Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study

[Display omitted] The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clin...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced research Vol. 23; no. C; pp. 123 - 132
Main Authors Ma, Kaiwei, Zhao, Tianzheng, Yang, Longfei, Wang, Peng, Jin, Jing, Teng, Huajian, Xia, Dan, Zhu, Liya, Li, Lan, Jiang, Qing, Wang, Xingsong
Format Journal Article
LanguageEnglish
Published Egypt Elsevier B.V 01.05.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The in vitro experiment was performed on a resin model to verify the printing accuracy. The in vivo experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 μm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and in situ 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted in situ 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration.
AbstractList The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The in vitro experiment was performed on a resin model to verify the printing accuracy. The in vivo experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 μm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and in situ 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted in situ 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration. Keywords: In situ 3D bio-printing, Cartilage regeneration, Tissue engineering, Bio-ink crosslinking, Robot
[Display omitted] The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The in vitro experiment was performed on a resin model to verify the printing accuracy. The in vivo experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 μm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and in situ 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted in situ 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration.
The concept of 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The experiment was performed on a resin model to verify the printing accuracy. The experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 μm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration.
The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The in vitro experiment was performed on a resin model to verify the printing accuracy. The in vivo experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 μm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and in situ 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted in situ 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration.
Author Zhao, Tianzheng
Yang, Longfei
Wang, Peng
Wang, Xingsong
Ma, Kaiwei
Jin, Jing
Xia, Dan
Li, Lan
Jiang, Qing
Teng, Huajian
Zhu, Liya
AuthorAffiliation a School of Mechanical Engineering, Southeast University, Nanjing, China
b State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
c School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
AuthorAffiliation_xml – name: c School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
– name: b State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
– name: a School of Mechanical Engineering, Southeast University, Nanjing, China
Author_xml – sequence: 1
  givenname: Kaiwei
  orcidid: 0000-0003-1649-6736
  surname: Ma
  fullname: Ma, Kaiwei
  organization: School of Mechanical Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Tianzheng
  surname: Zhao
  fullname: Zhao, Tianzheng
  organization: School of Mechanical Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Longfei
  surname: Yang
  fullname: Yang, Longfei
  organization: School of Mechanical Engineering, Southeast University, Nanjing, China
– sequence: 4
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
– sequence: 5
  givenname: Jing
  surname: Jin
  fullname: Jin, Jing
  organization: State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
– sequence: 6
  givenname: Huajian
  surname: Teng
  fullname: Teng, Huajian
  organization: State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
– sequence: 7
  givenname: Dan
  surname: Xia
  fullname: Xia, Dan
  organization: School of Mechanical Engineering, Southeast University, Nanjing, China
– sequence: 8
  givenname: Liya
  surname: Zhu
  fullname: Zhu, Liya
  organization: School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
– sequence: 9
  givenname: Lan
  surname: Li
  fullname: Li, Lan
  email: lanl17@163.com
  organization: State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
– sequence: 10
  givenname: Qing
  orcidid: 0000-0002-2552-9686
  surname: Jiang
  fullname: Jiang, Qing
  email: qingj@nju.edu.cn
  organization: State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
– sequence: 11
  givenname: Xingsong
  surname: Wang
  fullname: Wang, Xingsong
  email: xswang@seu.edu.cn
  organization: School of Mechanical Engineering, Southeast University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32099674$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1600051$$D View this record in Osti.gov
BookMark eNp9kk1v1DAQhiNURD_oH-CALE5cdrEdO3EQQlq1QCsVcYGz5diTrKOsvdjOov33OKSs6AVrJH_NPH7HM5fFmfMOiuIVwWuCSfVuWA8qwJpiiteYZMPPiguKG7wilLKz07qk58V1jAPOoxSiIeRFcV7my6aq2UURNvv9aLVK1jvkOxR865PVKxWjjQkMsg5FmyZU3qJ9sC5Z189nWoVkR9UDCtCDg7AQftm0RXebrxu0PZrgexjfo42bAw724FFMkzm-LJ53aoxw_ThfFT8-f_p-c7d6-Pbl_mbzsNKcibTqVFMTYEIBiCxWG4ZBiLwljCpgLVSs1LimbU1NxRmninHR1rqDhje80uVVcb9wjVeDzOJ3KhylV1b-OfChl3MSegTJO4Y1EW3DWcsaDoIRpo1SDJtWGyMy6-PC2k_tDowGl4Ian0Cf3ji7lb0_yBqX81dnwJsF4GOyMmqbQG-1dw50kqTKxeEkO719fCX4nxPEJHc2ahhH5cBPUdKy4pRywWYeXVx18DEG6E5aCJZzg8hBzg0i5waRmGTDOej1v1mcQv62Q3b4sDhArsvBQpiVgtNgbJiFGm__x_8NyE_O0w
CitedBy_id crossref_primary_10_1002_app_52155
crossref_primary_10_3390_cells10010002
crossref_primary_10_1016_j_bprint_2023_e00260
crossref_primary_10_1002_aisy_202200226
crossref_primary_10_1186_s40824_023_00460_0
crossref_primary_10_1002_adfm_202010858
crossref_primary_10_1016_j_biomaterials_2020_120383
crossref_primary_10_1093_lifemedi_lnad046
crossref_primary_10_1002_adhm_202301379
crossref_primary_10_3389_fbioe_2020_568186
crossref_primary_10_1016_j_msec_2021_112005
crossref_primary_10_1039_D2RA07037E
crossref_primary_10_1515_auto_2023_0060
crossref_primary_10_2217_3dp_2021_0022
crossref_primary_10_1016_j_matdes_2021_110240
crossref_primary_10_3390_biomimetics8020260
crossref_primary_10_1016_j_rio_2024_100713
crossref_primary_10_1016_j_biomaterials_2022_121639
crossref_primary_10_1038_s41368_024_00290_3
crossref_primary_10_1016_j_cirp_2022_06_001
crossref_primary_10_1002_adfm_202207496
crossref_primary_10_15406_atroa_2023_09_00139
crossref_primary_10_1016_j_eurpolymj_2023_112651
crossref_primary_10_1002_wnan_1756
crossref_primary_10_1021_acsbiomaterials_1c00598
crossref_primary_10_1080_21691401_2020_1809439
crossref_primary_10_3389_fbioe_2022_887454
crossref_primary_10_1186_s40580_023_00398_y
crossref_primary_10_3390_gels10010008
crossref_primary_10_1080_09506608_2023_2167559
crossref_primary_10_1016_j_addma_2023_103598
crossref_primary_10_1016_j_bioactmat_2023_01_018
crossref_primary_10_56501_intjforensicodontol_v8i2_967
crossref_primary_10_1002_biot_202000095
crossref_primary_10_1016_j_eng_2022_03_008
crossref_primary_10_3390_app131810269
crossref_primary_10_1016_j_bprint_2021_e00139
crossref_primary_10_3389_fbioe_2022_940896
crossref_primary_10_1016_j_bioactmat_2023_10_030
crossref_primary_10_1016_j_mtbio_2022_100334
crossref_primary_10_57634_RCR5068
crossref_primary_10_1155_2022_7638245
crossref_primary_10_1002_advs_202200050
crossref_primary_10_1177_24726303211020297
crossref_primary_10_3390_polym14040839
crossref_primary_10_1002_term_3309
crossref_primary_10_1002_advs_202400345
crossref_primary_10_1038_s41467_022_30997_y
crossref_primary_10_1016_j_cossms_2020_100867
crossref_primary_10_1016_j_tibtech_2020_11_003
crossref_primary_10_1007_s10439_023_03236_8
crossref_primary_10_1002_bit_28769
crossref_primary_10_3389_fbioe_2022_828921
crossref_primary_10_1016_j_actbio_2021_03_009
crossref_primary_10_3389_fbioe_2021_812383
crossref_primary_10_1080_00914037_2022_2052727
crossref_primary_10_1002_adhm_202002221
crossref_primary_10_1002_tcr_202100093
crossref_primary_10_3390_ijerph182010806
crossref_primary_10_1039_D0BM00973C
crossref_primary_10_3748_wjg_v28_i47_6788
crossref_primary_10_1016_j_tibtech_2022_03_009
crossref_primary_10_3390_mi13050712
crossref_primary_10_3390_pharmaceutics13070983
crossref_primary_10_1021_acs_biomac_0c01671
crossref_primary_10_1021_acsami_2c04841
crossref_primary_10_1016_j_bioactmat_2024_01_015
crossref_primary_10_1021_acsabm_3c00093
crossref_primary_10_1088_2631_7990_acda67
crossref_primary_10_3390_bioengineering10020213
crossref_primary_10_1002_btm2_10307
crossref_primary_10_1021_acsabm_3c01303
crossref_primary_10_1016_j_jare_2020_11_011
crossref_primary_10_1177_08853282211047939
crossref_primary_10_1063_5_0176301
crossref_primary_10_1111_jre_13235
crossref_primary_10_1016_j_eng_2024_04_023
crossref_primary_10_1016_j_bprint_2021_e00155
crossref_primary_10_1038_s43586_021_00073_8
crossref_primary_10_1016_j_jconrel_2020_09_030
crossref_primary_10_1002_admt_202400060
crossref_primary_10_3390_gels10070430
crossref_primary_10_1016_j_mtbio_2023_100695
Cites_doi 10.1016/j.injury.2008.01.041
10.1002/adma.201003963
10.1038/nprot.2017.053
10.1021/acs.biomac.6b00366
10.1038/s41598-017-01914-x
10.5966/sctm.2012-0088
10.1038/s41598-017-10060-3
10.1016/j.actbio.2013.03.025
10.1177/0363546503261730
10.1016/j.joca.2007.12.013
10.1016/j.joca.2014.01.003
10.1002/adfm.201603512
10.1016/j.joca.2007.05.005
10.1007/s00167-011-1638-2
10.1038/nbt.2958
10.1016/j.biomaterials.2016.12.015
10.1088/1758-5082/2/3/035004
10.2106/00004623-200403001-00009
10.1038/s41598-018-38366-w
10.1016/j.rcim.2014.06.004
10.1002/term.2476
10.1517/14712598.7.8.1123
10.1016/j.rcim.2018.07.007
10.2106/00004623-198870040-00017
10.1038/s41598-019-38972-2
10.1088/1758-5090/aa6265
10.1038/s41598-017-05699-x
10.1002/jbm.a.34147
10.1016/j.copbio.2011.02.006
ContentType Journal Article
Copyright 2020
2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University.
2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. 2020
Copyright_xml – notice: 2020
– notice: 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University.
– notice: 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. 2020
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
OTOTI
5PM
DOA
DOI 10.1016/j.jare.2020.01.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2090-1224
EndPage 132
ExternalDocumentID oai_doaj_org_article_5f40c18b954b495e8414cdaa40dbcdd8
1600051
10_1016_j_jare_2020_01_010
32099674
S2090123220300102
Genre Journal Article
GroupedDBID --K
0R~
0SF
1B1
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFRF
ABMAC
ACGFS
ADBBV
ADEZE
AEFWE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
J1W
KQ8
M41
NCXOZ
O-L
O9-
OK1
OZT
RIG
ROL
RPM
SES
SSZ
UNMZH
XH2
ADVLN
AFJKZ
AKRWK
NPM
AAYXX
CITATION
7X8
ABQIS
OTOTI
5PM
ID FETCH-LOGICAL-c548t-fa971e48aee8996cd40e888ae142ae4be643c072b72d65452a458b7cfe95956c3
IEDL.DBID RPM
ISSN 2090-1232
IngestDate Tue Oct 22 15:10:40 EDT 2024
Tue Sep 17 20:50:04 EDT 2024
Fri May 19 01:31:00 EDT 2023
Wed Dec 04 14:53:54 EST 2024
Thu Sep 26 21:02:21 EDT 2024
Sat Sep 28 08:30:21 EDT 2024
Fri Feb 23 02:48:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Cartilage regeneration
In situ 3D bio-printing
Bio-ink crosslinking
Tissue engineering
Robot
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-fa971e48aee8996cd40e888ae142ae4be643c072b72d65452a458b7cfe95956c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
2018YFF0301100
USDOE Office of Electricity Delivery and Energy Reliability (OE), Power Systems Engineering Research and Development (R&D) (OE-10)
Kaiwei Ma and Tianzheng Zhao contributed equally to this work.
ORCID 0000-0002-2552-9686
0000-0003-1649-6736
0000000225529686
0000000316496736
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7030996/
PMID 32099674
PQID 2365225846
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_5f40c18b954b495e8414cdaa40dbcdd8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7030996
osti_scitechconnect_1600051
proquest_miscellaneous_2365225846
crossref_primary_10_1016_j_jare_2020_01_010
pubmed_primary_32099674
elsevier_sciencedirect_doi_10_1016_j_jare_2020_01_010
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Egypt
PublicationPlace_xml – name: Egypt
PublicationTitle Journal of advanced research
PublicationTitleAlternate J Adv Res
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Di Bella, Duchi, O'Connell, Blanchard, Augustine, Yue (b0020) 2018; 12
Jin, Gans (b0095) 2015; 31
Li, Yu, Shi, Shen, Teng, Yang (b0065) 2017; 7
Mouser, Abbadessa, Levato, Hennink, Vermonden, Gawlitta (b0070) 2017; 9
Kunz, Waldman, Rudan, Bardana, Stewart (b0125) 2012; 20
Keriquel, Oliveira, Remy, Ziane, Delmond, Rousseau (b0030) 2017; 7
Skardal, Mack, Kapetanovic, Atala, Jackson, Yoo (b0045) 2012; 1
Sun, Xue, Ying, Meng, Wei (b0080) 2016
Murphy, Anthony (b0005) 2014; 32
Mironov, Kasyanov, Markwald (b0015) 2011; 22
Duchi, Onofrillo, O'Connell, Blanchard, Augustine, Quigley (b0060) 2017; 7
O'Connell, Di Bella, Thompson, Augustine, Beirne, Cornock (b0055) 2016; 8
Loebel, Rodell, Chen, Burdick (b0090) 2017; 12
Abbadessa, Mouser, Blokzijl, Gawlitta, Dhert, Hennink (b0075) 2016; 17
Cohen, Lipton, Bonassar, Lipson (b0035) 2010; 2
Lipskas, Deep, Yao (b0040) 2019; 9
Campbell, Weiss (b0010) 2007; 7
Wang, Zhang, Tsang, Wan, Wu (b0085) 2017; 120
Zhang, Moskowitz, Nuki, Abramson, Altman, Arden (b0120) 2008; 16
Koh, Wirsing, Lautenschlager, Zhang (b0135) 2004; 32
Albanna, Binder, Murphy, Kim, Qasem, Zhao (b0050) 2019; 9
van den Borne, Raijmakers, Vanlauwe, Victor, de Jong, Bellemans (b0100) 2007; 15
Lin, Sun (b0145) 2015; 264
McAlindon, Bannuru, Sullivan, Arden, Berenbaum, Bierma-Zeinstra (b0115) 2014; 22
Hangody, Vasarhelyi, Hangody, Sukosd, Tibay, Bartha (b0130) 2008; 39
Hangody, Rathonyi, Duska, Vasarhelyi, Fules, Modis (b0160) 2004; 86-A
Singh, Choudhury, Yu, Mironov, Naing (b0025) 2019
Burdick, Prestwich (b0155) 2011; 23
Zhang, Zhang, Yan, Gong, Wang, Chen (b0105) 2013; 9
O'Driscoll, Keeley, Salter (b0110) 1988; 70
Ge, Li, Heng, Cao, Yang (b0150) 2012; 100
Theissen, Laspas, Archenti (b0140) 2019; 57
Keriquel (10.1016/j.jare.2020.01.010_b0030) 2017; 7
Ge (10.1016/j.jare.2020.01.010_b0150) 2012; 100
Albanna (10.1016/j.jare.2020.01.010_b0050) 2019; 9
Hangody (10.1016/j.jare.2020.01.010_b0160) 2004; 86-A
Zhang (10.1016/j.jare.2020.01.010_b0120) 2008; 16
Mouser (10.1016/j.jare.2020.01.010_b0070) 2017; 9
Abbadessa (10.1016/j.jare.2020.01.010_b0075) 2016; 17
McAlindon (10.1016/j.jare.2020.01.010_b0115) 2014; 22
Campbell (10.1016/j.jare.2020.01.010_b0010) 2007; 7
Burdick (10.1016/j.jare.2020.01.010_b0155) 2011; 23
Lin (10.1016/j.jare.2020.01.010_b0145) 2015; 264
Mironov (10.1016/j.jare.2020.01.010_b0015) 2011; 22
Murphy (10.1016/j.jare.2020.01.010_b0005) 2014; 32
Duchi (10.1016/j.jare.2020.01.010_b0060) 2017; 7
Wang (10.1016/j.jare.2020.01.010_b0085) 2017; 120
van den Borne (10.1016/j.jare.2020.01.010_b0100) 2007; 15
Sun (10.1016/j.jare.2020.01.010_b0080) 2016
Skardal (10.1016/j.jare.2020.01.010_b0045) 2012; 1
Jin (10.1016/j.jare.2020.01.010_b0095) 2015; 31
Koh (10.1016/j.jare.2020.01.010_b0135) 2004; 32
Theissen (10.1016/j.jare.2020.01.010_b0140) 2019; 57
O'Connell (10.1016/j.jare.2020.01.010_b0055) 2016; 8
Li (10.1016/j.jare.2020.01.010_b0065) 2017; 7
Loebel (10.1016/j.jare.2020.01.010_b0090) 2017; 12
Lipskas (10.1016/j.jare.2020.01.010_b0040) 2019; 9
Cohen (10.1016/j.jare.2020.01.010_b0035) 2010; 2
Kunz (10.1016/j.jare.2020.01.010_b0125) 2012; 20
Hangody (10.1016/j.jare.2020.01.010_b0130) 2008; 39
Singh (10.1016/j.jare.2020.01.010_b0025) 2019
Zhang (10.1016/j.jare.2020.01.010_b0105) 2013; 9
Di Bella (10.1016/j.jare.2020.01.010_b0020) 2018; 12
O'Driscoll (10.1016/j.jare.2020.01.010_b0110) 1988; 70
References_xml – volume: 7
  start-page: 9416
  year: 2017
  ident: b0065
  article-title: In situ repair of bone and cartilage defects using 3D scanning and 3D printing
  publication-title: Sci Rep
  contributor:
    fullname: Yang
– volume: 1
  start-page: 792
  year: 2012
  end-page: 802
  ident: b0045
  article-title: Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds
  publication-title: Stem Cells Transl Med
  contributor:
    fullname: Yoo
– volume: 23
  start-page: H41
  year: 2011
  end-page: H56
  ident: b0155
  article-title: Hyaluronic acid hydrogels for biomedical applications
  publication-title: Adv Mater
  contributor:
    fullname: Prestwich
– volume: 7
  start-page: 1778
  year: 2017
  ident: b0030
  article-title: In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications
  publication-title: Sci Rep
  contributor:
    fullname: Rousseau
– volume: 264
  start-page: 85
  year: 2015
  end-page: 98
  ident: b0145
  article-title: Searching globally optimal parameter sequence for defeating Runge phenomenon by immunity genetic algorithm
  publication-title: Appl Math Comput
  contributor:
    fullname: Sun
– volume: 39
  start-page: S32
  year: 2008
  end-page: S39
  ident: b0130
  article-title: Autologous osteochondral grafting–technique and long-term results
  publication-title: Injury
  contributor:
    fullname: Bartha
– volume: 16
  start-page: 137
  year: 2008
  end-page: 162
  ident: b0120
  article-title: OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines
  publication-title: Osteoarthritis Cartil
  contributor:
    fullname: Arden
– volume: 12
  start-page: 611
  year: 2018
  end-page: 621
  ident: b0020
  article-title: In situ handheld three-dimensional bioprinting for cartilage regeneration
  publication-title: J Tissue Eng Regener Med
  contributor:
    fullname: Yue
– volume: 70
  start-page: 595
  year: 1988
  end-page: 606
  ident: b0110
  article-title: Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year
  publication-title: J Bone Joint Surg Am
  contributor:
    fullname: Salter
– volume: 9
  year: 2017
  ident: b0070
  article-title: Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs
  publication-title: Biofabrication
  contributor:
    fullname: Gawlitta
– volume: 31
  start-page: 21
  year: 2015
  end-page: 29
  ident: b0095
  article-title: Parameter identification for industrial robots with a fast and robust trajectory design approach
  publication-title: Robotics Comput Integr Manuf
  contributor:
    fullname: Gans
– volume: 20
  start-page: 857
  year: 2012
  end-page: 861
  ident: b0125
  article-title: Computer-assisted mosaic arthroplasty using patient-specific instrument guides
  publication-title: Knee Surg Sports Traumatol Arthrosc Official J ESSKA
  contributor:
    fullname: Stewart
– volume: 9
  start-page: 7276
  year: 2013
  end-page: 7288
  ident: b0105
  article-title: Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan
  publication-title: Acta Biomater
  contributor:
    fullname: Chen
– volume: 8
  year: 2016
  ident: b0055
  article-title: Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site
  publication-title: Biofabrication
  contributor:
    fullname: Cornock
– volume: 86-A
  start-page: 65
  year: 2004
  end-page: 72
  ident: b0160
  article-title: Autologous osteochondral mosaicplasty. Surgical technique
  publication-title: J Bone Joint Surg Am
  contributor:
    fullname: Modis
– volume: 7
  start-page: 1123
  year: 2007
  end-page: 1127
  ident: b0010
  article-title: Tissue engineering with the aid of inkjet printers
  publication-title: Expert Opin Biol Ther
  contributor:
    fullname: Weiss
– volume: 12
  start-page: 1521
  year: 2017
  end-page: 1541
  ident: b0090
  article-title: Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing
  publication-title: Nat Protoc
  contributor:
    fullname: Burdick
– volume: 57
  start-page: 86
  year: 2019
  end-page: 91
  ident: b0140
  article-title: Closed-force-loop elastostatic calibration of serial articulated robots
  publication-title: Rob Comput Integr Manuf
  contributor:
    fullname: Archenti
– volume: 17
  start-page: 2137
  year: 2016
  end-page: 2147
  ident: b0075
  article-title: A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides
  publication-title: Biomacromolecules
  contributor:
    fullname: Hennink
– year: 2019
  ident: b0025
  article-title: In situ bioprinting - Bioprinting from benchside to bedside?
  publication-title: Acta Biomater
  contributor:
    fullname: Naing
– volume: 9
  start-page: 3746
  year: 2019
  ident: b0040
  article-title: Robotic-Assisted 3D Bio-printing for Repairing Bone and Cartilage Defects through a Minimally Invasive Approach
  publication-title: Sci Rep
  contributor:
    fullname: Yao
– volume: 22
  start-page: 363
  year: 2014
  end-page: 388
  ident: b0115
  article-title: OARSI guidelines for the non-surgical management of knee osteoarthritis
  publication-title: Osteoarthritis Cartil
  contributor:
    fullname: Bierma-Zeinstra
– volume: 9
  start-page: 1856
  year: 2019
  ident: b0050
  article-title: In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds
  publication-title: Sci Rep
  contributor:
    fullname: Zhao
– volume: 2
  year: 2010
  ident: b0035
  article-title: Additive manufacturing for in situ repair of osteochondral defects
  publication-title: Biofabrication
  contributor:
    fullname: Lipson
– volume: 32
  start-page: 317
  year: 2004
  end-page: 320
  ident: b0135
  article-title: The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study
  publication-title: Am J Sports Med
  contributor:
    fullname: Zhang
– volume: 22
  start-page: 667
  year: 2011
  end-page: 673
  ident: b0015
  article-title: Organ printing: from bioprinter to organ biofabrication line
  publication-title: Curr Opin Biotechnol
  contributor:
    fullname: Markwald
– volume: 7
  start-page: 5837
  year: 2017
  ident: b0060
  article-title: Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair
  publication-title: Sci Rep
  contributor:
    fullname: Quigley
– year: 2016
  ident: b0080
  article-title: Polymer-Supramolecular Polymer Double-Network Hydrogel
  publication-title: Adv Funct Mater
  contributor:
    fullname: Wei
– volume: 120
  start-page: 11
  year: 2017
  end-page: 21
  ident: b0085
  article-title: Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering
  publication-title: Biomaterials
  contributor:
    fullname: Wu
– volume: 15
  start-page: 1397
  year: 2007
  end-page: 1402
  ident: b0100
  article-title: International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture
  publication-title: Osteoarthr Cartil
  contributor:
    fullname: Bellemans
– volume: 32
  start-page: 773
  year: 2014
  end-page: 785
  ident: b0005
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat Biotechnol
  contributor:
    fullname: Anthony
– volume: 100
  start-page: 2526
  year: 2012
  end-page: 2536
  ident: b0150
  article-title: Functional biomaterials for cartilage regeneration
  publication-title: J Biomed Mater Res Part A
  contributor:
    fullname: Yang
– volume: 39
  start-page: S32
  issue: Suppl 1
  year: 2008
  ident: 10.1016/j.jare.2020.01.010_b0130
  article-title: Autologous osteochondral grafting–technique and long-term results
  publication-title: Injury
  doi: 10.1016/j.injury.2008.01.041
  contributor:
    fullname: Hangody
– volume: 23
  start-page: H41
  year: 2011
  ident: 10.1016/j.jare.2020.01.010_b0155
  article-title: Hyaluronic acid hydrogels for biomedical applications
  publication-title: Adv Mater
  doi: 10.1002/adma.201003963
  contributor:
    fullname: Burdick
– volume: 12
  start-page: 1521
  year: 2017
  ident: 10.1016/j.jare.2020.01.010_b0090
  article-title: Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2017.053
  contributor:
    fullname: Loebel
– volume: 17
  start-page: 2137
  year: 2016
  ident: 10.1016/j.jare.2020.01.010_b0075
  article-title: A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.6b00366
  contributor:
    fullname: Abbadessa
– volume: 7
  start-page: 1778
  year: 2017
  ident: 10.1016/j.jare.2020.01.010_b0030
  article-title: In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-01914-x
  contributor:
    fullname: Keriquel
– volume: 1
  start-page: 792
  year: 2012
  ident: 10.1016/j.jare.2020.01.010_b0045
  article-title: Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds
  publication-title: Stem Cells Transl Med
  doi: 10.5966/sctm.2012-0088
  contributor:
    fullname: Skardal
– volume: 7
  start-page: 9416
  year: 2017
  ident: 10.1016/j.jare.2020.01.010_b0065
  article-title: In situ repair of bone and cartilage defects using 3D scanning and 3D printing
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-10060-3
  contributor:
    fullname: Li
– volume: 9
  start-page: 7276
  year: 2013
  ident: 10.1016/j.jare.2020.01.010_b0105
  article-title: Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2013.03.025
  contributor:
    fullname: Zhang
– volume: 32
  start-page: 317
  year: 2004
  ident: 10.1016/j.jare.2020.01.010_b0135
  article-title: The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study
  publication-title: Am J Sports Med
  doi: 10.1177/0363546503261730
  contributor:
    fullname: Koh
– year: 2019
  ident: 10.1016/j.jare.2020.01.010_b0025
  article-title: In situ bioprinting - Bioprinting from benchside to bedside?
  publication-title: Acta Biomater
  contributor:
    fullname: Singh
– volume: 16
  start-page: 137
  year: 2008
  ident: 10.1016/j.jare.2020.01.010_b0120
  article-title: OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines
  publication-title: Osteoarthritis Cartil
  doi: 10.1016/j.joca.2007.12.013
  contributor:
    fullname: Zhang
– volume: 22
  start-page: 363
  year: 2014
  ident: 10.1016/j.jare.2020.01.010_b0115
  article-title: OARSI guidelines for the non-surgical management of knee osteoarthritis
  publication-title: Osteoarthritis Cartil
  doi: 10.1016/j.joca.2014.01.003
  contributor:
    fullname: McAlindon
– volume: 264
  start-page: 85
  year: 2015
  ident: 10.1016/j.jare.2020.01.010_b0145
  article-title: Searching globally optimal parameter sequence for defeating Runge phenomenon by immunity genetic algorithm
  publication-title: Appl Math Comput
  contributor:
    fullname: Lin
– year: 2016
  ident: 10.1016/j.jare.2020.01.010_b0080
  article-title: Polymer-Supramolecular Polymer Double-Network Hydrogel
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201603512
  contributor:
    fullname: Sun
– volume: 15
  start-page: 1397
  year: 2007
  ident: 10.1016/j.jare.2020.01.010_b0100
  article-title: International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture
  publication-title: Osteoarthr Cartil
  doi: 10.1016/j.joca.2007.05.005
  contributor:
    fullname: van den Borne
– volume: 20
  start-page: 857
  year: 2012
  ident: 10.1016/j.jare.2020.01.010_b0125
  article-title: Computer-assisted mosaic arthroplasty using patient-specific instrument guides
  publication-title: Knee Surg Sports Traumatol Arthrosc Official J ESSKA
  doi: 10.1007/s00167-011-1638-2
  contributor:
    fullname: Kunz
– volume: 32
  start-page: 773
  year: 2014
  ident: 10.1016/j.jare.2020.01.010_b0005
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2958
  contributor:
    fullname: Murphy
– volume: 120
  start-page: 11
  year: 2017
  ident: 10.1016/j.jare.2020.01.010_b0085
  article-title: Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.12.015
  contributor:
    fullname: Wang
– volume: 2
  year: 2010
  ident: 10.1016/j.jare.2020.01.010_b0035
  article-title: Additive manufacturing for in situ repair of osteochondral defects
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/2/3/035004
  contributor:
    fullname: Cohen
– volume: 86-A
  start-page: 65
  issue: Suppl 1
  year: 2004
  ident: 10.1016/j.jare.2020.01.010_b0160
  article-title: Autologous osteochondral mosaicplasty. Surgical technique
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-200403001-00009
  contributor:
    fullname: Hangody
– volume: 9
  start-page: 1856
  year: 2019
  ident: 10.1016/j.jare.2020.01.010_b0050
  article-title: In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-38366-w
  contributor:
    fullname: Albanna
– volume: 8
  year: 2016
  ident: 10.1016/j.jare.2020.01.010_b0055
  article-title: Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site
  publication-title: Biofabrication
  contributor:
    fullname: O'Connell
– volume: 31
  start-page: 21
  year: 2015
  ident: 10.1016/j.jare.2020.01.010_b0095
  article-title: Parameter identification for industrial robots with a fast and robust trajectory design approach
  publication-title: Robotics Comput Integr Manuf
  doi: 10.1016/j.rcim.2014.06.004
  contributor:
    fullname: Jin
– volume: 12
  start-page: 611
  year: 2018
  ident: 10.1016/j.jare.2020.01.010_b0020
  article-title: In situ handheld three-dimensional bioprinting for cartilage regeneration
  publication-title: J Tissue Eng Regener Med
  doi: 10.1002/term.2476
  contributor:
    fullname: Di Bella
– volume: 7
  start-page: 1123
  year: 2007
  ident: 10.1016/j.jare.2020.01.010_b0010
  article-title: Tissue engineering with the aid of inkjet printers
  publication-title: Expert Opin Biol Ther
  doi: 10.1517/14712598.7.8.1123
  contributor:
    fullname: Campbell
– volume: 57
  start-page: 86
  year: 2019
  ident: 10.1016/j.jare.2020.01.010_b0140
  article-title: Closed-force-loop elastostatic calibration of serial articulated robots
  publication-title: Rob Comput Integr Manuf
  doi: 10.1016/j.rcim.2018.07.007
  contributor:
    fullname: Theissen
– volume: 70
  start-page: 595
  year: 1988
  ident: 10.1016/j.jare.2020.01.010_b0110
  article-title: Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-198870040-00017
  contributor:
    fullname: O'Driscoll
– volume: 9
  start-page: 3746
  year: 2019
  ident: 10.1016/j.jare.2020.01.010_b0040
  article-title: Robotic-Assisted 3D Bio-printing for Repairing Bone and Cartilage Defects through a Minimally Invasive Approach
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-38972-2
  contributor:
    fullname: Lipskas
– volume: 9
  year: 2017
  ident: 10.1016/j.jare.2020.01.010_b0070
  article-title: Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa6265
  contributor:
    fullname: Mouser
– volume: 7
  start-page: 5837
  year: 2017
  ident: 10.1016/j.jare.2020.01.010_b0060
  article-title: Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-05699-x
  contributor:
    fullname: Duchi
– volume: 100
  start-page: 2526
  year: 2012
  ident: 10.1016/j.jare.2020.01.010_b0150
  article-title: Functional biomaterials for cartilage regeneration
  publication-title: J Biomed Mater Res Part A
  doi: 10.1002/jbm.a.34147
  contributor:
    fullname: Ge
– volume: 22
  start-page: 667
  year: 2011
  ident: 10.1016/j.jare.2020.01.010_b0015
  article-title: Organ printing: from bioprinter to organ biofabrication line
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2011.02.006
  contributor:
    fullname: Mironov
SSID ssj0000388911
Score 2.5288675
Snippet [Display omitted] The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The...
The concept of 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to...
The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed...
The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed...
SourceID doaj
pubmedcentral
osti
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 123
SubjectTerms Bio-ink crosslinking
Cartilage regeneration
In situ 3D bio-printing
Robot
Tissue engineering
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yT76I52c9lQg-KFJMm6RJfVs_jkXQJw_uLSTp9K7H0Up398D_3pm0e-6K6IvQp7STMplJ8ptk8gtjLwmzRiHLXMpC5crqNvcGo5TWx6rVwRpI7PpfvlarU_X5TJ_tXfVFOWETPfDUcG91q0QsbKi1CgjmwapCxcZ7JZoQm2Y65ivKvWAqjcHS2jpdvluKmtIPZDmfmJmSuy79SByZpUicnXR8dm9WSuT9B5PTYsD-9icM-nsq5d7cdHKX3ZlBJV9OyhyxW9DfY0dzt13zVzO39Ov7bFz-2rDmQ8vHIQwolCOEJns3vOv5uttsufzIacmPkqKpLFJDXeHYw0c4T7WlGmgVl69w3OYXP5pxOIerd3zZk8B1dz3wxF37gJ2efPr2YZXP1y7kEcOXDZqpNgUo6wEwGKtiowRgnOyhUKUHFQBBTBSmDKZsKrqi3Cttg4kt1BqjrSgfskU_9PCYcQ1a-KgabcGrWKlQqxa0NMSF1BYWMvZm1-zu-8Su4XZpZ5eOjOTISE4U-IiMvSfL3HxJzNipAP3Fzf7i_uUvGdM7u7oZZEzgAavq_vrzY3ICkiF23UhpSChUVAkFZ-zFzjcc9k_adPE9DNu1K2WFEJdgXsYeTb5yo4Ckc8uVURkzB150oOHhm767SBzgNFCj7JP_0STH7DYpOqVxPmWLzbiFZwi1NuF56lU_Af7oJi8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhT72Upk83bVEhh5ZiVrYlP3rbpA2bQHtpA3sTkjzeOAQ7eHcD_fedke1tXEoPAV8se2SkGY2-kUefGDsmzOpEEodJEslQ5qoKTYZRSmVcWimbZ-DZ9b99T5eX8mKlVgfsdNwLQ2mVg-_vfbr31kPJfOjN-W1dz3_EovCAIEY7JWY09MOJEmTl56uT_ToLsZ0U_hheej8kgWHvTJ_mdW06YsuMhWfvpI209-YnT-M_maZmLY68f6HRv5Mq781SZ0_Y4wFe8kXfgkN2AM1TdjgM4A3_MLBMf3zGusWfX9e8rXjX2haFQgTTpPmS1w3f1NsdT75wWvyj9Ggqc9Q7N-iFeAdrX5uvgdZz-RI9OL_6VXbtGm4-80VDAnf1Xcs9i-1zdnn29efpMhwOYAgdBjJbVFiRRSBzA4BhWepKKQAjZgORjA1ICwhnnMhim8VlSoeVG6lym7kKCoVxl0tesFnTNvCKcQVKGCdLlYORLpW2kBWoJCNWpCrKIWCfxm7Xtz3Phh4T0K41KUmTkrSI8BIBOyHN7N8kjmxf0HZrPRiJVpUULsptoaTFMBByGUlXGiNFaV1Z5gFTo171xOSwqvq_Hz8iIyAZ4tl1lJCEQlHq8XDA3o-2oXGk0u8X00C72-g4SRHsEuAL2MveVvYNSGgHc5rJgGUTK5q0cPqkqa88Gzi5bJR9_cDWHLFHdNfncL5hs223g7eIs7b2nR9IvwFQ-iWR
  priority: 102
  providerName: Elsevier
Title Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study
URI https://dx.doi.org/10.1016/j.jare.2020.01.010
https://www.ncbi.nlm.nih.gov/pubmed/32099674
https://search.proquest.com/docview/2365225846
https://www.osti.gov/biblio/1600051
https://pubmed.ncbi.nlm.nih.gov/PMC7030996
https://doaj.org/article/5f40c18b954b495e8414cdaa40dbcdd8
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa2nrggxs8wmIzEAYSyOrGdONy6wVSQhjgwqTfLdpwuU5dMaTuJ_573nGSsCHFAqnpI-xw57z37e87nz4S8RczqGE9jzhMRCyWr2ORQpVTGZZW0KvdBXf_8Wza_EF8XcrFH5LgXJpD2na2Pm9X1cVNfBm7lzbWbjjyx6ffzU4xSwOnTfbIP0--9Ej0Mv1ypIpy7m7ICmQc8HTbL9LyuK9OhPGbKglxngkfBcdw_muViZ24KEv47U9Skhaz7GxL9k1B5b4Y6e0QeDtCSzvouHJA93zwmB0Pyrum7QWH6_RPSzX6_tqZtRbvWtmAUA5BGr5e0bui63mwp_0Rx4Q-p0XjN4eNZwQhEO78MrYUWcC2XzmH0ppc_y65d-tVHOmvQ4La-bWlQsH1KLs4-_zidx8PhC7GDImYDziryxAtlvIeSLHOlYB6qZeMTkRovrAco41ie2jwtMzyo3AipbO4qX0iouRx_RiZN2_gXhEovmXGilMob4TJhC1F5yXNURKoS5SPyYXzs-qbX2NAj-exKo780-kuzBD4sIifombt_oj52uNB2Sz1EiZaVYC5RtpDCQgnolUiEK40RrLSuLFVE5OhXPUCNHkJAU_U_b36IQYA2qLHrkIwERkkWsHBE3oyxoSFL8dWLaXy7XeuUZwB0EexF5HkfK3cdGKMvIvlOFO30cPcXSIygBD4kwsv_tjwkD7B3PYPzFZlsuq1_DShrY4_C6gR8f1mcHIUM-wUPDifg
link.rule.ids 230,314,727,780,784,864,885,2102,3506,27924,27925,45874,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKcoALorwaysNIHEAoWiex44TbtlBtoe2FVtqbZTvONlWVVNndSvx7ZpxkaRDigJSTk3Fkz3j8jT3-TMh7xKyWJXGYJBEPeSbKUEuIUkpt01KYTDrPrn96ls4v-LeFWOyQw-EsDKZV9r6_8-neW_cl0743pzdVNf0Rs9wDghjsFJnR7pH7XGQSCfSPFwfbhRakO8n9PbwoEKJEf3imy_O60i3SZcbM03fiSdo7E5Tn8R_NU5MGht7f4OifWZV3pqmjx-RRjy_prGvCLtlx9ROy24_gFf3Q00x_fEra2e-9a9qUtG1MA0IhoGlUfUGrmq6q9YYmXyiu_mF-NJZZ7J5rcEO0dUtfm68BF3TpHFw4vfxZtM3SXX-msxoFbqvbhnoa22fk4ujr-eE87G9gCC1EMmvQWC4jxzPtHMRlqS04cxAyaxfxWDtuHOAZy2RsZFykeFu5Bg0YaUuXCwi8bPKcTOqmdnuECieYtrwQmdPcptzkvHQikUiLVEaZC8inodvVTUe0oYYMtCuFSlKoJMUieFhADlAz2y-RJNsXNO1S9VaiRMmZjTKTC24gDnQZj7gttOasMLYosoCIQa9qZHNQVfXPn--jEaAMEu1azEgCoSj1gDgg7wbbUDBUcf9F167ZrFScpIB2EfEF5EVnK9sGJHiEOZU8IHJkRaMWjt_U1aWnA0efDbIv_7M1b8mD-fnpiTo5Pvu-Tx7imy6h8xWZrNuNew2ga23e-EH1Cyu_KLo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegSIgXxPgM48NIPIBQViexE4e3slGVj017YNLeLNtxukxdUqXtJP577pxktAjxgNSnNOfIuTv7d8kvvyPkLWJWy5I4TJKIh1yKMtQZVCmltmkpjMycV9c_PklnZ_zruTjfavXlSfvWVAf14uqgri48t3J5ZccDT2x8enyIUQo4fbwsyvFtckckEGRbhbpfhBMpc999N2Y58g-SuP9kpmN3XeoWRTJj5kU7I2wIl-BXpGnGd3YoL-S_s1GNGsi9v-HRP2mVW_vU9AG53wNMOukmskduufoh2etTeEXf9TrT7x-RdvL75TVtSto2pgGjEOA0-r6gVU1X1XpDkyOKj_-QII3HLN6kBaxDtHVzP5ofAZ_o0hms4fTiZ9E2c7f4SCc1GlxX1w31OraPydn084_DWdi3YAgtlDJrcFmeRY5L7RwUZqktOHNQM2sX8Vg7bhwAGsuy2GRxkWK7cs2FNJktXS6g8rLJEzKqm9o9I1Q4wbTlhZBOc5tyk_PSgetQF6mMpAvIh-G2q2WntKEGCtqlQn8p9JdiEfxYQD6hZ27ORJVsf6Bp56qPFSVKzmwkTS64gULQSR5xW2jNWWFsUciAiMGvqgccHZCAoap_XnwfgwBtUGnXIiUJjKLUI-KAvBliQ0Gu4gsYXbtms1JxkgLcRcgXkKddrNxMYIi-gGQ7UbQzw91_ID28HnifDs__2_I1uXt6NFXfv5x82yf3cKIdpfMFGa3bjXsJsGttXvkE-wULCipP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+robotic-assisted+in+situ+3D+printing+in+cartilage+regeneration+with+HAMA+hydrogel%3A+An+in+vivo+study&rft.jtitle=Journal+of+advanced+research&rft.au=Ma%2C+Kaiwei&rft.au=Zhao%2C+Tianzheng&rft.au=Yang%2C+Longfei&rft.au=Wang%2C+Peng&rft.date=2020-05-01&rft.issn=2090-1232&rft.volume=23&rft.spage=123&rft.epage=132&rft_id=info:doi/10.1016%2Fj.jare.2020.01.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon