Detecting Deception Using Functional Magnetic Resonance Imaging
The ability to accurately detect deception is presently very limited. Detecting deception might be more accurately achieved by measuring the brain correlates of lying in an individual. In addition, a method to investigate the neurocircuitry of deception might provide a unique opportunity to test the...
Saved in:
Published in | Biological psychiatry (1969) Vol. 58; no. 8; pp. 605 - 613 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
15.10.2005
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to accurately detect deception is presently very limited. Detecting deception might be more accurately achieved by measuring the brain correlates of lying in an individual. In addition, a method to investigate the neurocircuitry of deception might provide a unique opportunity to test the neurocircuitry of persons in whom deception is a prominent component (i.e., conduct disorder, antisocial personality disorder, etc.).
In this study, we used functional magnetic resonance imaging (fMRI) to show that specific regions were reproducibly activated when subjects deceived. Subjects participated in a mock crime stealing either a ring or a watch. While undergoing an fMRI, the subjects denied taking either object, thus telling the truth with some responses, and lying with others. A Model-Building Group (MBG,
n = 30) was used to develop the analysis methods, and the methods were subsequently applied to an independent Model-Testing Group (MTG,
n = 31).
We were able to correctly differentiate truthful from deceptive responses, correctly identifying the object stolen, for 93% of the subjects in the MBG and 90% of the subjects in the MTG.
This is the first study to use fMRI to detect deception at the individual level. Further work is required to determine how well this technology will work in different settings and populations. |
---|---|
AbstractList | The ability to accurately detect deception is presently very limited. Detecting deception might be more accurately achieved by measuring the brain correlates of lying in an individual. In addition, a method to investigate the neurocircuitry of deception might provide a unique opportunity to test the neurocircuitry of persons in whom deception is a prominent component (i.e., conduct disorder, antisocial personality disorder, etc.).
In this study, we used functional magnetic resonance imaging (fMRI) to show that specific regions were reproducibly activated when subjects deceived. Subjects participated in a mock crime stealing either a ring or a watch. While undergoing an fMRI, the subjects denied taking either object, thus telling the truth with some responses, and lying with others. A Model-Building Group (MBG, n = 30) was used to develop the analysis methods, and the methods were subsequently applied to an independent Model-Testing Group (MTG, n = 31).
We were able to correctly differentiate truthful from deceptive responses, correctly identifying the object stolen, for 93% of the subjects in the MBG and 90% of the subjects in the MTG.
This is the first study to use fMRI to detect deception at the individual level. Further work is required to determine how well this technology will work in different settings and populations. Background: The ability to accurately detect deception is presently very limited. Detecting deception might be more accurately achieved by measuring the brain correlates of lying in an individual. In addition, a method to investigate the neurocircuitry of deception might provide a unique opportunity to test the neurocircuitry of persons in whom deception is a prominent component (i.e., conduct disorder, antisocial personality disorder, etc.). Methods: In this study, we used functional magnetic resonance imaging (fMRI) to show that specific regions were reproducibly activated when subjects deceived. Subjects participated in a mock crime stealing either a ring or a watch. While undergoing an fMRI, the subjects denied taking either object, thus telling the truth with some responses, and lying with others. A Model-Building Group (MBG, n 30) was used to develop the analysis methods, and the methods were subsequently applied to an independent Model-Testing Group (MTG, n = 31). The ability to accurately detect deception is presently very limited. Detecting deception might be more accurately achieved by measuring the brain correlates of lying in an individual. In addition, a method to investigate the neurocircuitry of deception might provide a unique opportunity to test the neurocircuitry of persons in whom deception is a prominent component (i.e., conduct disorder, antisocial personality disorder, etc.). In this study, we used functional magnetic resonance imaging (fMRI) to show that specific regions were reproducibly activated when subjects deceived. Subjects participated in a mock crime stealing either a ring or a watch. While undergoing an fMRI, the subjects denied taking either object, thus telling the truth with some responses, and lying with others. A Model-Building Group (MBG, n = 30) was used to develop the analysis methods, and the methods were subsequently applied to an independent Model-Testing Group (MTG, n = 31). We were able to correctly differentiate truthful from deceptive responses, correctly identifying the object stolen, for 93% of the subjects in the MBG and 90% of the subjects in the MTG. This is the first study to use fMRI to detect deception at the individual level. Further work is required to determine how well this technology will work in different settings and populations. The ability to accurately detect deception is presently very limited. Detecting deception might be more accurately achieved by measuring the brain correlates of lying in an individual. In addition, a method to investigate the neurocircuitry of deception might provide a unique opportunity to test the neurocircuitry of persons in whom deception is a prominent component (i.e., conduct disorder, antisocial personality disorder, etc.).BACKGROUNDThe ability to accurately detect deception is presently very limited. Detecting deception might be more accurately achieved by measuring the brain correlates of lying in an individual. In addition, a method to investigate the neurocircuitry of deception might provide a unique opportunity to test the neurocircuitry of persons in whom deception is a prominent component (i.e., conduct disorder, antisocial personality disorder, etc.).In this study, we used functional magnetic resonance imaging (fMRI) to show that specific regions were reproducibly activated when subjects deceived. Subjects participated in a mock crime stealing either a ring or a watch. While undergoing an fMRI, the subjects denied taking either object, thus telling the truth with some responses, and lying with others. A Model-Building Group (MBG, n = 30) was used to develop the analysis methods, and the methods were subsequently applied to an independent Model-Testing Group (MTG, n = 31).METHODSIn this study, we used functional magnetic resonance imaging (fMRI) to show that specific regions were reproducibly activated when subjects deceived. Subjects participated in a mock crime stealing either a ring or a watch. While undergoing an fMRI, the subjects denied taking either object, thus telling the truth with some responses, and lying with others. A Model-Building Group (MBG, n = 30) was used to develop the analysis methods, and the methods were subsequently applied to an independent Model-Testing Group (MTG, n = 31).We were able to correctly differentiate truthful from deceptive responses, correctly identifying the object stolen, for 93% of the subjects in the MBG and 90% of the subjects in the MTG.RESULTSWe were able to correctly differentiate truthful from deceptive responses, correctly identifying the object stolen, for 93% of the subjects in the MBG and 90% of the subjects in the MTG.This is the first study to use fMRI to detect deception at the individual level. Further work is required to determine how well this technology will work in different settings and populations.CONCLUSIONSThis is the first study to use fMRI to detect deception at the individual level. Further work is required to determine how well this technology will work in different settings and populations. |
Author | George, Mark S. Kozel, F. Andrew Laken, Steven J. Johnson, Kevin A. Grenesko, Emily L. Mu, Qiwen |
Author_xml | – sequence: 1 givenname: F. Andrew surname: Kozel fullname: Kozel, F. Andrew email: andrew.kozel@utsouthwestern.edu organization: Center for Advanced Imaging Research (CAIR), Medical University of South Carolina – sequence: 2 givenname: Kevin A. surname: Johnson fullname: Johnson, Kevin A. organization: Center for Advanced Imaging Research (CAIR), Medical University of South Carolina – sequence: 3 givenname: Qiwen surname: Mu fullname: Mu, Qiwen organization: Center for Advanced Imaging Research (CAIR), Medical University of South Carolina – sequence: 4 givenname: Emily L. surname: Grenesko fullname: Grenesko, Emily L. organization: Center for Advanced Imaging Research (CAIR), Medical University of South Carolina – sequence: 5 givenname: Steven J. surname: Laken fullname: Laken, Steven J. organization: Cephos Corporation, Pepperell, Massachusetts – sequence: 6 givenname: Mark S. surname: George fullname: George, Mark S. organization: Center for Advanced Imaging Research (CAIR), Medical University of South Carolina |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17266452$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16185668$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVtr3DAQhUVJaDZp_0LwS_JmRxdbkqEkLbk1kFIozbOQx-Ottl55K3kL--8js5sW8rJ5Ekd85wwz55gc-MEjIaeMFowyebEoGjes4gZ-FZzSqqCqoCV9R2ZMK5HzkvIDMqOUylxwLo7IcYyLJBXn7D05YpLpSko9I1c3OCKMzs-zGwRcjW7w2VOc9N3awyRtn32zc4-jg-wHxvThAbOHpZ0n6gM57Gwf8ePuPSFPd7c_r7_mj9_vH66_POZQlXrMsa1a3WDTilLQRjPsrKoBylZZYKxGVLZSVotK1rXoOtVQqUXdVZCozjZSnJDzbe4qDH_WGEezdBGw763HYR2N1Eoxlkz7QKZKqWWpEni6A9fNEluzCm5pw8a83CYBZzvARrB9F9LeLv7nFJeyrHjiPm05CEOMATsDbrTT5cZgXW8YNVNlZmFeKjNTZYYqkypLdvnK_m_CPuPnrRHT3f86DCaCw9RN60Kq1LSD2x9x-SoCeudd2vY3bt4S8Ayyxcm0 |
CODEN | BIPCBF |
CitedBy_id | crossref_primary_10_1007_s10919_023_00447_4 crossref_primary_10_1080_02643294_2012_679919 crossref_primary_10_1016_j_ijpsycho_2013_09_005 crossref_primary_10_1016_j_pscychresns_2017_06_008 crossref_primary_10_1371_journal_pone_0230837 crossref_primary_10_1038_srep01636 crossref_primary_10_5812_ans_122202 crossref_primary_10_1016_j_neuroimage_2008_01_035 crossref_primary_10_1162_jocn_2007_19_2_287 crossref_primary_10_1111_j_1556_4029_2008_00927_x crossref_primary_10_1016_j_copsyc_2015_08_004 crossref_primary_10_1016_j_neuroscience_2013_03_055 crossref_primary_10_1016_j_pscychresns_2018_06_010 crossref_primary_10_1038_s41598_023_29903_3 crossref_primary_10_3724_SP_J_1041_2009_00316 crossref_primary_10_5964_ejop_v11i3_919 crossref_primary_10_1016_j_jflm_2015_09_008 crossref_primary_10_1177_009885880703300205 crossref_primary_10_1177_009885880703300206 crossref_primary_10_1186_s12993_014_0046_4 crossref_primary_10_1016_j_neuropsychologia_2014_12_016 crossref_primary_10_1080_13803390701754746 crossref_primary_10_1016_j_neulet_2010_05_014 crossref_primary_10_1016_j_neuropsychologia_2010_08_013 crossref_primary_10_1016_j_tics_2007_11_008 crossref_primary_10_1177_1073858410393359 crossref_primary_10_1016_j_neures_2017_07_004 crossref_primary_10_1177_009885880703300210 crossref_primary_10_1093_scan_nsaa086 crossref_primary_10_1176_ps_2007_58_4_460 crossref_primary_10_1177_009885880703300211 crossref_primary_10_1080_15265160701518755 crossref_primary_10_1038_nbt0407_393 crossref_primary_10_1080_15265160701290249 crossref_primary_10_1097_01_pra_0000361279_11210_14 crossref_primary_10_1016_j_eswa_2020_114341 crossref_primary_10_1027_1016_9040_a000193 crossref_primary_10_1080_17470910802188370 crossref_primary_10_1371_journal_pone_0048639 crossref_primary_10_1016_j_biopsycho_2013_05_018 crossref_primary_10_1016_j_patcog_2017_12_013 crossref_primary_10_1016_j_tics_2008_01_003 crossref_primary_10_1155_2013_176027 crossref_primary_10_1080_17470910802424445 crossref_primary_10_1109_JBHI_2021_3095415 crossref_primary_10_1016_j_neuroimage_2013_10_023 crossref_primary_10_1002_hbm_24567 crossref_primary_10_1007_s00371_015_1164_1 crossref_primary_10_1080_21507741003699322 crossref_primary_10_1027_1016_9040_a000194 crossref_primary_10_1371_journal_pone_0075434 crossref_primary_10_1002_acp_1827 crossref_primary_10_1186_1471_2105_10_S9_S15 crossref_primary_10_1016_j_dr_2012_06_004 crossref_primary_10_1093_scan_nsw151 crossref_primary_10_1016_j_bandc_2008_09_002 crossref_primary_10_1016_j_ijpsycho_2012_04_009 crossref_primary_10_1080_17470910802109939 crossref_primary_10_1016_j_neucli_2014_04_002 crossref_primary_10_1016_j_neuroscience_2018_06_049 crossref_primary_10_1108_JCP_02_2016_0005 crossref_primary_10_1007_s00221_017_5052_y crossref_primary_10_1093_scan_nsp005 crossref_primary_10_1002_hbm_25849 crossref_primary_10_1016_j_tics_2022_06_005 crossref_primary_10_1038_nrn3665 crossref_primary_10_3389_fpsyg_2016_01936 crossref_primary_10_1016_j_neuroimage_2010_04_036 crossref_primary_10_1016_j_neuroscience_2018_10_036 crossref_primary_10_3389_fnhum_2022_883337 crossref_primary_10_1016_j_cobeha_2016_09_005 crossref_primary_10_1111_j_1747_9991_2012_00494_x crossref_primary_10_1007_s12152_010_9082_4 crossref_primary_10_1016_j_eurpsy_2007_09_001 crossref_primary_10_1016_j_patrec_2020_08_014 crossref_primary_10_1142_S0129065720500689 crossref_primary_10_1038_s41598_020_72255_5 crossref_primary_10_1155_2019_2684821 crossref_primary_10_1093_cercor_bhn037 crossref_primary_10_1007_s10548_014_0352_z crossref_primary_10_1007_s11896_013_9127_9 crossref_primary_10_1111_j_1469_8986_2009_00810_x crossref_primary_10_1038_nrn1931 crossref_primary_10_1016_j_neures_2010_11_001 crossref_primary_10_1111_psyp_12609 crossref_primary_10_1007_s00115_009_2921_z crossref_primary_10_3174_ajnr_A1845 crossref_primary_10_1016_j_neubiorev_2019_06_027 crossref_primary_10_1016_j_conb_2008_07_006 crossref_primary_10_1080_1068316X_2018_1427746 crossref_primary_10_1007_s40846_016_0103_6 crossref_primary_10_1016_j_tics_2009_12_004 crossref_primary_10_1080_13554790801992784 crossref_primary_10_1080_17470910801928271 crossref_primary_10_1093_cercor_bhn189 crossref_primary_10_1177_0033294118794411 crossref_primary_10_1007_s12207_022_09462_0 crossref_primary_10_1080_17470910801903530 crossref_primary_10_1109_JBHI_2022_3172994 crossref_primary_10_1146_annurev_lawsocsci_093008_131523 crossref_primary_10_1016_j_bandc_2012_01_009 crossref_primary_10_1016_j_brainres_2008_09_090 crossref_primary_10_1016_j_brainres_2009_09_085 crossref_primary_10_1016_j_neuroimage_2011_12_053 crossref_primary_10_1080_17470919_2015_1059362 crossref_primary_10_1016_j_neucom_2018_10_011 crossref_primary_10_3389_fnhum_2020_606238 crossref_primary_10_1080_1068316X_2015_1109085 crossref_primary_10_1016_j_bandc_2015_11_007 crossref_primary_10_1348_135532507X251597 crossref_primary_10_1016_j_neuroscience_2021_06_005 crossref_primary_10_1017_S1134066500009152 crossref_primary_10_1080_13554790801992792 crossref_primary_10_1088_1741_2560_9_2_026012 crossref_primary_10_1093_scan_nst134 crossref_primary_10_1080_17470910801907168 crossref_primary_10_1093_brain_awp052 crossref_primary_10_1186_s40504_017_0050_1 crossref_primary_10_1002_bsl_860 crossref_primary_10_1111_psyp_14701 crossref_primary_10_1097_WCO_0b013e328332c3cf crossref_primary_10_1111_psyp_14029 crossref_primary_10_1192_bjp_bp_108_053199 crossref_primary_10_1080_13554790801992768 crossref_primary_10_1073_pnas_2412881121 crossref_primary_10_1348_135532507X251641 crossref_primary_10_1016_j_neuron_2009_11_017 crossref_primary_10_1038_s41598_023_31775_6 crossref_primary_10_5674_jjppp_27_57 crossref_primary_10_1016_j_bandc_2008_08_033 crossref_primary_10_2478_ep_2024_0002 crossref_primary_10_1038_nrn2414 crossref_primary_10_1007_s11910_014_0513_1 crossref_primary_10_1515_med_2024_1032 crossref_primary_10_1007_s11042_022_12685_7 crossref_primary_10_1080_14789940903220676 crossref_primary_10_1111_j_1460_9568_2011_07856_x crossref_primary_10_21193_kjspp_2011_25_1_003 crossref_primary_10_1038_s41598_019_41962_z crossref_primary_10_1111_ijsa_12135 crossref_primary_10_1024_1016_264X_20_3_207 crossref_primary_10_37005_2071_9612_2020_4_90_134 crossref_primary_10_1002_bsl_993 crossref_primary_10_1080_13554790801992776 crossref_primary_10_1016_j_neuroimage_2010_11_025 crossref_primary_10_1007_s12152_010_9080_6 crossref_primary_10_1111_j_1469_8986_2009_00933_x crossref_primary_10_1111_tops_12353 crossref_primary_10_1146_annurev_lawsocsci_4_110707_172410 crossref_primary_10_1016_j_neuroimage_2015_03_051 crossref_primary_10_1080_09541440802678347 crossref_primary_10_3390_fi14010002 crossref_primary_10_1002_hbm_20343 crossref_primary_10_1016_j_tins_2006_07_002 crossref_primary_10_1007_s11757_007_0040_x crossref_primary_10_1016_j_actpsy_2018_10_011 crossref_primary_10_1038_s41598_022_21569_7 crossref_primary_10_1371_journal_pone_0012291 crossref_primary_10_1080_13554790701881731 |
Cites_doi | 10.1126/science.288.5472.1835 10.1073/pnas.87.24.9868 10.1038/sj.mp.4001217 10.1176/jnp.16.3.295 10.1016/j.acra.2004.11.023 10.1097/00001756-200109170-00019 10.1073/pnas.87.1.256 10.1038/349061a0 10.1093/cercor/10.3.308 10.1111/j.1469-8986.1991.tb01990.x 10.1098/rstb.2004.1555 10.1002/hbm.10020 10.1037/0021-9010.79.2.252 10.1111/j.2044-8295.1970.tb01248.x 10.1006/cbmr.1996.0014 10.1093/cercor/13.8.830 10.1520/JFS11143J 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G 10.1111/j.1469-8986.2004.00158.x 10.1002/hbm.460010306 10.1006/nimg.2001.1003 10.1016/j.neuroimage.2004.10.041 10.1002/(SICI)1097-0193(1998)6:4<270::AID-HBM6>3.0.CO;2-0 10.1016/S0140-6736(86)90895-0 10.1037/0735-7044.118.4.852 |
ContentType | Journal Article |
Copyright | 2005 Society of Biological Psychiatry 2006 INIST-CNRS |
Copyright_xml | – notice: 2005 Society of Biological Psychiatry – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1016/j.biopsych.2005.07.040 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1873-2402 |
EndPage | 613 |
ExternalDocumentID | 16185668 17266452 10_1016_j_biopsych_2005_07_040 S0006322305009716 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABCQX ABDPE ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEG HMK HMO HMQ HVGLF HZ~ H~9 IHE J1W KOM L7B M29 M2V M39 M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OU- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SNS SPCBC SSH SSN SSZ T5K UAP UNMZH UPT UV1 WH7 WUQ XJT XOL Z5R ZCA ZGI ZKB ZXP ~G- AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG G8K LCYCR RIG ZA5 AAYXX AGRNS CITATION 08R ABPIF ABPTK IQODW CGR CUY CVF ECM EIF NPM PKN 7TK 7X8 |
ID | FETCH-LOGICAL-c548t-ed5d8bebd3430b81efa79cc4d7ac119ee7a57a8356993ff7b06839f5c79cfab63 |
IEDL.DBID | AIKHN |
ISSN | 0006-3223 |
IngestDate | Fri Jul 11 12:42:26 EDT 2025 Thu Jul 10 23:22:38 EDT 2025 Wed Feb 19 01:43:26 EST 2025 Sun Oct 22 16:07:00 EDT 2023 Thu Apr 24 23:10:00 EDT 2025 Tue Jul 01 03:21:07 EDT 2025 Fri Feb 23 02:29:36 EST 2024 Tue Aug 26 16:31:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | fMRI lie detection BOLD individual Deception Human Methodology Nuclear magnetic resonance imaging Lying Medical imagery Measurement method Functional imaging |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c548t-ed5d8bebd3430b81efa79cc4d7ac119ee7a57a8356993ff7b06839f5c79cfab63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 16185668 |
PQID | 17468647 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_68771168 proquest_miscellaneous_17468647 pubmed_primary_16185668 pascalfrancis_primary_17266452 crossref_citationtrail_10_1016_j_biopsych_2005_07_040 crossref_primary_10_1016_j_biopsych_2005_07_040 elsevier_sciencedirect_doi_10_1016_j_biopsych_2005_07_040 elsevier_clinicalkey_doi_10_1016_j_biopsych_2005_07_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-10-15 |
PublicationDateYYYYMMDD | 2005-10-15 |
PublicationDate_xml | – month: 10 year: 2005 text: 2005-10-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | Biological psychiatry (1969) |
PublicationTitleAlternate | Biol Psychiatry |
PublicationYear | 2005 |
Publisher | Elsevier Inc Elsevier Science |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science |
References | Bush, Shin, Holmes, Rosen, Vogt (bib4) 2003; 8 Pardo, Fox, Raichle (bib24) 1991; 349 Annett (bib1) 1970; 61 Ashburner, Friston (bib2) 1999; 7 MacDonald, Cohen, Stenger, Carter (bib20) 2000; 288 First, Spitzer, Williams, Gibbon (bib9) 1995 Kozel, Padgett, George (bib16) 2004; 118 Phan, Magalhaes, Ziemlewicz, Fitzgerald, Green, Smith (bib26) 2005; 12 Cox (bib6) 1996; 29 Lee, Liu, Tan, Chan, Mahankali, Feng (bib19) 2002; 15 Spence, Farrow, Herford, Wilkinson, Zheng, Woodruff (bib28) 2001; 12 (bib21) 2003 (bib31) 2001 Farwell, Donchin (bib8) 1991; 28 Elliott, Dolan, Frith (bib7) 2000; 10 Rosenfeld, Soskins, Bosh, Ryan (bib27) 2004; 41 Hollien, Geison, Hicks (bib14) 1987; 32 Nunez, Casey, Egner, Hare, Hirsch (bib22) 2005; 25 Spielberger, Gorsuch, Lushene, Vagg, Jacobs (bib30) 1983 Ogawa, Lee, Kay, Tank (bib23) 1990; 87 Bush, Whalen, Rosen, Jenike, McInerney, Rauch (bib5) 1998; 6 Friston (bib10) 2004 Friston, Worsley, Frackowiak, Mazziotta, Evans (bib12) 1994; 1 Kozel, Revell, Lorberbaum, Shastri, Elhai, Horner (bib17) 2004; 16 Spence, Hunter, Farrow, Green, Leung, Hughes (bib29) 2004; 359 Brett, Phillips, Beary (bib3) 1986; 1 Ganis, Kosslyn, Stose, Thompson, Yurgelun-Todd (bib13) 2003; 13 Honts, Raskin, Kircher (bib15) 1994; 79 Langleben, Schroeder, Maldjian, Gur, McDonald, Ragland (bib18) 2002; 15 Pardo, Pardo, Janer, Raichle (bib25) 1990; 87 Friston, Frackowiak (bib11) 1997 First (10.1016/j.biopsych.2005.07.040_bib9) 1995 Friston (10.1016/j.biopsych.2005.07.040_bib12) 1994; 1 Friston (10.1016/j.biopsych.2005.07.040_bib10) 2004 Pardo (10.1016/j.biopsych.2005.07.040_bib24) 1991; 349 Spence (10.1016/j.biopsych.2005.07.040_bib29) 2004; 359 MacDonald (10.1016/j.biopsych.2005.07.040_bib20) 2000; 288 Ashburner (10.1016/j.biopsych.2005.07.040_bib2) 1999; 7 Annett (10.1016/j.biopsych.2005.07.040_bib1) 1970; 61 Brett (10.1016/j.biopsych.2005.07.040_bib3) 1986; 1 Ganis (10.1016/j.biopsych.2005.07.040_bib13) 2003; 13 Nunez (10.1016/j.biopsych.2005.07.040_bib22) 2005; 25 Kozel (10.1016/j.biopsych.2005.07.040_bib17) 2004; 16 Kozel (10.1016/j.biopsych.2005.07.040_bib16) 2004; 118 (10.1016/j.biopsych.2005.07.040_bib21) 2003 Lee (10.1016/j.biopsych.2005.07.040_bib19) 2002; 15 Spence (10.1016/j.biopsych.2005.07.040_bib28) 2001; 12 Elliott (10.1016/j.biopsych.2005.07.040_bib7) 2000; 10 Langleben (10.1016/j.biopsych.2005.07.040_bib18) 2002; 15 Spielberger (10.1016/j.biopsych.2005.07.040_bib30) 1983 Pardo (10.1016/j.biopsych.2005.07.040_bib25) 1990; 87 Ogawa (10.1016/j.biopsych.2005.07.040_bib23) 1990; 87 Farwell (10.1016/j.biopsych.2005.07.040_bib8) 1991; 28 Honts (10.1016/j.biopsych.2005.07.040_bib15) 1994; 79 Bush (10.1016/j.biopsych.2005.07.040_bib4) 2003; 8 Phan (10.1016/j.biopsych.2005.07.040_bib26) 2005; 12 Hollien (10.1016/j.biopsych.2005.07.040_bib14) 1987; 32 Rosenfeld (10.1016/j.biopsych.2005.07.040_bib27) 2004; 41 Bush (10.1016/j.biopsych.2005.07.040_bib5) 1998; 6 Cox (10.1016/j.biopsych.2005.07.040_bib6) 1996; 29 Friston (10.1016/j.biopsych.2005.07.040_bib11) 1997 (10.1016/j.biopsych.2005.07.040_bib31) 2001 |
References_xml | – volume: 15 start-page: 727 year: 2002 end-page: 732 ident: bib18 article-title: Brain activity during simulated deception publication-title: Neuroimage – volume: 61 start-page: 303 year: 1970 end-page: 321 ident: bib1 article-title: A classification of hand preference by association analysis publication-title: Br J Psychol – volume: 6 start-page: 270 year: 1998 end-page: 282 ident: bib5 article-title: The counting Stroop publication-title: Hum Brain Mapp – volume: 1 start-page: 210 year: 1994 end-page: 220 ident: bib12 article-title: Assessing the significance of focal activations using their spatial extent publication-title: Hum Brain Mapp – year: 1983 ident: bib30 publication-title: Manual for the State-Trait Anxiety Inventory – volume: 25 start-page: 267 year: 2005 end-page: 277 ident: bib22 article-title: Intentional false responding shares neural substrates with response conflict and cognitive control publication-title: Neuroimage – volume: 118 start-page: 852 year: 2004 end-page: 856 ident: bib16 article-title: A replication study of the neural correlates of deception publication-title: Behav Neurosci – volume: 349 start-page: 61 year: 1991 end-page: 64 ident: bib24 article-title: Localization of a human system for sustained attention by positron emission tomography publication-title: Nature – volume: 359 start-page: 1755 year: 2004 end-page: 1762 ident: bib29 article-title: A cognitive neurobiological account of deception publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 87 start-page: 9868 year: 1990 end-page: 9872 ident: bib23 article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation publication-title: Proc Natl Acad Sci U S A – start-page: 487 year: 1997 end-page: 517 ident: bib11 article-title: Images of the future publication-title: Human Brain Function – year: 2001 ident: bib31 publication-title: Investigative Techniques – volume: 13 start-page: 830 year: 2003 end-page: 836 ident: bib13 article-title: Neural correlates of different types of deception publication-title: Cereb Cortex – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: bib6 article-title: AFNI publication-title: Comput Biomed Res – volume: 15 start-page: 157 year: 2002 end-page: 164 ident: bib19 article-title: Lie detection by functional magnetic resonance imaging publication-title: Hum Brain Mapp – volume: 12 start-page: 164 year: 2005 end-page: 172 ident: bib26 article-title: Neural correlates of telling lies publication-title: Acad Radiol – volume: 28 start-page: 531 year: 1991 end-page: 547 ident: bib8 article-title: The truth will out publication-title: Psychophysiology – volume: 87 start-page: 256 year: 1990 end-page: 259 ident: bib25 article-title: The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: 254 year: 1999 end-page: 266 ident: bib2 article-title: Nonlinear spatial normalization using basis functions publication-title: Hum Brain Mapp – volume: 1 start-page: 544 year: 1986 end-page: 547 ident: bib3 article-title: Predictive power of the polygraph publication-title: Lancet – volume: 32 start-page: 405 year: 1987 end-page: 418 ident: bib14 article-title: Voice stress evaluators and lie detection publication-title: J Forensic Sci – volume: 8 start-page: 60 year: 2003 end-page: 70 ident: bib4 article-title: The Multi-Source Interference Task publication-title: Mol Psychiatry – volume: 16 start-page: 295 year: 2004 end-page: 305 ident: bib17 article-title: A pilot study of functional magnetic resonance imaging brain correlates of deception in healthy young men publication-title: J Neuropsychiatry Clin Neurosci – volume: 288 year: 2000 ident: bib20 article-title: Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control publication-title: Science – year: 2003 ident: bib21 publication-title: The Polygraph and Lie Detection. Committee to Review the Scientific Evidence of the Polygraph. Division of Behavioral and Social Sciences and Education – volume: 79 start-page: 252 year: 1994 end-page: 259 ident: bib15 article-title: Mental and physical countermeasures reduce the accuracy of polygraph tests publication-title: J Appl Psychol – start-page: 599 year: 2004 end-page: 634 ident: bib10 article-title: Experimental design and statistical parametric mapping publication-title: Human Brain Function – volume: 10 start-page: 308 year: 2000 end-page: 317 ident: bib7 article-title: Dissociable functions in the medial and lateral orbitofrontal cortex publication-title: Cereb Cortex – volume: 41 start-page: 205 year: 2004 end-page: 219 ident: bib27 article-title: Simple, effective countermeasures to P300-based tests of detection of concealed information publication-title: Psychophysiology – year: 1995 ident: bib9 publication-title: Structured Clinical Interview for DSM-IV (SCID) – volume: 12 start-page: 2849 year: 2001 end-page: 2853 ident: bib28 article-title: Behavioral and functional anatomical correlates of deception in humans publication-title: NeuroReport – volume: 288 year: 2000 ident: 10.1016/j.biopsych.2005.07.040_bib20 article-title: Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control publication-title: Science doi: 10.1126/science.288.5472.1835 – volume: 87 start-page: 9868 year: 1990 ident: 10.1016/j.biopsych.2005.07.040_bib23 article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.87.24.9868 – volume: 8 start-page: 60 year: 2003 ident: 10.1016/j.biopsych.2005.07.040_bib4 article-title: The Multi-Source Interference Task publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4001217 – volume: 16 start-page: 295 year: 2004 ident: 10.1016/j.biopsych.2005.07.040_bib17 article-title: A pilot study of functional magnetic resonance imaging brain correlates of deception in healthy young men publication-title: J Neuropsychiatry Clin Neurosci doi: 10.1176/jnp.16.3.295 – volume: 12 start-page: 164 year: 2005 ident: 10.1016/j.biopsych.2005.07.040_bib26 article-title: Neural correlates of telling lies publication-title: Acad Radiol doi: 10.1016/j.acra.2004.11.023 – volume: 12 start-page: 2849 year: 2001 ident: 10.1016/j.biopsych.2005.07.040_bib28 article-title: Behavioral and functional anatomical correlates of deception in humans publication-title: NeuroReport doi: 10.1097/00001756-200109170-00019 – volume: 87 start-page: 256 year: 1990 ident: 10.1016/j.biopsych.2005.07.040_bib25 article-title: The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.87.1.256 – volume: 349 start-page: 61 year: 1991 ident: 10.1016/j.biopsych.2005.07.040_bib24 article-title: Localization of a human system for sustained attention by positron emission tomography publication-title: Nature doi: 10.1038/349061a0 – volume: 10 start-page: 308 year: 2000 ident: 10.1016/j.biopsych.2005.07.040_bib7 article-title: Dissociable functions in the medial and lateral orbitofrontal cortex publication-title: Cereb Cortex doi: 10.1093/cercor/10.3.308 – volume: 28 start-page: 531 year: 1991 ident: 10.1016/j.biopsych.2005.07.040_bib8 article-title: The truth will out publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1991.tb01990.x – volume: 359 start-page: 1755 year: 2004 ident: 10.1016/j.biopsych.2005.07.040_bib29 article-title: A cognitive neurobiological account of deception publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2004.1555 – volume: 15 start-page: 157 year: 2002 ident: 10.1016/j.biopsych.2005.07.040_bib19 article-title: Lie detection by functional magnetic resonance imaging publication-title: Hum Brain Mapp doi: 10.1002/hbm.10020 – volume: 79 start-page: 252 year: 1994 ident: 10.1016/j.biopsych.2005.07.040_bib15 article-title: Mental and physical countermeasures reduce the accuracy of polygraph tests publication-title: J Appl Psychol doi: 10.1037/0021-9010.79.2.252 – year: 2001 ident: 10.1016/j.biopsych.2005.07.040_bib31 – start-page: 599 year: 2004 ident: 10.1016/j.biopsych.2005.07.040_bib10 article-title: Experimental design and statistical parametric mapping – volume: 61 start-page: 303 year: 1970 ident: 10.1016/j.biopsych.2005.07.040_bib1 article-title: A classification of hand preference by association analysis publication-title: Br J Psychol doi: 10.1111/j.2044-8295.1970.tb01248.x – volume: 29 start-page: 162 year: 1996 ident: 10.1016/j.biopsych.2005.07.040_bib6 article-title: AFNI publication-title: Comput Biomed Res doi: 10.1006/cbmr.1996.0014 – volume: 13 start-page: 830 year: 2003 ident: 10.1016/j.biopsych.2005.07.040_bib13 article-title: Neural correlates of different types of deception publication-title: Cereb Cortex doi: 10.1093/cercor/13.8.830 – volume: 32 start-page: 405 year: 1987 ident: 10.1016/j.biopsych.2005.07.040_bib14 article-title: Voice stress evaluators and lie detection publication-title: J Forensic Sci doi: 10.1520/JFS11143J – volume: 7 start-page: 254 year: 1999 ident: 10.1016/j.biopsych.2005.07.040_bib2 article-title: Nonlinear spatial normalization using basis functions publication-title: Hum Brain Mapp doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G – start-page: 487 year: 1997 ident: 10.1016/j.biopsych.2005.07.040_bib11 article-title: Images of the future – volume: 41 start-page: 205 year: 2004 ident: 10.1016/j.biopsych.2005.07.040_bib27 article-title: Simple, effective countermeasures to P300-based tests of detection of concealed information publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2004.00158.x – volume: 1 start-page: 210 year: 1994 ident: 10.1016/j.biopsych.2005.07.040_bib12 article-title: Assessing the significance of focal activations using their spatial extent publication-title: Hum Brain Mapp doi: 10.1002/hbm.460010306 – volume: 15 start-page: 727 year: 2002 ident: 10.1016/j.biopsych.2005.07.040_bib18 article-title: Brain activity during simulated deception publication-title: Neuroimage doi: 10.1006/nimg.2001.1003 – volume: 25 start-page: 267 year: 2005 ident: 10.1016/j.biopsych.2005.07.040_bib22 article-title: Intentional false responding shares neural substrates with response conflict and cognitive control publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.041 – year: 1983 ident: 10.1016/j.biopsych.2005.07.040_bib30 – volume: 6 start-page: 270 year: 1998 ident: 10.1016/j.biopsych.2005.07.040_bib5 article-title: The counting Stroop publication-title: Hum Brain Mapp doi: 10.1002/(SICI)1097-0193(1998)6:4<270::AID-HBM6>3.0.CO;2-0 – year: 2003 ident: 10.1016/j.biopsych.2005.07.040_bib21 – year: 1995 ident: 10.1016/j.biopsych.2005.07.040_bib9 – volume: 1 start-page: 544 year: 1986 ident: 10.1016/j.biopsych.2005.07.040_bib3 article-title: Predictive power of the polygraph publication-title: Lancet doi: 10.1016/S0140-6736(86)90895-0 – volume: 118 start-page: 852 year: 2004 ident: 10.1016/j.biopsych.2005.07.040_bib16 article-title: A replication study of the neural correlates of deception publication-title: Behav Neurosci doi: 10.1037/0735-7044.118.4.852 |
SSID | ssj0007221 |
Score | 2.3225582 |
Snippet | The ability to accurately detect deception is presently very limited. Detecting deception might be more accurately achieved by measuring the brain correlates... Background: The ability to accurately detect deception is presently very limited. Detecting deception might be more accurately achieved by measuring the brain... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 605 |
SubjectTerms | Adolescent Adult Behavior. Attitude Biological and medical sciences BOLD Brain - blood supply Brain - physiology Cluster Analysis Deception detection Female fMRI Fundamental and applied biological sciences. Psychology Humans Image Processing, Computer-Assisted - methods individual lie Magnetic Resonance Imaging - methods Male Middle Aged Neuropsychology - methods Oxygen - blood Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Reference Values Reproducibility of Results Social psychology |
Title | Detecting Deception Using Functional Magnetic Resonance Imaging |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006322305009716 https://dx.doi.org/10.1016/j.biopsych.2005.07.040 https://www.ncbi.nlm.nih.gov/pubmed/16185668 https://www.proquest.com/docview/17468647 https://www.proquest.com/docview/68771168 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB0RUAsSqkpaILRNfejViT92Z-0TQqFRaJWcQMrNWtu7KKg4EYQDF347s_ZuAKkoSJwsWTvWajyeeZ6dmQfwKyIImkbajNnn3GdRWPpSIPpJUpQBOWUCDSahP57g6IL9mfLpBgxcL4wpq7S-v_Hptbe2d_pWm_3FbGZ6fCm8UnQLeDMIqQVbUZwimfbWydnf0WTlkEUUWeI89I3As0bhq14-m9d1xTa9InqByYP8P0btLuQtaU43lBevY9I6Ng0_wycLKr2TZt97sKGqNnxoaCbv27A9cKxubfg4tofpX-D4VJkTBIpd3qmy1S1eXULgDSnaNUlCbywvK9Po6JlEv5nOobyz65ra6CtcDH-fD0a-5VPwC_ovWfqq5GWSq7yMWRzkSai0FGlRsFLIIgxTpYTkQhIkQwItWos8QIJPmhe0Sssc433YrOaVOgQvqv9cCHzEmDLFmUSl6YIodKkRdQe402BW2GHjhvPiX-aqyq4yp3nDhMmzQGSk-Q70V3KLZtzGWgnhXlDmmknJ_WUUEdZKpivJFyb3JtnuC1t42qwgxMN41IGfzjgyesPmFEZWan53SysYJsjE6yswESIMMenAQWNVT09HgleIydE7tv4Ndtz42ZB_h83lzZ36QcBqmXeh1XsIu_bzeQT_JiHA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7x0MJKqxV0gS0skMNe0yapPU5OK1SoyqOcQOJmOYmNiiCtoBy48Nt3nNh0kUCsxClSNBNZ4_HMl_E8AH4nBEGzxNg2-5yHLInLUAnEME2LMiKjTKDBBvRH5zi8ZCdX_GoB-r4WxqZVOtvf2PTaWrs3XSfN7nQ8tjW-5F7Ju0W8aYS0CMuMjq89nZ3neZ6HSBI3Ng9DS_5PmfBNJx9P6qxiF1wRnchGQd72UN-m6oHkZpqBF-8j0tozDdbgu4OUwUGz6nVY0FULvjRDJp9asNr3M91asDJyV-k_4M-htvcH5LmCQ-1yW4I6gSAYkK9rQoTBSF1XtswxsGF-25tDB8d39WCjDbgcHF30h6GbphAW9FcyC3XJyzTXedljvShPY22UyIqClUIVcZxpLRQXigAZEmQxRuQREngyvCAqo3LsbcJSNan0TwiS-r-FoEcPM6Y5U6gNPRCFKQ2iaQP3EpSFazVuJ17cSp9TdiO95O0cTC4jIUnybei-8E2bZhsfcgi_QdKXkpLxk-QPPuTMXjhfKdx_8e690oX5YgXhHcaTNux75ZC0w_YORlV68vhAFAxTZOJ9CkyFiGNM27DVaNX860jgCjHd_sTS92F1eDE6k2fH56c78NU3oo35L1ia3T_qXYJYs3yvPkJ_AWIOIoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Deception+Using+Functional+Magnetic+Resonance+Imaging&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Kozel%2C+F.+Andrew&rft.au=Johnson%2C+Kevin+A.&rft.au=Mu%2C+Qiwen&rft.au=Grenesko%2C+Emily+L.&rft.date=2005-10-15&rft.issn=0006-3223&rft.volume=58&rft.issue=8&rft.spage=605&rft.epage=613&rft_id=info:doi/10.1016%2Fj.biopsych.2005.07.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biopsych_2005_07_040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3223&client=summon |