 27 start-page: 3209 year: 2020 end-page: 3225 ident: bib30 article-title: An aberrant STAT pathway is central to COVID-19 publication-title: Cell Death Differ. – volume: 280 start-page: 41 year: 2017 end-page: 56 ident: bib56 article-title: Alarmins and immunity publication-title: Immunol. Rev. – volume: 182 start-page: 1419 year: 2020 end-page: 1440.e23 ident: bib42 article-title: Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment publication-title: Cell – volume: 93 start-page: 761 year: 2013 end-page: 769 ident: bib14 article-title: Localized bacterial infection induces systemic activation of neutrophils through Cxcr2 signaling in zebrafish publication-title: J. Leukoc. Biol. – volume: 11 start-page: 827 year: 2020 ident: bib15 article-title: Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19) publication-title: Front. Immunol. – volume: 583 start-page: 830 year: 2020 end-page: 833 ident: bib3 article-title: The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice publication-title: Nature – volume: 242 start-page: 859 year: 2017 end-page: 873 ident: bib38 article-title: Calprotectin in rheumatic diseases publication-title: Exp. Biol. Med. (Maywood) – volume: 10 start-page: e004125 year: 2017 ident: bib32 article-title: Pathogenic Role of the Damage-Associated Molecular Patterns S100A8 and S100A9 in Coxsackievirus B3-Induced Myocarditis publication-title: Circ. Heart Fail. – volume: 17 start-page: 359 year: 2005 end-page: 365 ident: bib39 article-title: Alarmins: chemotactic activators of immune responses publication-title: Curr. Opin. Immunol. – volume: 8 start-page: 1493 year: 2017 ident: bib8 article-title: Alarmin S100A8 Activates Alveolar Epithelial Cells in the Context of Acute Lung Injury in a TLR4-Dependent Manner publication-title: Front. Immunol. – volume: 124 start-page: 783 year: 2006 end-page: 801 ident: bib1 article-title: Pathogen recognition and innate immunity publication-title: Cell – volume: 46 start-page: 671 year: 2018 end-page: 678 ident: bib12 article-title: Alarmins in Frozen Shoulder: A Molecular Association Between Inflammation and Pain publication-title: Am. J. Sports Med. – volume: 15 start-page: 88 year: 2013 end-page: 95 ident: bib26 article-title: Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response publication-title: Microbes Infect. – volume: 74 start-page: 2254 year: 2015 end-page: 2258 ident: bib41 article-title: Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis publication-title: Ann. Rheum. Dis. – volume: 17 start-page: E678 year: 2016 ident: bib27 article-title: SARS Coronavirus Papain-Like Protease Inhibits the TLR7 Signaling Pathway through Removing Lys63-Linked Polyubiquitination of TRAF3 and TRAF6 publication-title: Int. J. Mol. Sci. – volume: 6 start-page: e05116 year: 2020 ident: bib21 article-title: Characterization of local SARS-CoV-2 isolates and pathogenicity in IFNAR publication-title: Heliyon – volume: 10 start-page: 826 year: 2010 end-page: 837 ident: bib11 article-title: Sterile inflammation: sensing and reacting to damage publication-title: Nat. Rev. Immunol. – volume: 26 start-page: 1070 year: 2020 end-page: 1076 ident: bib50 article-title: A single-cell atlas of the peripheral immune response in patients with severe COVID-19 publication-title: Nat. Med. – volume: 14 start-page: 1237 year: 2013 end-page: 1246 ident: bib57 article-title: ELF4 is critical for induction of type I interferon and the host antiviral response publication-title: Nat. Immunol. – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: bib62 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: N. Engl. J. Med. – volume: 579 start-page: 265 year: 2020 end-page: 269 ident: bib52 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature – volume: 29 start-page: 393 year: 2014 end-page: 402 ident: bib55 article-title: Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice publication-title: Virol. Sin. – volume: 19 start-page: 181 year: 2016 end-page: 193 ident: bib10 article-title: Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice publication-title: Cell Host Microbe – volume: 81 start-page: 1 year: 2007 end-page: 5 ident: bib5 article-title: DAMPs, PAMPs and alarmins: all we need to know about danger publication-title: J. Leukoc. Biol. – volume: 7 start-page: e97 year: 2009 ident: bib6 article-title: Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides publication-title: PLoS Biol. – volume: 9 start-page: 1298 year: 2018 ident: bib49 article-title: S100A8/A9 in Inflammation publication-title: Front. Immunol. – volume: 10 start-page: 1216 year: 2004 end-page: 1221 ident: bib48 article-title: Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis publication-title: Nat. Med. – volume: 344 start-page: 37 year: 2004 end-page: 51 ident: bib17 article-title: Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation publication-title: Clin. Chim. Acta – volume: 129 start-page: 2872 year: 2019 end-page: 2877 ident: bib54 article-title: Ectonucleotidase tri(di)phosphohydrolase-1 (ENTPD-1) disrupts inflammasome/interleukin 1β-driven venous thrombosis publication-title: J. Clin. Invest. – volume: 71 start-page: 1400 year: 2020 end-page: 1409 ident: bib13 article-title: Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19 publication-title: Clin. Infect. Dis. – volume: 6 start-page: e00638-15 year: 2015 ident: bib46 article-title: Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection publication-title: MBio – volume: 6 start-page: e1000849 year: 2010 ident: bib18 article-title: SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism publication-title: PLoS Pathog. – volume: 17 start-page: 533 year: 2020 end-page: 535 ident: bib60 article-title: Functional exhaustion of antiviral lymphocytes in COVID-19 patients publication-title: Cell. Mol. Immunol. – volume: 194 start-page: 5539 year: 2015 end-page: 5548 ident: bib34 article-title: Proinflammatory Proteins S100A8/S100A9 Activate NK Cells via Interaction with RAGE publication-title: J. Immunol. – volume: 18 start-page: 63 year: 2018 ident: bib40 article-title: Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation publication-title: Curr. Allergy Asthma Rep. – volume: 182 start-page: 1401 year: 2020 end-page: 1418.e18 ident: bib44 article-title: Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19 publication-title: Cell – volume: 15 start-page: e0235458 year: 2020 ident: bib58 article-title: Clinical characteristics of 82 cases of death from COVID-19 publication-title: PLoS One – volume: 15 start-page: 602 year: 2014 end-page: 611 ident: bib36 article-title: Neutrophils at work publication-title: Nat. Immunol. – volume: 21 start-page: 1119 year: 2020 end-page: 1133 ident: bib53 article-title: Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection publication-title: Nat. Immunol. – volume: 180 start-page: 934 year: 2020 end-page: 943 ident: bib51 article-title: Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China publication-title: JAMA Intern. Med. – volume: 46 start-page: 15 year: 2017 end-page: 28 ident: bib37 article-title: Neutrophils in Homeostasis, Immunity, and Cancer publication-title: Immunity – volume: 21 start-page: 329 year: 2016 end-page: 339 ident: bib19 article-title: Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells publication-title: Apoptosis – volume: 122 start-page: 2711 year: 2012 end-page: 2719 ident: bib9 article-title: Alarmins: awaiting a clinical response publication-title: J. Clin. Invest. – volume: 84 start-page: 11297 year: 2010 end-page: 11309 ident: bib63 article-title: Transcriptomic analysis reveals a mechanism for a prefibrotic phenotype in STAT1 knockout mice during severe acute respiratory syndrome coronavirus infection publication-title: J. Virol. – volume: 5 start-page: 138999 year: 2020 ident: bib64 article-title: Neutrophil extracellular traps in COVID-19 publication-title: JCI Insight – volume: 420 start-page: 846 year: 2002 end-page: 852 ident: bib35 article-title: Points of control in inflammation publication-title: Nature – volume: 13 start-page: 1042 year: 2007 end-page: 1049 ident: bib47 article-title: Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock publication-title: Nat. Med. – volume: 41 start-page: 1124 year: 2020 end-page: 1125 ident: bib61 article-title: Bacterial and fungal infections in COVID-19 patients: A matter of concern publication-title: Infect. Control Hosp. Epidemiol. – volume: 28 start-page: 2782 year: 2012 end-page: 2788 ident: bib16 article-title: GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data publication-title: Bioinformatics – volume: 5 start-page: 138999 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib64 article-title: Neutrophil extracellular traps in COVID-19 publication-title: JCI Insight – volume: 40 start-page: 1 year: 2014 ident: 10.1016/j.chom.2020.12.016_bib23 article-title: HMGB1 in health and disease publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2014.05.001 – volume: 13 start-page: 1042 year: 2007 ident: 10.1016/j.chom.2020.12.016_bib47 article-title: Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock publication-title: Nat. Med. doi: 10.1038/nm1638 – volume: 17 start-page: 533 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib60 article-title: Functional exhaustion of antiviral lymphocytes in COVID-19 patients publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-020-0402-2 – volume: 382 start-page: 727 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib62 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 71 start-page: 1400 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib13 article-title: Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa410 – volume: 10 start-page: 826 year: 2010 ident: 10.1016/j.chom.2020.12.016_bib11 article-title: Sterile inflammation: sensing and reacting to damage publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2873 – volume: 74 start-page: 2254 year: 2015 ident: 10.1016/j.chom.2020.12.016_bib41 article-title: Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2014-206517 – volume: 369 start-page: 718 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib20 article-title: Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients publication-title: Science doi: 10.1126/science.abc6027 – volume: 17 start-page: 541 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib59 article-title: Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-020-0401-3 – volume: 17 start-page: E678 year: 2016 ident: 10.1016/j.chom.2020.12.016_bib27 article-title: SARS Coronavirus Papain-Like Protease Inhibits the TLR7 Signaling Pathway through Removing Lys63-Linked Polyubiquitination of TRAF3 and TRAF6 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17050678 – volume: 17 start-page: 695 year: 2013 ident: 10.1016/j.chom.2020.12.016_bib33 article-title: Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.04.001 – volume: 27 start-page: 3209 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib30 article-title: An aberrant STAT pathway is central to COVID-19 publication-title: Cell Death Differ. doi: 10.1038/s41418-020-00633-7 – volume: 29 start-page: 393 year: 2014 ident: 10.1016/j.chom.2020.12.016_bib55 article-title: Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice publication-title: Virol. Sin. doi: 10.1007/s12250-014-3530-y – volume: 21 start-page: 329 year: 2016 ident: 10.1016/j.chom.2020.12.016_bib19 article-title: Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells publication-title: Apoptosis doi: 10.1007/s10495-015-1200-7 – volume: 11 start-page: 827 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib15 article-title: Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19) publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00827 – volume: 6 start-page: e1000849 year: 2010 ident: 10.1016/j.chom.2020.12.016_bib18 article-title: SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000849 – volume: 47 start-page: e47 year: 2019 ident: 10.1016/j.chom.2020.12.016_bib28 article-title: The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz114 – volume: 99 start-page: 8289 year: 2002 ident: 10.1016/j.chom.2020.12.016_bib25 article-title: A critical concentration of neutrophils is required for effective bacterial killing in suspension publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.122244799 – volume: 46 start-page: 15 year: 2017 ident: 10.1016/j.chom.2020.12.016_bib37 article-title: Neutrophils in Homeostasis, Immunity, and Cancer publication-title: Immunity doi: 10.1016/j.immuni.2016.12.012 – volume: 10 start-page: 1916 year: 2019 ident: 10.1016/j.chom.2020.12.016_bib2 article-title: Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome publication-title: Nat. Commun. doi: 10.1038/s41467-019-09801-x – year: 2020 ident: 10.1016/j.chom.2020.12.016_bib43 article-title: Neutrophil calprotectin identifies severe pulmonary disease in COVID-19 publication-title: J. Leukoc. Biol. – volume: 181 start-page: 1036 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib7 article-title: Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.04.026 – volume: 46 start-page: 671 year: 2018 ident: 10.1016/j.chom.2020.12.016_bib12 article-title: Alarmins in Frozen Shoulder: A Molecular Association Between Inflammation and Pain publication-title: Am. J. Sports Med. doi: 10.1177/0363546517741127 – volume: 6 start-page: e00638-15 year: 2015 ident: 10.1016/j.chom.2020.12.016_bib46 article-title: Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection publication-title: MBio doi: 10.1128/mBio.00638-15 – volume: 84 start-page: 11297 year: 2010 ident: 10.1016/j.chom.2020.12.016_bib63 article-title: Transcriptomic analysis reveals a mechanism for a prefibrotic phenotype in STAT1 knockout mice during severe acute respiratory syndrome coronavirus infection publication-title: J. Virol. doi: 10.1128/JVI.01130-10 – volume: 26 start-page: 842 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib29 article-title: Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-020-0901-9 – volume: 579 start-page: 265 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib52 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 5 start-page: 33 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib45 article-title: Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-020-0148-4 – volume: 41 start-page: 1124 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib61 article-title: Bacterial and fungal infections in COVID-19 patients: A matter of concern publication-title: Infect. Control Hosp. Epidemiol. doi: 10.1017/ice.2020.156 – volume: 420 start-page: 846 year: 2002 ident: 10.1016/j.chom.2020.12.016_bib35 article-title: Points of control in inflammation publication-title: Nature doi: 10.1038/nature01320 – volume: 280 start-page: 41 year: 2017 ident: 10.1016/j.chom.2020.12.016_bib56 article-title: Alarmins and immunity publication-title: Immunol. Rev. doi: 10.1111/imr.12577 – volume: 124 start-page: 783 year: 2006 ident: 10.1016/j.chom.2020.12.016_bib1 article-title: Pathogen recognition and innate immunity publication-title: Cell doi: 10.1016/j.cell.2006.02.015 – volume: 17 start-page: 359 year: 2005 ident: 10.1016/j.chom.2020.12.016_bib39 article-title: Alarmins: chemotactic activators of immune responses publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2005.06.002 – volume: 28 start-page: 2782 year: 2012 ident: 10.1016/j.chom.2020.12.016_bib16 article-title: GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts515 – volume: 194 start-page: 5539 year: 2015 ident: 10.1016/j.chom.2020.12.016_bib34 article-title: Proinflammatory Proteins S100A8/S100A9 Activate NK Cells via Interaction with RAGE publication-title: J. Immunol. doi: 10.4049/jimmunol.1402301 – volume: 15 start-page: e0235458 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib58 article-title: Clinical characteristics of 82 cases of death from COVID-19 publication-title: PLoS One doi: 10.1371/journal.pone.0235458 – volume: 69 start-page: 655 year: 2017 ident: 10.1016/j.chom.2020.12.016_bib31 article-title: In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody-Mediated Venous Thrombosis publication-title: Arthritis Rheumatol. doi: 10.1002/art.39938 – volume: 122 start-page: 2711 year: 2012 ident: 10.1016/j.chom.2020.12.016_bib9 article-title: Alarmins: awaiting a clinical response publication-title: J. Clin. Invest. doi: 10.1172/JCI62423 – volume: 6 start-page: e05116 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib21 article-title: Characterization of local SARS-CoV-2 isolates and pathogenicity in IFNAR-/- mice publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e05116 – volume: 15 start-page: 602 year: 2014 ident: 10.1016/j.chom.2020.12.016_bib36 article-title: Neutrophils at work publication-title: Nat. Immunol. doi: 10.1038/ni.2921 – volume: 180 start-page: 934 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib51 article-title: Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2020.0994 – volume: 18 start-page: 63 year: 2018 ident: 10.1016/j.chom.2020.12.016_bib40 article-title: Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation publication-title: Curr. Allergy Asthma Rep. doi: 10.1007/s11882-018-0817-3 – volume: 21 start-page: 1119 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib53 article-title: Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0736-z – volume: 81 start-page: 1 year: 2007 ident: 10.1016/j.chom.2020.12.016_bib5 article-title: DAMPs, PAMPs and alarmins: all we need to know about danger publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0306164 – volume: 395 start-page: 497 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib22 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 85 start-page: 104587 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib4 article-title: Immunoinformatics approach to understand molecular interaction between multi-epitopic regions of SARS-CoV-2 spike-protein with TLR4/MD-2 complex publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2020.104587 – volume: 242 start-page: 859 year: 2017 ident: 10.1016/j.chom.2020.12.016_bib38 article-title: Calprotectin in rheumatic diseases publication-title: Exp. Biol. Med. (Maywood) doi: 10.1177/1535370216681551 – volume: 8 start-page: 1493 year: 2017 ident: 10.1016/j.chom.2020.12.016_bib8 article-title: Alarmin S100A8 Activates Alveolar Epithelial Cells in the Context of Acute Lung Injury in a TLR4-Dependent Manner publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01493 – volume: 7 start-page: e97 year: 2009 ident: 10.1016/j.chom.2020.12.016_bib6 article-title: Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000097 – volume: 10 start-page: e004125 year: 2017 ident: 10.1016/j.chom.2020.12.016_bib32 article-title: Pathogenic Role of the Damage-Associated Molecular Patterns S100A8 and S100A9 in Coxsackievirus B3-Induced Myocarditis publication-title: Circ. Heart Fail. doi: 10.1161/CIRCHEARTFAILURE.117.004125 – volume: 10 start-page: 1216 year: 2004 ident: 10.1016/j.chom.2020.12.016_bib48 article-title: Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis publication-title: Nat. Med. doi: 10.1038/nm1124 – volume: 583 start-page: 830 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib3 article-title: The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice publication-title: Nature doi: 10.1038/s41586-020-2312-y – volume: 15 start-page: 88 year: 2013 ident: 10.1016/j.chom.2020.12.016_bib26 article-title: Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response publication-title: Microbes Infect. doi: 10.1016/j.micinf.2012.10.008 – volume: 182 start-page: 1401 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib44 article-title: Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.08.002 – volume: 129 start-page: 2872 year: 2019 ident: 10.1016/j.chom.2020.12.016_bib54 article-title: Ectonucleotidase tri(di)phosphohydrolase-1 (ENTPD-1) disrupts inflammasome/interleukin 1β-driven venous thrombosis publication-title: J. Clin. Invest. doi: 10.1172/JCI124804 – volume: 19 start-page: 181 year: 2016 ident: 10.1016/j.chom.2020.12.016_bib10 article-title: Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.01.007 – volume: 344 start-page: 37 year: 2004 ident: 10.1016/j.chom.2020.12.016_bib17 article-title: Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation publication-title: Clin. Chim. Acta doi: 10.1016/j.cccn.2004.02.023 – volume: 26 start-page: 1070 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib50 article-title: A single-cell atlas of the peripheral immune response in patients with severe COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-020-0944-y – volume: 182 start-page: 1419 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib42 article-title: Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment publication-title: Cell doi: 10.1016/j.cell.2020.08.001 – volume: 93 start-page: 761 year: 2013 ident: 10.1016/j.chom.2020.12.016_bib14 article-title: Localized bacterial infection induces systemic activation of neutrophils through Cxcr2 signaling in zebrafish publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1012534 – volume: 9 start-page: 1298 year: 2018 ident: 10.1016/j.chom.2020.12.016_bib49 article-title: S100A8/A9 in Inflammation publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01298 – volume: 14 start-page: 1237 year: 2013 ident: 10.1016/j.chom.2020.12.016_bib57 article-title: ELF4 is critical for induction of type I interferon and the host antiviral response publication-title: Nat. Immunol. doi: 10.1038/ni.2756 – volume: 5 start-page: eabd7114 year: 2020 ident: 10.1016/j.chom.2020.12.016_bib24 article-title: Comprehensive mapping of immune perturbations associated with severe COVID-19 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abd7114 |
SSID | ssj0055071 |
Score | 2.644562 |
Snippet | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 222 |
SubjectTerms | aberrant neutrophils Alarmins - pharmacology Animals Antiviral Agents - pharmacology COVID-19 - metabolism COVID-19 - virology COVID-19 Drug Treatment Disease Models, Animal Female Humans Macaca mulatta Male Mice Mice, Inbred C57BL Mice, Knockout Neutrophils - drug effects Neutrophils - metabolism Paquinimod S100A8/A9 SARS-CoV-2 SARS-CoV-2 - drug effects Transcriptome Viral Load |
Title | Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19 |
URI | https://dx.doi.org/10.1016/j.chom.2020.12.016 https://www.ncbi.nlm.nih.gov/pubmed/33388094 https://www.proquest.com/docview/2475088459 https://pubmed.ncbi.nlm.nih.gov/PMC7762710 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEOW5QCsjcUPR-pGXj9ttqxYEHErR3izHmdBUbbLazR7675lxkhULqAeuyYzkeCYz39jzYOyDAJkWICBKtUsxQEnLyCQlROAd6k9SSCipGvnL1_T8Kv60SBZ7bD7WwlBa5WD7e5serPXwZDrs5nRZ19NLhB5So3lVAfaaBdphHeehiG9xPFpjatcl-5tlGRH1UDjT53jRPBKMEZUIR4I08_zfzulv8PlnDuVvTunsKXsyoEk-6xd8wPagecYe9fMl75-zGxrMEQoXeFtxh0HsXd3wSynELJ_ODA9lI4g1OVU39GezgbCAFbqwjjew6Vbt8rq-XXNkRKzIaYJx-5MMZL0m2vm3HxcnkTQv2NXZ6ff5eTQMV4g8hoRdpFP8bOFycFpAJSAxiBTSPIfKKVMmUBmdu0IpUMblaSErE5dGQlz5zHgoKv2S7TdtA68ZT1zlK698XnodI4OD0sXK-yxzIvfCTZgcd9X6ofM4DcC4tWOK2Y0lSViShJXK4qMJ-7jlWfZ9Nx6kTkZh2R3tsegYHuR7P0rW4m9FdyWugXaztirOCLrGiZmwV72kt-vQmjromHjCsh0d2BJQy-7dN019HVp3Z-h7ENO9-c_1vmWPFeXU0EAa8Y7td6sNHCIo6oojDAcuPh8F3f8FQE0M8w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYJLxZuUl5G4oVVs79PHEKgSaMuhLcrN8nrH7VZlN0o2B_49M_uICKAeuHpnJK_HnvnGngdj7wXIJAcBQRLaBB2UpAh0XEAAzuL-iXMJBWUjn5wms4voyyJe7LHpkAtDYZW97u90equt-5Fxv5rjZVmOzxB6yBDVq2phr17cYXcRDaR0OueLj4M6pnpdsntalgGR95kzXZAXNSRBJ1GJ9k6Qmp7_2zr9jT7_DKL8zSodPWQHPZzkk27Gj9geVI_Zva7B5M8n7Jo6c7SZC7z23KIX-6Os-JkUYpKNJ5q3eSMINjmlN3SXsy1hDiu0YQ2vYNOs6uVVebPmyIhgkVML4_qSNGS5Jtrpt-_zT4HUT9nF0efz6SzouysEDn3CJggT_G1hM7ChAC8g1ggVkiwDb5UuYvA6zGyuFChtsySXXkeFlhB5l2oHuQ-fsf2qruAF47H1zjvlssKFETJYKGyknEtTKzIn7IjJYVWN60uPUweMGzPEmF0bkoQhSRipDA6N2Ictz7IrvHErdTwIy-xsH4OW4Va-d4NkDZ4reiyxFdSbtVFRStg1ivWIPe8kvZ1HGFIJHR2NWLqzB7YEVLN790tVXrW1u1M0PgjqDv9zvm_Z_dn5ybE5np9-fckeKAqwoe404hXbb1YbeI0IqcnftCfgF2-IDxo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+alarmin+S100A8%2FA9+mediates+activation+of+aberrant+neutrophils+in+the+pathogenesis+of+COVID-19&rft.jtitle=Cell+host+%26+microbe&rft.au=Guo%2C+Qirui&rft.au=Zhao%2C+Yingchi&rft.au=Li%2C+Junhong&rft.au=Liu%2C+Jiangning&rft.date=2021-02-10&rft.eissn=1934-6069&rft.volume=29&rft.issue=2&rft.spage=222&rft_id=info:doi/10.1016%2Fj.chom.2020.12.016&rft_id=info%3Apmid%2F33388094&rft.externalDocID=33388094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |