The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway
Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are of great importance in different cell contexts. However, only a very small number of lncRNAs have been experimentally validated and functionally annotated during human hematopoiesis. Here, we report an lncRNA, HOTAIRM1, which i...
Saved in:
Published in | Cell death and differentiation Vol. 24; no. 2; pp. 212 - 224 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are of great importance in different cell contexts. However, only a very small number of lncRNAs have been experimentally validated and functionally annotated during human hematopoiesis. Here, we report an lncRNA, HOTAIRM1, which is associated with myeloid differentiation and has pivotal roles in the degradation of oncoprotein PML-RARA and in myeloid cell differentiation by regulating autophagy pathways. We first revealed that HOTAIRM1 has different variants that are expressed at different levels in cells and that the expression pattern of HOTAIRM1 is closely related to that of the PML-RARA oncoprotein in acute promyelocytic leukemia (APL) patients. We further revealed that the downregulation of HOTAIRM1 could inhibit all-trans retinoic acid (ATRA) -induced degradation of PML-RARA in APL cells and repress the process of differentiation from promyelocytic to granulocytic cells. More importantly, we found that HOTAIRM1 regulates autophagy and that autophagosome formation was inhibited when HOTAIRM1 expression was reduced in the cells. Finally, through the use of a dual luciferase activity assay, AGO2 RNA immunoprecipitation and RNA pull-down, HOTAIRM1 was revealed to act as a microRNA sponge in a pathway that included miR-20a/106b, miR-125b and their targets ULK1, E2F1 and DRAM2. We constructed a human APL-ascites SCID mouse model to validate the function of HOTAIRM1 and its regulatory pathway
in vivo
. This is the first report showing that a lncRNAs regulates autophagy and the degradation of the PML-RARA oncoprotein during the process of myeloid cell differentiation blockade, suggesting that lncRNAs may be the potential therapeutic targets for leukemia. |
---|---|
AbstractList | Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are of great importance in different cell contexts. However, only a very small number of lncRNAs have been experimentally validated and functionally annotated during human hematopoiesis. Here, we report an lncRNA, HOTAIRM1, which is associated with myeloid differentiation and has pivotal roles in the degradation of oncoprotein PML-RARA and in myeloid cell differentiation by regulating autophagy pathways. We first revealed that HOTAIRM1 has different variants that are expressed at different levels in cells and that the expression pattern of HOTAIRM1 is closely related to that of the PML-RARA oncoprotein in acute promyelocytic leukemia (APL) patients. We further revealed that the downregulation of HOTAIRM1 could inhibit all-trans retinoic acid (ATRA) -induced degradation of PML-RARA in APL cells and repress the process of differentiation from promyelocytic to granulocytic cells. More importantly, we found that HOTAIRM1 regulates autophagy and that autophagosome formation was inhibited when HOTAIRM1 expression was reduced in the cells. Finally, through the use of a dual luciferase activity assay, AGO2 RNA immunoprecipitation and RNA pull-down, HOTAIRM1 was revealed to act as a microRNA sponge in a pathway that included miR-20a/106b, miR-125b and their targets ULK1, E2F1 and DRAM2. We constructed a human APL-ascites SCID mouse model to validate the function of HOTAIRM1 and its regulatory pathway
in vivo
. This is the first report showing that a lncRNAs regulates autophagy and the degradation of the PML-RARA oncoprotein during the process of myeloid cell differentiation blockade, suggesting that lncRNAs may be the potential therapeutic targets for leukemia. Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are of great importance in different cell contexts. However, only a very small number of lncRNAs have been experimentally validated and functionally annotated during human hematopoiesis. Here, we report an lncRNA, HOTAIRM1, which is associated with myeloid differentiation and has pivotal roles in the degradation of oncoprotein PML-RARA and in myeloid cell differentiation by regulating autophagy pathways. We first revealed that HOTAIRM1 has different variants that are expressed at different levels in cells and that the expression pattern of HOTAIRM1 is closely related to that of the PML-RARA oncoprotein in acute promyelocytic leukemia (APL) patients. We further revealed that the downregulation of HOTAIRM1 could inhibit all-trans retinoic acid (ATRA) -induced degradation of PML-RARA in APL cells and repress the process of differentiation from promyelocytic to granulocytic cells. More importantly, we found that HOTAIRM1 regulates autophagy and that autophagosome formation was inhibited when HOTAIRM1 expression was reduced in the cells. Finally, through the use of a dual luciferase activity assay, AGO2 RNA immunoprecipitation and RNA pull-down, HOTAIRM1 was revealed to act as a microRNA sponge in a pathway that included miR-20a/106b, miR-125b and their targets ULK1, E2F1 and DRAM2. We constructed a human APL-ascites SCID mouse model to validate the function of HOTAIRM1 and its regulatory pathway in vivo. This is the first report showing that a lncRNAs regulates autophagy and the degradation of the PML-RARA oncoprotein during the process of myeloid cell differentiation blockade, suggesting that lncRNAs may be the potential therapeutic targets for leukemia. Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are of great importance in different cell contexts. However, only a very small number of lncRNAs have been experimentally validated and functionally annotated during human hematopoiesis. Here, we report an lncRNA, HOTAIRM1, which is associated with myeloid differentiation and has pivotal roles in the degradation of oncoprotein PML-RARA and in myeloid cell differentiation by regulating autophagy pathways. We first revealed that HOTAIRM1 has different variants that are expressed at different levels in cells and that the expression pattern of HOTAIRM1 is closely related to that of the PML-RARA oncoprotein in acute promyelocytic leukemia (APL) patients. We further revealed that the downregulation of HOTAIRM1 could inhibit all-trans retinoic acid (ATRA) -induced degradation of PML-RARA in APL cells and repress the process of differentiation from promyelocytic to granulocytic cells. More importantly, we found that HOTAIRM1 regulates autophagy and that autophagosome formation was inhibited when HOTAIRM1 expression was reduced in the cells. Finally, through the use of a dual luciferase activity assay, AGO2 RNA immunoprecipitation and RNA pull-down, HOTAIRM1 was revealed to act as a microRNA sponge in a pathway that included miR-20a/106b, miR-125b and their targets ULK1, E2F1 and DRAM2. We constructed a human APL-ascites SCID mouse model to validate the function of HOTAIRM1 and its regulatory pathway in vivo. This is the first report showing that a lncRNAs regulates autophagy and the degradation of the PML-RARA oncoprotein during the process of myeloid cell differentiation blockade, suggesting that lncRNAs may be the potential therapeutic targets for leukemia.Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are of great importance in different cell contexts. However, only a very small number of lncRNAs have been experimentally validated and functionally annotated during human hematopoiesis. Here, we report an lncRNA, HOTAIRM1, which is associated with myeloid differentiation and has pivotal roles in the degradation of oncoprotein PML-RARA and in myeloid cell differentiation by regulating autophagy pathways. We first revealed that HOTAIRM1 has different variants that are expressed at different levels in cells and that the expression pattern of HOTAIRM1 is closely related to that of the PML-RARA oncoprotein in acute promyelocytic leukemia (APL) patients. We further revealed that the downregulation of HOTAIRM1 could inhibit all-trans retinoic acid (ATRA) -induced degradation of PML-RARA in APL cells and repress the process of differentiation from promyelocytic to granulocytic cells. More importantly, we found that HOTAIRM1 regulates autophagy and that autophagosome formation was inhibited when HOTAIRM1 expression was reduced in the cells. Finally, through the use of a dual luciferase activity assay, AGO2 RNA immunoprecipitation and RNA pull-down, HOTAIRM1 was revealed to act as a microRNA sponge in a pathway that included miR-20a/106b, miR-125b and their targets ULK1, E2F1 and DRAM2. We constructed a human APL-ascites SCID mouse model to validate the function of HOTAIRM1 and its regulatory pathway in vivo. This is the first report showing that a lncRNAs regulates autophagy and the degradation of the PML-RARA oncoprotein during the process of myeloid cell differentiation blockade, suggesting that lncRNAs may be the potential therapeutic targets for leukemia. |
Author | Fang, Ke Wang, Wen-Tao Huang, Wei Sun, Yu-Meng Liu, Shu-Rong Luo, Xue-Qun Chen, Zhen-Hua Chen, Yue-Qin |
Author_xml | – sequence: 1 givenname: Zhen-Hua surname: Chen fullname: Chen, Zhen-Hua organization: Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University – sequence: 2 givenname: Wen-Tao surname: Wang fullname: Wang, Wen-Tao organization: Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University – sequence: 3 givenname: Wei surname: Huang fullname: Huang, Wei organization: Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University – sequence: 4 givenname: Ke surname: Fang fullname: Fang, Ke organization: Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University – sequence: 5 givenname: Yu-Meng surname: Sun fullname: Sun, Yu-Meng organization: Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University – sequence: 6 givenname: Shu-Rong surname: Liu fullname: Liu, Shu-Rong organization: Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University – sequence: 7 givenname: Xue-Qun surname: Luo fullname: Luo, Xue-Qun organization: Department of Pediatric, the First Affiliated Hospital of Sun Yat-sen University – sequence: 8 givenname: Yue-Qin surname: Chen fullname: Chen, Yue-Qin email: lsscyq@mail.sysu.edu.cn organization: Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Biotechnology Research Center, Sun Yat-sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27740626$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxSNURP_AjTOyxIUDWcaO7SQXpKgCWmlL0Wo5W15nkrjK2ouTgPIR-NZ4uy0qFUicbGl-8_Rm5p0mR847TJKXFBYUsuKdqesFAyoXlNInyQnluUwFh-wo_jMBaQk8P05Oh-EGAGReymfJMctzDpLJk-TnukPSO7P6XJGL63V1ubqiJGA79XrEgYyxWmMbdK1H6x3xDflytUxX1aoi3hm_C35E64h2NdnO2HtbE4N9T2rbNBjQjfbQuJkJuk47Y117q6qn0e863c5kp8fuh56fJ08b3Q_44u49S75-_LA-v0iX158uz6tlagQvx5RJQF7WiKjzBmhjuEDDjGgKVgixqWlBBZXScJrlsKGZAcE4csk0SMkbyM6S9wfd3bTZYm2ix6B7tQt2q8OsvLbqz4qznWr9dyVYWeYgosCbO4Hgv004jGprh_3Q2qGfBkULWWQMyhL-A80EpxRYEdHXj9AbPwUXN7EXzGgpc7YXfPXQ_G_X9weNADsAJvhhCNgoY8fbE8RZbK8oqH1qVEyN2qdGxdTEprePmu51_4GnB3yImGsxPLD6N_4XrSbR4Q |
CitedBy_id | crossref_primary_10_1007_s12672_023_00673_8 crossref_primary_10_1111_odi_13889 crossref_primary_10_3390_ijms241310944 crossref_primary_10_3892_ol_2019_10372 crossref_primary_10_3892_mmr_2019_9979 crossref_primary_10_1155_2021_6831770 crossref_primary_10_3390_cancers12102926 crossref_primary_10_2139_ssrn_4054848 crossref_primary_10_1016_j_biopha_2019_109171 crossref_primary_10_1080_15476286_2020_1854520 crossref_primary_10_1097_CM9_0000000000000624 crossref_primary_10_3390_ijms20122939 crossref_primary_10_1016_j_vetmic_2020_108684 crossref_primary_10_1097_MOH_0000000000000354 crossref_primary_10_1089_cbr_2019_3168 crossref_primary_10_1186_s13046_018_0747_x crossref_primary_10_1111_cpr_13185 crossref_primary_10_1007_s12035_023_03321_y crossref_primary_10_1007_s11626_019_00390_z crossref_primary_10_1016_j_cca_2019_12_003 crossref_primary_10_1186_s12859_018_2390_0 crossref_primary_10_1016_j_lfs_2021_120231 crossref_primary_10_1038_s41419_021_04146_0 crossref_primary_10_1016_j_biopha_2018_10_181 crossref_primary_10_1186_s41544_019_0012_2 crossref_primary_10_3892_mmr_2019_10314 crossref_primary_10_1097_CM9_0000000000000615 crossref_primary_10_1016_j_ejphar_2020_172976 crossref_primary_10_1093_abbs_gmaa164 crossref_primary_10_1038_s41419_020_02795_1 crossref_primary_10_1111_ijlh_13305 crossref_primary_10_1016_j_biopha_2023_115978 crossref_primary_10_1016_j_bbamcr_2023_119523 crossref_primary_10_1016_j_biopha_2023_114807 crossref_primary_10_3390_ijms19020460 crossref_primary_10_1089_dna_2020_6222 crossref_primary_10_1016_j_omtn_2020_09_008 crossref_primary_10_3892_ijo_2023_5595 crossref_primary_10_1016_j_gene_2024_148443 crossref_primary_10_1186_s13045_022_01262_y crossref_primary_10_1186_s40164_024_00488_5 crossref_primary_10_1016_j_drup_2024_101195 crossref_primary_10_1007_s11427_022_2392_8 crossref_primary_10_3390_cells8020103 crossref_primary_10_1016_j_mad_2020_111309 crossref_primary_10_3390_life12111770 crossref_primary_10_1186_s13045_019_0734_5 crossref_primary_10_1007_s11033_022_07514_x crossref_primary_10_1080_15384101_2021_1875668 crossref_primary_10_1038_s41419_020_2416_1 crossref_primary_10_1002_cbf_3531 crossref_primary_10_18632_oncotarget_14973 crossref_primary_10_1016_j_cr_2018_08_001 crossref_primary_10_3892_ol_2019_10591 crossref_primary_10_1016_j_celrep_2022_110421 crossref_primary_10_1002_cam4_1523 crossref_primary_10_1002_jcp_30590 crossref_primary_10_1016_j_apsb_2022_06_004 crossref_primary_10_1016_j_plaphy_2024_108387 crossref_primary_10_1111_bjh_14823 crossref_primary_10_1007_s13311_019_00799_0 crossref_primary_10_1186_s13046_019_1315_8 crossref_primary_10_1002_hon_2534 crossref_primary_10_1002_hon_2776 crossref_primary_10_1007_s11033_023_08466_6 crossref_primary_10_1038_cddis_2017_464 crossref_primary_10_1186_s12943_018_0845_6 crossref_primary_10_18632_aging_202263 crossref_primary_10_1016_j_biopha_2017_09_113 crossref_primary_10_3390_ijms22147268 crossref_primary_10_1007_s12031_018_1248_2 crossref_primary_10_1016_j_jpha_2024_02_011 crossref_primary_10_3390_cells13141198 crossref_primary_10_1002_cbf_3748 crossref_primary_10_1186_s40164_016_0059_9 crossref_primary_10_1016_j_phrs_2017_11_009 crossref_primary_10_1186_s12864_021_07692_1 crossref_primary_10_2174_1389202920666191017163837 crossref_primary_10_18632_oncotarget_22811 crossref_primary_10_3389_fmolb_2023_1273046 crossref_primary_10_1016_j_drudis_2023_103584 crossref_primary_10_1016_j_ncrna_2020_12_002 crossref_primary_10_1016_j_omtn_2023_03_004 crossref_primary_10_1097_QAD_0000000000002700 crossref_primary_10_1002_ijc_32277 crossref_primary_10_1093_jleuko_qiad020 crossref_primary_10_1080_15384101_2020_1838792 crossref_primary_10_1016_j_bbcan_2023_188932 crossref_primary_10_1038_s41418_023_01139_8 crossref_primary_10_1016_j_biopha_2019_108965 crossref_primary_10_1016_j_jmb_2019_06_025 crossref_primary_10_3389_fonc_2019_01008 crossref_primary_10_1080_15548627_2017_1312041 crossref_primary_10_3390_cancers11111638 crossref_primary_10_1080_21655979_2022_2086377 crossref_primary_10_3171_2019_10_JNS191959 crossref_primary_10_3389_fnins_2019_01320 crossref_primary_10_1042_BSR20180516 crossref_primary_10_1002_gcc_22794 crossref_primary_10_1155_2021_8849977 crossref_primary_10_3389_fonc_2017_00255 crossref_primary_10_1080_15548627_2020_1822628 crossref_primary_10_1182_blood_2016_10_697698 crossref_primary_10_1111_jcmm_15560 crossref_primary_10_3892_mmr_2018_9139 crossref_primary_10_1002_JLB_3MIR0918_354R crossref_primary_10_1002_adtp_201900210 crossref_primary_10_1007_s10555_019_09793_6 crossref_primary_10_1016_j_envpol_2020_114147 crossref_primary_10_1186_s13046_021_02122_2 crossref_primary_10_1016_j_semcdb_2020_06_009 crossref_primary_10_1158_1078_0432_CCR_18_1474 crossref_primary_10_3390_ncrna7010013 crossref_primary_10_1038_s41419_018_0498_9 crossref_primary_10_1093_jmcb_mjz080 crossref_primary_10_1186_s12885_022_09621_1 crossref_primary_10_1038_s41419_018_0484_2 crossref_primary_10_1016_j_bbrc_2019_10_140 crossref_primary_10_1016_j_critrevonc_2022_103849 crossref_primary_10_1186_s13046_021_01997_5 crossref_primary_10_3892_mmr_2021_12557 crossref_primary_10_1002_jcp_27036 crossref_primary_10_2174_0929867327666200320161835 crossref_primary_10_3389_fonc_2019_00570 crossref_primary_10_1007_s11010_022_04368_6 crossref_primary_10_1016_j_omtn_2019_09_033 crossref_primary_10_1007_s11033_020_05371_0 crossref_primary_10_3389_fonc_2020_597569 crossref_primary_10_1038_s41598_018_31770_2 crossref_primary_10_3390_ijms20030735 crossref_primary_10_1016_j_abb_2019_108244 crossref_primary_10_4049_jimmunol_2001008 crossref_primary_10_1016_j_canlet_2019_02_036 crossref_primary_10_2174_0115665240263059231002093454 crossref_primary_10_3389_fimmu_2018_00473 crossref_primary_10_1016_j_isci_2022_104823 crossref_primary_10_1186_s13045_020_0843_1 crossref_primary_10_1016_j_gene_2023_148074 crossref_primary_10_3389_fcell_2021_705291 crossref_primary_10_1038_s41419_018_0699_2 crossref_primary_10_1038_aps_2018_35 crossref_primary_10_1111_eos_12657 crossref_primary_10_1093_pcmedi_pbz019 crossref_primary_10_1016_j_arr_2021_101260 crossref_primary_10_1016_j_canlet_2023_216518 crossref_primary_10_1080_15548627_2021_1883881 crossref_primary_10_1038_s41598_020_78786_1 crossref_primary_10_1038_s41598_024_67975_x crossref_primary_10_1186_s13046_019_1068_4 crossref_primary_10_3390_ijms22137156 crossref_primary_10_1016_j_canlet_2019_12_022 crossref_primary_10_3390_cancers12123854 crossref_primary_10_3389_frnar_2024_1334464 crossref_primary_10_1038_s41420_020_00359_y crossref_primary_10_3390_plants9040408 crossref_primary_10_3390_cells9091979 crossref_primary_10_1016_j_biopha_2018_04_165 crossref_primary_10_1016_j_bbcan_2022_188840 crossref_primary_10_1016_j_phrs_2020_105133 crossref_primary_10_1016_j_ygeno_2024_110980 crossref_primary_10_18632_aging_204088 crossref_primary_10_1016_j_apsb_2021_10_020 |
Cites_doi | 10.1093/nar/gkt393 10.1126/science.310.5749.766 10.1093/hmg/ddu040 10.1158/2159-8290.CD-11-0209 10.1016/j.cell.2011.09.028 10.1038/nature08975 10.1124/mol.111.076794 10.1182/blood-2007-07-102798 10.1016/0092-8674(93)80044-F 10.1038/nature09204 10.1038/nature12943 10.1038/nrg2521 10.1093/nar/gks1246 10.1016/j.molcel.2011.08.018 10.1126/science.1065173 10.1182/blood-2010-01-261040 10.1186/1756-8722-6-37 10.1038/cdd.2013.110 10.1261/rna.5248604 10.4161/auto.7.4.14397 10.1016/j.cellsig.2012.07.001 10.1073/pnas.1422050112 10.1182/blood-2008-05-158139 10.4161/auto.29592 10.1038/nature10398 10.1186/s13045-015-0129-1 10.1038/ncomms7779 10.1016/j.bbagen.2013.10.035 10.1038/sj.bjc.6606095 10.18632/oncotarget.5148 10.1038/nature03677 10.15252/embj.201490784 10.1016/j.cell.2013.01.003 10.1038/ncb0910-823 10.1038/cdd.2013.119 10.4161/auto.28363 10.1182/blood-2008-06-162164 10.1038/nature12986 10.4161/auto.19496 10.1038/cdd.2014.236 10.1182/blood-2011-02-329367 10.1007/978-1-4939-2627-5_8 10.1080/15548627.2015.1094597 10.1200/JCO.2008.20.1533 10.1038/sj.cdd.4400759 10.1016/0092-8674(91)90113-D 10.1101/gr.078378.108 10.1038/cdd.2015.136 10.1080/15548627.2015.1009797 10.1016/j.ccr.2007.04.009 10.1038/onc.2008.117 10.1371/journal.pone.0034949 10.1038/nsmb.2921 10.1016/j.cell.2009.02.006 10.1016/j.molcel.2013.08.027 10.1182/blood-2012-12-469833 10.4161/rna.28828 10.1182/blood.V77.5.1080.1080 10.1182/blood.V87.8.3404.bloodjournal8783404 10.1182/blood.V89.2.376 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Feb 2017 Copyright © 2017 The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Feb 2017 – notice: Copyright © 2017 The Author(s) 2017 The Author(s) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7T5 7TK 7TM 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 7TO 5PM |
DOI | 10.1038/cdd.2016.111 |
DatabaseName | SpringerOpen CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic Oncogenes and Growth Factors Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Oncogenes and Growth Factors Abstracts |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | HOTAIRM1 regulates PML-RARA via autophagy pathways |
EISSN | 1476-5403 |
EndPage | 224 |
ExternalDocumentID | PMC5299705 4311618141 27740626 10_1038_cdd_2016_111 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- -Q- 0R~ 29B 2WC 36B 39C 3V. 4.4 406 53G 5GY 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AACDK AAHBH AANZL AASDW AASML AATNV AAYZH AAZLF ABAKF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZZP ACAOD ACGFS ACIWK ACKTT ACPRK ACRQY ACUHS ACZOJ ADBBV ADFRT ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AOIJS ASPBG AVWKF AXYYD AZFZN B0M BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A C6C CAG CCPQU COF CS3 DIK DNIVK DPUIP DU5 E3Z EAD EAP EBC EBD EBLON EBS EE. EIOEI EJD EMB EMK EMOBN EPL ESX F5P FDQFY FEDTE FERAY FIGPU FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HVGLF HYE HZ~ IWAJR JSO JZLTJ KQ8 L7B LK8 M0L M1P M7P NAO NQJWS OK1 P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT ROL RPM SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TR2 TSG TUS UKHRP ~8M AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QP 7QR 7T5 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 7X8 7TO 5PM |
ID | FETCH-LOGICAL-c549t-260e49deeea7f01fc45ec2c5f82855bd1815166c41370b13c0524e462a0664f03 |
IEDL.DBID | 7X7 |
ISSN | 1350-9047 1476-5403 |
IngestDate | Thu Aug 21 18:12:52 EDT 2025 Fri Jul 11 02:01:06 EDT 2025 Fri Jul 11 04:03:13 EDT 2025 Fri Jul 25 09:01:54 EDT 2025 Mon Jul 21 05:56:11 EDT 2025 Tue Jul 01 02:35:03 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Fri Feb 21 02:38:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-260e49deeea7f01fc45ec2c5f82855bd1815166c41370b13c0524e462a0664f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/cdd.2016.111 |
PMID | 27740626 |
PQID | 1863196720 |
PQPubID | 44124 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5299705 proquest_miscellaneous_1868320990 proquest_miscellaneous_1835411028 proquest_journals_1863196720 pubmed_primary_27740626 crossref_citationtrail_10_1038_cdd_2016_111 crossref_primary_10_1038_cdd_2016_111 springer_journals_10_1038_cdd_2016_111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Rome |
PublicationSubtitle | Official journal of the ADMC Associazione Differenziamento e Morte Cellulare |
PublicationTitle | Cell death and differentiation |
PublicationTitleAbbrev | Cell Death Differ |
PublicationTitleAlternate | Cell Death Differ |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Isakson, Bjoras, Boe, Simonsen (CR32) 2010; 116 Galluzzi, Pietrocola, Bravo-San Pedro, Amaravadi, Baehrecke, Cecconi (CR11) 2015; 34 Zeng, Zhang, Lin, Ye, Feng, Zhang (CR23) 2012; 81 Mizutani, Wakamatsu, Tanaka, Yoshida, Tochigi, Suzuki (CR3) 2012; 7 Diaz-Beya, Brunet, Nomdedeu, Pratcorona, Cordeiro, Gallardo (CR26) 2015; 6 Zhang, Lian, Padden, Gerstein, Rozowsky, Snyder (CR24) 2009; 113 Kallen, Zhou, Xu, Qiao, Ma, Yan (CR8) 2013; 52 Lalaoui, Johnstone, Ekert (CR14) 2015; 23 Wang, Chen (CR55) 2008; 111 Di Croce, Raker, Corsaro, Fazi, Fanelli, Faretta (CR29) 2002; 295 Zhang, Zhu, Watabe, Zhang, Bai, Xu (CR34) 2013; 20 Garzon, Volinia, Papaioannou, Nicolet, Kohlschmidt, Yan (CR48) 2014; 111 Villa, Pasini, Arantxa, Morey, Occhionorelli, Viré (CR30) 2007; 11 Mercer, Dinger, Mattick (CR1) 2009; 10 Eriksen, Torgersen, Holm, Abrahamsen, Spurkland, Moskaug (CR15) 2015; 11 Lanotte, Martin-Thouvenin, Najman, Balerini, Valensi, Berger (CR33) 1991; 77 Wang, Cao, Kang, Yang, Liu, Zhao (CR31) 2014; 7 Chu, Spitale, Chang (CR50) 2015; 22 Ge, Han, Huang, Peng, Wang, Jiang (CR19) 2014; 10 Necsulea, Soumillon, Warnefors, Liechti, Daish, Zeller (CR49) 2014; 505 Menzies, Moreau, Puri, Renna, Rubinsztein (CR41) 2012; 15 Grimwade, Jovanovic, Hills, Nugent, Patel, Flora (CR61) 2009; 27 Dinger, Amaral, Mercer, Pang, Bruce, Gardiner (CR6) 2008; 18 Gupta, Shah, Wang, Kim, Horlings, Wong (CR46) 2010; 464 Klattenhoff, Scheuermann, Surface, Bradley, Fields, Steinhauser (CR45) 2013; 152 Zhang, Weissman, Newburger (CR25) 2014; 11 Ablain, de The (CR28) 2011; 117 Zhang, Zhu, Chen, Du, Lu, Zhang (CR62) 1996; 87 Polager, Ofir, Ginsberg (CR43) 2008; 27 Guttman, Donaghey, Carey, Garber, Grenier, Munson (CR7) 2011; 477 O'Donnell, Wentzel, Zeller, Dang, Mendell (CR44) 2005; 435 Nie, Wu, Hsu, Chang, Labaff, Li (CR59) 2012; 4 Manodoro, Marzec, Chaplin, Miraki-Moud, Moravcsik, Jovanovic (CR57) 2014; 123 Sanchez-Mejias, Tay (CR22) 2015; 8 Paraskevopoulou, Georgakilas, Kostoulas, Vlachos, Vergoulis, Reczko (CR36) 2013; 41 Ponting, Oliver, Reik (CR2) 2009; 136 Saeed, Logie, Stunnenberg, Martens (CR56) 2011; 104 Prensner, Chinnaiyan (CR60) 2011; 1 Wang, Liu, Zhou, Wang, Wang, Zhao (CR20) 2015; 6 Grisolano, Wesselschmidt, Pelicci, Ley (CR53) 1997; 89 REHMSMEIER (CR37) 2004; 10 Behrends, Sowa, Gygi, Harper (CR12) 2010; 466 Wang, Chang (CR4) 2011; 43 Wu, Wang, Hu, Yin, Li, Zhao (CR38) 2012; 24 Zhang, Chen, Wang, Huang, He, Chen (CR5) 2013; 6 Saeki, Yuo, Okuma, Yazaki, Susin, Kroemer (CR18) 2000; 7 Zeng, Chen, Zhang, Han, Lin, Li (CR39) 2014; 10 Saumet, Vetter, Bouttier, Portales-Casamar, Wasserman, Maurin (CR58) 2009; 113 Paraskevopoulou, Georgakilas, Kostoulas, Reczko, Maragkakis, Dalamagas (CR35) 2012; 41 Mizushima, Levine (CR16) 2010; 12 Tay, Rinn, Pandolfi (CR52) 2014; 505 Klionsky, Abdalla, Abeliovich, Abraham, Acevedo-Arozena, Adeli (CR13) 2012; 8 Maiuri, Kroemer (CR17) 2015; 22 Couzin (CR21) 2005; 310 Johnsson, Lipovich, Grandér, Morris (CR51) 2014; 1840 Streeter, Menzies, Rubinsztein (CR40) 2016; 1303 Fang, Han, Chen, Lin, Zeng, Li (CR47) 2014; 23 Grignani, Ferrucci, Testa, Talamo, Fagioli, Alcalay (CR54) 1993; 74 Cesana, Cacchiarelli, Legnini, Santini, Sthandier, Chinappi (CR9) 2011; 147 Ferdin, Nishida, Wu, Nicoloso, Shah, Devlin (CR10) 2013; 20 Haim, Bluher, Slutsky, Goldstein, Kloting, Harman-Boehm (CR42) 2015; 11 de The, Lavau, Marchio, Chomienne, Degos, Dejean (CR27) 1991; 66 A Streeter (BFcdd2016111_CR40) 2016; 1303 SY Zhang (BFcdd2016111_CR62) 1996; 87 P Isakson (BFcdd2016111_CR32) 2010; 116 N Mizushima (BFcdd2016111_CR16) 2010; 12 Y Haim (BFcdd2016111_CR42) 2015; 11 K Fang (BFcdd2016111_CR47) 2014; 23 A Sanchez-Mejias (BFcdd2016111_CR22) 2015; 8 J Couzin (BFcdd2016111_CR21) 2005; 310 FM Menzies (BFcdd2016111_CR41) 2012; 15 S Polager (BFcdd2016111_CR43) 2008; 27 Z Wang (BFcdd2016111_CR31) 2014; 7 C Chu (BFcdd2016111_CR50) 2015; 22 X Zhang (BFcdd2016111_CR25) 2014; 11 M Diaz-Beya (BFcdd2016111_CR26) 2015; 6 F Manodoro (BFcdd2016111_CR57) 2014; 123 AN Kallen (BFcdd2016111_CR8) 2013; 52 CA Klattenhoff (BFcdd2016111_CR45) 2013; 152 Y Tay (BFcdd2016111_CR52) 2014; 505 R Garzon (BFcdd2016111_CR48) 2014; 111 R Mizutani (BFcdd2016111_CR3) 2012; 7 L Galluzzi (BFcdd2016111_CR11) 2015; 34 KA O'Donnell (BFcdd2016111_CR44) 2005; 435 F Grignani (BFcdd2016111_CR54) 1993; 74 S Saeed (BFcdd2016111_CR56) 2011; 104 C Zeng (BFcdd2016111_CR39) 2014; 10 MD Paraskevopoulou (BFcdd2016111_CR35) 2012; 41 ME Dinger (BFcdd2016111_CR6) 2008; 18 A Necsulea (BFcdd2016111_CR49) 2014; 505 ZY Wang (BFcdd2016111_CR55) 2008; 111 D Grimwade (BFcdd2016111_CR61) 2009; 27 P Johnsson (BFcdd2016111_CR51) 2014; 1840 N Lalaoui (BFcdd2016111_CR14) 2015; 23 J Ablain (BFcdd2016111_CR28) 2011; 117 J Ferdin (BFcdd2016111_CR10) 2013; 20 RA Gupta (BFcdd2016111_CR46) 2010; 464 C Behrends (BFcdd2016111_CR12) 2010; 466 R Villa (BFcdd2016111_CR30) 2007; 11 CP Ponting (BFcdd2016111_CR2) 2009; 136 X Zhang (BFcdd2016111_CR24) 2009; 113 TR Mercer (BFcdd2016111_CR1) 2009; 10 A Saumet (BFcdd2016111_CR58) 2009; 113 L Nie (BFcdd2016111_CR59) 2012; 4 M Lanotte (BFcdd2016111_CR33) 1991; 77 Z Zhang (BFcdd2016111_CR34) 2013; 20 K Saeki (BFcdd2016111_CR18) 2000; 7 H Wu (BFcdd2016111_CR38) 2012; 24 M Cesana (BFcdd2016111_CR9) 2011; 147 AB Eriksen (BFcdd2016111_CR15) 2015; 11 JR Prensner (BFcdd2016111_CR60) 2011; 1 JL Grisolano (BFcdd2016111_CR53) 1997; 89 D Ge (BFcdd2016111_CR19) 2014; 10 M REHMSMEIER (BFcdd2016111_CR37) 2004; 10 L Di Croce (BFcdd2016111_CR29) 2002; 295 H de The (BFcdd2016111_CR27) 1991; 66 DJ Klionsky (BFcdd2016111_CR13) 2012; 8 K Wang (BFcdd2016111_CR20) 2015; 6 MD Paraskevopoulou (BFcdd2016111_CR36) 2013; 41 MC Maiuri (BFcdd2016111_CR17) 2015; 22 M Guttman (BFcdd2016111_CR7) 2011; 477 KC Wang (BFcdd2016111_CR4) 2011; 43 CW Zeng (BFcdd2016111_CR23) 2012; 81 H Zhang (BFcdd2016111_CR5) 2013; 6 |
References_xml | – volume: 41 start-page: W169 year: 2013 end-page: W173 ident: CR36 article-title: DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt393 – volume: 4 start-page: 127 year: 2012 end-page: 150 ident: CR59 article-title: Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer publication-title: Am J Transl Res – volume: 310 start-page: 766 year: 2005 end-page: 767 ident: CR21 article-title: Cancer biology. A new cancer player takes the stage publication-title: Science doi: 10.1126/science.310.5749.766 – volume: 87 start-page: 3404 year: 1996 end-page: 3409 ident: CR62 article-title: Establishment of a human acute promyelocytic leukemia-ascites model in SCID mice publication-title: Blood – volume: 23 start-page: 3278 year: 2014 end-page: 3288 ident: CR47 article-title: A distinct set of long non-coding RNAs in childhood MLL-rearranged acute lymphoblastic leukemia: biology and epigenetic target publication-title: Hum Mol Genet doi: 10.1093/hmg/ddu040 – volume: 1 start-page: 391 year: 2011 end-page: 407 ident: CR60 article-title: The emergence of lncRNAs in cancer biology publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-11-0209 – volume: 147 start-page: 358 year: 2011 end-page: 369 ident: CR9 article-title: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA publication-title: Cell doi: 10.1016/j.cell.2011.09.028 – volume: 464 start-page: 1071 year: 2010 end-page: 1076 ident: CR46 article-title: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis publication-title: Nature doi: 10.1038/nature08975 – volume: 81 start-page: 578 year: 2012 end-page: 586 ident: CR23 article-title: Camptothecin induces apoptosis in cancer cells via microRNA-125b-mediated mitochondrial pathways publication-title: Mol Pharmacol doi: 10.1124/mol.111.076794 – volume: 111 start-page: 2505 year: 2008 end-page: 2515 ident: CR55 article-title: Acute promyelocytic leukemia: from highly fatal to highly curable publication-title: Blood doi: 10.1182/blood-2007-07-102798 – volume: 74 start-page: 423 year: 1993 end-page: 431 ident: CR54 article-title: The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells publication-title: Cell doi: 10.1016/0092-8674(93)80044-F – volume: 466 start-page: 68 year: 2010 end-page: 76 ident: CR12 article-title: Network organization of the human autophagy system publication-title: Nature doi: 10.1038/nature09204 – volume: 505 start-page: 635 year: 2014 end-page: 640 ident: CR49 article-title: The evolution of lncRNA repertoires and expression patterns in tetrapods publication-title: Nature doi: 10.1038/nature12943 – volume: 10 start-page: 155 year: 2009 end-page: 159 ident: CR1 article-title: Long non-coding RNAs: insights into functions publication-title: Nat Rev Genet doi: 10.1038/nrg2521 – volume: 15 start-page: 15 year: 2012 end-page: 16 ident: CR41 article-title: Measurement of autophagic activity in mammalian cells publication-title: Curr Protoc Cell Biol – volume: 41 start-page: D239 year: 2012 end-page: D245 ident: CR35 article-title: DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1246 – volume: 43 start-page: 904 year: 2011 end-page: 914 ident: CR4 article-title: Molecular mechanisms of long noncoding RNAs publication-title: Mol Cell doi: 10.1016/j.molcel.2011.08.018 – volume: 295 start-page: 1079 year: 2002 end-page: 1082 ident: CR29 article-title: Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor publication-title: Science doi: 10.1126/science.1065173 – volume: 89 start-page: 376 year: 1997 end-page: 387 ident: CR53 article-title: Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences publication-title: Blood – volume: 116 start-page: 2324 year: 2010 end-page: 2331 ident: CR32 article-title: Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein publication-title: Blood doi: 10.1182/blood-2010-01-261040 – volume: 6 start-page: 37 year: 2013 ident: CR5 article-title: Long non-coding RNA: a new player in cancer publication-title: J Hematol Oncol doi: 10.1186/1756-8722-6-37 – volume: 20 start-page: 1558 year: 2013 end-page: 1568 ident: CR34 article-title: Negative regulation of lncRNA GAS5 by miR-21 publication-title: Cell Death Differ doi: 10.1038/cdd.2013.110 – volume: 10 start-page: 1507 year: 2004 end-page: 1517 ident: CR37 article-title: Fast and effective prediction of microRNA/target duplexes publication-title: RNA doi: 10.1261/rna.5248604 – volume: 7 start-page: 401 year: 2014 end-page: 411 ident: CR31 article-title: Autophagy regulates myeloid cell differentiation by p62/SQSTM1-mediated degradation of PML-RARα oncoprotein publication-title: Autophagy doi: 10.4161/auto.7.4.14397 – volume: 24 start-page: 2179 year: 2012 end-page: 2186 ident: CR38 article-title: MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts publication-title: Cell Signal doi: 10.1016/j.cellsig.2012.07.001 – volume: 111 start-page: 18679 year: 2014 end-page: 18684 ident: CR48 article-title: Expression and prognostic impact of lncRNAs in acute myeloid leukemia publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1422050112 – volume: 113 start-page: 412 year: 2009 end-page: 421 ident: CR58 article-title: Transcriptional repression of microRNA genes by PML-RARA increases expression of key cancer proteins in acute promyelocytic leukemia publication-title: Blood doi: 10.1182/blood-2008-05-158139 – volume: 10 start-page: 1726 year: 2014 end-page: 1737 ident: CR39 article-title: MIR125B1 represses the degradation of the PML-RARA oncoprotein by an autophagy- lysosomal pathway in acute promyelocytic leukemia publication-title: Autophagy doi: 10.4161/auto.29592 – volume: 477 start-page: 295 year: 2011 end-page: 300 ident: CR7 article-title: lincRNAs act in the circuitry controlling pluripotency and differentiation publication-title: Nature doi: 10.1038/nature10398 – volume: 8 start-page: 30 year: 2015 ident: CR22 article-title: Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics publication-title: J Hematol Oncol doi: 10.1186/s13045-015-0129-1 – volume: 6 start-page: 6779 year: 2015 ident: CR20 article-title: APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p publication-title: Nat Commun doi: 10.1038/ncomms7779 – volume: 1840 start-page: 1063 year: 2014 end-page: 1071 ident: CR51 article-title: Evolutionary conservation of long non-coding RNAs; sequence, structure, function publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2013.10.035 – volume: 77 start-page: 1080 year: 1991 end-page: 1086 ident: CR33 article-title: NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3) publication-title: Blood – volume: 104 start-page: 554 year: 2011 end-page: 558 ident: CR56 article-title: Genome-wide functions of PML–RARa in acute promyelocytic leukaemia publication-title: Brit J Cancer doi: 10.1038/sj.bjc.6606095 – volume: 6 start-page: 31613 year: 2015 end-page: 31627 ident: CR26 article-title: The lincRNA HOTAIRM1, located in the HOXA genomic region, is expressed in acute myeloid leukemia, impacts prognosis in patients in the intermediate-risk cytogenetic category, and is associated with a distinctive microRNA signature publication-title: Oncotarget doi: 10.18632/oncotarget.5148 – volume: 435 start-page: 839 year: 2005 end-page: 843 ident: CR44 article-title: c-Myc-regulated microRNAs modulate E2F1 expression publication-title: Nature doi: 10.1038/nature03677 – volume: 34 start-page: 856 year: 2015 end-page: 880 ident: CR11 article-title: Autophagy in malignant transformation and cancer progression publication-title: EMBO J doi: 10.15252/embj.201490784 – volume: 152 start-page: 570 year: 2013 end-page: 583 ident: CR45 article-title: Braveheart, a long noncoding RNA required for cardiovascular lineage commitment publication-title: Cell doi: 10.1016/j.cell.2013.01.003 – volume: 12 start-page: 823 year: 2010 end-page: 830 ident: CR16 article-title: Autophagy in mammalian development and differentiation publication-title: Nat Cell Biol doi: 10.1038/ncb0910-823 – volume: 20 start-page: 1675 year: 2013 end-page: 1687 ident: CR10 article-title: HINCUTs in cancer: hypoxia-induced noncoding ultraconserved transcripts publication-title: Cell Death Differ doi: 10.1038/cdd.2013.119 – volume: 10 start-page: 957 year: 2014 end-page: 971 ident: CR19 article-title: Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells publication-title: Autophagy doi: 10.4161/auto.28363 – volume: 113 start-page: 2526 year: 2009 end-page: 2534 ident: CR24 article-title: A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster publication-title: Blood doi: 10.1182/blood-2008-06-162164 – volume: 505 start-page: 344 year: 2014 end-page: 352 ident: CR52 article-title: The multilayered complexity of ceRNA crosstalk and competition publication-title: Nature doi: 10.1038/nature12986 – volume: 8 start-page: 445 year: 2012 end-page: 544 ident: CR13 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy publication-title: Autophagy doi: 10.4161/auto.19496 – volume: 22 start-page: 365 year: 2015 end-page: 366 ident: CR17 article-title: Autophagy in stress and disease publication-title: Cell Death Differ doi: 10.1038/cdd.2014.236 – volume: 117 start-page: 5795 year: 2011 end-page: 5802 ident: CR28 article-title: Revisiting the differentiation paradigm in acute promyelocytic leukemia publication-title: Blood doi: 10.1182/blood-2011-02-329367 – volume: 1303 start-page: 161 year: 2016 end-page: 170 ident: CR40 article-title: LC3-II tagging and western blotting for monitoring autophagic activity in mammalian cells publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-2627-5_8 – volume: 11 start-page: 2074 year: 2015 end-page: 2088 ident: CR42 article-title: Elevated autophagy gene expression in adipose tissue of obese humans: a potential non-cell-cycle-dependent function of E2F1 publication-title: Autophagy doi: 10.1080/15548627.2015.1094597 – volume: 27 start-page: 3650 year: 2009 end-page: 3658 ident: CR61 article-title: Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy publication-title: J Clin Oncol doi: 10.1200/JCO.2008.20.1533 – volume: 7 start-page: 1263 year: 2000 end-page: 1269 ident: CR18 article-title: Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4400759 – volume: 66 start-page: 675 year: 1991 end-page: 684 ident: CR27 article-title: The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR publication-title: Cell doi: 10.1016/0092-8674(91)90113-D – volume: 18 start-page: 1433 year: 2008 end-page: 1445 ident: CR6 article-title: Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation publication-title: Genome Res doi: 10.1101/gr.078378.108 – volume: 23 start-page: 5 year: 2015 end-page: 6 ident: CR14 article-title: Autophagy and AML—food for thought publication-title: Cell Death Differ doi: 10.1038/cdd.2015.136 – volume: 11 start-page: 460 year: 2015 end-page: 471 ident: CR15 article-title: Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy publication-title: Autophagy doi: 10.1080/15548627.2015.1009797 – volume: 11 start-page: 513 year: 2007 end-page: 525 ident: CR30 article-title: Role of the polycomb repressive complex 2 in acute promyelocytic leukemia publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.04.009 – volume: 27 start-page: 4860 year: 2008 end-page: 4864 ident: CR43 article-title: E2F1 regulates autophagy and the transcription of autophagy genes publication-title: Oncogene doi: 10.1038/onc.2008.117 – volume: 7 start-page: e34949 year: 2012 ident: CR3 article-title: Identification and characterization of novel genotoxic stress-inducible nuclear long noncoding RNAs in mammalian cells publication-title: PLoS One doi: 10.1371/journal.pone.0034949 – volume: 22 start-page: 29 year: 2015 end-page: 35 ident: CR50 article-title: Technologies to probe functions and mechanisms of long noncoding RNAs publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2921 – volume: 136 start-page: 629 year: 2009 end-page: 641 ident: CR2 article-title: Evolution and functions of long noncoding RNAs publication-title: Cell doi: 10.1016/j.cell.2009.02.006 – volume: 52 start-page: 101 year: 2013 end-page: 112 ident: CR8 article-title: The imprinted H19 lncRNA antagonizes let-7 microRNAs publication-title: Mol Cell doi: 10.1016/j.molcel.2013.08.027 – volume: 123 start-page: 2066 year: 2014 end-page: 2074 ident: CR57 article-title: Loss of imprinting at the 14q32 domain is associated with microRNA overexpression in acute promyelocytic leukemia publication-title: Blood doi: 10.1182/blood-2012-12-469833 – volume: 11 start-page: 777 year: 2014 end-page: 787 ident: CR25 article-title: Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells publication-title: RNA Biol doi: 10.4161/rna.28828 – volume: 464 start-page: 1071 year: 2010 ident: BFcdd2016111_CR46 publication-title: Nature doi: 10.1038/nature08975 – volume: 6 start-page: 6779 year: 2015 ident: BFcdd2016111_CR20 publication-title: Nat Commun doi: 10.1038/ncomms7779 – volume: 113 start-page: 412 year: 2009 ident: BFcdd2016111_CR58 publication-title: Blood doi: 10.1182/blood-2008-05-158139 – volume: 41 start-page: D239 year: 2012 ident: BFcdd2016111_CR35 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1246 – volume: 1840 start-page: 1063 year: 2014 ident: BFcdd2016111_CR51 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2013.10.035 – volume: 11 start-page: 460 year: 2015 ident: BFcdd2016111_CR15 publication-title: Autophagy doi: 10.1080/15548627.2015.1009797 – volume: 111 start-page: 2505 year: 2008 ident: BFcdd2016111_CR55 publication-title: Blood doi: 10.1182/blood-2007-07-102798 – volume: 152 start-page: 570 year: 2013 ident: BFcdd2016111_CR45 publication-title: Cell doi: 10.1016/j.cell.2013.01.003 – volume: 15 start-page: 15 year: 2012 ident: BFcdd2016111_CR41 publication-title: Curr Protoc Cell Biol – volume: 24 start-page: 2179 year: 2012 ident: BFcdd2016111_CR38 publication-title: Cell Signal doi: 10.1016/j.cellsig.2012.07.001 – volume: 22 start-page: 29 year: 2015 ident: BFcdd2016111_CR50 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2921 – volume: 8 start-page: 445 year: 2012 ident: BFcdd2016111_CR13 publication-title: Autophagy doi: 10.4161/auto.19496 – volume: 7 start-page: 1263 year: 2000 ident: BFcdd2016111_CR18 publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4400759 – volume: 7 start-page: e34949 year: 2012 ident: BFcdd2016111_CR3 publication-title: PLoS One doi: 10.1371/journal.pone.0034949 – volume: 10 start-page: 1507 year: 2004 ident: BFcdd2016111_CR37 publication-title: RNA doi: 10.1261/rna.5248604 – volume: 11 start-page: 2074 year: 2015 ident: BFcdd2016111_CR42 publication-title: Autophagy doi: 10.1080/15548627.2015.1094597 – volume: 123 start-page: 2066 year: 2014 ident: BFcdd2016111_CR57 publication-title: Blood doi: 10.1182/blood-2012-12-469833 – volume: 6 start-page: 31613 year: 2015 ident: BFcdd2016111_CR26 publication-title: Oncotarget doi: 10.18632/oncotarget.5148 – volume: 43 start-page: 904 year: 2011 ident: BFcdd2016111_CR4 publication-title: Mol Cell doi: 10.1016/j.molcel.2011.08.018 – volume: 113 start-page: 2526 year: 2009 ident: BFcdd2016111_CR24 publication-title: Blood doi: 10.1182/blood-2008-06-162164 – volume: 117 start-page: 5795 year: 2011 ident: BFcdd2016111_CR28 publication-title: Blood doi: 10.1182/blood-2011-02-329367 – volume: 10 start-page: 155 year: 2009 ident: BFcdd2016111_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg2521 – volume: 10 start-page: 1726 year: 2014 ident: BFcdd2016111_CR39 publication-title: Autophagy doi: 10.4161/auto.29592 – volume: 116 start-page: 2324 year: 2010 ident: BFcdd2016111_CR32 publication-title: Blood doi: 10.1182/blood-2010-01-261040 – volume: 4 start-page: 127 year: 2012 ident: BFcdd2016111_CR59 publication-title: Am J Transl Res – volume: 23 start-page: 3278 year: 2014 ident: BFcdd2016111_CR47 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddu040 – volume: 10 start-page: 957 year: 2014 ident: BFcdd2016111_CR19 publication-title: Autophagy doi: 10.4161/auto.28363 – volume: 11 start-page: 777 year: 2014 ident: BFcdd2016111_CR25 publication-title: RNA Biol doi: 10.4161/rna.28828 – volume: 34 start-page: 856 year: 2015 ident: BFcdd2016111_CR11 publication-title: EMBO J doi: 10.15252/embj.201490784 – volume: 18 start-page: 1433 year: 2008 ident: BFcdd2016111_CR6 publication-title: Genome Res doi: 10.1101/gr.078378.108 – volume: 111 start-page: 18679 year: 2014 ident: BFcdd2016111_CR48 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1422050112 – volume: 41 start-page: W169 year: 2013 ident: BFcdd2016111_CR36 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt393 – volume: 104 start-page: 554 year: 2011 ident: BFcdd2016111_CR56 publication-title: Brit J Cancer doi: 10.1038/sj.bjc.6606095 – volume: 1303 start-page: 161 year: 2016 ident: BFcdd2016111_CR40 publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-2627-5_8 – volume: 505 start-page: 344 year: 2014 ident: BFcdd2016111_CR52 publication-title: Nature doi: 10.1038/nature12986 – volume: 77 start-page: 1080 year: 1991 ident: BFcdd2016111_CR33 publication-title: Blood doi: 10.1182/blood.V77.5.1080.1080 – volume: 12 start-page: 823 year: 2010 ident: BFcdd2016111_CR16 publication-title: Nat Cell Biol doi: 10.1038/ncb0910-823 – volume: 8 start-page: 30 year: 2015 ident: BFcdd2016111_CR22 publication-title: J Hematol Oncol doi: 10.1186/s13045-015-0129-1 – volume: 74 start-page: 423 year: 1993 ident: BFcdd2016111_CR54 publication-title: Cell doi: 10.1016/0092-8674(93)80044-F – volume: 6 start-page: 37 year: 2013 ident: BFcdd2016111_CR5 publication-title: J Hematol Oncol doi: 10.1186/1756-8722-6-37 – volume: 20 start-page: 1675 year: 2013 ident: BFcdd2016111_CR10 publication-title: Cell Death Differ doi: 10.1038/cdd.2013.119 – volume: 27 start-page: 3650 year: 2009 ident: BFcdd2016111_CR61 publication-title: J Clin Oncol doi: 10.1200/JCO.2008.20.1533 – volume: 505 start-page: 635 year: 2014 ident: BFcdd2016111_CR49 publication-title: Nature doi: 10.1038/nature12943 – volume: 310 start-page: 766 year: 2005 ident: BFcdd2016111_CR21 publication-title: Science doi: 10.1126/science.310.5749.766 – volume: 477 start-page: 295 year: 2011 ident: BFcdd2016111_CR7 publication-title: Nature doi: 10.1038/nature10398 – volume: 22 start-page: 365 year: 2015 ident: BFcdd2016111_CR17 publication-title: Cell Death Differ doi: 10.1038/cdd.2014.236 – volume: 136 start-page: 629 year: 2009 ident: BFcdd2016111_CR2 publication-title: Cell doi: 10.1016/j.cell.2009.02.006 – volume: 20 start-page: 1558 year: 2013 ident: BFcdd2016111_CR34 publication-title: Cell Death Differ doi: 10.1038/cdd.2013.110 – volume: 147 start-page: 358 year: 2011 ident: BFcdd2016111_CR9 publication-title: Cell doi: 10.1016/j.cell.2011.09.028 – volume: 7 start-page: 401 year: 2014 ident: BFcdd2016111_CR31 publication-title: Autophagy doi: 10.4161/auto.7.4.14397 – volume: 87 start-page: 3404 year: 1996 ident: BFcdd2016111_CR62 publication-title: Blood doi: 10.1182/blood.V87.8.3404.bloodjournal8783404 – volume: 81 start-page: 578 year: 2012 ident: BFcdd2016111_CR23 publication-title: Mol Pharmacol doi: 10.1124/mol.111.076794 – volume: 89 start-page: 376 year: 1997 ident: BFcdd2016111_CR53 publication-title: Blood doi: 10.1182/blood.V89.2.376 – volume: 435 start-page: 839 year: 2005 ident: BFcdd2016111_CR44 publication-title: Nature doi: 10.1038/nature03677 – volume: 66 start-page: 675 year: 1991 ident: BFcdd2016111_CR27 publication-title: Cell doi: 10.1016/0092-8674(91)90113-D – volume: 27 start-page: 4860 year: 2008 ident: BFcdd2016111_CR43 publication-title: Oncogene doi: 10.1038/onc.2008.117 – volume: 11 start-page: 513 year: 2007 ident: BFcdd2016111_CR30 publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.04.009 – volume: 23 start-page: 5 year: 2015 ident: BFcdd2016111_CR14 publication-title: Cell Death Differ doi: 10.1038/cdd.2015.136 – volume: 52 start-page: 101 year: 2013 ident: BFcdd2016111_CR8 publication-title: Mol Cell doi: 10.1016/j.molcel.2013.08.027 – volume: 466 start-page: 68 year: 2010 ident: BFcdd2016111_CR12 publication-title: Nature doi: 10.1038/nature09204 – volume: 295 start-page: 1079 year: 2002 ident: BFcdd2016111_CR29 publication-title: Science doi: 10.1126/science.1065173 – volume: 1 start-page: 391 year: 2011 ident: BFcdd2016111_CR60 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-11-0209 |
SSID | ssj0006796 |
Score | 2.5876374 |
Snippet | Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are of great importance in different cell contexts. However, only a very small number of... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 212 |
SubjectTerms | 38 42/109 631/67/395 692/699/1541 96 96/1 96/106 96/109 96/95 Acids Adolescent Animals Apoptosis Argonaute Proteins - genetics Argonaute Proteins - metabolism Autophagy Autophagy - drug effects Autophagy-Related Protein-1 Homolog - antagonists & inhibitors Autophagy-Related Protein-1 Homolog - genetics Autophagy-Related Protein-1 Homolog - metabolism Biochemistry Biomedical and Life Sciences Cell Biology Cell cycle Cell Cycle Analysis Cell death Cell Differentiation - drug effects Cell Line, Tumor Child Child, Preschool Down-Regulation - drug effects E2F1 Transcription Factor - antagonists & inhibitors E2F1 Transcription Factor - genetics E2F1 Transcription Factor - metabolism Female Genes HEK293 Cells Humans Infant Infant, Newborn Intracellular Signaling Peptides and Proteins - antagonists & inhibitors Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism Laboratories Leukemia Leukemia, Promyelocytic, Acute - genetics Leukemia, Promyelocytic, Acute - metabolism Leukemia, Promyelocytic, Acute - pathology Life Sciences Male Membrane Proteins - antagonists & inhibitors Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, SCID MicroRNAs MicroRNAs - antagonists & inhibitors MicroRNAs - genetics MicroRNAs - metabolism Oncogene Proteins, Fusion - antagonists & inhibitors Oncogene Proteins, Fusion - genetics Oncogene Proteins, Fusion - metabolism Original Paper Proteolysis - drug effects Stem Cells Tretinoin - pharmacology |
SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtQwEB2VIhAvCMotUJCRgBeI6iS2s_sYragWxBa0aqW-RY7ttCstTtXuqtpP4K-ZcS5iKSCePYkcjy_neCZnAN7goWorOxbxWDkkKMKMYj22aaxdbbnidcodEcXZkZqeiM-n8nQHPvT_woSk_SBpGbbpPjvswFiS9UwULfFbcJtE24lqTdRk2HfpRiTQK8njMRd5l-bOs9HW09sH0A1UeTM58rcIaTh4Dh_A_Q4xsqLt40PYcX4P7rQ1JDd7cHfWRccfwQ_0OVt6Mz8q2PTrcfFpPkvYZVts3l0xhHrMkjZEW0aJNTX7NvsSz4t5wRpvmiDZsPBMe8u-b9yyWVhG9_qsL6Kyat3Iqg1z_pyEOvxZeKtekzyBPtswKnB8rTeP4eTw4_FkGnelFmKDBHEVI6txYmydczqveVIbIZ1JjaxJ4E5WFnGATJQyeOTlvEoyw2UqnFCpRsgiap49gV3fePcMGBJGXZksq4XMhUF2x5VFnKnzJE0qxEMRvO_HvzSdDjmVw1iWIR6ejUr0VkneInYSwdvB-qLV3_iL3X7vyrJbhVdlMlK0w-Qpj-D10IzrhwZPe9esySaTIiGY9S8bhRsfhRAjeNrOjqEzKeJnjqwwgnxr3gwGpN-93eIX50HHWyIUyLmM4F0_w37p-h--8fn_Gr6Aeymhj5Bcvg-7q8u1e4nYaVW9CkvmJ5ZFFZk priority: 102 providerName: Springer Nature |
Title | The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway |
URI | https://link.springer.com/article/10.1038/cdd.2016.111 https://www.ncbi.nlm.nih.gov/pubmed/27740626 https://www.proquest.com/docview/1863196720 https://www.proquest.com/docview/1835411028 https://www.proquest.com/docview/1868320990 https://pubmed.ncbi.nlm.nih.gov/PMC5299705 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLVgE4gXBANGYExGAl5QNCexneYJhWpTQbRM0Sb1LXJsZ6tUnLG2QvkJ_GvuzReUwR6jXEVJ7rV9jq91DiFvYFE1hUm4n0gLBIXrka8SE_rKloZJVobMIlGczuTknH-ei3m34bbqjlX2c2IzUZtK4x75UTCSWC1xyD5cfffRNQq7q52Fxl2yi9JlWNXxfCBczR5JQ7gE8xPG4-7gO4tGR9qgTGggccrYXpJu4MybxyX_6pk2S9HJI_Kww5A0bZP-mNyxbo_ca10l6z1yf9r1y5-Qn1AFdOl0Nkvp5OtZ-imbBvS6tZ-3KwrgjxpUi2iNlWhV0tPpFz9Ls5RWTleNiMPCUeUM_VbbZbUwFHf6aW-rsm4TS4uaWneJ0h3uonmq2qBggbqoKVoe_1D1U3J-cnw2nvid-YKvgTKufeA5lifGWqvikgWl5sLqUIsSJe9EYQAZiEBKDYtgzIog0kyE3HIZKgAxvGTRM7LjKmefEwoUUhU6ikouYq6B7zFpAHmqOAiDAhCSR973_z_XnTI5GmQs86ZDHo1yyFaO2UK-4pG3Q_RVq8jxn7iDPpV5Ny5X-e8q8sjr4TaMKPx5ytlqgzGR4AECr9tiJEyF2FT0yH5bHcPLhICoGfBEj8RbdTMEoKL39h23uGyUvQWAg5gJj7zrK-yPV__HN764_RtfkgchopDmkPkB2Vlfb-wrwFDr4rAZKIdk9-Px7DSDq7Ec_wIGARxg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VIi4vCMrNUGCRKC_I6nq9a8cPCEVAldAkoCiV8mbWu-s2UliXJlHlT-Bn-EZmfAmEQt_67JG19szOnONZnyHkFRRVk5lE-ElkgaAI3fFVYrivbG5YxHLOLBLF4SjqHYlPUzndIj_bf2HwWGWbE6tEbQqN38j3g06E0RJz9u70u49To7C72o7QqMPi0JbnQNkWb_sfwL97nB98nLzv-c1UAV8DF1r6AOCtSIy1VsU5C3ItpNVcyxy13GRmoOTJIIo0ZPeYZUGomeTCiogrqM4iZyHc9xq5DoWXIdmLp2uCV32TqQieZH7CRNwctGdhZ18blCUNIkxRmyXwAq69eDzzrx5tVfoO7pI7DWal3TrI7pEt63bIjXqKZblDbg6b_vx98gOijs6dHo-6tPd50u2PhwE9q8fd2wUFsEkNqlPUg5xokdMvw4E_7o67tHC6qEQjZo4qZ-i30s6LmaHYWaDtGJdlHUg0K6l1JygV4o6ru6oVCiSo45LiiOVzVT4gR1filodk2xXOPiYUKKvKdBjmQsZCA79kkQGkq-KABxkgMo-8ad9_qhsldBzIMU-rjnzYScFbKXoL-ZFH9tbWp7UCyH_sdltXpk0eWKS_o9YjL9eXYQfjy1POFiu0CaUIEOhdZhNB6sUmpkce1dGxXgwHBM-Al3ok3oibtQEqiG9ecbOTSklcAhiJmfTI6zbC_lj6P57xyeXP-ILc6k2Gg3TQHx0-Jbc5IqDqgPsu2V6erewzwG_L7Hm1aSj5etW79BcjJVVO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiouCMrLUGCRKBdkWK9318mBQ5QSpbQJVdRKvZn17rqNFNZVk6jyT-Bf8FOZ9SMiFBCXnj2yNjuvbzLjbwDeYFI1menysCstFihcd0LVNSxUNjdU0pxR6wvF0VgOT_jnU3G6AT_ab2Gqof2K0rIK0-102AdtPK1nJL2Lv78weTNGeWDLKyzS5h_391Cju4wNPh33h2GzRyDUWP0sQoTslneNtVYlOY1yzYXVTIvcs7eJzGCSE5GUGuN5QrMo1lQwbrlkCvMxz2mM770FtxHZUz801pf9Vaz3_8JUJZ2gYZfypBmtp3Fn7cTrSe8akr0-kPlbV7ZKdoP7cK9BqaRX38sD2LBuG-7UeyvLbdgaNR35h_Ad7YzMnJ6Me2T45bi3PxlF5LJecG_nBOElMZ6Pol7dRIqcHI0Ow0lv0iOF00VFEzF1RDlDvpV2VkwN8b0E0i5uWdSmQ7KSWHfuyUHcWfVWtfSUCOqsJH6p8pUqH8HJjajlMWy6wtmnQLBIVZmO45yLhGusKKk0iG1VErEoQwwWwLv2_lPdcJ_7FRyztOrBx50UtZV6bfmKKIDdlfRFzfnxF7mdVpVp4_nzNOpIH9USRgN4vXqMPusvTzlbLL1MLHjkod2_ZCQGW9-2DOBJbR2rwzDE7BQr0QCSNbtZCXjO8PUnbnpecYcLhB8JFQG8bS3sl6P_4Tc--1_BV7B1tDdID_fHB8_hLvPgp5pt34HNxeXSvkDotsheVt5D4OtNu-tPwFFSLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+lncRNA+HOTAIRM1+regulates+the+degradation+of+PML-RARA+oncoprotein+and+myeloid+cell+differentiation+by+enhancing+the+autophagy+pathway&rft.jtitle=Cell+death+and+differentiation&rft.au=Chen%2C+Zhen-Hua&rft.au=Wang%2C+Wen-Tao&rft.au=Huang%2C+Wei&rft.au=Fang%2C+Ke&rft.date=2017-02-01&rft.issn=1476-5403&rft.eissn=1476-5403&rft.volume=24&rft.issue=2&rft.spage=212&rft_id=info:doi/10.1038%2Fcdd.2016.111&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-9047&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-9047&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-9047&client=summon |