Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study
[Display omitted] The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clin...
Saved in:
Published in | Journal of advanced research Vol. 23; no. C; pp. 123 - 132 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Egypt
Elsevier B.V
01.05.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The in vitro experiment was performed on a resin model to verify the printing accuracy. The in vivo experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 μm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and in situ 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted in situ 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration. |
---|---|
AbstractList | The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The in vitro experiment was performed on a resin model to verify the printing accuracy. The in vivo experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 μm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and in situ 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted in situ 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration. Keywords: In situ 3D bio-printing, Cartilage regeneration, Tissue engineering, Bio-ink crosslinking, Robot [Display omitted] The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The in vitro experiment was performed on a resin model to verify the printing accuracy. The in vivo experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 μm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and in situ 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted in situ 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration. The concept of 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The experiment was performed on a resin model to verify the printing accuracy. The experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 μm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration. The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The in vitro experiment was performed on a resin model to verify the printing accuracy. The in vivo experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 μm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and in situ 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted in situ 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration. |
Author | Zhao, Tianzheng Yang, Longfei Wang, Peng Wang, Xingsong Ma, Kaiwei Jin, Jing Xia, Dan Li, Lan Jiang, Qing Teng, Huajian Zhu, Liya |
AuthorAffiliation | a School of Mechanical Engineering, Southeast University, Nanjing, China b State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China c School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China |
AuthorAffiliation_xml | – name: c School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China – name: b State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China – name: a School of Mechanical Engineering, Southeast University, Nanjing, China |
Author_xml | – sequence: 1 givenname: Kaiwei orcidid: 0000-0003-1649-6736 surname: Ma fullname: Ma, Kaiwei organization: School of Mechanical Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Tianzheng surname: Zhao fullname: Zhao, Tianzheng organization: School of Mechanical Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Longfei surname: Yang fullname: Yang, Longfei organization: School of Mechanical Engineering, Southeast University, Nanjing, China – sequence: 4 givenname: Peng surname: Wang fullname: Wang, Peng organization: State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China – sequence: 5 givenname: Jing surname: Jin fullname: Jin, Jing organization: State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China – sequence: 6 givenname: Huajian surname: Teng fullname: Teng, Huajian organization: State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China – sequence: 7 givenname: Dan surname: Xia fullname: Xia, Dan organization: School of Mechanical Engineering, Southeast University, Nanjing, China – sequence: 8 givenname: Liya surname: Zhu fullname: Zhu, Liya organization: School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China – sequence: 9 givenname: Lan surname: Li fullname: Li, Lan email: lanl17@163.com organization: State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China – sequence: 10 givenname: Qing orcidid: 0000-0002-2552-9686 surname: Jiang fullname: Jiang, Qing email: qingj@nju.edu.cn organization: State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China – sequence: 11 givenname: Xingsong surname: Wang fullname: Wang, Xingsong email: xswang@seu.edu.cn organization: School of Mechanical Engineering, Southeast University, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32099674$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1600051$$D View this record in Osti.gov |
BookMark | eNp9kk1v1DAQhiNURD_oH-CALE5cdrEdO3EQQlq1QCsVcYGz5diTrKOsvdjOov33OKSs6AVrJH_NPH7HM5fFmfMOiuIVwWuCSfVuWA8qwJpiiteYZMPPiguKG7wilLKz07qk58V1jAPOoxSiIeRFcV7my6aq2UURNvv9aLVK1jvkOxR865PVKxWjjQkMsg5FmyZU3qJ9sC5Z189nWoVkR9UDCtCDg7AQftm0RXebrxu0PZrgexjfo42bAw724FFMkzm-LJ53aoxw_ThfFT8-f_p-c7d6-Pbl_mbzsNKcibTqVFMTYEIBiCxWG4ZBiLwljCpgLVSs1LimbU1NxRmninHR1rqDhje80uVVcb9wjVeDzOJ3KhylV1b-OfChl3MSegTJO4Y1EW3DWcsaDoIRpo1SDJtWGyMy6-PC2k_tDowGl4Ian0Cf3ji7lb0_yBqX81dnwJsF4GOyMmqbQG-1dw50kqTKxeEkO719fCX4nxPEJHc2ahhH5cBPUdKy4pRywWYeXVx18DEG6E5aCJZzg8hBzg0i5waRmGTDOej1v1mcQv62Q3b4sDhArsvBQpiVgtNgbJiFGm__x_8NyE_O0w |
CitedBy_id | crossref_primary_10_1002_app_52155 crossref_primary_10_3390_cells10010002 crossref_primary_10_1016_j_bprint_2023_e00260 crossref_primary_10_1002_aisy_202200226 crossref_primary_10_1186_s40824_023_00460_0 crossref_primary_10_1002_adfm_202010858 crossref_primary_10_1016_j_biomaterials_2020_120383 crossref_primary_10_1093_lifemedi_lnad046 crossref_primary_10_1002_adhm_202301379 crossref_primary_10_3389_fbioe_2020_568186 crossref_primary_10_1016_j_msec_2021_112005 crossref_primary_10_1039_D2RA07037E crossref_primary_10_1515_auto_2023_0060 crossref_primary_10_2217_3dp_2021_0022 crossref_primary_10_1016_j_matdes_2021_110240 crossref_primary_10_3390_biomimetics8020260 crossref_primary_10_1016_j_rio_2024_100713 crossref_primary_10_1016_j_biomaterials_2022_121639 crossref_primary_10_1038_s41368_024_00290_3 crossref_primary_10_1016_j_cirp_2022_06_001 crossref_primary_10_1002_adfm_202207496 crossref_primary_10_15406_atroa_2023_09_00139 crossref_primary_10_1016_j_eurpolymj_2023_112651 crossref_primary_10_1002_wnan_1756 crossref_primary_10_1021_acsbiomaterials_1c00598 crossref_primary_10_1080_21691401_2020_1809439 crossref_primary_10_3389_fbioe_2022_887454 crossref_primary_10_1186_s40580_023_00398_y crossref_primary_10_3390_gels10010008 crossref_primary_10_1080_09506608_2023_2167559 crossref_primary_10_1016_j_addma_2023_103598 crossref_primary_10_1016_j_bioactmat_2023_01_018 crossref_primary_10_56501_intjforensicodontol_v8i2_967 crossref_primary_10_1002_biot_202000095 crossref_primary_10_1016_j_eng_2022_03_008 crossref_primary_10_3390_app131810269 crossref_primary_10_1016_j_bprint_2021_e00139 crossref_primary_10_3389_fbioe_2022_940896 crossref_primary_10_1016_j_bioactmat_2023_10_030 crossref_primary_10_1016_j_mtbio_2022_100334 crossref_primary_10_57634_RCR5068 crossref_primary_10_1155_2022_7638245 crossref_primary_10_1002_advs_202200050 crossref_primary_10_1177_24726303211020297 crossref_primary_10_3390_polym14040839 crossref_primary_10_1002_term_3309 crossref_primary_10_1002_advs_202400345 crossref_primary_10_1038_s41467_022_30997_y crossref_primary_10_1016_j_cossms_2020_100867 crossref_primary_10_1016_j_tibtech_2020_11_003 crossref_primary_10_1007_s10439_023_03236_8 crossref_primary_10_1002_bit_28769 crossref_primary_10_3389_fbioe_2022_828921 crossref_primary_10_1016_j_actbio_2021_03_009 crossref_primary_10_3389_fbioe_2021_812383 crossref_primary_10_1080_00914037_2022_2052727 crossref_primary_10_1002_adhm_202002221 crossref_primary_10_1002_tcr_202100093 crossref_primary_10_3390_ijerph182010806 crossref_primary_10_1039_D0BM00973C crossref_primary_10_3748_wjg_v28_i47_6788 crossref_primary_10_1016_j_tibtech_2022_03_009 crossref_primary_10_3390_mi13050712 crossref_primary_10_3390_pharmaceutics13070983 crossref_primary_10_1021_acs_biomac_0c01671 crossref_primary_10_1021_acsami_2c04841 crossref_primary_10_1016_j_bioactmat_2024_01_015 crossref_primary_10_1021_acsabm_3c00093 crossref_primary_10_1088_2631_7990_acda67 crossref_primary_10_3390_bioengineering10020213 crossref_primary_10_1002_btm2_10307 crossref_primary_10_1021_acsabm_3c01303 crossref_primary_10_1016_j_jare_2020_11_011 crossref_primary_10_1177_08853282211047939 crossref_primary_10_1063_5_0176301 crossref_primary_10_1111_jre_13235 crossref_primary_10_1016_j_eng_2024_04_023 crossref_primary_10_1016_j_bprint_2021_e00155 crossref_primary_10_1038_s43586_021_00073_8 crossref_primary_10_1016_j_jconrel_2020_09_030 crossref_primary_10_1002_admt_202400060 crossref_primary_10_3390_gels10070430 crossref_primary_10_1016_j_mtbio_2023_100695 |
Cites_doi | 10.1016/j.injury.2008.01.041 10.1002/adma.201003963 10.1038/nprot.2017.053 10.1021/acs.biomac.6b00366 10.1038/s41598-017-01914-x 10.5966/sctm.2012-0088 10.1038/s41598-017-10060-3 10.1016/j.actbio.2013.03.025 10.1177/0363546503261730 10.1016/j.joca.2007.12.013 10.1016/j.joca.2014.01.003 10.1002/adfm.201603512 10.1016/j.joca.2007.05.005 10.1007/s00167-011-1638-2 10.1038/nbt.2958 10.1016/j.biomaterials.2016.12.015 10.1088/1758-5082/2/3/035004 10.2106/00004623-200403001-00009 10.1038/s41598-018-38366-w 10.1016/j.rcim.2014.06.004 10.1002/term.2476 10.1517/14712598.7.8.1123 10.1016/j.rcim.2018.07.007 10.2106/00004623-198870040-00017 10.1038/s41598-019-38972-2 10.1088/1758-5090/aa6265 10.1038/s41598-017-05699-x 10.1002/jbm.a.34147 10.1016/j.copbio.2011.02.006 |
ContentType | Journal Article |
Copyright | 2020 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. 2020 |
Copyright_xml | – notice: 2020 – notice: 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. – notice: 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. 2020 |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 OTOTI 5PM DOA |
DOI | 10.1016/j.jare.2020.01.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2090-1224 |
EndPage | 132 |
ExternalDocumentID | oai_doaj_org_article_5f40c18b954b495e8414cdaa40dbcdd8 1600051 10_1016_j_jare_2020_01_010 32099674 S2090123220300102 |
Genre | Journal Article |
GroupedDBID | --K 0R~ 0SF 1B1 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABMAC ACGFS ADBBV ADEZE AEFWE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV E3Z EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB J1W KQ8 M41 NCXOZ O-L O9- OK1 OZT RIG ROL RPM SES SSZ UNMZH XH2 ADVLN AFJKZ AKRWK NPM AAYXX CITATION 7X8 ABQIS OTOTI 5PM |
ID | FETCH-LOGICAL-c548t-fa971e48aee8996cd40e888ae142ae4be643c072b72d65452a458b7cfe95956c3 |
IEDL.DBID | RPM |
ISSN | 2090-1232 |
IngestDate | Tue Oct 22 15:10:40 EDT 2024 Tue Sep 17 20:50:04 EDT 2024 Fri May 19 01:31:00 EDT 2023 Wed Dec 04 14:53:54 EST 2024 Thu Sep 26 21:02:21 EDT 2024 Sat Sep 28 08:30:21 EDT 2024 Fri Feb 23 02:48:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Cartilage regeneration In situ 3D bio-printing Bio-ink crosslinking Tissue engineering Robot |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c548t-fa971e48aee8996cd40e888ae142ae4be643c072b72d65452a458b7cfe95956c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 2018YFF0301100 USDOE Office of Electricity Delivery and Energy Reliability (OE), Power Systems Engineering Research and Development (R&D) (OE-10) Kaiwei Ma and Tianzheng Zhao contributed equally to this work. |
ORCID | 0000-0002-2552-9686 0000-0003-1649-6736 0000000225529686 0000000316496736 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7030996/ |
PMID | 32099674 |
PQID | 2365225846 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5f40c18b954b495e8414cdaa40dbcdd8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7030996 osti_scitechconnect_1600051 proquest_miscellaneous_2365225846 crossref_primary_10_1016_j_jare_2020_01_010 pubmed_primary_32099674 elsevier_sciencedirect_doi_10_1016_j_jare_2020_01_010 |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Egypt |
PublicationPlace_xml | – name: Egypt |
PublicationTitle | Journal of advanced research |
PublicationTitleAlternate | J Adv Res |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Di Bella, Duchi, O'Connell, Blanchard, Augustine, Yue (b0020) 2018; 12 Jin, Gans (b0095) 2015; 31 Li, Yu, Shi, Shen, Teng, Yang (b0065) 2017; 7 Mouser, Abbadessa, Levato, Hennink, Vermonden, Gawlitta (b0070) 2017; 9 Kunz, Waldman, Rudan, Bardana, Stewart (b0125) 2012; 20 Keriquel, Oliveira, Remy, Ziane, Delmond, Rousseau (b0030) 2017; 7 Skardal, Mack, Kapetanovic, Atala, Jackson, Yoo (b0045) 2012; 1 Sun, Xue, Ying, Meng, Wei (b0080) 2016 Murphy, Anthony (b0005) 2014; 32 Mironov, Kasyanov, Markwald (b0015) 2011; 22 Duchi, Onofrillo, O'Connell, Blanchard, Augustine, Quigley (b0060) 2017; 7 O'Connell, Di Bella, Thompson, Augustine, Beirne, Cornock (b0055) 2016; 8 Loebel, Rodell, Chen, Burdick (b0090) 2017; 12 Abbadessa, Mouser, Blokzijl, Gawlitta, Dhert, Hennink (b0075) 2016; 17 Cohen, Lipton, Bonassar, Lipson (b0035) 2010; 2 Lipskas, Deep, Yao (b0040) 2019; 9 Campbell, Weiss (b0010) 2007; 7 Wang, Zhang, Tsang, Wan, Wu (b0085) 2017; 120 Zhang, Moskowitz, Nuki, Abramson, Altman, Arden (b0120) 2008; 16 Koh, Wirsing, Lautenschlager, Zhang (b0135) 2004; 32 Albanna, Binder, Murphy, Kim, Qasem, Zhao (b0050) 2019; 9 van den Borne, Raijmakers, Vanlauwe, Victor, de Jong, Bellemans (b0100) 2007; 15 Lin, Sun (b0145) 2015; 264 McAlindon, Bannuru, Sullivan, Arden, Berenbaum, Bierma-Zeinstra (b0115) 2014; 22 Hangody, Vasarhelyi, Hangody, Sukosd, Tibay, Bartha (b0130) 2008; 39 Hangody, Rathonyi, Duska, Vasarhelyi, Fules, Modis (b0160) 2004; 86-A Singh, Choudhury, Yu, Mironov, Naing (b0025) 2019 Burdick, Prestwich (b0155) 2011; 23 Zhang, Zhang, Yan, Gong, Wang, Chen (b0105) 2013; 9 O'Driscoll, Keeley, Salter (b0110) 1988; 70 Ge, Li, Heng, Cao, Yang (b0150) 2012; 100 Theissen, Laspas, Archenti (b0140) 2019; 57 Keriquel (10.1016/j.jare.2020.01.010_b0030) 2017; 7 Ge (10.1016/j.jare.2020.01.010_b0150) 2012; 100 Albanna (10.1016/j.jare.2020.01.010_b0050) 2019; 9 Hangody (10.1016/j.jare.2020.01.010_b0160) 2004; 86-A Zhang (10.1016/j.jare.2020.01.010_b0120) 2008; 16 Mouser (10.1016/j.jare.2020.01.010_b0070) 2017; 9 Abbadessa (10.1016/j.jare.2020.01.010_b0075) 2016; 17 McAlindon (10.1016/j.jare.2020.01.010_b0115) 2014; 22 Campbell (10.1016/j.jare.2020.01.010_b0010) 2007; 7 Burdick (10.1016/j.jare.2020.01.010_b0155) 2011; 23 Lin (10.1016/j.jare.2020.01.010_b0145) 2015; 264 Mironov (10.1016/j.jare.2020.01.010_b0015) 2011; 22 Murphy (10.1016/j.jare.2020.01.010_b0005) 2014; 32 Duchi (10.1016/j.jare.2020.01.010_b0060) 2017; 7 Wang (10.1016/j.jare.2020.01.010_b0085) 2017; 120 van den Borne (10.1016/j.jare.2020.01.010_b0100) 2007; 15 Sun (10.1016/j.jare.2020.01.010_b0080) 2016 Skardal (10.1016/j.jare.2020.01.010_b0045) 2012; 1 Jin (10.1016/j.jare.2020.01.010_b0095) 2015; 31 Koh (10.1016/j.jare.2020.01.010_b0135) 2004; 32 Theissen (10.1016/j.jare.2020.01.010_b0140) 2019; 57 O'Connell (10.1016/j.jare.2020.01.010_b0055) 2016; 8 Li (10.1016/j.jare.2020.01.010_b0065) 2017; 7 Loebel (10.1016/j.jare.2020.01.010_b0090) 2017; 12 Lipskas (10.1016/j.jare.2020.01.010_b0040) 2019; 9 Cohen (10.1016/j.jare.2020.01.010_b0035) 2010; 2 Kunz (10.1016/j.jare.2020.01.010_b0125) 2012; 20 Hangody (10.1016/j.jare.2020.01.010_b0130) 2008; 39 Singh (10.1016/j.jare.2020.01.010_b0025) 2019 Zhang (10.1016/j.jare.2020.01.010_b0105) 2013; 9 Di Bella (10.1016/j.jare.2020.01.010_b0020) 2018; 12 O'Driscoll (10.1016/j.jare.2020.01.010_b0110) 1988; 70 |
References_xml | – volume: 7 start-page: 9416 year: 2017 ident: b0065 article-title: In situ repair of bone and cartilage defects using 3D scanning and 3D printing publication-title: Sci Rep contributor: fullname: Yang – volume: 1 start-page: 792 year: 2012 end-page: 802 ident: b0045 article-title: Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds publication-title: Stem Cells Transl Med contributor: fullname: Yoo – volume: 23 start-page: H41 year: 2011 end-page: H56 ident: b0155 article-title: Hyaluronic acid hydrogels for biomedical applications publication-title: Adv Mater contributor: fullname: Prestwich – volume: 7 start-page: 1778 year: 2017 ident: b0030 article-title: In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications publication-title: Sci Rep contributor: fullname: Rousseau – volume: 264 start-page: 85 year: 2015 end-page: 98 ident: b0145 article-title: Searching globally optimal parameter sequence for defeating Runge phenomenon by immunity genetic algorithm publication-title: Appl Math Comput contributor: fullname: Sun – volume: 39 start-page: S32 year: 2008 end-page: S39 ident: b0130 article-title: Autologous osteochondral grafting–technique and long-term results publication-title: Injury contributor: fullname: Bartha – volume: 16 start-page: 137 year: 2008 end-page: 162 ident: b0120 article-title: OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines publication-title: Osteoarthritis Cartil contributor: fullname: Arden – volume: 12 start-page: 611 year: 2018 end-page: 621 ident: b0020 article-title: In situ handheld three-dimensional bioprinting for cartilage regeneration publication-title: J Tissue Eng Regener Med contributor: fullname: Yue – volume: 70 start-page: 595 year: 1988 end-page: 606 ident: b0110 article-title: Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year publication-title: J Bone Joint Surg Am contributor: fullname: Salter – volume: 9 year: 2017 ident: b0070 article-title: Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs publication-title: Biofabrication contributor: fullname: Gawlitta – volume: 31 start-page: 21 year: 2015 end-page: 29 ident: b0095 article-title: Parameter identification for industrial robots with a fast and robust trajectory design approach publication-title: Robotics Comput Integr Manuf contributor: fullname: Gans – volume: 20 start-page: 857 year: 2012 end-page: 861 ident: b0125 article-title: Computer-assisted mosaic arthroplasty using patient-specific instrument guides publication-title: Knee Surg Sports Traumatol Arthrosc Official J ESSKA contributor: fullname: Stewart – volume: 9 start-page: 7276 year: 2013 end-page: 7288 ident: b0105 article-title: Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan publication-title: Acta Biomater contributor: fullname: Chen – volume: 8 year: 2016 ident: b0055 article-title: Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site publication-title: Biofabrication contributor: fullname: Cornock – volume: 86-A start-page: 65 year: 2004 end-page: 72 ident: b0160 article-title: Autologous osteochondral mosaicplasty. Surgical technique publication-title: J Bone Joint Surg Am contributor: fullname: Modis – volume: 7 start-page: 1123 year: 2007 end-page: 1127 ident: b0010 article-title: Tissue engineering with the aid of inkjet printers publication-title: Expert Opin Biol Ther contributor: fullname: Weiss – volume: 12 start-page: 1521 year: 2017 end-page: 1541 ident: b0090 article-title: Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing publication-title: Nat Protoc contributor: fullname: Burdick – volume: 57 start-page: 86 year: 2019 end-page: 91 ident: b0140 article-title: Closed-force-loop elastostatic calibration of serial articulated robots publication-title: Rob Comput Integr Manuf contributor: fullname: Archenti – volume: 17 start-page: 2137 year: 2016 end-page: 2147 ident: b0075 article-title: A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides publication-title: Biomacromolecules contributor: fullname: Hennink – year: 2019 ident: b0025 article-title: In situ bioprinting - Bioprinting from benchside to bedside? publication-title: Acta Biomater contributor: fullname: Naing – volume: 9 start-page: 3746 year: 2019 ident: b0040 article-title: Robotic-Assisted 3D Bio-printing for Repairing Bone and Cartilage Defects through a Minimally Invasive Approach publication-title: Sci Rep contributor: fullname: Yao – volume: 22 start-page: 363 year: 2014 end-page: 388 ident: b0115 article-title: OARSI guidelines for the non-surgical management of knee osteoarthritis publication-title: Osteoarthritis Cartil contributor: fullname: Bierma-Zeinstra – volume: 9 start-page: 1856 year: 2019 ident: b0050 article-title: In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds publication-title: Sci Rep contributor: fullname: Zhao – volume: 2 year: 2010 ident: b0035 article-title: Additive manufacturing for in situ repair of osteochondral defects publication-title: Biofabrication contributor: fullname: Lipson – volume: 32 start-page: 317 year: 2004 end-page: 320 ident: b0135 article-title: The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study publication-title: Am J Sports Med contributor: fullname: Zhang – volume: 22 start-page: 667 year: 2011 end-page: 673 ident: b0015 article-title: Organ printing: from bioprinter to organ biofabrication line publication-title: Curr Opin Biotechnol contributor: fullname: Markwald – volume: 7 start-page: 5837 year: 2017 ident: b0060 article-title: Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair publication-title: Sci Rep contributor: fullname: Quigley – year: 2016 ident: b0080 article-title: Polymer-Supramolecular Polymer Double-Network Hydrogel publication-title: Adv Funct Mater contributor: fullname: Wei – volume: 120 start-page: 11 year: 2017 end-page: 21 ident: b0085 article-title: Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering publication-title: Biomaterials contributor: fullname: Wu – volume: 15 start-page: 1397 year: 2007 end-page: 1402 ident: b0100 article-title: International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture publication-title: Osteoarthr Cartil contributor: fullname: Bellemans – volume: 32 start-page: 773 year: 2014 end-page: 785 ident: b0005 article-title: 3D bioprinting of tissues and organs publication-title: Nat Biotechnol contributor: fullname: Anthony – volume: 100 start-page: 2526 year: 2012 end-page: 2536 ident: b0150 article-title: Functional biomaterials for cartilage regeneration publication-title: J Biomed Mater Res Part A contributor: fullname: Yang – volume: 39 start-page: S32 issue: Suppl 1 year: 2008 ident: 10.1016/j.jare.2020.01.010_b0130 article-title: Autologous osteochondral grafting–technique and long-term results publication-title: Injury doi: 10.1016/j.injury.2008.01.041 contributor: fullname: Hangody – volume: 23 start-page: H41 year: 2011 ident: 10.1016/j.jare.2020.01.010_b0155 article-title: Hyaluronic acid hydrogels for biomedical applications publication-title: Adv Mater doi: 10.1002/adma.201003963 contributor: fullname: Burdick – volume: 12 start-page: 1521 year: 2017 ident: 10.1016/j.jare.2020.01.010_b0090 article-title: Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing publication-title: Nat Protoc doi: 10.1038/nprot.2017.053 contributor: fullname: Loebel – volume: 17 start-page: 2137 year: 2016 ident: 10.1016/j.jare.2020.01.010_b0075 article-title: A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides publication-title: Biomacromolecules doi: 10.1021/acs.biomac.6b00366 contributor: fullname: Abbadessa – volume: 7 start-page: 1778 year: 2017 ident: 10.1016/j.jare.2020.01.010_b0030 article-title: In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications publication-title: Sci Rep doi: 10.1038/s41598-017-01914-x contributor: fullname: Keriquel – volume: 1 start-page: 792 year: 2012 ident: 10.1016/j.jare.2020.01.010_b0045 article-title: Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds publication-title: Stem Cells Transl Med doi: 10.5966/sctm.2012-0088 contributor: fullname: Skardal – volume: 7 start-page: 9416 year: 2017 ident: 10.1016/j.jare.2020.01.010_b0065 article-title: In situ repair of bone and cartilage defects using 3D scanning and 3D printing publication-title: Sci Rep doi: 10.1038/s41598-017-10060-3 contributor: fullname: Li – volume: 9 start-page: 7276 year: 2013 ident: 10.1016/j.jare.2020.01.010_b0105 article-title: Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan publication-title: Acta Biomater doi: 10.1016/j.actbio.2013.03.025 contributor: fullname: Zhang – volume: 32 start-page: 317 year: 2004 ident: 10.1016/j.jare.2020.01.010_b0135 article-title: The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study publication-title: Am J Sports Med doi: 10.1177/0363546503261730 contributor: fullname: Koh – year: 2019 ident: 10.1016/j.jare.2020.01.010_b0025 article-title: In situ bioprinting - Bioprinting from benchside to bedside? publication-title: Acta Biomater contributor: fullname: Singh – volume: 16 start-page: 137 year: 2008 ident: 10.1016/j.jare.2020.01.010_b0120 article-title: OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines publication-title: Osteoarthritis Cartil doi: 10.1016/j.joca.2007.12.013 contributor: fullname: Zhang – volume: 22 start-page: 363 year: 2014 ident: 10.1016/j.jare.2020.01.010_b0115 article-title: OARSI guidelines for the non-surgical management of knee osteoarthritis publication-title: Osteoarthritis Cartil doi: 10.1016/j.joca.2014.01.003 contributor: fullname: McAlindon – volume: 264 start-page: 85 year: 2015 ident: 10.1016/j.jare.2020.01.010_b0145 article-title: Searching globally optimal parameter sequence for defeating Runge phenomenon by immunity genetic algorithm publication-title: Appl Math Comput contributor: fullname: Lin – year: 2016 ident: 10.1016/j.jare.2020.01.010_b0080 article-title: Polymer-Supramolecular Polymer Double-Network Hydrogel publication-title: Adv Funct Mater doi: 10.1002/adfm.201603512 contributor: fullname: Sun – volume: 15 start-page: 1397 year: 2007 ident: 10.1016/j.jare.2020.01.010_b0100 article-title: International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture publication-title: Osteoarthr Cartil doi: 10.1016/j.joca.2007.05.005 contributor: fullname: van den Borne – volume: 20 start-page: 857 year: 2012 ident: 10.1016/j.jare.2020.01.010_b0125 article-title: Computer-assisted mosaic arthroplasty using patient-specific instrument guides publication-title: Knee Surg Sports Traumatol Arthrosc Official J ESSKA doi: 10.1007/s00167-011-1638-2 contributor: fullname: Kunz – volume: 32 start-page: 773 year: 2014 ident: 10.1016/j.jare.2020.01.010_b0005 article-title: 3D bioprinting of tissues and organs publication-title: Nat Biotechnol doi: 10.1038/nbt.2958 contributor: fullname: Murphy – volume: 120 start-page: 11 year: 2017 ident: 10.1016/j.jare.2020.01.010_b0085 article-title: Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.12.015 contributor: fullname: Wang – volume: 2 year: 2010 ident: 10.1016/j.jare.2020.01.010_b0035 article-title: Additive manufacturing for in situ repair of osteochondral defects publication-title: Biofabrication doi: 10.1088/1758-5082/2/3/035004 contributor: fullname: Cohen – volume: 86-A start-page: 65 issue: Suppl 1 year: 2004 ident: 10.1016/j.jare.2020.01.010_b0160 article-title: Autologous osteochondral mosaicplasty. Surgical technique publication-title: J Bone Joint Surg Am doi: 10.2106/00004623-200403001-00009 contributor: fullname: Hangody – volume: 9 start-page: 1856 year: 2019 ident: 10.1016/j.jare.2020.01.010_b0050 article-title: In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds publication-title: Sci Rep doi: 10.1038/s41598-018-38366-w contributor: fullname: Albanna – volume: 8 year: 2016 ident: 10.1016/j.jare.2020.01.010_b0055 article-title: Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site publication-title: Biofabrication contributor: fullname: O'Connell – volume: 31 start-page: 21 year: 2015 ident: 10.1016/j.jare.2020.01.010_b0095 article-title: Parameter identification for industrial robots with a fast and robust trajectory design approach publication-title: Robotics Comput Integr Manuf doi: 10.1016/j.rcim.2014.06.004 contributor: fullname: Jin – volume: 12 start-page: 611 year: 2018 ident: 10.1016/j.jare.2020.01.010_b0020 article-title: In situ handheld three-dimensional bioprinting for cartilage regeneration publication-title: J Tissue Eng Regener Med doi: 10.1002/term.2476 contributor: fullname: Di Bella – volume: 7 start-page: 1123 year: 2007 ident: 10.1016/j.jare.2020.01.010_b0010 article-title: Tissue engineering with the aid of inkjet printers publication-title: Expert Opin Biol Ther doi: 10.1517/14712598.7.8.1123 contributor: fullname: Campbell – volume: 57 start-page: 86 year: 2019 ident: 10.1016/j.jare.2020.01.010_b0140 article-title: Closed-force-loop elastostatic calibration of serial articulated robots publication-title: Rob Comput Integr Manuf doi: 10.1016/j.rcim.2018.07.007 contributor: fullname: Theissen – volume: 70 start-page: 595 year: 1988 ident: 10.1016/j.jare.2020.01.010_b0110 article-title: Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year publication-title: J Bone Joint Surg Am doi: 10.2106/00004623-198870040-00017 contributor: fullname: O'Driscoll – volume: 9 start-page: 3746 year: 2019 ident: 10.1016/j.jare.2020.01.010_b0040 article-title: Robotic-Assisted 3D Bio-printing for Repairing Bone and Cartilage Defects through a Minimally Invasive Approach publication-title: Sci Rep doi: 10.1038/s41598-019-38972-2 contributor: fullname: Lipskas – volume: 9 year: 2017 ident: 10.1016/j.jare.2020.01.010_b0070 article-title: Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs publication-title: Biofabrication doi: 10.1088/1758-5090/aa6265 contributor: fullname: Mouser – volume: 7 start-page: 5837 year: 2017 ident: 10.1016/j.jare.2020.01.010_b0060 article-title: Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair publication-title: Sci Rep doi: 10.1038/s41598-017-05699-x contributor: fullname: Duchi – volume: 100 start-page: 2526 year: 2012 ident: 10.1016/j.jare.2020.01.010_b0150 article-title: Functional biomaterials for cartilage regeneration publication-title: J Biomed Mater Res Part A doi: 10.1002/jbm.a.34147 contributor: fullname: Ge – volume: 22 start-page: 667 year: 2011 ident: 10.1016/j.jare.2020.01.010_b0015 article-title: Organ printing: from bioprinter to organ biofabrication line publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2011.02.006 contributor: fullname: Mironov |
SSID | ssj0000388911 |
Score | 2.5288675 |
Snippet | [Display omitted]
The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The... The concept of 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to... The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed... The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed... |
SourceID | doaj pubmedcentral osti proquest crossref pubmed elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 123 |
SubjectTerms | Bio-ink crosslinking Cartilage regeneration In situ 3D bio-printing Robot Tissue engineering |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yT76I52c9lQg-KFJMm6RJfVs_jkXQJw_uLSTp9K7H0Up398D_3pm0e-6K6IvQp7STMplJ8ptk8gtjLwmzRiHLXMpC5crqNvcGo5TWx6rVwRpI7PpfvlarU_X5TJ_tXfVFOWETPfDUcG91q0QsbKi1CgjmwapCxcZ7JZoQm2Y65ivKvWAqjcHS2jpdvluKmtIPZDmfmJmSuy79SByZpUicnXR8dm9WSuT9B5PTYsD-9icM-nsq5d7cdHKX3ZlBJV9OyhyxW9DfY0dzt13zVzO39Ov7bFz-2rDmQ8vHIQwolCOEJns3vOv5uttsufzIacmPkqKpLFJDXeHYw0c4T7WlGmgVl69w3OYXP5pxOIerd3zZk8B1dz3wxF37gJ2efPr2YZXP1y7kEcOXDZqpNgUo6wEwGKtiowRgnOyhUKUHFQBBTBSmDKZsKrqi3Cttg4kt1BqjrSgfskU_9PCYcQ1a-KgabcGrWKlQqxa0NMSF1BYWMvZm1-zu-8Su4XZpZ5eOjOTISE4U-IiMvSfL3HxJzNipAP3Fzf7i_uUvGdM7u7oZZEzgAavq_vrzY3ICkiF23UhpSChUVAkFZ-zFzjcc9k_adPE9DNu1K2WFEJdgXsYeTb5yo4Ckc8uVURkzB150oOHhm767SBzgNFCj7JP_0STH7DYpOqVxPmWLzbiFZwi1NuF56lU_Af7oJi8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhT72Upk83bVEhh5ZiVrYlP3rbpA2bQHtpA3sTkjzeOAQ7eHcD_fedke1tXEoPAV8se2SkGY2-kUefGDsmzOpEEodJEslQ5qoKTYZRSmVcWimbZ-DZ9b99T5eX8mKlVgfsdNwLQ2mVg-_vfbr31kPJfOjN-W1dz3_EovCAIEY7JWY09MOJEmTl56uT_ToLsZ0U_hheej8kgWHvTJ_mdW06YsuMhWfvpI209-YnT-M_maZmLY68f6HRv5Mq781SZ0_Y4wFe8kXfgkN2AM1TdjgM4A3_MLBMf3zGusWfX9e8rXjX2haFQgTTpPmS1w3f1NsdT75wWvyj9Ggqc9Q7N-iFeAdrX5uvgdZz-RI9OL_6VXbtGm4-80VDAnf1Xcs9i-1zdnn29efpMhwOYAgdBjJbVFiRRSBzA4BhWepKKQAjZgORjA1ICwhnnMhim8VlSoeVG6lym7kKCoVxl0tesFnTNvCKcQVKGCdLlYORLpW2kBWoJCNWpCrKIWCfxm7Xtz3Phh4T0K41KUmTkrSI8BIBOyHN7N8kjmxf0HZrPRiJVpUULsptoaTFMBByGUlXGiNFaV1Z5gFTo171xOSwqvq_Hz8iIyAZ4tl1lJCEQlHq8XDA3o-2oXGk0u8X00C72-g4SRHsEuAL2MveVvYNSGgHc5rJgGUTK5q0cPqkqa88Gzi5bJR9_cDWHLFHdNfncL5hs223g7eIs7b2nR9IvwFQ-iWR priority: 102 providerName: Elsevier |
Title | Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study |
URI | https://dx.doi.org/10.1016/j.jare.2020.01.010 https://www.ncbi.nlm.nih.gov/pubmed/32099674 https://search.proquest.com/docview/2365225846 https://www.osti.gov/biblio/1600051 https://pubmed.ncbi.nlm.nih.gov/PMC7030996 https://doaj.org/article/5f40c18b954b495e8414cdaa40dbcdd8 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2nrggxs8wmIzEAYSyOrGdONy6wVSQhjgwqTfLdpwuU5dMaTuJ_573nGSsCHFAqnpI-xw57z37e87nz4S8RczqGE9jzhMRCyWr2ORQpVTGZZW0KvdBXf_8Wza_EF8XcrFH5LgXJpD2na2Pm9X1cVNfBm7lzbWbjjyx6ffzU4xSwOnTfbIP0--9Ej0Mv1ypIpy7m7ICmQc8HTbL9LyuK9OhPGbKglxngkfBcdw_muViZ24KEv47U9Skhaz7GxL9k1B5b4Y6e0QeDtCSzvouHJA93zwmB0Pyrum7QWH6_RPSzX6_tqZtRbvWtmAUA5BGr5e0bui63mwp_0Rx4Q-p0XjN4eNZwQhEO78MrYUWcC2XzmH0ppc_y65d-tVHOmvQ4La-bWlQsH1KLs4-_zidx8PhC7GDImYDziryxAtlvIeSLHOlYB6qZeMTkRovrAco41ie2jwtMzyo3AipbO4qX0iouRx_RiZN2_gXhEovmXGilMob4TJhC1F5yXNURKoS5SPyYXzs-qbX2NAj-exKo780-kuzBD4sIifombt_oj52uNB2Sz1EiZaVYC5RtpDCQgnolUiEK40RrLSuLFVE5OhXPUCNHkJAU_U_b36IQYA2qLHrkIwERkkWsHBE3oyxoSFL8dWLaXy7XeuUZwB0EexF5HkfK3cdGKMvIvlOFO30cPcXSIygBD4kwsv_tjwkD7B3PYPzFZlsuq1_DShrY4_C6gR8f1mcHIUM-wUPDifg |
link.rule.ids | 230,314,727,780,784,864,885,2102,3506,27924,27925,45874,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKcoALorwaysNIHEAoWiex44TbtlBtoe2FVtqbZTvONlWVVNndSvx7ZpxkaRDigJSTk3Fkz3j8jT3-TMh7xKyWJXGYJBEPeSbKUEuIUkpt01KYTDrPrn96ls4v-LeFWOyQw-EsDKZV9r6_8-neW_cl0743pzdVNf0Rs9wDghjsFJnR7pH7XGQSCfSPFwfbhRakO8n9PbwoEKJEf3imy_O60i3SZcbM03fiSdo7E5Tn8R_NU5MGht7f4OifWZV3pqmjx-RRjy_prGvCLtlx9ROy24_gFf3Q00x_fEra2e-9a9qUtG1MA0IhoGlUfUGrmq6q9YYmXyiu_mF-NJZZ7J5rcEO0dUtfm68BF3TpHFw4vfxZtM3SXX-msxoFbqvbhnoa22fk4ujr-eE87G9gCC1EMmvQWC4jxzPtHMRlqS04cxAyaxfxWDtuHOAZy2RsZFykeFu5Bg0YaUuXCwi8bPKcTOqmdnuECieYtrwQmdPcptzkvHQikUiLVEaZC8inodvVTUe0oYYMtCuFSlKoJMUieFhADlAz2y-RJNsXNO1S9VaiRMmZjTKTC24gDnQZj7gttOasMLYosoCIQa9qZHNQVfXPn--jEaAMEu1azEgCoSj1gDgg7wbbUDBUcf9F167ZrFScpIB2EfEF5EVnK9sGJHiEOZU8IHJkRaMWjt_U1aWnA0efDbIv_7M1b8mD-fnpiTo5Pvu-Tx7imy6h8xWZrNuNew2ga23e-EH1Cyu_KLo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegSIgXxPgM48NIPIBQViexE4e3slGVj017YNLeLNtxukxdUqXtJP577pxktAjxgNSnNOfIuTv7d8kvvyPkLWJWy5I4TJKIh1yKMtQZVCmltmkpjMycV9c_PklnZ_zruTjfavXlSfvWVAf14uqgri48t3J5ZccDT2x8enyIUQo4fbwsyvFtckckEGRbhbpfhBMpc999N2Y58g-SuP9kpmN3XeoWRTJj5kU7I2wIl-BXpGnGd3YoL-S_s1GNGsi9v-HRP2mVW_vU9AG53wNMOukmskduufoh2etTeEXf9TrT7x-RdvL75TVtSto2pgGjEOA0-r6gVU1X1XpDkyOKj_-QII3HLN6kBaxDtHVzP5ofAZ_o0hms4fTiZ9E2c7f4SCc1GlxX1w31OraPydn084_DWdi3YAgtlDJrcFmeRY5L7RwUZqktOHNQM2sX8Vg7bhwAGsuy2GRxkWK7cs2FNJktXS6g8rLJEzKqm9o9I1Q4wbTlhZBOc5tyk_PSgetQF6mMpAvIh-G2q2WntKEGCtqlQn8p9JdiEfxYQD6hZ27ORJVsf6Bp56qPFSVKzmwkTS64gULQSR5xW2jNWWFsUciAiMGvqgccHZCAoap_XnwfgwBtUGnXIiUJjKLUI-KAvBliQ0Gu4gsYXbtms1JxkgLcRcgXkKddrNxMYIi-gGQ7UbQzw91_ID28HnifDs__2_I1uXt6NFXfv5x82yf3cKIdpfMFGa3bjXsJsGttXvkE-wULCipP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+robotic-assisted+in+situ+3D+printing+in+cartilage+regeneration+with+HAMA+hydrogel%3A+An+in+vivo+study&rft.jtitle=Journal+of+advanced+research&rft.au=Ma%2C+Kaiwei&rft.au=Zhao%2C+Tianzheng&rft.au=Yang%2C+Longfei&rft.au=Wang%2C+Peng&rft.date=2020-05-01&rft.issn=2090-1232&rft.volume=23&rft.spage=123&rft.epage=132&rft_id=info:doi/10.1016%2Fj.jare.2020.01.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon |