Overcoming Debye length limitations: Three-dimensional wrinkled graphene field-effect transistor for ultra-sensitive adenosine triphosphate detection
Adenosine triphosphate (ATP) is closely related to the pathogenesis of certain diseases, so the detection of trace ATP is of great significance to disease diagnosis and drug development. Graphene field-effect transistors (GFETs) have been proven to be a promising platform for the rapid and accurate...
Saved in:
Published in | Frontiers of physics Vol. 18; no. 5; p. 53301 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.10.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adenosine triphosphate (ATP) is closely related to the pathogenesis of certain diseases, so the detection of trace ATP is of great significance to disease diagnosis and drug development. Graphene field-effect transistors (GFETs) have been proven to be a promising platform for the rapid and accurate detection of small molecules, while the Debye shielding limits the sensitive detection in real samples. Here, a three-dimensional wrinkled graphene field-effect transistor (3D WG-FET) biosensor for ultra-sensitive detection of ATP is demonstrated. The lowest detection limit of 3D WG-FET for analyzing ATP is down to 3.01 aM, which is much lower than the reported results. In addition, the 3D WG-FET biosensor shows a good linear electrical response to ATP concentrations in a broad range of detection from 10 aM to 10 pM. Meanwhile, we achieved ultra-sensitive (LOD: 10 aM) and quantitative (range from 10 aM to 100 fM) measurements of ATP in human serum. The 3D WG-FET also exhibits high specificity. This work may provide a novel approach to improve the sensitivity for the detection of ATP in complex biological matrix, showing a broad application value for early clinical diagnosis and food health monitoring. |
---|---|
AbstractList | Adenosine triphosphate (ATP) is closely related to the pathogenesis of certain diseases, so the detection of trace ATP is of great significance to disease diagnosis and drug development. Graphene field-effect transistors (GFETs) have been proven to be a promising platform for the rapid and accurate detection of small molecules, while the Debye shielding limits the sensitive detection in real samples. Here, a three-dimensional wrinkled graphene field-effect transistor (3D WG-FET) biosensor for ultra-sensitive detection of ATP is demonstrated. The lowest detection limit of 3D WG-FET for analyzing ATP is down to 3.01 aM, which is much lower than the reported results. In addition, the 3D WG-FET biosensor shows a good linear electrical response to ATP concentrations in a broad range of detection from 10 aM to 10 pM. Meanwhile, we achieved ultra-sensitive (LOD: 10 aM) and quantitative (range from 10 aM to 100 fM) measurements of ATP in human serum. The 3D WG-FET also exhibits high specificity. This work may provide a novel approach to improve the sensitivity for the detection of ATP in complex biological matrix, showing a broad application value for early clinical diagnosis and food health monitoring. Adenosine triphosphate (ATP) is closely related to the pathogenesis of certain diseases, so the detection of trace ATP is of great significance to disease diagnosis and drug development. Graphene field-effect transistors (GFETs) have been proven to be a promising platform for the rapid and accurate detection of small molecules, while the Debye shielding limits the sensitive detection in real samples. Here, a three-dimensional wrinkled graphene field-effect transistor (3D WG-FET) biosensor for ultra-sensitive detection of ATP is demonstrated. The lowest detection limit of 3D WG-FET for analyzing ATP is down to 3.01 aM, which is much lower than the reported results. In addition, the 3D WG-FET biosensor shows a good linear electrical response to ATP concentrations in a broad range of detection from 10 aM to 10 pM. Meanwhile, we achieved ultra-sensitive (LOD: 10 aM) and quantitative (range from 10 aM to 100 fM) measurements of ATP in human serum. The 3D WG-FET also exhibits high specificity. This work may provide a novel approach to improve the sensitivity for the detection of ATP in complex biological matrix, showing a broad application value for early clinical diagnosis and food health monitoring. The online version contains supplementary material available at 10.1007/s11467-023-1281-7 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1281-7. Adenosine triphosphate (ATP) is closely related to the pathogenesis of certain diseases, so the detection of trace ATP is of great significance to disease diagnosis and drug development. Graphene field-effect transistors (GFETs) have been proven to be a promising platform for the rapid and accurate detection of small molecules, while the Debye shielding limits the sensitive detection in real samples. Here, a three-dimensional wrinkled graphene field-effect transistor (3D WG-FET) biosensor for ultra-sensitive detection of ATP is demonstrated. The lowest detection limit of 3D WG-FET for analyzing ATP is down to 3.01 aM, which is much lower than the reported results. In addition, the 3D WG-FET biosensor shows a good linear electrical response to ATP concentrations in a broad range of detection from 10 aM to 10 pM. Meanwhile, we achieved ultra-sensitive (LOD: 10 aM) and quantitative (range from 10 aM to 100 fM) measurements of ATP in human serum. The 3D WG-FET also exhibits high specificity. This work may provide a novel approach to improve the sensitivity for the detection of ATP in complex biological matrix, showing a broad application value for early clinical diagnosis and food health monitoring.Adenosine triphosphate (ATP) is closely related to the pathogenesis of certain diseases, so the detection of trace ATP is of great significance to disease diagnosis and drug development. Graphene field-effect transistors (GFETs) have been proven to be a promising platform for the rapid and accurate detection of small molecules, while the Debye shielding limits the sensitive detection in real samples. Here, a three-dimensional wrinkled graphene field-effect transistor (3D WG-FET) biosensor for ultra-sensitive detection of ATP is demonstrated. The lowest detection limit of 3D WG-FET for analyzing ATP is down to 3.01 aM, which is much lower than the reported results. In addition, the 3D WG-FET biosensor shows a good linear electrical response to ATP concentrations in a broad range of detection from 10 aM to 10 pM. Meanwhile, we achieved ultra-sensitive (LOD: 10 aM) and quantitative (range from 10 aM to 100 fM) measurements of ATP in human serum. The 3D WG-FET also exhibits high specificity. This work may provide a novel approach to improve the sensitivity for the detection of ATP in complex biological matrix, showing a broad application value for early clinical diagnosis and food health monitoring.The online version contains supplementary material available at 10.1007/s11467-023-1281-7 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1281-7.Electronic supplementary materialsThe online version contains supplementary material available at 10.1007/s11467-023-1281-7 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1281-7. |
ArticleNumber | 53301 |
Author | Wang, Jihua Tian, Meng Ding, Yue Qi, Xuefan Wang, Zhenxing Li, Siyu Lin, Xiaohui Xu, Shicai Yue, Weiwei Li, Chonghui Liu, Guofeng Cui, Wanling |
Author_xml | – sequence: 1 givenname: Yue surname: Ding fullname: Ding, Yue organization: Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China – sequence: 2 givenname: Chonghui surname: Li fullname: Li, Chonghui email: chlisdnu@126.com organization: Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou 253023, China – sequence: 3 givenname: Meng surname: Tian fullname: Tian, Meng organization: Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China – sequence: 4 givenname: Jihua surname: Wang fullname: Wang, Jihua organization: Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou 253023, China – sequence: 5 givenname: Zhenxing surname: Wang fullname: Wang, Zhenxing organization: Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China – sequence: 6 givenname: Xiaohui surname: Lin fullname: Lin, Xiaohui organization: Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou 253023, China – sequence: 7 givenname: Guofeng surname: Liu fullname: Liu, Guofeng organization: Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China – sequence: 8 givenname: Wanling surname: Cui fullname: Cui, Wanling organization: Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou 253023, China – sequence: 9 givenname: Xuefan surname: Qi fullname: Qi, Xuefan organization: Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China – sequence: 10 givenname: Siyu surname: Li fullname: Li, Siyu organization: Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China – sequence: 11 givenname: Weiwei surname: Yue fullname: Yue, Weiwei email: yuewei@sdnu.edu.cn organization: School of Physics and Electronics, Shandong Normal University, Jinan 250014, China – sequence: 12 givenname: Shicai surname: Xu fullname: Xu, Shicai email: shicaixu@dzu.edu.cn organization: Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, Dezhou 253023, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37251534$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNUREvpA7BBltiwCdjOjz1sUFXKj1Spm7K2HOcmcXHsYHsG9UF4397RTAt0MQsr9s35To5z78viyAcPRfGa0feMUvEhMVa3oqS8KhmXrBTPihNOV01Ja0GPHvctPy7OUrqllDImajy_KI4rwRvWVPVJ8ed6A9GE2fqRfIbuDogDP-aJODvbrLMNPn0kN1MEKHs7g09Y0Y78jtb_dNCTMeplAg9ksOD6EoYBTCY5alSmHCIZcK0dFsq0pbPdANE9-JAsUjnaZQppmXQG0kNGGD_wqng-aJfgbP88LX58uby5-FZeXX_9fnF-VZqmlrkE3YuuqzvZrajhUtaacs210BWrh5Z3vNVG9NBWkmsG3DBo2pYaOTDat7VZVafFp53vsu5m6A14zOnUEu2s450K2qr_33g7qTFsFKOcNk3boMO7vUMMv9aQspptMuCc9hDWSXGJfRBUNhSlb59Ib8M64s9E1YrJlglWHVZJJpmo0A1Vb_4N_pj4obEoEDuBiSGlCIMy-3biPazDC6jtFKndFCmcIrWdIiWQZE_IB_NDDN8xCbV-hPg39CFI7qDJjhNE6JcIKakhYkYL8RB6DyCN7uE |
CitedBy_id | crossref_primary_10_3390_ijms251810083 crossref_primary_10_1002_aelm_202400712 crossref_primary_10_1109_JSEN_2024_3419076 crossref_primary_10_1002_smsc_202400515 crossref_primary_10_1021_acsaelm_4c01701 crossref_primary_10_1002_aelm_202400332 |
Cites_doi | 10.1039/C6CS00827E 10.1016/j.talanta.2022.123764 10.1007/s11467-019-0937-9 10.1016/j.xcrp.2022.100855 10.1002/adfm.201202672 10.1021/acs.analchem.2c01850 10.1016/j.apsusc.2020.146839 10.1109/MEC.2013.6885154 10.1126/science.aao6750 10.1016/j.apsusc.2017.07.048 10.1016/j.bios.2018.11.034 10.1021/acs.nanolett.8b04099 10.1016/j.snb.2020.128164 10.1016/j.aca.2020.08.011 10.1016/j.snb.2022.131753 10.1021/acsami.5b00155 10.1021/acsaelm.0c00095 10.1021/acs.analchem.1c03786 10.1038/ncomms14902 10.1038/s41598-018-36746-w 10.1016/j.isci.2020.101761 10.1088/0957-4484/25/16/165702 10.1016/j.bios.2021.113206 10.2116/analsci.21P054 10.1002/adfm.201905202 10.1002/smtd.202200096 10.1038/s41568-018-0037-0 10.1039/D2AN01262F 10.1016/j.mtchem.2022.100895 10.1016/j.snb.2018.12.129 10.1007/s11467-018-0809-8 10.1039/D0NR01198C 10.1016/j.snb.2022.131469 10.1038/s41467-020-15330-9 10.1016/j.bios.2017.11.005 10.1021/jp8008404 10.1016/j.snb.2020.128263 10.1073/pnas.1315485111 10.1021/acssensors.1c01937 10.1016/j.bios.2021.113890 10.1021/acs.analchem.2c02373 10.1039/D1AY00101A 10.1016/j.bios.2019.111711 10.1016/j.xcrp.2021.100343 10.1016/j.snb.2014.01.071 10.1016/j.envpol.2019.06.089 10.1021/acs.analchem.9b04116 10.1002/adma.202002629 10.1109/TNB.2015.2501364 10.1038/s41581-020-0304-7 10.1007/s11467-018-0859-y 10.1007/s11467-015-0522-9 10.1016/j.talanta.2020.121552 10.1007/s11467-022-1190-1 10.1016/j.bios.2018.01.017 10.1021/acsnano.1c08186 10.1016/j.aca.2021.338791 10.1021/acs.nanolett.9b00431 10.1016/j.cossms.2020.100836 10.1016/j.actbio.2020.12.057 10.1021/acs.analchem.2c00613 10.1007/s11467-017-0648-z |
ContentType | Journal Article |
Copyright | Copyright reserved, 2023, Higher Education Press Higher Education Press 2023 Higher Education Press 2023. Copyright Springer Nature B.V. Oct 2023 |
Copyright_xml | – notice: Copyright reserved, 2023, Higher Education Press – notice: Higher Education Press 2023 – notice: Higher Education Press 2023. – notice: Copyright Springer Nature B.V. Oct 2023 |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s11467-023-1281-7 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2095-0470 |
ExternalDocumentID | PMC10205565 37251534 10_1007_s11467_023_1281_7 10.1007/s11467-023-1281-7 |
Genre | Journal Article |
GroupedDBID | -5F -5G -BR -EM -~C .VR 06D 0R~ 0VY 1-T 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40E 5VS 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAIAL AAJKR AANZL AAPBV AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABWNU ABXPI ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BDATZ BGNMA CSCUP DNIVK EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HZ~ IAO IEA IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q N95 NPVJJ NQJWS NU0 O9- O9J P4S P9T PF0 PT4 R89 R9I ROL RSV S16 S3B SAP SCL SHX SISQX SJYHP SNE SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z88 ZMTXR ~A9 88I AACDK AAJBT AAPKM AATNV AAXDM AAYZH ABJNI ABQSL ABTKH ABUWG ACPIV ACZOJ ADHKG AEMSY AESKC AEUYN AEVLU AFBBN AFKRA AGQEE AGQPQ AGRTI AHPBZ AMXSW ARAPS AYFIA AZQEC BENPR BGLVJ BHPHI BKSAR BSONS CCPQU DDRTE DPUIP DWQXO GNUQQ HCIFZ HVGLF M2P PCBAR PHGZT SNPRN -SA -S~ AAYXX ABFSG ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CAJEA CITATION PHGZM Q-- TGP U1G U5K NPM PQGLB 3V. 7XB 8FE 8FG 8FK P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c548t-ead7bb4b8b90c2884a02a2a7a314f62b26ac7de6382a1e2c1e5660c8f10d64c93 |
IEDL.DBID | BENPR |
ISSN | 2095-0462 |
IngestDate | Thu Aug 21 18:37:49 EDT 2025 Fri Jul 11 09:25:55 EDT 2025 Fri Jul 25 20:44:46 EDT 2025 Sat Jul 26 00:26:15 EDT 2025 Mon Jul 21 05:43:34 EDT 2025 Tue Jul 01 03:04:53 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Wed Apr 09 21:54:19 EDT 2025 Sun Jun 04 12:18:36 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | three-dimensional wrinkled graphene ultra-sensitive field effect transistor ATP in complex human serum Debye shielding |
Language | English |
License | Higher Education Press 2023. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c548t-ead7bb4b8b90c2884a02a2a7a314f62b26ac7de6382a1e2c1e5660c8f10d64c93 |
Notes | Document accepted on :2023-03-11 Document received on :2022-12-05 three-dimensional wrinkled graphene ultra-sensitive ATP in complex human serum Debye shielding field effect transistor ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10205565 |
PMID | 37251534 |
PQID | 2918617130 |
PQPubID | 2044425 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10205565 proquest_miscellaneous_2820970850 proquest_journals_2918617130 proquest_journals_2818173708 pubmed_primary_37251534 crossref_citationtrail_10_1007_s11467_023_1281_7 crossref_primary_10_1007_s11467_023_1281_7 springer_journals_10_1007_s11467_023_1281_7 higheredpress_frontiers_10_1007_s11467_023_1281_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: China – name: Heidelberg |
PublicationTitle | Frontiers of physics |
PublicationTitleAbbrev | Front. Phys |
PublicationTitleAlternate | Front Phys (Beijing) |
PublicationYear | 2023 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | T Zhang (1281_CR16) 2017; 12 X Chen (1281_CR17) 2019; 145 L L Yao (1281_CR11) 2022; 147 Y Xu (1281_CR2) 2020; 1134 Z R Wang (1281_CR32) 2022; 3 E Sameiyan (1281_CR49) 2021; 123 S Islam (1281_CR19) 2019; 9 Y Liu (1281_CR9) 2022; 94 M Hu (1281_CR30) 2018; 13 K Shoorideh (1281_CR56) 2014; 111 Y Z Huang (1281_CR37) 2022; 24 P P Sun (1281_CR7) 2022; 94 S Xu (1281_CR54) 2014; 25 X Li (1281_CR62) 2018; 102 P Snapp (1281_CR55) 2020; 24 C Wang (1281_CR36) 2016; 11 S K Tiwari (1281_CR21) 2020; 5 K M Dwyer (1281_CR8) 2020; 16 D Y Qi (1281_CR57) 2022; 358 B Kwon (1281_CR14) 2022; 16 J W Gao (1281_CR33) 2020; 2 C T Lin (1281_CR48) 2013; 23 C H Wang (1281_CR4) 2021; 1178 J Li (1281_CR18) 2021; 183 H Y Zhao (1281_CR61) 2022; 362 T Deng (1281_CR35) 2019; 19 J Mehringer (1281_CR50) 2021; 2 H H Bay (1281_CR27) 2019; 19 M Tian (1281_CR46) 2020; 527 M Cheng (1281_CR25) 2022; 17 R Wang (1281_CR29) 2019; 14 S C Xu (1281_CR43) 2017; 8 J W Gao (1281_CR15) 2022; 94 F Di Virgilio (1281_CR1) 2018; 18 X X Zhou (1281_CR41) 2021; 221 S Li (1281_CR60) 2019; 91 F Qing (1281_CR42) 2020; 12 G F Wu (1281_CR45) 2017; 425 S Mukherjee (1281_CR23) 2015; 14 N Nekrasov (1281_CR44) 2022; 200 X M Huang (1281_CR22) 2020; 15 F Zhang (1281_CR34) 2019; 253 X Chen (1281_CR12) 2019; 126 Z Wang (1281_CR26) 2019; 29 J Deng (1281_CR3) 2020; 32 I Park (1281_CR13) 2021; 6 M Q Zheng (1281_CR58) 2020; 319 N Itoh (1281_CR40) 2021; 37 S Mao (1281_CR20) 2017; 46 C M Yu (1281_CR52) 2015; 7 G E Fenoy (1281_CR63) 2022; 94 M T Hwang (1281_CR38) 2020; 11 Y K Han (1281_CR28) 2022; 6 Y Peng (1281_CR59) 2018; 105 Y Wang (1281_CR39) 2008; 112 L Xiao (1281_CR5) 2023; 252 T N Seyfried (1281_CR6) 2020; 23 W W Yue (1281_CR24) 2014; 195 1281_CR53 1281_CR10 N Nakatsuka (1281_CR31) 2018; 362 Y N Zhang (1281_CR47) 2021; 13 S C Xu (1281_CR51) 2019; 284 |
References_xml | – volume: 46 start-page: 6872 issue: 22 year: 2017 ident: 1281_CR20 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00827E – volume: 5 start-page: 10 issue: 1 year: 2020 ident: 1281_CR21 publication-title: Sci. Adv. Mater Dev. – volume: 252 start-page: 123764 year: 2023 ident: 1281_CR5 publication-title: Talanta doi: 10.1016/j.talanta.2022.123764 – volume: 15 start-page: 33301 issue: 3 year: 2020 ident: 1281_CR22 publication-title: Front. Phys. doi: 10.1007/s11467-019-0937-9 – volume: 3 start-page: 100855 issue: 5 year: 2022 ident: 1281_CR32 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2022.100855 – volume: 23 start-page: 2301 issue: 18 year: 2013 ident: 1281_CR48 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202672 – volume: 94 start-page: 11573 issue: 33 year: 2022 ident: 1281_CR7 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c01850 – volume: 527 start-page: 146839 year: 2020 ident: 1281_CR46 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146839 – ident: 1281_CR53 doi: 10.1109/MEC.2013.6885154 – volume: 362 start-page: 319 issue: 6412 year: 2018 ident: 1281_CR31 publication-title: Science doi: 10.1126/science.aao6750 – volume: 425 start-page: 713 year: 2017 ident: 1281_CR45 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.048 – volume: 126 start-page: 664 year: 2019 ident: 1281_CR12 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.11.034 – volume: 19 start-page: 1494 issue: 3 year: 2019 ident: 1281_CR35 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04099 – ident: 1281_CR10 doi: 10.1016/j.snb.2020.128164 – volume: 1134 start-page: 75 year: 2020 ident: 1281_CR2 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.08.011 – volume: 362 start-page: 131753 year: 2022 ident: 1281_CR61 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2022.131753 – volume: 7 start-page: 10718 issue: 20 year: 2015 ident: 1281_CR52 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.5b00155 – volume: 2 start-page: 1090 issue: 4 year: 2020 ident: 1281_CR33 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c00095 – volume: 94 start-page: 1626 issue: 3 year: 2022 ident: 1281_CR15 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c03786 – volume: 8 start-page: 14902 issue: 1 year: 2017 ident: 1281_CR43 publication-title: Nat. Commun. doi: 10.1038/ncomms14902 – volume: 9 start-page: 276 issue: 1 year: 2019 ident: 1281_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-018-36746-w – volume: 23 start-page: 101761 issue: 11 year: 2020 ident: 1281_CR6 publication-title: iScience doi: 10.1016/j.isci.2020.101761 – volume: 25 start-page: 165702 issue: 16 year: 2014 ident: 1281_CR54 publication-title: Nanotechnology doi: 10.1088/0957-4484/25/16/165702 – volume: 183 start-page: 113206 year: 2021 ident: 1281_CR18 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113206 – volume: 37 start-page: 1533 issue: 11 year: 2021 ident: 1281_CR40 publication-title: Anal. Sci. doi: 10.2116/analsci.21P054 – volume: 29 start-page: 1905202 issue: 44 year: 2019 ident: 1281_CR26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905202 – volume: 6 start-page: 2200096 issue: 4 year: 2022 ident: 1281_CR28 publication-title: Small Methods doi: 10.1002/smtd.202200096 – volume: 18 start-page: 601 issue: 10 year: 2018 ident: 1281_CR1 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0037-0 – volume: 147 start-page: 4222 issue: 19 year: 2022 ident: 1281_CR11 publication-title: Analyst (Lond.) doi: 10.1039/D2AN01262F – volume: 24 start-page: 100895 year: 2022 ident: 1281_CR37 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2022.100895 – volume: 284 start-page: 125 year: 2019 ident: 1281_CR51 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.12.129 – volume: 13 start-page: 138113 issue: 4 year: 2018 ident: 1281_CR30 publication-title: Front. Phys. doi: 10.1007/s11467-018-0809-8 – volume: 12 start-page: 10890 issue: 20 year: 2020 ident: 1281_CR42 publication-title: Nanoscale doi: 10.1039/D0NR01198C – volume: 358 start-page: 131469 year: 2022 ident: 1281_CR57 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2022.131469 – volume: 11 start-page: 1543 issue: 1 year: 2020 ident: 1281_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15330-9 – volume: 102 start-page: 296 year: 2018 ident: 1281_CR62 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.11.005 – volume: 112 start-page: 10637 issue: 29 year: 2008 ident: 1281_CR39 publication-title: J. Phys. Chem. C. doi: 10.1021/jp8008404 – volume: 319 start-page: 128263 year: 2020 ident: 1281_CR58 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128263 – volume: 111 start-page: 5111 issue: 14 year: 2014 ident: 1281_CR56 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1315485111 – volume: 6 start-page: 4461 issue: 12 year: 2021 ident: 1281_CR13 publication-title: ACS Sens. doi: 10.1021/acssensors.1c01937 – volume: 200 start-page: 113890 year: 2022 ident: 1281_CR44 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113890 – volume: 94 start-page: 13820 issue: 40 year: 2022 ident: 1281_CR63 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c02373 – volume: 13 start-page: 1839 issue: 15 year: 2021 ident: 1281_CR47 publication-title: Anal. Methods doi: 10.1039/D1AY00101A – volume: 145 start-page: 111711 year: 2019 ident: 1281_CR17 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111711 – volume: 2 start-page: 100343 issue: 2 year: 2021 ident: 1281_CR50 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2021.100343 – volume: 195 start-page: 467 year: 2014 ident: 1281_CR24 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.01.071 – volume: 253 start-page: 365 year: 2019 ident: 1281_CR34 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.06.089 – volume: 91 start-page: 14737 issue: 22 year: 2019 ident: 1281_CR60 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b04116 – volume: 32 start-page: 2002629 issue: 42 year: 2020 ident: 1281_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.202002629 – volume: 14 start-page: 967 issue: 8 year: 2015 ident: 1281_CR23 publication-title: IEEE Trans. Nanobiosci. doi: 10.1109/TNB.2015.2501364 – volume: 16 start-page: 509 issue: 9 year: 2020 ident: 1281_CR8 publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-020-0304-7 – volume: 14 start-page: 13603 issue: 1 year: 2019 ident: 1281_CR29 publication-title: Front. Phys. doi: 10.1007/s11467-018-0859-y – volume: 11 start-page: 116802 year: 2016 ident: 1281_CR36 publication-title: Front. Phys. doi: 10.1007/s11467-015-0522-9 – volume: 221 start-page: 121552 year: 2021 ident: 1281_CR41 publication-title: Talanta doi: 10.1016/j.talanta.2020.121552 – volume: 17 start-page: 63601 issue: 6 year: 2022 ident: 1281_CR25 publication-title: Front. Phys. doi: 10.1007/s11467-022-1190-1 – volume: 105 start-page: 1 year: 2018 ident: 1281_CR59 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.01.017 – volume: 16 start-page: 2176 issue: 2 year: 2022 ident: 1281_CR14 publication-title: ACS Nano doi: 10.1021/acsnano.1c08186 – volume: 1178 start-page: 338791 year: 2021 ident: 1281_CR4 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2021.338791 – volume: 19 start-page: 2620 issue: 4 year: 2019 ident: 1281_CR27 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00431 – volume: 24 start-page: 100836 issue: 3 year: 2020 ident: 1281_CR55 publication-title: Curr. Opin. Solin. St M. doi: 10.1016/j.cossms.2020.100836 – volume: 123 start-page: 110 year: 2021 ident: 1281_CR49 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.12.057 – volume: 94 start-page: 6819 issue: 18 year: 2022 ident: 1281_CR9 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c00613 – volume: 12 start-page: 127206 issue: 1 year: 2017 ident: 1281_CR16 publication-title: Front. Phys. doi: 10.1007/s11467-017-0648-z |
SSID | ssj0001174462 |
Score | 2.3255823 |
Snippet | Adenosine triphosphate (ATP) is closely related to the pathogenesis of certain diseases, so the detection of trace ATP is of great significance to disease... |
SourceID | pubmedcentral proquest pubmed crossref springer higheredpress |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 53301 |
SubjectTerms | Adenosine triphosphate Astronomy Astrophysics and Cosmology Atomic ATP ATP in complex human serum Biosensors Condensed Matter Physics Debye length Debye shielding Diagnosis field effect transistor Field effect transistors Graphene Molecular Optical and Plasma Physics Particle and Nuclear Physics Pathogenesis Physics Physics and Astronomy Research Article Semiconductor devices three-dimensional wrinkled graphene Transistors ultra-sensitive |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1di9QwFA26IgiL-G11lQg-KYEkTZvGt0VcFkF92YF9K_kqXRw6g-0g-0P8v96btjOMjgu-DU3SaXrPTU56b04IeatcEZwWgVnZWKZsYZhrFGdGAmJko3PjcTfyl6_l-UJ9viwup33c_ZztPock00i92-yWnBrmGIbRH6ZvkzsFLt0BxAt5uvuwAhxbpYNEJcfdx_B7jmYeusvefHTcpuSKGFIS6iHS-Xfu5B8B1DQvnT0g9ydCSU9HBDwkt2L3iNxNiZ2-f0x-fQOsQgehLYWx5TpSPDplaOkSdzaNn-s-0AuwaGQBlf5HlQ76E_7t-zIGmhStYUCkKdeNjfkfdMApLimMUGC9dLOEC6zH1jh8UhtQgxwILFS8Wrerft0Cp6UhDinzq3tCFmefLj6es-koBuZhSTMwwJt2TrnKGe5lVSnLpZVW21yoppROltbrEMGZpRVRehGBJnJfNYKHUnmTPyVH3aqLzwktEAGNA6ZouRLROGtgiWOELUOsfHQZ4bNBaj-9CDwuY1nvFJbRhjXYsEYb1joj77ZN1qNIx02VxZ6V6waVIvDc8ZvanMxIqCcf72vU0RI617w6XGxEBfQQOEJG3myLwXkxImO7uNrgLQCjGlUDM_JsxNW2A7kG6lnkKiPVHuK2FVAYfL-ku2qTQDiQRtRIKjLyfgbn7rn-2ckX_1X7JbknkxdhXuMJORp-bOIr4GeDe5388TdFKDT6 priority: 102 providerName: Springer Nature |
Title | Overcoming Debye length limitations: Three-dimensional wrinkled graphene field-effect transistor for ultra-sensitive adenosine triphosphate detection |
URI | https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1281-7 https://link.springer.com/article/10.1007/s11467-023-1281-7 https://www.ncbi.nlm.nih.gov/pubmed/37251534 https://www.proquest.com/docview/2818173708 https://www.proquest.com/docview/2918617130 https://www.proquest.com/docview/2820970850 https://pubmed.ncbi.nlm.nih.gov/PMC10205565 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY7QUJIRCvwFIZiRPIInacOOGCCmp3BWJBaCstp8ivKCuqtNBUiB_C_2XGSVoVlt6q2G7jzuuzPf6GkOfSpM4o7pgWlWZSpwUzlYxZIUBjRKWSwuJt5I_n2dlcvr9ML_sNt3WfVjn4xOCo3dLiHvkrUfAcoi243Der7wyrRuHpal9C44iMwAXnsPgavZ2ef_6y22UBwC1DVVER41Vk-DwcbYb7c8FPQNhieKDE1F5wulWHTAvvQkbqdQj030TKv05TQ5Ca3SG3e3RJJ5063CU3fHOP_P4E6gqThBEU3MsvT7F6SlvTBV5u6nbsXtMLEKpnDsn-O6IO-hN-49vCOxpIrcEn0pDuxroUENpilAskIxSAL90s4AFb42j0oFQ7pCEHDAsdr1b1cr2qAdZS59uQ_NXcJ_PZ9OLdGeurMTALq5qWgcopY6TJTRFbkedSx0ILrXTCZZUJIzJtlfNgz0JzLyz3gBRjm1c8dpm0RfKAHDfLxj8iNEUlqAyARR1L7gujC1jlFFxnzufWm4jEgxhK2_8RWDFjUe5IllFyJUiuRMmVKiIvtkNWHU_Hoc58T7ZlhWQRWHr80JiTQf5lb-brEqm0uEpUnF_fvNXZiDzbNoP94qGMbvxyg18BmqmQODAiDztt2k4gUYA-00RGJN_Ts20H5Abfb2mu6sARDrgRaZLSiLwcVHL3Xv-d5OPDs3hCbopgLJjLeEKO2x8b_xQwWWvG5CifnY7JaHL69cN03JshPJ2LyR9CYjo5 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam8QASQkPcAgOMBC8gi9hx4gQJIQSUjl146aS9Bd-iTKvSsqaa9kP4G_xGznGaVoXRt71Vtd3GPhd_8Tn-DiEvpUmdUdwxLSrNpE4LZioZs0KAxohKJYXF28iHR9nwWH47SU-2yO_-LgymVfY-MThqN7F4Rv5WFDyH3RZc7ofpT4ZVozC62pfQ6NRi319ewCvb7P3eZ5DvKyEGX0afhmxRVYBZQOctg6VTxkiTmyK2Is-ljoUWWumEyyoTRmTaKudBL4XmXljuAfHENq947DJpkXwJXP4NmSQFWlQ--Lo60wF4L0MNUxHjxWf43AdSw2294JVgk2QYvmJqbSu8XYe8Du9C_utVePfftM2_YrdhSxzskDsLLEs_dsp3l2z55h759R2MA5YURlBwZpeeYq2WtqZjvErVnQ--oyNQIc8clhboaEHoBfzH2dg7Gii0wQPTkFzHuoQT2uKeGihNKMBsOh_DF2yGo9FfU-2Q9BwQM3Q8ndaT2bQGEE2db0OqWXOfHF-LlB6Q7WbS-EeEpqhylQFoqmPJfWF0Ae9UBdeZ87n1JiJxL4bSLhYC63OMyxWlM0quBMmVKLlSReT1csi0YwXZ1JmvybaskJoCC51vGrPby79cOJVZicRdXCUqzq9uXlpIRF4sm8FbYAhIN34yx58AzVRIUxiRh502LSeQKMC6aSIjkq_p2bIDMpGvtzSndWAkB5SKpExpRN70Krl6rv9O8vHmWTwnN4ejw4PyYO9o_wm5JYLhYBblLtluz-f-KaDB1jwLJkjJj-u2-T--w3K0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgCDQJTVy3wAAj8QSyFjtOnPA2DapxGzys0t4i36JMVGm1pEL8EP4v5zhJq0KZxFtV22nc8x37S87xdwh5JU3qjOKOaVFpJnVaMFPJmBUCECMqlRQWTyN_OctOp_LjRXox1Dltx2z3MSTZn2lAlaamO1q46mh98C04OOw3DCNBTN0kt2A15gjrqThev2QBvi1DUVER40lk-DxGNrddZWNvuluHRAvvQkLqNgL6dx7lH8HUsEdN7pG9gVzS4x4N98kN3zwgt0OSp20fkl9fAbcwWRhLYZ356SmWUelqOsNTTv2ru7f0HKzrmUPV_16xg_6AX_s-844GdWtYHGnIe2N9LgjtcLsLaiMUGDBdzuAL1uJoXEqpdqhHDmQWOl4u6nm7qIHfUue7kAXWPCLTyfvzk1M2lGVgFh5vOgbYU8ZIk5sitiLPpY6FFlrphMsqE0Zk2irnwbGF5l5Y7oEyxjaveOwyaYvkMdlp5o0_IDRFNFQGWKOOJfeF0QU87hRcZ87n1puIxKNBSjv8EVg6Y1au1ZbRhiXYsEQblioir1dDFr1gx3Wd-YaVywpVI7AG-XVjDkcklIO_tyVqanGVqDjf3lzwHKgi8IWIvFw1gyNjdEY3fr7ESwBGFSoIRmS_x9VqAokCGpomMiL5BuJWHVAkfLOluayDWDgQSNRLSiPyZgTn-r7-Ockn_9X7Bbnz7d2k_Pzh7NNTsiuCQ2G64yHZ6a6W_hnQts48D675GzqYPCk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+Debye+length+limitations%3A+Three-dimensional+wrinkled+graphene+field-effect+transistor+for+ultra-sensitive+adenosine+triphosphate+detection&rft.jtitle=Frontiers+of+physics&rft.au=Ding%2C+Yue&rft.au=Li%2C+Chonghui&rft.au=Tian%2C+Meng&rft.au=Wang%2C+Jihua&rft.date=2023-10-01&rft.issn=2095-0462&rft.volume=18&rft.issue=5&rft.spage=53301&rft_id=info:doi/10.1007%2Fs11467-023-1281-7&rft_id=info%3Apmid%2F37251534&rft.externalDocID=37251534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-0462&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-0462&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-0462&client=summon |