High-level production of yeast (Schwanniomyces occidentalis) phytase in transgenic rice plants by a combination of signal sequence and codon modification of the phytase gene

Summary This study was designed to produce yeast (Schwanniomyces occidentalis) phytase in rice with a view to future applications in the animal feed industry. To achieve high‐level production, chimeric genes with the secretory signal sequence of the rice chitinase‐3 gene were constructed using eithe...

Full description

Saved in:
Bibliographic Details
Published inPlant Biotechnology Journal Vol. 3; no. 1; pp. 43 - 55
Main Authors Hamada, Akira, Yamaguchi, Ken-ichi, Ohnishi, Naoto, Harada, Michiko, Nikumaru, Seiya, Honda, Hideo
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.01.2005
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary This study was designed to produce yeast (Schwanniomyces occidentalis) phytase in rice with a view to future applications in the animal feed industry. To achieve high‐level production, chimeric genes with the secretory signal sequence of the rice chitinase‐3 gene were constructed using either the original full‐length or N‐truncated yeast phytase gene, or a modified gene whose codon usage was changed to be more similar to that of rice, and then introduced into rice (Oryza sativa L.). When the original phytase genes were used, the phytase activity in the leaves of transgenic rice was of the same level as in wild‐type plants, whose mean value was 0.039 U/g fresh weight (g‐FW) (1 U of activity was defined as 1 µmol P released per min at 37 °C). In contrast, the enzyme activity was increased markedly when codon‐modified phytase genes were introduced: up to 4.6 U/g‐FW of leaves for full‐length codon‐modified phytase, and 10.6 U/g‐FW for truncated codon‐modified phytase. A decrease in the optimum temperature and thermal stability was observed in the truncated heterologous enzyme, suggesting that the N‐terminal region plays an important role in enzymatic properties. In contrast, the optimum temperature and pH of full‐length heterologous phytase were indistinguishable from those of the benchmark yeast phytase, although the heterologous enzyme was less glycosylated. Full‐length heterologous phytase in leaf extract showed extreme stability. These results indicate that codon modification, combined with the use of a secretory signal sequence, can be used to produce substantial amounts of yeast phytase, and possibly any phytases from various organisms, in an active and stable form.
AbstractList This study was designed to produce yeast (Schwanniomyces occidentalis) phytase in rice with a view to future applications in the animal feed industry. To achieve high-level production, chimeric genes with the secretory signal sequence of the rice chitinase-3 gene were constructed using either the original full-length or N-truncated yeast phytase gene, or a modified gene whose codon usage was changed to be more similar to that of rice, and then introduced into rice (Oryza sativa L.). When the original phytase genes were used, the phytase activity in the leaves of transgenic rice was of the same level as in wild-type plants, whose mean value was 0.039 U/g fresh weight (g-FW) (1 U of activity was defined as 1 micromol P released per min at 37 degrees C). In contrast, the enzyme activity was increased markedly when codon-modified phytase genes were introduced: up to 4.6 U/g-FW of leaves for full-length codon-modified phytase, and 10.6 U/g-FW for truncated codon-modified phytase. A decrease in the optimum temperature and thermal stability was observed in the truncated heterologous enzyme, suggesting that the N-terminal region plays an important role in enzymatic properties. In contrast, the optimum temperature and pH of full-length heterologous phytase were indistinguishable from those of the benchmark yeast phytase, although the heterologous enzyme was less glycosylated. Full-length heterologous phytase in leaf extract showed extreme stability. These results indicate that codon modification, combined with the use of a secretory signal sequence, can be used to produce substantial amounts of yeast phytase, and possibly any phytases from various organisms, in an active and stable form.
This study was designed to produce yeast ( Schwanniomyces occidentalis ) phytase in rice with a view to future applications in the animal feed industry. To achieve high‐level production, chimeric genes with the secretory signal sequence of the rice chitinase‐3 gene were constructed using either the original full‐length or N‐truncated yeast phytase gene, or a modified gene whose codon usage was changed to be more similar to that of rice, and then introduced into rice ( Oryza sativa L.). When the original phytase genes were used, the phytase activity in the leaves of transgenic rice was of the same level as in wild‐type plants, whose mean value was 0.039 U/g fresh weight (g‐FW) (1 U of activity was defined as 1 µmol P released per min at 37 °C). In contrast, the enzyme activity was increased markedly when codon‐modified phytase genes were introduced: up to 4.6 U/g‐FW of leaves for full‐length codon‐modified phytase, and 10.6 U/g‐FW for truncated codon‐modified phytase. A decrease in the optimum temperature and thermal stability was observed in the truncated heterologous enzyme, suggesting that the N‐terminal region plays an important role in enzymatic properties. In contrast, the optimum temperature and pH of full‐length heterologous phytase were indistinguishable from those of the benchmark yeast phytase, although the heterologous enzyme was less glycosylated. Full‐length heterologous phytase in leaf extract showed extreme stability. These results indicate that codon modification, combined with the use of a secretory signal sequence, can be used to produce substantial amounts of yeast phytase, and possibly any phytases from various organisms, in an active and stable form.
Summary This study was designed to produce yeast (Schwanniomyces occidentalis) phytase in rice with a view to future applications in the animal feed industry. To achieve high‐level production, chimeric genes with the secretory signal sequence of the rice chitinase‐3 gene were constructed using either the original full‐length or N‐truncated yeast phytase gene, or a modified gene whose codon usage was changed to be more similar to that of rice, and then introduced into rice (Oryza sativa L.). When the original phytase genes were used, the phytase activity in the leaves of transgenic rice was of the same level as in wild‐type plants, whose mean value was 0.039 U/g fresh weight (g‐FW) (1 U of activity was defined as 1 µmol P released per min at 37 °C). In contrast, the enzyme activity was increased markedly when codon‐modified phytase genes were introduced: up to 4.6 U/g‐FW of leaves for full‐length codon‐modified phytase, and 10.6 U/g‐FW for truncated codon‐modified phytase. A decrease in the optimum temperature and thermal stability was observed in the truncated heterologous enzyme, suggesting that the N‐terminal region plays an important role in enzymatic properties. In contrast, the optimum temperature and pH of full‐length heterologous phytase were indistinguishable from those of the benchmark yeast phytase, although the heterologous enzyme was less glycosylated. Full‐length heterologous phytase in leaf extract showed extreme stability. These results indicate that codon modification, combined with the use of a secretory signal sequence, can be used to produce substantial amounts of yeast phytase, and possibly any phytases from various organisms, in an active and stable form.
This study was designed to produce yeast (Schwanniomyces occidentalis) phytase in rice with a view to future applications in the animal feed industry. To achieve high-level production, chimeric genes with the secretory signal sequence of the rice chitinase-3 gene were constructed using either the original full-length or N-truncated yeast phytase gene, or a modified gene whose codon usage was changed to be more similar to that of rice, and then introduced into rice (Oryza sativa L.). When the original phytase genes were used, the phytase activity in the leaves of transgenic rice was of the same level as in wild-type plants, whose mean value was 0.039 U/g fresh weight (g-FW) (1 U of activity was defined as 1 micromol P released per min at 37 degrees C). In contrast, the enzyme activity was increased markedly when codon-modified phytase genes were introduced: up to 4.6 U/g-FW of leaves for full-length codon-modified phytase, and 10.6 U/g-FW for truncated codon-modified phytase. A decrease in the optimum temperature and thermal stability was observed in the truncated heterologous enzyme, suggesting that the N-terminal region plays an important role in enzymatic properties. In contrast, the optimum temperature and pH of full-length heterologous phytase were indistinguishable from those of the benchmark yeast phytase, although the heterologous enzyme was less glycosylated. Full-length heterologous phytase in leaf extract showed extreme stability. These results indicate that codon modification, combined with the use of a secretory signal sequence, can be used to produce substantial amounts of yeast phytase, and possibly any phytases from various organisms, in an active and stable form.This study was designed to produce yeast (Schwanniomyces occidentalis) phytase in rice with a view to future applications in the animal feed industry. To achieve high-level production, chimeric genes with the secretory signal sequence of the rice chitinase-3 gene were constructed using either the original full-length or N-truncated yeast phytase gene, or a modified gene whose codon usage was changed to be more similar to that of rice, and then introduced into rice (Oryza sativa L.). When the original phytase genes were used, the phytase activity in the leaves of transgenic rice was of the same level as in wild-type plants, whose mean value was 0.039 U/g fresh weight (g-FW) (1 U of activity was defined as 1 micromol P released per min at 37 degrees C). In contrast, the enzyme activity was increased markedly when codon-modified phytase genes were introduced: up to 4.6 U/g-FW of leaves for full-length codon-modified phytase, and 10.6 U/g-FW for truncated codon-modified phytase. A decrease in the optimum temperature and thermal stability was observed in the truncated heterologous enzyme, suggesting that the N-terminal region plays an important role in enzymatic properties. In contrast, the optimum temperature and pH of full-length heterologous phytase were indistinguishable from those of the benchmark yeast phytase, although the heterologous enzyme was less glycosylated. Full-length heterologous phytase in leaf extract showed extreme stability. These results indicate that codon modification, combined with the use of a secretory signal sequence, can be used to produce substantial amounts of yeast phytase, and possibly any phytases from various organisms, in an active and stable form.
Author Ohnishi, Naoto
Harada, Michiko
Nikumaru, Seiya
Honda, Hideo
Yamaguchi, Ken-ichi
Hamada, Akira
Author_xml – sequence: 1
  givenname: Akira
  surname: Hamada
  fullname: Hamada, Akira
  organization: Functional Chemicals Laboratory, Mitsui Chemicals, Inc., Togo 1144, Mobara 297-0017 Japan
– sequence: 2
  givenname: Ken-ichi
  surname: Yamaguchi
  fullname: Yamaguchi, Ken-ichi
  organization: Functional Chemicals Laboratory, Mitsui Chemicals, Inc., Togo 1144, Mobara 297-0017 Japan
– sequence: 3
  givenname: Naoto
  surname: Ohnishi
  fullname: Ohnishi, Naoto
  organization: Functional Chemicals Laboratory, Mitsui Chemicals, Inc., Togo 1144, Mobara 297-0017 Japan
– sequence: 4
  givenname: Michiko
  surname: Harada
  fullname: Harada, Michiko
  organization: Functional Chemicals Laboratory, Mitsui Chemicals, Inc., Togo 1144, Mobara 297-0017 Japan
– sequence: 5
  givenname: Seiya
  surname: Nikumaru
  fullname: Nikumaru, Seiya
  organization: Functional Chemicals Laboratory, Mitsui Chemicals, Inc., Togo 1144, Mobara 297-0017 Japan
– sequence: 6
  givenname: Hideo
  surname: Honda
  fullname: Honda, Hideo
  email: hideo.honda@mitsui-chem.co.jp
  organization: Functional Chemicals Laboratory, Mitsui Chemicals, Inc., Togo 1144, Mobara 297-0017 Japan
BackLink https://cir.nii.ac.jp/crid/1870302168149256320$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/17168898$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URC_wCsgLhGCRYOfmREJIUMG00qggFcTS8tjHMx4Se4g9dPJQvCPOpM2CDXhhW_J3_nP5fY5OrLOAEKYkpXG92aa0qFjCqjJLM0KKlBDS1OnhETqbH07me1GconPvt4RktCqrJ-iUMlrVdVOfod9XZr1JWvgFLd71Tu1lMM5ip_EAwgf86lZu7oS1xnWDBI-dlEaBDaI1_jXebYYgPGBjceiF9WuwRuLeSMC7Vtjg8WrAAkvXrYwVD8rerK1osYefe7ARFVZFRMXHzimjjZzJsIE5R9SGp-ixFq2HZ_fnBfr26ePXy6tk-Xlxffl-mciyaOpEUl0xIrWWeqWJApoXSjY6p4LQhmmlqSr0imrNdANlBU3DcqpAEJFJqMs8v0AvJ904klikD7wzXkIbewK395wRWtOSsgg-vwf3qw4U3_WmE_3AHwYcgXcTIHvnfQ-aSxOO_cWBmZZTwkdH-ZaPZvHROD46yo-O8kMUqP8SmHP8O_TtFHpnWhj-O45_-XBNjqW_mMKtMbHqcac1I_n4i2paNFlZ5RmJWDJhxgc4zFlE_4NXLGcl_36ziPrZze1iWfJF_gc1RdX8
CitedBy_id crossref_primary_10_1016_j_mgene_2021_100899
crossref_primary_10_3390_ijms14058719
crossref_primary_10_1111_j_1467_7652_2005_00135_x
crossref_primary_10_1016_j_enzmictec_2021_109953
crossref_primary_10_1111_pbi_12636
crossref_primary_10_1111_pbr_12658
crossref_primary_10_1111_j_1365_2672_2011_05181_x
crossref_primary_10_3389_fpls_2022_1074531
crossref_primary_10_1007_s13562_019_00506_2
crossref_primary_10_1016_j_tifs_2018_12_001
crossref_primary_10_1080_07388550701334519
crossref_primary_10_1002_yea_1166
crossref_primary_10_1007_s13205_017_0797_3
crossref_primary_10_1590_1678_4324_2020180673
crossref_primary_10_1021_acs_est_2c00099
crossref_primary_10_1016_S2095_3119_16_61468_5
crossref_primary_10_1111_j_1574_6976_2008_00109_x
crossref_primary_10_1088_1755_1315_572_1_012012
crossref_primary_10_1016_j_plantsci_2009_01_001
crossref_primary_10_1111_j_1467_7652_2008_00375_x
crossref_primary_10_3389_fpls_2018_00186
crossref_primary_10_1016_j_foodchem_2009_11_052
crossref_primary_10_1080_07388550902919571
crossref_primary_10_1007_s12668_018_0563_y
crossref_primary_10_1111_pbr_12040
crossref_primary_10_1016_j_jcs_2007_02_004
crossref_primary_10_4236_ajmb_2017_71002
Cites_doi 10.5938/youton.25.166
10.1080/713609297
10.1016/0271-5317(95)00040-P
10.1002/j.1460-2075.1991.tb07705.x
10.1104/pp.114.3.1103
10.1093/oxfordjournals.pcp.a078092
10.1038/81132
10.1046/j.1365-313X.1994.6020271.x
10.1038/nbt1093-1151
10.1007/BF02524753
10.1006/bbrc.1999.1501
10.1016/S0065-2164(00)47004-8
10.1007/s001220051659
10.1007/BF00280194
10.1016/S1360-1385(01)02222-1
10.1016/0003-2697(81)90168-8
10.5511/plantbiotechnology1984.2.74
10.1006/bbrc.2002.6361
10.1006/abbi.1999.1115
10.1093/jxb/49.326.1463
10.1023/A:1006012005654
10.1046/j.1365-313x.2001.00998.x
10.1016/S0014-5793(00)02106-2
10.1104/pp.109.4.1199
10.1023/A:1009690730620
10.1111/j.1399-3054.1989.tb06187.x
10.1038/nbt0793-811
10.1016/S0014-5793(01)02488-7
10.1007/s002530100795
10.1007/s004250000282
10.1111/j.1432-1033.1991.tb16166.x
10.1016/S0006-291X(03)01002-7
10.1111/j.1462-5822.2007.00901.x
ContentType Journal Article
DBID BSCLL
RYH
AAYXX
CITATION
NPM
7X8
DOI 10.1111/j.1467-7652.2004.00098.x
DatabaseName Istex
CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1467-7652
EndPage 55
ExternalDocumentID 17168898
10_1111_j_1467_7652_2004_00098_x
PBI098
ark_67375_WNG_202NSGL5_G
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACIWK
ACPRK
ACSCC
ACXQS
ADBBV
ADIZJ
ADKYN
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AANHP
ACCMX
ACRPL
ACUHS
ACYXJ
ADNMO
AGQPQ
RYH
AAMMB
AEFGJ
AEUYN
AGXDD
AIDQK
AIDYY
PHGZM
PHGZT
PQGLB
RPM
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c5498-c1f670cffcfbf0de134dc9f31a0197fdf1d4fb1ff7f9e56e99731dea0a2ce8533
IEDL.DBID DR2
ISSN 1467-7644
1467-7652
IngestDate Wed Jul 30 11:12:46 EDT 2025
Wed Feb 19 01:45:52 EST 2025
Thu Apr 24 23:08:42 EDT 2025
Tue Jul 01 02:41:19 EDT 2025
Wed Aug 20 07:26:10 EDT 2025
Thu Jun 26 22:07:18 EDT 2025
Wed Oct 30 09:51:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5498-c1f670cffcfbf0de134dc9f31a0197fdf1d4fb1ff7f9e56e99731dea0a2ce8533
Notes ArticleID:PBI098
istex:7C00731AD5102A0BFAD9B0C892947C98CDF15E43
ark:/67375/WNG-202NSGL5-G
Laboratory for Sustainable Horticulture, Minami Kyushu University, Hibarigaoka, Takanabe‐cho, Miyazaki 884‐0003, Japan
Present address
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://cir.nii.ac.jp/crid/1870302168149256320
PMID 17168898
PQID 70181517
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_70181517
pubmed_primary_17168898
crossref_citationtrail_10_1111_j_1467_7652_2004_00098_x
crossref_primary_10_1111_j_1467_7652_2004_00098_x
wiley_primary_10_1111_j_1467_7652_2004_00098_x_PBI098
nii_cinii_1870302168149256320
istex_primary_ark_67375_WNG_202NSGL5_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2005
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – month: 01
  year: 2005
  text: January 2005
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Plant Biotechnology Journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2005
Publisher Blackwell Science Ltd
Wiley
Publisher_xml – name: Blackwell Science Ltd
– name: Wiley
References Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
Harland, B.F. and Morris, E.R. (1995) Phytate: a good or a bad food component? Nutr. Res. 15, 733-754.
Fujimura, T., Sakurai, M., Akagi, H., Negishi, T. and Hirose, A. (1985) Regeneration of rice plants from protoplasts. Plant Tissue Cult. Lett. 2, 74-75.
Brinch-Pedersen, H., Olesen, A., Rasmussen, S.K. and Holm, P.B. (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol. Breed. 6, 195-206.
Takeuchi, Y., Akagi, H., Kamasawa, N., Osumi, M. and Honda, H. (2000) Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta, 211, 265-274.
Lei, X.G. and Stahl, C.H. (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl. Microbiol. Biotechnol. 57, 474-481.
Sharma, A., Sharma, R., Imamura, M., Yamakawa, M. and Machii, H. (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett. 484, 7-11.
Fujimoto, H., Itoh, K., Yamamoto, M., Kyozuka, J. and Shimamoto, K. (1993) Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus turingiensis. Bio/Technology, 11, 1151-1155.
Nishizawa, Y., Kishimoto, N., Saito, A. and Hibi, T. (1993) Sequence variation, differential expression and chromosomal location of rice chitinase genes. Mol. Gen. Genet. 241, 1-10.
Edge, A.S.B., Faltynek, C.R., Hof, L., Reichert, L.E. Jr and Weber, P. (1981) Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal. Biochem. 118, 131-137.
Rayon, C., Lerouge, P. and Faye, L. (1998) The protein N-glycosylation in plants. J. Exp. Bot. 49, 1463-1472.
Tada, Y., Sakamoto, M., Matsuoka, M. and Fujimura, T. (1991) Expression of a monocot LHCP promoter in transgenic rice. EMBO J. 10, 1803-1808.
Takahashi, T., Horiguchi, K., Kayaba, T. and Ando, H. (1993) The effect of urea supplementation on the improvement of the feeding value in whole crop silage of rice plant. J. Jpn. Grassl. Sci. 39, 387-390.
Sakamoto, M., Sanada, Y., Tagiri, A., Murakami, T., Ohashi, Y. and Matsuoka, M. (1991) Structure and characterization of a gene for light-harvesting chl a/b binding protein from rice. Plant Cell Physiol. 32, 385-393.
Vohra, A. and Satyanarayana, T. (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol. 23, 29-60.
Pen, J., Verwoerd, T.C., Van Paridon, P.A., Beudeker, R.F., Van Den Elzen, P.J.M., Geerse, K., Van Der Klis, J.D., Versteegh, H.A.J., Van Ooyen, A.J.J. and Hoekema, A. (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Biotechnology, 11, 811-814.
Faye, L., Johnson, K.D., Sturm, A. and Chrispeels, M.J. (1989) Structure, biosynthesis, and function of asparagine-linked glycans on plant glycoproteins. Physiol. Plant. 75, 309-314.
Richardson, A.E., Hadobas, P.A. and Hayes, J.E. (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 25, 641-649.
Sutton, D.W., Havstad, P.K. and Kemp, J.D. (1992) Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants. Transgenic Res. 1, 228-236.
Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fischette-Laine, A.-C., Gomord, V. and Faye, L. (1998) N-Glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol. Biol. 38, 31-48.
Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282.
Mullaney, E.J., Daly, C.B. and Ullah, A.H.J. (2000) Advances in phytase research. Adv. Appl. Microbiol. 47, 157-199.
Brinch-Pedersen, H., Sørensen, L.D. and Holm, P.B. (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci. 7, 118-125.
Munro, S. (2001) What can yeast tell us about N-linked glycosylation in the Golgi apparatus? FEBS Lett. 498, 223-227.
Takahashi, T., Sakurai, Y., Kayaba, T. and Oota, S. (1988) Utilization of self-sufficing formula feed supplemented to grass silage in growing-fattening pigs. Jpn. J. Swine Sci. 25, 166-168[In Japanese.
Ogawa, M. (2001) Study and technical development of whole crop rice. J. Agric. Sci. 56, 433-438[In Japanese.
Li, J., Hegeman, C.E., Hanlon, R.W., Lacy, G.H., Denbow, D.M. and Grabau, E.A. (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol. 114, 1103-1111.
Tretter, V., Altmann, F. and Marz, L. (1991) Peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached α 1→3 to the asparagine-linked N-acetyl-glucosamine residue. Eur. J. Biochem. 199, 647-652.
Takahashi, T., Horiguchi, K. and Kayaba, T. (1995) The effect of urea supplementation on the feeding value in whole crop silage of rice plant with different relative amount of concentrate. J. Jpn. Grassl. Sci. 40, 471-477.
Han, Y. and Lei, X.G. (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch. Biochem. Biophys. 364, 83-90.
Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T. and Austin-Phillips, S. (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem. Biophys. Res. Commun. 290, 1343-1348.
Giddings, G., Allison, G., Brooks, D. and Carter, A. (2000) Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 18, 1151-1155.
Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T. and Austin-Phillips, S. (2003) Fungal phyA gene expressed in potato leaves produces active and stable phytase. Biochem. Biophys. Res. Commun. 306, 603-609.
Lucca, P., Hurrell, R. and Potrykus, I. (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 102, 392-397.
Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T. and Austin-Phillips, S. (1999) Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochem. Biophys. Res. Commun. 264, 201-206.
Verwoerd, T.C., Van Paridon, P.A., Van Ooyen, A.J.J., Van Lent, J.W.M., Hoekema, A. and Pen, J. (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol. 109, 1199-1205.
1998; 49
1997; 114
2001; 102
2002; 290
1991; 199
2000; 6
2000; 47
1995; 15
1991; 32
1991; 10
1985; 2
2002; 7
1998
1999; 264
1996
1999; 364
2000; 211
1970; 227
2001; 25
1993; 241
1998; 38
2001; 498
1995; 40
2000; 18
2003; 306
1989; 75
1993; 39
1993; 11
1988; 25
1995; 109
2000; 484
1981; 118
2001; 56
2001; 57
1992; 1
1994; 6
2003; 23
e_1_2_6_32_1
e_1_2_6_10_1
Chrispeels M.J. (e_1_2_6_4_1) 1996
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
Ogawa M. (e_1_2_6_22_1) 2001; 56
e_1_2_6_9_1
Takahashi T. (e_1_2_6_30_1) 1995; 40
e_1_2_6_8_1
e_1_2_6_5_1
Takahashi T. (e_1_2_6_31_1) 1993; 39
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Li, J., Hegeman, C.E., Hanlon, R.W., Lacy, G.H., Denbow, D.M. and Grabau, E.A. (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol. 114, 1103-1111.
– reference: Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T. and Austin-Phillips, S. (1999) Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochem. Biophys. Res. Commun. 264, 201-206.
– reference: Takahashi, T., Horiguchi, K. and Kayaba, T. (1995) The effect of urea supplementation on the feeding value in whole crop silage of rice plant with different relative amount of concentrate. J. Jpn. Grassl. Sci. 40, 471-477.
– reference: Faye, L., Johnson, K.D., Sturm, A. and Chrispeels, M.J. (1989) Structure, biosynthesis, and function of asparagine-linked glycans on plant glycoproteins. Physiol. Plant. 75, 309-314.
– reference: Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fischette-Laine, A.-C., Gomord, V. and Faye, L. (1998) N-Glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol. Biol. 38, 31-48.
– reference: Tada, Y., Sakamoto, M., Matsuoka, M. and Fujimura, T. (1991) Expression of a monocot LHCP promoter in transgenic rice. EMBO J. 10, 1803-1808.
– reference: Fujimura, T., Sakurai, M., Akagi, H., Negishi, T. and Hirose, A. (1985) Regeneration of rice plants from protoplasts. Plant Tissue Cult. Lett. 2, 74-75.
– reference: Nishizawa, Y., Kishimoto, N., Saito, A. and Hibi, T. (1993) Sequence variation, differential expression and chromosomal location of rice chitinase genes. Mol. Gen. Genet. 241, 1-10.
– reference: Lucca, P., Hurrell, R. and Potrykus, I. (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 102, 392-397.
– reference: Takeuchi, Y., Akagi, H., Kamasawa, N., Osumi, M. and Honda, H. (2000) Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta, 211, 265-274.
– reference: Harland, B.F. and Morris, E.R. (1995) Phytate: a good or a bad food component? Nutr. Res. 15, 733-754.
– reference: Tretter, V., Altmann, F. and Marz, L. (1991) Peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached α 1→3 to the asparagine-linked N-acetyl-glucosamine residue. Eur. J. Biochem. 199, 647-652.
– reference: Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T. and Austin-Phillips, S. (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem. Biophys. Res. Commun. 290, 1343-1348.
– reference: Brinch-Pedersen, H., Olesen, A., Rasmussen, S.K. and Holm, P.B. (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol. Breed. 6, 195-206.
– reference: Mullaney, E.J., Daly, C.B. and Ullah, A.H.J. (2000) Advances in phytase research. Adv. Appl. Microbiol. 47, 157-199.
– reference: Takahashi, T., Sakurai, Y., Kayaba, T. and Oota, S. (1988) Utilization of self-sufficing formula feed supplemented to grass silage in growing-fattening pigs. Jpn. J. Swine Sci. 25, 166-168[In Japanese.
– reference: Edge, A.S.B., Faltynek, C.R., Hof, L., Reichert, L.E. Jr and Weber, P. (1981) Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal. Biochem. 118, 131-137.
– reference: Sharma, A., Sharma, R., Imamura, M., Yamakawa, M. and Machii, H. (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett. 484, 7-11.
– reference: Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T. and Austin-Phillips, S. (2003) Fungal phyA gene expressed in potato leaves produces active and stable phytase. Biochem. Biophys. Res. Commun. 306, 603-609.
– reference: Brinch-Pedersen, H., Sørensen, L.D. and Holm, P.B. (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci. 7, 118-125.
– reference: Sakamoto, M., Sanada, Y., Tagiri, A., Murakami, T., Ohashi, Y. and Matsuoka, M. (1991) Structure and characterization of a gene for light-harvesting chl a/b binding protein from rice. Plant Cell Physiol. 32, 385-393.
– reference: Takahashi, T., Horiguchi, K., Kayaba, T. and Ando, H. (1993) The effect of urea supplementation on the improvement of the feeding value in whole crop silage of rice plant. J. Jpn. Grassl. Sci. 39, 387-390.
– reference: Sutton, D.W., Havstad, P.K. and Kemp, J.D. (1992) Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants. Transgenic Res. 1, 228-236.
– reference: Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282.
– reference: Munro, S. (2001) What can yeast tell us about N-linked glycosylation in the Golgi apparatus? FEBS Lett. 498, 223-227.
– reference: Giddings, G., Allison, G., Brooks, D. and Carter, A. (2000) Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 18, 1151-1155.
– reference: Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
– reference: Vohra, A. and Satyanarayana, T. (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol. 23, 29-60.
– reference: Ogawa, M. (2001) Study and technical development of whole crop rice. J. Agric. Sci. 56, 433-438[In Japanese.
– reference: Fujimoto, H., Itoh, K., Yamamoto, M., Kyozuka, J. and Shimamoto, K. (1993) Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus turingiensis. Bio/Technology, 11, 1151-1155.
– reference: Han, Y. and Lei, X.G. (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch. Biochem. Biophys. 364, 83-90.
– reference: Rayon, C., Lerouge, P. and Faye, L. (1998) The protein N-glycosylation in plants. J. Exp. Bot. 49, 1463-1472.
– reference: Verwoerd, T.C., Van Paridon, P.A., Van Ooyen, A.J.J., Van Lent, J.W.M., Hoekema, A. and Pen, J. (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol. 109, 1199-1205.
– reference: Lei, X.G. and Stahl, C.H. (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl. Microbiol. Biotechnol. 57, 474-481.
– reference: Pen, J., Verwoerd, T.C., Van Paridon, P.A., Beudeker, R.F., Van Den Elzen, P.J.M., Geerse, K., Van Der Klis, J.D., Versteegh, H.A.J., Van Ooyen, A.J.J. and Hoekema, A. (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Biotechnology, 11, 811-814.
– reference: Richardson, A.E., Hadobas, P.A. and Hayes, J.E. (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 25, 641-649.
– volume: 498
  start-page: 223
  year: 2001
  end-page: 227
  article-title: What can yeast tell us about N‐linked glycosylation in the Golgi apparatus?
  publication-title: FEBS Lett
– volume: 484
  start-page: 7
  year: 2000
  end-page: 11
  article-title: Transgenic expression of cecropin B, an antibacterial peptide from , confers enhanced resistance to bacterial leaf blight in rice
  publication-title: FEBS Lett
– volume: 18
  start-page: 1151
  year: 2000
  end-page: 1155
  article-title: Transgenic plants as factories for biopharmaceuticals
  publication-title: Nat. Biotechnol
– volume: 11
  start-page: 811
  year: 1993
  end-page: 814
  article-title: Phytase‐containing transgenic seeds as a novel feed additive for improved phosphorus utilization
  publication-title: Biotechnology
– volume: 109
  start-page: 1199
  year: 1995
  end-page: 1205
  article-title: Stable accumulation of phytase in transgenic tobacco leaves
  publication-title: Plant Physiol
– volume: 102
  start-page: 392
  year: 2001
  end-page: 397
  article-title: Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains
  publication-title: Theor. Appl. Genet
– volume: 25
  start-page: 641
  year: 2001
  end-page: 649
  article-title: Extracellular secretion of phytase from roots enables plants to obtain phosphorus from phytate
  publication-title: Plant J
– volume: 290
  start-page: 1343
  year: 2002
  end-page: 1348
  article-title: Cloned and expressed fungal gene in alfalfa produces a stable phytase
  publication-title: Biochem. Biophys. Res. Commun
– volume: 47
  start-page: 157
  year: 2000
  end-page: 199
  article-title: Advances in phytase research
  publication-title: Adv. Appl. Microbiol
– volume: 2
  start-page: 74
  year: 1985
  end-page: 75
  article-title: Regeneration of rice plants from protoplasts
  publication-title: Plant Tissue Cult. Lett
– volume: 40
  start-page: 471
  year: 1995
  end-page: 477
  article-title: The effect of urea supplementation on the feeding value in whole crop silage of rice plant with different relative amount of concentrate.
  publication-title: J. Jpn. Grassl. Sci
– volume: 306
  start-page: 603
  year: 2003
  end-page: 609
  article-title: Fungal gene expressed in potato leaves produces active and stable phytase
  publication-title: Biochem. Biophys. Res. Commun
– volume: 6
  start-page: 271
  year: 1994
  end-page: 282
  article-title: Efficient transformation of rice ( L.) mediated by and sequence analysis of the boundaries of the T‐DNA
  publication-title: Plant J
– volume: 15
  start-page: 733
  year: 1995
  end-page: 754
  article-title: Phytate: a good or a bad food component
  publication-title: Nutr. Res
– volume: 199
  start-page: 647
  year: 1991
  end-page: 652
  article-title: Peptide‐N ‐(N‐acetyl‐β‐glucosaminyl)asparagine amidase F cannot release glycans with fucose attached α 1→3 to the asparagine‐linked N‐acetyl‐glucosamine residue
  publication-title: Eur. J. Biochem
– volume: 23
  start-page: 29
  year: 2003
  end-page: 60
  article-title: Phytases: microbial sources, production, purification, and potential biotechnological applications
  publication-title: Crit. Rev. Biotechnol
– start-page: 99
  year: 1996
  end-page: 114
– volume: 32
  start-page: 385
  year: 1991
  end-page: 393
  article-title: Structure and characterization of a gene for light‐harvesting chl a/b binding protein from rice
  publication-title: Plant Cell Physiol
– volume: 211
  start-page: 265
  year: 2000
  end-page: 274
  article-title: Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP‐dependent malic enzyme
  publication-title: Planta
– volume: 114
  start-page: 1103
  year: 1997
  end-page: 1111
  article-title: Secretion of active recombinant phytase from soybean cell‐suspension cultures
  publication-title: Plant Physiol
– year: 1998
– volume: 57
  start-page: 474
  year: 2001
  end-page: 481
  article-title: Biotechnological development of effective phytases for mineral nutrition and environmental protection
  publication-title: Appl. Microbiol. Biotechnol
– volume: 39
  start-page: 387
  year: 1993
  end-page: 390
  article-title: The effect of urea supplementation on the improvement of the feeding value in whole crop silage of rice plant.
  publication-title: J. Jpn. Grassl. Sci
– volume: 38
  start-page: 31
  year: 1998
  end-page: 48
  article-title: N‐Glycoprotein biosynthesis in plants: recent developments and future trends
  publication-title: Plant Mol. Biol
– volume: 49
  start-page: 1463
  year: 1998
  end-page: 1472
  article-title: The protein N‐glycosylation in plants
  publication-title: J. Exp. Bot
– volume: 6
  start-page: 195
  year: 2000
  end-page: 206
  article-title: Generation of transgenic wheat ( L.) for constitutive accumulation of an phytase
  publication-title: Mol. Breed
– volume: 10
  start-page: 1803
  year: 1991
  end-page: 1808
  article-title: Expression of a monocot LHCP promoter in transgenic rice
  publication-title: EMBO J
– volume: 1
  start-page: 228
  year: 1992
  end-page: 236
  article-title: Synthetic gene from improved for high expression in plants
  publication-title: Transgenic Res
– volume: 264
  start-page: 201
  year: 1999
  end-page: 206
  article-title: Characterization of recombinant fungal phytase ( ) expressed in tobacco leaves
  publication-title: Biochem. Biophys. Res. Commun
– volume: 241
  start-page: 1
  year: 1993
  end-page: 10
  article-title: Sequence variation, differential expression and chromosomal location of rice chitinase genes
  publication-title: Mol. Gen. Genet
– volume: 118
  start-page: 131
  year: 1981
  end-page: 137
  article-title: Deglycosylation of glycoproteins by trifluoromethanesulfonic acid
  publication-title: Anal. Biochem
– volume: 75
  start-page: 309
  year: 1989
  end-page: 314
  article-title: Structure, biosynthesis, and function of asparagine‐linked glycans on plant glycoproteins
  publication-title: Physiol. Plant
– volume: 364
  start-page: 83
  year: 1999
  end-page: 90
  article-title: Role of glycosylation in the functional expression of an phytase ( ) in
  publication-title: Arch. Biochem. Biophys
– volume: 7
  start-page: 118
  year: 2002
  end-page: 125
  article-title: Engineering crop plants: getting a handle on phosphate
  publication-title: Trends Plant Sci
– volume: 11
  start-page: 1151
  year: 1993
  end-page: 1155
  article-title: Insect resistant rice generated by introduction of a modified ‐endotoxin gene of
  publication-title: Bio/Technology
– volume: 56
  start-page: 433
  year: 2001
  end-page: 438
  article-title: Study and technical development of whole crop rice
  publication-title: J. Agric. Sci
– volume: 227
  start-page: 680
  year: 1970
  end-page: 685
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature
– volume: 25
  start-page: 166
  year: 1988
  end-page: 168
  article-title: Utilization of self‐sufficing formula feed supplemented to grass silage in growing‐fattening pigs.
  publication-title: Jpn. J. Swine Sci
– ident: e_1_2_6_32_1
  doi: 10.5938/youton.25.166
– ident: e_1_2_6_39_1
  doi: 10.1080/713609297
– ident: e_1_2_6_11_1
  doi: 10.1016/0271-5317(95)00040-P
– ident: e_1_2_6_29_1
  doi: 10.1002/j.1460-2075.1991.tb07705.x
– ident: e_1_2_6_18_1
– ident: e_1_2_6_16_1
  doi: 10.1104/pp.114.3.1103
– ident: e_1_2_6_26_1
  doi: 10.1093/oxfordjournals.pcp.a078092
– ident: e_1_2_6_9_1
  doi: 10.1038/81132
– ident: e_1_2_6_12_1
  doi: 10.1046/j.1365-313X.1994.6020271.x
– ident: e_1_2_6_7_1
  doi: 10.1038/nbt1093-1151
– ident: e_1_2_6_28_1
  doi: 10.1007/BF02524753
– volume: 40
  start-page: 471
  year: 1995
  ident: e_1_2_6_30_1
  article-title: The effect of urea supplementation on the feeding value in whole crop silage of rice plant with different relative amount of concentrate.
  publication-title: J. Jpn. Grassl. Sci
– ident: e_1_2_6_35_1
  doi: 10.1006/bbrc.1999.1501
– ident: e_1_2_6_19_1
  doi: 10.1016/S0065-2164(00)47004-8
– volume: 39
  start-page: 387
  year: 1993
  ident: e_1_2_6_31_1
  article-title: The effect of urea supplementation on the improvement of the feeding value in whole crop silage of rice plant.
  publication-title: J. Jpn. Grassl. Sci
– ident: e_1_2_6_17_1
  doi: 10.1007/s001220051659
– ident: e_1_2_6_21_1
  doi: 10.1007/BF00280194
– ident: e_1_2_6_3_1
  doi: 10.1016/S1360-1385(01)02222-1
– ident: e_1_2_6_5_1
  doi: 10.1016/0003-2697(81)90168-8
– ident: e_1_2_6_8_1
  doi: 10.5511/plantbiotechnology1984.2.74
– ident: e_1_2_6_36_1
  doi: 10.1006/bbrc.2002.6361
– ident: e_1_2_6_10_1
  doi: 10.1006/abbi.1999.1115
– ident: e_1_2_6_24_1
  doi: 10.1093/jxb/49.326.1463
– start-page: 99
  volume-title: Transgenic Plants. A Production System for Industrial and Pharmaceutical Proteins
  year: 1996
  ident: e_1_2_6_4_1
– ident: e_1_2_6_15_1
  doi: 10.1023/A:1006012005654
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1365-313x.2001.00998.x
– ident: e_1_2_6_27_1
  doi: 10.1016/S0014-5793(00)02106-2
– ident: e_1_2_6_38_1
  doi: 10.1104/pp.109.4.1199
– volume: 56
  start-page: 433
  year: 2001
  ident: e_1_2_6_22_1
  article-title: Study and technical development of whole crop rice
  publication-title: J. Agric. Sci
– ident: e_1_2_6_2_1
  doi: 10.1023/A:1009690730620
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1399-3054.1989.tb06187.x
– ident: e_1_2_6_23_1
  doi: 10.1038/nbt0793-811
– ident: e_1_2_6_20_1
  doi: 10.1016/S0014-5793(01)02488-7
– ident: e_1_2_6_14_1
  doi: 10.1007/s002530100795
– ident: e_1_2_6_33_1
  doi: 10.1007/s004250000282
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1432-1033.1991.tb16166.x
– ident: e_1_2_6_37_1
  doi: 10.1016/S0006-291X(03)01002-7
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1462-5822.2007.00901.x
SSID ssj0021656
ssib004908708
ssib045319474
ssib001052196
ssib017094164
Score 1.906839
Snippet Summary This study was designed to produce yeast (Schwanniomyces occidentalis) phytase in rice with a view to future applications in the animal feed industry....
This study was designed to produce yeast ( Schwanniomyces occidentalis ) phytase in rice with a view to future applications in the animal feed industry. To...
This study was designed to produce yeast (Schwanniomyces occidentalis) phytase in rice with a view to future applications in the animal feed industry. To...
SourceID proquest
pubmed
crossref
wiley
nii
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 43
SubjectTerms codon modification
heterologous expression
phytase
phytate
transgenic rice
yeast
Title High-level production of yeast (Schwanniomyces occidentalis) phytase in transgenic rice plants by a combination of signal sequence and codon modification of the phytase gene
URI https://api.istex.fr/ark:/67375/WNG-202NSGL5-G/fulltext.pdf
https://cir.nii.ac.jp/crid/1870302168149256320
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-7652.2004.00098.x
https://www.ncbi.nlm.nih.gov/pubmed/17168898
https://www.proquest.com/docview/70181517
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZoucCB_58ALT4gBIes4sSJnWNB7RZEVxWlorfI8Q-sdpustlnBckA8Am_CO_EkzDiboIUeKsQlirIeZxLP2DPZz98Q8oRn0uksBU-zPAl5FuVwlpgQgrlYZrxMYoe7kQ9G2f4xf32SnqzwT7gXpuWH6D-4oWf4-RodXJVnfzu5gBv5NA-ZCHM5wHgSoVsYH73tmaRiJJlpNxqhCOfroJ5zO1pbqS7jS4dLG9V4fF4wuh7b-sVp7zqZdI_VYlImg0VTDvSXPxgf_89z3yDXVjEs3WmN7ia5ZKtb5OrOh_mKx8PeJj8QP_Lz2_cpYpLorKWVBROgtaNLLBdEnx3pj5-wYFJ9uoS5itZaY31TT8j4nMLgN7C-0nFFG1xNwczHmiIBEp1NEbpDyyVVFHSHzF51PSMYBRTr4OFUVQaaGPjxtDaIiepbQtjb3wP6tnfI8d7uu5f74ao2RKgho5WhZi4TkXZOu9JFxrKEG527hCmIWYUzjhnuSuaccLlNM5tjiS5jVaRiLNSaJHfJZlVX9j6hWvMUszgMlbgVopRGq4TFAqtFMMECIjo7KPSKOB3rd0yLtQRKFDgkWNaTF35Iis8BYb3krCUPuYDMU29qvYCaTxB8J9Li_WgITePR0fBNWgwDsgW2CBrhkUmcucHKJUO2ySyJo4A87qy0gCkD_wdSla0XZ4VAkraUiYDca433t3KQPUuZy4Ck3gQvrHVx-OIVnDz4R7mH5IqnxPWfth6RzWa-sFsQ7DXlNtmI-eG2d2Y4Hnzd_QWJmUcJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg9wAceD8CLOsDQnBIFSdO7ByXx7YL3Qqxu2JvVuLYUG03qUoqKCd-Av-E_8QvYcZ5oMIeVohLFTUeZ1LP2DPu-PsIecwTaXUSg6cZHvk8CVK4igofgrlQJjyPQounkfcnyeiIvz6Oj1s6IDwL0-BD9Btu6BluvkYHxw3pv71cwJNcnodQhKkcQEC5iQTfCKT_8l2PJRUizExz1AhlOF8v6zmzp7W1ahN_dvjqYjmdnhWOrke3bnnavUZm3Ys1VSkng2WdD_TXPzAf_9ObXydX2zCW7jR2d4NcMOVNcmXnw6KF8jC3yA8sIfn57fsMy5LovEGWBSuglaUrZAyiTw_0x8_ImVSdrmC6opXWSHHqMBmfURj_GpZYOi1pjQsqWPpUU8RAovMZVu_QfEUzCspDcp91PWM9CijWVYjTrCygSQE3T6sCy6L6lhD59s-Avs1tcrT76vDFyG_pIXwNSa30NbOJCLS12uY2KAyLeKFTG7EMwlZhC8sKbnNmrbCpiROTIktXYbIgC5GrNYrukI2yKs09QrXmMSZyGC1xI0QuC51FLBRIGMEE84joDEHpFjsdKTxmai2HEgqHBJk9uXJDor54hPWS8wY_5BwyT5yt9QLZ4gTr70Ss3k-G0DScHAzHsRp6ZAuMETTCTyZx8gYzlwwBJ5MoDDyy3ZmpglkD_wrKSlMtPymBOG0xEx6521jvb-UggZYylR6JnQ2eW2v19vkeXNz_R7ltcml0uD9W473JmwfkskPIdTtdD8lGvViaLYj96vyR8-lfh59JHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwEB5BKyE4IP4JsKwPCMGhKE6c2DmWn3YXlmqlpbDiYiX-gYpuUpWuoDcegTfhnXgSZpI0qGIPKy5V1HocKzPjmUnH3wfwSKTKmzRBT3MiHog0zPAqtgNM5iKViiKOPJ1GfjtJ96bi9XFy3PY_0VmYBh-ie-FGnlHv1-TgC-v_dXKJN6rLPEIizNQzzCf7CQapsAf94fvpx2lXfhHOTHPWiKSE2O7rOXOurWDVp-eOX10sZ7Oz8tHt9LaOT6NrcLVNLNmwsYTrcMGVN-DK8NOyBddwN-EXNXX8_vFzTo1CbNFgvaJeWOXZmjh82JMj8_kbsRhVJ2vcQFhlDJGO1iiJTxlqZIVBj81KtqIQh7Y3M4xQidhiTv00rFiznOGDxHI738xMHSK4sE3PNstLi0Ms_nhSWWpU6kZiLtrdA-d2t2A6evXuxd6gJWwYGCwz1cBwn8rQeG984UPreCysyXzMc0wkpbeeW-EL7r30mUtSlxFvlnV5mEfEnhrHt6FXVqW7C8wYkVBpRfmLcFIWypo85pEkCgcueQByoxltWjRzItWY662qRmrSKXFtCl3rVH8PgHeSiwbR4xwyj2vldwL58gt1xMlEf5iMcWg0ORofJHocwA5aB66IPrmi7RTtTnGCgEzjKAxgd2M3Gv2Y_pzJS1edftWSkNMSLgO405jT38VhSatUpgJIavs696r14fN9vLj3n3K7cOnw5Ugf7E_e3IfLNWRt_erpAfRWy1O3g8nYqnjYetkfleMmgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-level+production+of+yeast+%28Schwanniomyces+occidentalis%29+phytase+in+transgenic+rice+plants+by+a+combination+of+signal+sequence+and+codon+modification+of+the+phytase+gene&rft.jtitle=Plant+biotechnology+journal&rft.au=Hamada%2C+Akira&rft.au=Yamaguchi%2C+Ken-ichi&rft.au=Ohnishi%2C+Naoto&rft.au=Harada%2C+Michiko&rft.date=2005-01-01&rft.pub=Blackwell+Science+Ltd&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=3&rft.issue=1&rft.spage=43&rft.epage=55&rft_id=info:doi/10.1111%2Fj.1467-7652.2004.00098.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_202NSGL5_G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon