An improved prediction of residual stresses and distortion in additive manufacturing

[Display omitted] •Roles of variables and alloys on stresses and strains in 3D printing are studied.•Quality of residual stress and distortion modeling depends on temperature fields.•Flow of molten metal is considered to accurately calculate transient temperatures.•A finite element model calculates...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 126; no. C; pp. 360 - 372
Main Authors Mukherjee, T., Zhang, W., DebRoy, T.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2017
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Roles of variables and alloys on stresses and strains in 3D printing are studied.•Quality of residual stress and distortion modeling depends on temperature fields.•Flow of molten metal is considered to accurately calculate transient temperatures.•A finite element model calculates strain and residual stress from temperature field.•The results are helpful to make distortion free parts with low residual stresses. In laser assisted additive manufacturing (AM) an accurate estimation of residual stresses and distortion is necessary to achieve dimensional accuracy and prevent premature fatigue failure, delamination and buckling of components. Since many process variables affect AM, experimental measurements of residual stresses and distortion are time consuming and expensive. Numerical thermo-mechanical models can be used for their estimation, but the quality of calculations depends critically on the accurate transient temperature field which affects both the residual stresses and distortion. In this study, a well-tested, three-dimensional, transient heat transfer and fluid flow model is used to accurately calculate transient temperature field for the residual stress and distortion modeling. The calculated residual stress distributions are compared with independent experimental results. It is shown that the residual stresses can be significantly minimized by reducing the layer thickness during AM. Inconel 718 components are found to be more susceptible to delamination than Ti-6Al-4V parts because they encounter higher residual stresses compared to their yield strength.
AbstractList [Display omitted] •Roles of variables and alloys on stresses and strains in 3D printing are studied.•Quality of residual stress and distortion modeling depends on temperature fields.•Flow of molten metal is considered to accurately calculate transient temperatures.•A finite element model calculates strain and residual stress from temperature field.•The results are helpful to make distortion free parts with low residual stresses. In laser assisted additive manufacturing (AM) an accurate estimation of residual stresses and distortion is necessary to achieve dimensional accuracy and prevent premature fatigue failure, delamination and buckling of components. Since many process variables affect AM, experimental measurements of residual stresses and distortion are time consuming and expensive. Numerical thermo-mechanical models can be used for their estimation, but the quality of calculations depends critically on the accurate transient temperature field which affects both the residual stresses and distortion. In this study, a well-tested, three-dimensional, transient heat transfer and fluid flow model is used to accurately calculate transient temperature field for the residual stress and distortion modeling. The calculated residual stress distributions are compared with independent experimental results. It is shown that the residual stresses can be significantly minimized by reducing the layer thickness during AM. Inconel 718 components are found to be more susceptible to delamination than Ti-6Al-4V parts because they encounter higher residual stresses compared to their yield strength.
In laser assisted additive manufacturing (AM) an accurate estimation of residual stresses and distortion is necessary to achieve dimensional accuracy and prevent premature fatigue failure, delamination and buckling of components. Since many process variables affect AM, experimental measurements of residual stresses and distortion are time consuming and expensive. Numerical thermo-mechanical models can be used for their estimation, but the quality of calculations depends critically on the accurate transient temperature field which affects both the residual stresses and distortion. In this study, a well-tested, three-dimensional, transient heat transfer and fluid flow model is used to accurately calculate transient temperature field for the residual stress and distortion modeling. The calculated residual stress distributions are compared with independent experimental results. It is shown that the residual stresses can be significantly minimized by reducing the layer thickness during AM. Inconel 718 components are found to be more susceptible to delamination than Ti-6Al-4V parts because they encounter higher residual stresses compared to their yield strength.
Author Zhang, W.
DebRoy, T.
Mukherjee, T.
Author_xml – sequence: 1
  givenname: T.
  surname: Mukherjee
  fullname: Mukherjee, T.
  organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 2
  givenname: W.
  surname: Zhang
  fullname: Zhang, W.
  organization: Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221, USA
– sequence: 3
  givenname: T.
  surname: DebRoy
  fullname: DebRoy, T.
  email: debroy@psu.edu
  organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
BackLink https://www.osti.gov/biblio/1397597$$D View this record in Osti.gov
BookMark eNqNkc1uGyEUhVHlSLWdPkNRV9mMc5k_hkUXltX8SJG6SdeIgTst1gy4wFjK25eJqy66SVagy3eudD42ZOW8Q0I-M9gxYO3tcaf9NKkUtd2VeZCnO4DqA1mzjosCOmArsgZR8gLKpv1INjEeIYOiK9fkee-onU7Bn9HQU0BjdbLeUT_QgNGaWY00pnyNGKlyhhobkw-vjHVUGWOTPSOdlJsHpdMcrPt5Ta4GNUb89Pfckh93354PD8XT9_vHw_6p0E3dpcIow9teAaAWvarroTashr7sta65qIBVAwy9bhWiaHosO1Zz1ivRcN0OwES1JV8ue31MVmYBCfUv7Z1DnSSrBG8Ez9DNBcolf88Yk5xs1DiOyqGfo2RdWzeVgKrK6NcLqoOPMeAg80q1dE1B2VEykItyeZT_lMtF-fKQlec8_y9_CnZS4eUdyf0liVnX2WJY2qDT-T_CUsZ4--aOP0xppN4
CitedBy_id crossref_primary_10_1016_j_jmrt_2023_08_312
crossref_primary_10_3390_alloys1030017
crossref_primary_10_3390_met12081344
crossref_primary_10_1016_j_jmapro_2021_09_059
crossref_primary_10_1016_j_jmapro_2021_08_016
crossref_primary_10_1016_j_ijfatigue_2021_106229
crossref_primary_10_2351_7_0000328
crossref_primary_10_1016_j_finel_2021_103528
crossref_primary_10_1080_01495739_2021_1954572
crossref_primary_10_3390_mi14071480
crossref_primary_10_1142_S0217979220502720
crossref_primary_10_3390_ma16041444
crossref_primary_10_1002_adem_202300489
crossref_primary_10_1016_j_jeurceramsoc_2023_10_067
crossref_primary_10_1016_j_jmapro_2025_01_031
crossref_primary_10_1016_j_dental_2021_12_012
crossref_primary_10_1016_j_jmapro_2018_08_001
crossref_primary_10_1016_j_mtcomm_2024_108056
crossref_primary_10_1080_17452759_2024_2443578
crossref_primary_10_1016_j_mtcomm_2022_103283
crossref_primary_10_1016_j_addlet_2022_100066
crossref_primary_10_1016_j_cossms_2021_100974
crossref_primary_10_1016_j_actamat_2017_06_039
crossref_primary_10_1016_j_jmst_2023_03_064
crossref_primary_10_1016_j_jmapro_2025_02_061
crossref_primary_10_1007_s11665_022_06856_8
crossref_primary_10_1016_j_jmapro_2019_11_020
crossref_primary_10_4028_p_16auf3
crossref_primary_10_1016_j_actamat_2018_07_002
crossref_primary_10_1016_j_jallcom_2022_164179
crossref_primary_10_1080_00295450_2018_1502001
crossref_primary_10_1016_j_matpr_2020_08_030
crossref_primary_10_2351_7_0000464
crossref_primary_10_2139_ssrn_4098269
crossref_primary_10_1016_j_jmapro_2025_01_022
crossref_primary_10_1007_s12541_021_00496_z
crossref_primary_10_1038_s41598_023_44108_4
crossref_primary_10_1016_j_jallcom_2023_168946
crossref_primary_10_1108_RPJ_11_2019_0287
crossref_primary_10_1016_j_jmst_2020_04_056
crossref_primary_10_3390_met11111691
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126496
crossref_primary_10_1007_s10853_022_07516_x
crossref_primary_10_1080_13621718_2023_2207950
crossref_primary_10_1016_j_ijfatigue_2022_106841
crossref_primary_10_2351_7_0000550
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_158
crossref_primary_10_1016_j_nanoms_2022_08_001
crossref_primary_10_1016_j_addlet_2022_100084
crossref_primary_10_3390_app11199176
crossref_primary_10_3390_ma14216527
crossref_primary_10_1016_j_addma_2023_103684
crossref_primary_10_1016_j_addma_2022_103287
crossref_primary_10_1016_j_matchar_2023_113538
crossref_primary_10_1007_s00170_021_08501_5
crossref_primary_10_1016_j_matchar_2022_112043
crossref_primary_10_1016_j_cjmeam_2023_100102
crossref_primary_10_1016_j_jmapro_2023_12_008
crossref_primary_10_2139_ssrn_3785854
crossref_primary_10_1016_j_aej_2018_12_010
crossref_primary_10_1016_j_matdes_2020_108779
crossref_primary_10_1007_s00170_022_10562_z
crossref_primary_10_1016_j_measurement_2022_111402
crossref_primary_10_26552_com_C_2023_065
crossref_primary_10_1007_s00170_023_12149_8
crossref_primary_10_1016_j_jmatprotec_2021_117358
crossref_primary_10_1016_j_matlet_2021_129369
crossref_primary_10_1016_j_matchar_2020_110692
crossref_primary_10_1016_j_jmst_2021_05_038
crossref_primary_10_1007_s40033_023_00613_4
crossref_primary_10_1016_j_jmapro_2025_01_046
crossref_primary_10_1007_s00170_019_04091_5
crossref_primary_10_1016_j_apacoust_2020_107868
crossref_primary_10_3390_met13111840
crossref_primary_10_1016_j_cirpj_2022_05_017
crossref_primary_10_1089_3dp_2022_0142
crossref_primary_10_33889_PMSL_2023_2_1_005
crossref_primary_10_1016_j_addma_2019_02_020
crossref_primary_10_1038_s41578_020_00236_1
crossref_primary_10_1016_j_promfg_2019_08_031
crossref_primary_10_1016_j_mtcomm_2023_105702
crossref_primary_10_1007_s11666_022_01499_6
crossref_primary_10_1007_s00170_020_05243_8
crossref_primary_10_1016_j_msea_2021_141808
crossref_primary_10_1016_j_actamat_2019_10_047
crossref_primary_10_1016_j_addma_2021_102090
crossref_primary_10_1016_j_cma_2020_113611
crossref_primary_10_1016_j_mtcomm_2023_105701
crossref_primary_10_1016_j_jmrt_2022_02_054
crossref_primary_10_1007_s40516_023_00217_6
crossref_primary_10_1080_17452759_2021_1896173
crossref_primary_10_1016_j_jmsy_2019_08_005
crossref_primary_10_1088_1361_6463_adb3b0
crossref_primary_10_1002_htj_23186
crossref_primary_10_3390_met12071109
crossref_primary_10_1007_s40194_022_01403_4
crossref_primary_10_1177_13621718241307465
crossref_primary_10_1016_j_addma_2019_101027
crossref_primary_10_1016_j_msea_2025_148058
crossref_primary_10_1016_j_addma_2023_103749
crossref_primary_10_3390_ma14144049
crossref_primary_10_2139_ssrn_4171665
crossref_primary_10_1016_j_prostr_2024_01_081
crossref_primary_10_1080_1478422X_2018_1511327
crossref_primary_10_1016_j_ijthermalsci_2022_107538
crossref_primary_10_1016_j_msea_2020_139204
crossref_primary_10_1016_j_ymssp_2023_110819
crossref_primary_10_1007_s40192_022_00278_z
crossref_primary_10_1016_j_finel_2021_103558
crossref_primary_10_1007_s00501_025_01560_1
crossref_primary_10_1016_j_addma_2018_10_006
crossref_primary_10_1016_j_pmatsci_2021_100786
crossref_primary_10_1016_j_addma_2024_103974
crossref_primary_10_1016_j_procir_2021_03_102
crossref_primary_10_3390_app12147233
crossref_primary_10_1016_j_msea_2023_145438
crossref_primary_10_1016_j_addma_2018_08_029
crossref_primary_10_1088_1402_4896_aca184
crossref_primary_10_1063_1_4976006
crossref_primary_10_1002_adem_202200504
crossref_primary_10_1007_s12666_024_03552_0
crossref_primary_10_1088_2053_1591_ad5fe2
crossref_primary_10_1007_s00170_022_09910_w
crossref_primary_10_1007_s11837_023_06363_8
crossref_primary_10_1089_3dp_2022_0162
crossref_primary_10_1007_s00170_021_07154_8
crossref_primary_10_1016_j_jfoodeng_2020_110127
crossref_primary_10_1109_TCPMT_2021_3108017
crossref_primary_10_1007_s11665_021_06180_7
crossref_primary_10_1016_j_jmapro_2020_07_025
crossref_primary_10_1016_j_jmst_2023_02_012
crossref_primary_10_1016_j_commatsci_2021_110462
crossref_primary_10_1016_j_addma_2023_103765
crossref_primary_10_1007_s11661_018_4702_4
crossref_primary_10_1016_j_addma_2022_103240
crossref_primary_10_1007_s40964_024_00687_w
crossref_primary_10_1038_s41598_023_30660_6
crossref_primary_10_56193_matim_1370140
crossref_primary_10_1016_j_jmrt_2024_11_120
crossref_primary_10_7736_KSPE_2018_35_9_853
crossref_primary_10_1016_j_msea_2024_146934
crossref_primary_10_1007_s11665_021_05871_5
crossref_primary_10_1016_j_jmapro_2018_10_028
crossref_primary_10_1007_s11665_022_06820_6
crossref_primary_10_3390_ma18030689
crossref_primary_10_1007_s12206_020_0420_0
crossref_primary_10_1007_s00170_021_07362_2
crossref_primary_10_1016_j_jallcom_2024_174466
crossref_primary_10_1016_j_jmrt_2023_11_067
crossref_primary_10_1016_j_addma_2019_100808
crossref_primary_10_1016_j_ijfatigue_2021_106624
crossref_primary_10_1007_s11665_019_04249_y
crossref_primary_10_1016_j_jallcom_2022_166983
crossref_primary_10_1016_j_nxmate_2025_100524
crossref_primary_10_1080_13621718_2019_1607061
crossref_primary_10_1016_j_euromechsol_2020_104147
crossref_primary_10_3390_met11111830
crossref_primary_10_3390_ma15207175
crossref_primary_10_1016_j_actamat_2019_01_050
crossref_primary_10_1016_j_jmps_2024_105888
crossref_primary_10_1016_j_mtcomm_2021_102197
crossref_primary_10_3390_ma17235706
crossref_primary_10_1177_10812865231159676
crossref_primary_10_1016_j_matdes_2020_108605
crossref_primary_10_1007_s11837_024_06699_9
crossref_primary_10_1016_j_addma_2024_104070
crossref_primary_10_1080_15376494_2025_2455509
crossref_primary_10_1016_j_matdes_2022_111574
crossref_primary_10_1016_j_jmatprotec_2020_116978
crossref_primary_10_1016_j_mfglet_2019_02_001
crossref_primary_10_1002_advs_202206486
crossref_primary_10_1007_s00170_024_13255_x
crossref_primary_10_1016_j_addma_2019_05_021
crossref_primary_10_3390_ma15248968
crossref_primary_10_1016_j_jmrt_2024_05_119
crossref_primary_10_1016_j_optlastec_2021_106917
crossref_primary_10_1007_s00466_019_01748_6
crossref_primary_10_3390_met12111919
crossref_primary_10_1016_j_ijplas_2025_104264
crossref_primary_10_1016_j_matpr_2022_03_731
crossref_primary_10_3390_jmmp8030116
crossref_primary_10_1016_j_msea_2022_144461
crossref_primary_10_1016_j_addma_2023_103830
crossref_primary_10_1016_j_addma_2023_103951
crossref_primary_10_1016_j_cma_2022_115821
crossref_primary_10_1016_j_commatsci_2020_110112
crossref_primary_10_1016_j_jmapro_2022_01_008
crossref_primary_10_1016_j_jmsy_2024_01_005
crossref_primary_10_1016_j_msea_2023_144940
crossref_primary_10_1080_09506608_2020_1868889
crossref_primary_10_1002_adma_202402130
crossref_primary_10_1016_j_heliyon_2023_e19385
crossref_primary_10_1016_j_apmate_2022_100095
crossref_primary_10_3390_met8110954
crossref_primary_10_1088_1757_899X_1193_1_012095
crossref_primary_10_1007_s11340_019_00513_3
crossref_primary_10_1016_j_prostr_2017_12_041
crossref_primary_10_20965_ijat_2019_p0346
crossref_primary_10_1016_j_addma_2024_104179
crossref_primary_10_1016_j_mtcomm_2024_108471
crossref_primary_10_1007_s11665_023_08141_8
crossref_primary_10_1016_j_jallcom_2018_12_274
crossref_primary_10_1016_j_apsusc_2023_158323
crossref_primary_10_1115_1_4039063
crossref_primary_10_1016_j_addma_2023_103845
crossref_primary_10_3390_met11060861
crossref_primary_10_1007_s11665_022_06815_3
crossref_primary_10_1016_j_matdes_2019_107642
crossref_primary_10_1007_s12541_021_00512_2
crossref_primary_10_1016_j_msea_2018_12_078
crossref_primary_10_1016_j_corsci_2022_110642
crossref_primary_10_1002_adem_202100184
crossref_primary_10_1177_10996362241278214
crossref_primary_10_1016_j_addma_2023_103610
crossref_primary_10_1115_1_4047908
crossref_primary_10_1007_s11223_019_00054_z
crossref_primary_10_1016_j_icheatmasstransfer_2025_108714
crossref_primary_10_3390_met11040629
crossref_primary_10_1016_j_compbiomed_2023_106716
crossref_primary_10_1108_RPJ_07_2021_0184
crossref_primary_10_1134_S0018151X19060178
crossref_primary_10_1016_j_jmapro_2018_06_033
crossref_primary_10_1108_RPJ_08_2018_0193
crossref_primary_10_3390_math12060898
crossref_primary_10_1007_s11661_022_06933_6
crossref_primary_10_1007_s40430_023_04077_1
crossref_primary_10_1088_2631_7990_ada099
crossref_primary_10_1007_s00170_021_07988_2
crossref_primary_10_1016_j_jallcom_2020_157555
crossref_primary_10_3389_fmats_2020_00042
crossref_primary_10_1007_s12666_021_02199_5
crossref_primary_10_3390_ma14040911
crossref_primary_10_1016_j_msea_2022_143448
crossref_primary_10_1016_j_jallcom_2022_165469
crossref_primary_10_1016_j_jmapro_2024_09_092
crossref_primary_10_1016_j_addma_2023_103907
crossref_primary_10_5781_JWJ_2021_39_3_9
crossref_primary_10_1016_j_mtla_2021_101308
crossref_primary_10_2351_1_5096147
crossref_primary_10_4028_www_scientific_net_KEM_822_445
crossref_primary_10_1016_j_matdes_2022_110790
crossref_primary_10_1016_j_rinp_2019_01_002
crossref_primary_10_1515_zna_2024_0009
crossref_primary_10_1016_j_actamat_2021_117240
crossref_primary_10_1016_j_addma_2021_102264
crossref_primary_10_1016_j_jmapro_2019_07_010
crossref_primary_10_1016_j_addma_2021_102103
crossref_primary_10_1016_j_addma_2021_102345
crossref_primary_10_1016_j_commatsci_2017_11_026
crossref_primary_10_1016_j_heliyon_2024_e25706
crossref_primary_10_1108_RPJ_04_2019_0097
crossref_primary_10_1016_j_ijmecsci_2018_12_004
crossref_primary_10_1007_s00521_024_10332_w
crossref_primary_10_1016_j_jalmes_2024_100134
crossref_primary_10_1038_s41598_020_71112_9
crossref_primary_10_3390_ma15010263
crossref_primary_10_1016_j_addlet_2022_100042
crossref_primary_10_1016_j_addma_2019_03_001
crossref_primary_10_17341_gazimmfd_934143
crossref_primary_10_1016_j_cirpj_2023_08_005
crossref_primary_10_1007_s40195_023_01656_y
crossref_primary_10_1016_j_addma_2022_102776
crossref_primary_10_1115_1_4044837
crossref_primary_10_3390_met10050645
crossref_primary_10_1016_j_commatsci_2020_109598
crossref_primary_10_1016_j_jmapro_2022_04_049
crossref_primary_10_1016_j_cma_2019_03_054
crossref_primary_10_1080_17452759_2020_1832793
crossref_primary_10_1016_j_jmapro_2023_11_018
crossref_primary_10_1016_j_mtcomm_2024_109415
crossref_primary_10_1007_s00170_023_11264_w
crossref_primary_10_1016_j_addma_2019_100800
crossref_primary_10_1016_j_addma_2021_102365
crossref_primary_10_1016_j_addma_2021_102203
crossref_primary_10_1016_j_jalmes_2024_100120
crossref_primary_10_1016_j_ijfatigue_2022_107035
crossref_primary_10_1016_j_matchar_2021_111499
crossref_primary_10_2139_ssrn_4140213
crossref_primary_10_1016_j_jmst_2022_12_030
crossref_primary_10_3390_met13020287
crossref_primary_10_1016_j_optlastec_2021_107738
crossref_primary_10_1007_s00466_021_02116_z
crossref_primary_10_1016_j_matpr_2020_10_538
crossref_primary_10_1016_j_addma_2021_102336
crossref_primary_10_1007_s00170_022_09887_6
crossref_primary_10_1002_mawe_201700169
crossref_primary_10_1016_j_surfcoat_2021_127962
crossref_primary_10_3390_app13010117
crossref_primary_10_1007_s00170_022_09721_z
crossref_primary_10_1016_j_ijmecsci_2020_105772
crossref_primary_10_1016_j_ijmecsci_2023_108424
crossref_primary_10_1007_s10765_021_02810_3
crossref_primary_10_1016_j_msea_2021_142145
crossref_primary_10_1007_s12206_024_0132_y
crossref_primary_10_1016_j_matchar_2025_114797
crossref_primary_10_1016_j_jallcom_2021_163335
crossref_primary_10_1016_j_msea_2021_141071
crossref_primary_10_26552_com_C_2022_2_B99_B105
crossref_primary_10_1007_s00170_023_12482_y
crossref_primary_10_3390_designs2040037
crossref_primary_10_1007_s00339_019_2745_z
crossref_primary_10_1016_j_jmrt_2024_10_075
crossref_primary_10_1007_s12540_022_01179_8
crossref_primary_10_1007_s00170_021_06711_5
crossref_primary_10_3390_jmmp6010016
crossref_primary_10_1016_j_jmapro_2019_06_011
crossref_primary_10_1007_s11661_021_06538_5
crossref_primary_10_1088_1757_899X_842_1_012024
crossref_primary_10_1016_j_jmapro_2024_04_063
crossref_primary_10_1007_s00170_023_12822_y
crossref_primary_10_1016_j_jallcom_2019_04_052
crossref_primary_10_1016_j_matdes_2024_113210
crossref_primary_10_1016_j_compstruct_2018_01_108
crossref_primary_10_1016_j_matdes_2020_109185
crossref_primary_10_1016_j_heliyon_2023_e19791
crossref_primary_10_1016_j_commatsci_2020_109791
crossref_primary_10_1051_mfreview_2017014
crossref_primary_10_1115_1_4043264
crossref_primary_10_1007_s12206_024_0725_5
crossref_primary_10_1002_app_48777
crossref_primary_10_1007_s11661_022_06928_3
crossref_primary_10_1016_j_ijfatigue_2023_107663
crossref_primary_10_1016_j_ijfatigue_2019_06_008
crossref_primary_10_1016_j_jmapro_2024_09_101
crossref_primary_10_1007_s12206_022_0118_6
crossref_primary_10_1016_j_addma_2020_101294
crossref_primary_10_1016_j_procir_2018_08_068
crossref_primary_10_1520_MPC20170119
crossref_primary_10_1007_s10845_021_01773_4
crossref_primary_10_3390_ma14061571
crossref_primary_10_3390_met12030420
crossref_primary_10_1007_s00170_022_10052_2
crossref_primary_10_1016_j_addma_2020_101036
crossref_primary_10_1016_j_msea_2021_141494
crossref_primary_10_1007_s00707_019_02399_7
crossref_primary_10_1007_s10035_024_01395_6
crossref_primary_10_1007_s00466_023_02273_3
crossref_primary_10_1016_j_cirpj_2020_11_009
crossref_primary_10_1016_j_commatsci_2018_12_051
crossref_primary_10_3390_sym13122331
crossref_primary_10_1016_j_addma_2019_100970
crossref_primary_10_1016_j_rinp_2020_103005
crossref_primary_10_1016_j_scriptamat_2021_113827
crossref_primary_10_1016_j_addma_2025_104674
crossref_primary_10_1016_j_pmatsci_2022_101066
crossref_primary_10_1016_j_jallcom_2023_171345
crossref_primary_10_1016_j_corsci_2021_109553
crossref_primary_10_1007_s00170_019_04371_0
crossref_primary_10_1016_j_pmatsci_2023_101108
crossref_primary_10_1007_s11665_022_07443_7
crossref_primary_10_1016_j_optlastec_2018_04_034
crossref_primary_10_1016_j_addma_2020_101284
crossref_primary_10_1016_j_addma_2025_104670
crossref_primary_10_1016_j_jmatprotec_2024_118439
crossref_primary_10_1016_j_ijrmhm_2022_106041
crossref_primary_10_1007_s40194_023_01634_z
crossref_primary_10_1088_1757_899X_227_1_012090
crossref_primary_10_1111_str_12409
crossref_primary_10_3390_ma14040876
crossref_primary_10_1016_j_jmrt_2021_09_027
crossref_primary_10_1002_srin_202200155
crossref_primary_10_3390_jmmp8020078
crossref_primary_10_1016_j_optlastec_2023_109386
crossref_primary_10_1080_13621718_2022_2139446
crossref_primary_10_15407_ufm_24_03_530
crossref_primary_10_3390_ma17235872
crossref_primary_10_1016_j_jmapro_2018_04_009
crossref_primary_10_1007_s12540_021_01015_5
crossref_primary_10_1016_j_ijrmhm_2023_106107
crossref_primary_10_1016_j_ijmachtools_2023_104077
crossref_primary_10_1016_j_addma_2019_06_023
crossref_primary_10_1016_j_jmst_2023_07_047
crossref_primary_10_1016_j_icheatmasstransfer_2023_107066
crossref_primary_10_1016_j_jmapro_2019_01_049
crossref_primary_10_1080_2374068X_2022_2077535
crossref_primary_10_1016_j_surfcoat_2024_131637
crossref_primary_10_1016_j_jmapro_2022_06_025
crossref_primary_10_1016_j_pmatsci_2020_100703
crossref_primary_10_1016_j_addma_2020_101499
crossref_primary_10_1016_j_jmapro_2022_01_043
crossref_primary_10_1016_j_jmapro_2019_05_001
crossref_primary_10_1016_j_tws_2022_110514
crossref_primary_10_1115_1_4039092
crossref_primary_10_1016_j_addma_2022_102708
crossref_primary_10_1016_j_matdes_2019_107678
crossref_primary_10_1016_j_ijmecsci_2019_06_007
crossref_primary_10_1088_1361_665X_ab2eb6
crossref_primary_10_3390_met10111554
crossref_primary_10_1080_13621718_2022_2127211
crossref_primary_10_1016_j_addma_2019_100877
crossref_primary_10_1016_j_addma_2024_104017
crossref_primary_10_1002_adem_201900617
crossref_primary_10_1002_adem_202100895
crossref_primary_10_1016_j_jmst_2024_01_080
crossref_primary_10_1016_j_ceramint_2023_11_162
crossref_primary_10_1007_s11665_021_05954_3
crossref_primary_10_1016_j_addma_2019_05_002
crossref_primary_10_1016_j_addma_2020_101248
crossref_primary_10_1002_srin_202000615
crossref_primary_10_1016_j_optlastec_2020_106477
crossref_primary_10_2139_ssrn_4089066
crossref_primary_10_1038_s41524_024_01296_5
crossref_primary_10_3390_coatings12121971
crossref_primary_10_1016_j_jmst_2021_09_052
crossref_primary_10_1002_mdp2_28
crossref_primary_10_1007_s10853_018_2701_x
crossref_primary_10_1016_j_jmrt_2021_12_061
crossref_primary_10_1016_j_scriptamat_2016_12_005
crossref_primary_10_1007_s00170_017_0839_3
crossref_primary_10_1016_j_ijfatigue_2023_107863
crossref_primary_10_4150_KPMI_2020_27_4_318
crossref_primary_10_1016_j_optlaseng_2024_108277
crossref_primary_10_1142_S0218625X25500118
crossref_primary_10_1016_j_addma_2020_101252
crossref_primary_10_1016_j_ijplas_2020_102840
crossref_primary_10_1016_j_msea_2021_141034
crossref_primary_10_3389_fmats_2021_753040
crossref_primary_10_1016_j_addma_2020_101355
crossref_primary_10_1007_s10853_022_06991_6
crossref_primary_10_1016_j_jmrt_2021_12_016
crossref_primary_10_1364_OE_416659
crossref_primary_10_1016_j_pmatsci_2017_10_001
crossref_primary_10_1016_j_addma_2020_101119
crossref_primary_10_1007_s00466_024_02545_6
crossref_primary_10_1016_j_addma_2018_11_028
crossref_primary_10_1007_s11663_021_02218_2
crossref_primary_10_1016_j_engfailanal_2023_107403
crossref_primary_10_1016_j_jmapro_2022_09_051
crossref_primary_10_1002_mdp2_56
crossref_primary_10_1016_j_mtcomm_2023_107883
crossref_primary_10_1007_s40194_020_00951_x
crossref_primary_10_1016_j_heliyon_2022_e11725
crossref_primary_10_1080_09506608_2023_2169501
crossref_primary_10_1016_j_tws_2025_113131
crossref_primary_10_1016_j_msea_2023_145266
crossref_primary_10_1016_j_rineng_2021_100330
crossref_primary_10_1007_s40684_019_00164_8
crossref_primary_10_1016_j_measurement_2024_114855
crossref_primary_10_1007_s40430_024_05319_6
crossref_primary_10_1016_j_addma_2020_101228
crossref_primary_10_3389_fmats_2021_747389
crossref_primary_10_1016_S1875_5372_19_30017_7
crossref_primary_10_1177_09544062211013863
crossref_primary_10_1007_s00170_020_05027_0
crossref_primary_10_1007_s11661_018_4653_9
crossref_primary_10_1016_j_applthermaleng_2024_124462
crossref_primary_10_1002_adem_202001443
crossref_primary_10_3390_ma14030512
crossref_primary_10_3390_ma14237176
crossref_primary_10_1007_s11663_019_01669_y
crossref_primary_10_1016_j_commatsci_2018_04_027
crossref_primary_10_1016_j_commatsci_2018_04_022
crossref_primary_10_1016_j_addma_2022_102900
crossref_primary_10_1108_RPJ_04_2018_0088
crossref_primary_10_1007_s40964_022_00331_5
crossref_primary_10_1016_j_msea_2022_142962
crossref_primary_10_1007_s00170_020_04987_7
crossref_primary_10_1007_s00170_024_13348_7
crossref_primary_10_1016_j_finel_2024_104282
crossref_primary_10_1016_j_cja_2022_07_020
crossref_primary_10_1177_09544062221101754
crossref_primary_10_1177_09544089231191905
crossref_primary_10_1088_1757_899X_655_1_012026
crossref_primary_10_3390_met14121454
crossref_primary_10_1007_s00170_018_2207_3
crossref_primary_10_1155_2020_4831798
crossref_primary_10_1016_j_addma_2020_101322
crossref_primary_10_1016_j_msea_2024_146618
crossref_primary_10_1016_j_optlastec_2018_06_042
crossref_primary_10_1016_j_addma_2020_101689
crossref_primary_10_3390_app10186616
crossref_primary_10_1088_1757_899X_1281_1_012024
crossref_primary_10_1007_s11837_020_04151_2
crossref_primary_10_7791_jspmee_10_163
crossref_primary_10_1016_j_msea_2019_138093
crossref_primary_10_1115_1_4045290
crossref_primary_10_1016_j_jmapro_2019_04_019
crossref_primary_10_1016_j_finel_2018_02_004
crossref_primary_10_1016_j_msea_2021_141237
crossref_primary_10_1016_j_ijmecsci_2024_109670
crossref_primary_10_1016_j_msea_2021_141111
crossref_primary_10_1016_j_jallcom_2019_153576
crossref_primary_10_1016_j_pmatsci_2019_100590
crossref_primary_10_1016_j_taml_2022_100396
crossref_primary_10_1016_j_ijrmhm_2025_107149
crossref_primary_10_1108_RPJ_07_2019_0189
crossref_primary_10_1016_j_addma_2021_101955
crossref_primary_10_1016_j_jmapro_2020_06_042
crossref_primary_10_22517_23447214_24562
crossref_primary_10_1115_1_4064073
crossref_primary_10_1016_j_applthermaleng_2019_114335
crossref_primary_10_1088_1757_899X_1281_1_012016
crossref_primary_10_1007_s00170_020_05673_4
crossref_primary_10_1177_25165984211036312
crossref_primary_10_1007_s00466_017_1528_7
crossref_primary_10_1007_s11661_019_05322_w
crossref_primary_10_1016_j_jmst_2020_11_032
crossref_primary_10_1016_j_jallcom_2024_175147
crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_111
crossref_primary_10_1007_s00170_020_05707_x
crossref_primary_10_1016_j_jmapro_2022_07_007
crossref_primary_10_1080_02670836_2021_2023287
crossref_primary_10_1038_s41529_023_00359_0
crossref_primary_10_1016_j_cossms_2023_101106
crossref_primary_10_1038_s41598_019_39849_0
crossref_primary_10_1007_s11665_017_2966_2
crossref_primary_10_1080_17452759_2018_1532799
crossref_primary_10_3390_ma18071462
crossref_primary_10_1016_j_optlastec_2024_111480
crossref_primary_10_1016_j_addma_2025_104721
crossref_primary_10_1016_j_ijplas_2019_06_005
crossref_primary_10_1007_s40430_022_03813_3
crossref_primary_10_1016_j_promfg_2020_04_167
crossref_primary_10_1016_j_addma_2023_103472
crossref_primary_10_1016_j_jmapro_2021_12_018
crossref_primary_10_3390_ma11112327
crossref_primary_10_1016_j_cma_2017_03_005
crossref_primary_10_1007_s00170_019_04315_8
crossref_primary_10_1016_j_addma_2018_06_015
crossref_primary_10_1016_j_addma_2020_101417
crossref_primary_10_1016_j_jallcom_2023_169315
crossref_primary_10_1016_j_actamat_2020_07_063
crossref_primary_10_1007_s12008_022_00916_y
crossref_primary_10_1016_j_ijfatigue_2020_105637
crossref_primary_10_1007_s00466_023_02270_6
crossref_primary_10_1016_j_prostr_2019_05_093
crossref_primary_10_1007_s12289_022_01729_w
crossref_primary_10_1016_j_jmrt_2023_03_193
crossref_primary_10_1016_j_procir_2020_04_151
crossref_primary_10_1016_j_tafmec_2020_102611
crossref_primary_10_3390_ma14102511
crossref_primary_10_1107_S1600576720015344
crossref_primary_10_1016_j_msea_2021_141541
crossref_primary_10_1016_j_prostr_2021_12_021
crossref_primary_10_1016_j_cma_2025_117913
crossref_primary_10_3390_met12030462
crossref_primary_10_1088_2053_1591_ab4dd4
crossref_primary_10_1016_j_ijmecsci_2019_105362
crossref_primary_10_1007_s11837_019_03913_x
crossref_primary_10_3390_ma17071498
crossref_primary_10_46399_muhendismakina_995979
crossref_primary_10_1088_2631_8695_acbd12
crossref_primary_10_1016_j_addma_2018_06_024
crossref_primary_10_1016_j_optlastec_2025_112775
crossref_primary_10_3390_ma17030624
crossref_primary_10_1007_s00161_021_01058_4
crossref_primary_10_3390_ma14216432
crossref_primary_10_1007_s11665_025_10972_6
crossref_primary_10_1016_j_ijfatigue_2019_105428
crossref_primary_10_1016_j_msea_2023_145397
crossref_primary_10_3390_ma16072595
crossref_primary_10_3390_ma17061338
Cites_doi 10.1016/j.engfracmech.2014.03.008
10.1016/j.scriptamat.2016.09.001
10.1088/0965-0393/13/7/013
10.1016/j.matdes.2015.10.141
10.1179/1362171813Y.0000000144
10.1016/j.ijfatigue.2012.11.011
10.1016/S0921-5093(01)01179-0
10.1016/j.msea.2005.02.019
10.1038/srep19717
10.1016/j.commatsci.2005.07.007
10.1590/S1517-70762010000200033
10.1016/S0142-1123(02)00038-5
10.1115/1.2335852
10.1016/S0921-5093(01)01448-4
10.1016/j.optlaseng.2007.06.010
10.1063/1.4896751
10.1016/j.msea.2010.12.010
10.2351/1.4817788
10.1115/1.4025773
10.1007/s11661-014-2549-x
10.1007/s11668-013-9723-0
10.1016/j.commatsci.2003.12.005
10.1179/026708301101509980
10.1016/j.actamat.2016.05.057
10.1016/j.msea.2008.05.044
10.1126/science.257.5069.497
10.2351/1.1961688
10.1155/2014/841549
10.1016/j.jmatprotec.2016.04.006
10.1115/1.1843166
10.1108/13552540610707013
10.1016/j.commatsci.2011.06.023
10.1007/s11661-014-2722-2
10.1179/1743280411Y.0000000014
10.1115/1.3224988
10.1179/1743284714Y.0000000701
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.commatsci.2016.10.003
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
EndPage 372
ExternalDocumentID 1397597
10_1016_j_commatsci_2016_10_003
S0927025616304980
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
JQ2
L7M
L~C
L~D
6XO
AALMO
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c548t-dad76ba00ec9ba44f4d140b2bcc4793013f0fbc6aee95be281471ba957c6f0193
IEDL.DBID .~1
ISSN 0927-0256
IngestDate Fri May 19 02:11:41 EDT 2023
Thu Aug 07 14:40:18 EDT 2025
Tue Jul 01 00:38:08 EDT 2025
Thu Apr 24 23:10:02 EDT 2025
Fri Feb 23 02:27:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Thermo-mechanical modeling
Additive manufacturing
Fatigue failure
Finite element analysis
3D printing
Laser deposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-dad76ba00ec9ba44f4d140b2bcc4793013f0fbc6aee95be281471ba957c6f0193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
NE0008280
OpenAccessLink https://www.osti.gov/biblio/1397597
PQID 1864539033
PQPubID 23500
PageCount 13
ParticipantIDs osti_scitechconnect_1397597
proquest_miscellaneous_1864539033
crossref_citationtrail_10_1016_j_commatsci_2016_10_003
crossref_primary_10_1016_j_commatsci_2016_10_003
elsevier_sciencedirect_doi_10_1016_j_commatsci_2016_10_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computational materials science
PublicationYear 2017
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Withers, Bhadeshia (b0070) 2001; 17
Manvatkar, De, DebRoy (b0080) 2014; 116
Mills (b0150) 2002
David, DebRoy (b0090) 1992; 257
Alimardani, Toyserkani, Huissoon (b0140) 2007; 45
Mercelis, Kruth (b0120) 2006; 12
P. Scott, R. Olson, J. Bockbrader, M. Wilson, B. Gruen, R. Morbitzer, Y. Yang, C. Williams, F. Brust, L. Fredette, N. Ghadiali Battelle, The Battelle Integrity of Nuclear Piping (BINP), Program Final Report, Columbus, OH, 2005.
Chang, Teng (b0020) 2004; 29
Schajer (b0075) 1981; 103
Gu, Meiners, Wissenbach, Poprawe (b0005) 2012; 57
Vasinonta, Beuth, Griffith (b0100) 2007; 129
Manvatkar, De, DebRoy (b0085) 2015; 31
Nie, Wang, McGuffin-Cawley, Narayanan, Zhang, Schwam, Kottman, Rong (b0135) 2016; 235
Al-Mukhtar (b0190) 2013; 13
Moat, Pinkerton, Li, Withers, Preuss (b0030) 2011; 528
Vastola, Zhang, Pei, Zhang (b0130) 2016
Seshacharyulu, Medeiros, Frazier, Prasad (b0170) 2002; 325
Abaqus Documentation, Version 6.14, Dassault Systems, 2015.
Ding, Colegrove, Mehnen, Ganguly, Sequeira Almeida, Wang, Williams (b0015) 2011; 50
Rangaswamy, Griffith, Prime, Holden, Rogge, Edwards, Sebring (b0035) 2005; 399
Gavras, Brendan, Lados (b0215) 2010; 15
Wei, Elmer, DebRoy (b0225) 2016; 115
Edwards, O’Conner, Ramulu (b0210) 2013; 135
Nickel, Barnett, Prinz (b0110) 2001; 317
Zhang, Wang, Paddea, Zhang (b0050) 2016; 90
Mukherjee, Manvatkar, De, DebRoy (b0230) 2017; 127
Wang, Felicelli, Pratt (b0125) 2008; 496
Svensson, Gretoft, Bhadeshia (b0145) 1986; 15
Prabhakar, Sames, Dehoff, Babu (b0200) 2015; 7
Qiao, Zhang, Pan, Crooker, David, Feng (b0065) 2013; 18
Mughal, Fawad, Mufti, Siddique (b0105) 2005; 13
Ghosh, Choi (b0115) 2005; 17
Shah, Haq, Shah, Khan, Khan, Khan (b0185) 2014; 2014
Leuders, Thöne, Riemer, Niendorf, Tröster, Richard, Maier (b0205) 2013; 48
Sochalski-Kolbus, Payzant, Cornwell, Watkins, Babu, Dehoff, Lorenz, Ovchinnikova, Duty (b0060) 2015; 46
Kamara, Marimuthu, Li (b0160) 2011; 133
Wu, Brown, Kumar, Gallegos, King (b0045) 2014; 45
P.M. Kenney, D.E. Lindley, General Electric Company, 2013, U.S. Patent Application 14/440, 154.
Lia, Martukanitz, Park, DebRoy, Mukherjee, Keist, Patankar (b0180) 2015
Bussu, Irving (b0040) 2003; 25
Riemer, Leuders, Thöne, Richard, Tröster, Niendorf (b0055) 2014; 120
Raghavan, Wei, Palmer, DebRoy (b0095) 2013; 25
Jackson, Chusoipin, Green (b0195) 2005; 127
Sames, List, Pannala, Dehoff, Babu (b0010) 2016
Deng, Murakawa (b0025) 2006; 37
Rangaswamy, Choo, Prime, Bourke, Larsen (b0175) 2000
Mukherjee, Zuback, De, DebRoy (b0220) 2016; 6
Moat (10.1016/j.commatsci.2016.10.003_b0030) 2011; 528
Bussu (10.1016/j.commatsci.2016.10.003_b0040) 2003; 25
Gu (10.1016/j.commatsci.2016.10.003_b0005) 2012; 57
Sochalski-Kolbus (10.1016/j.commatsci.2016.10.003_b0060) 2015; 46
Svensson (10.1016/j.commatsci.2016.10.003_b0145) 1986; 15
Deng (10.1016/j.commatsci.2016.10.003_b0025) 2006; 37
Wei (10.1016/j.commatsci.2016.10.003_b0225) 2016; 115
Nie (10.1016/j.commatsci.2016.10.003_b0135) 2016; 235
Mughal (10.1016/j.commatsci.2016.10.003_b0105) 2005; 13
10.1016/j.commatsci.2016.10.003_b0155
Rangaswamy (10.1016/j.commatsci.2016.10.003_b0175) 2000
Al-Mukhtar (10.1016/j.commatsci.2016.10.003_b0190) 2013; 13
Wu (10.1016/j.commatsci.2016.10.003_b0045) 2014; 45
Withers (10.1016/j.commatsci.2016.10.003_b0070) 2001; 17
Gavras (10.1016/j.commatsci.2016.10.003_b0215) 2010; 15
Ding (10.1016/j.commatsci.2016.10.003_b0015) 2011; 50
Schajer (10.1016/j.commatsci.2016.10.003_b0075) 1981; 103
Alimardani (10.1016/j.commatsci.2016.10.003_b0140) 2007; 45
Vasinonta (10.1016/j.commatsci.2016.10.003_b0100) 2007; 129
Zhang (10.1016/j.commatsci.2016.10.003_b0050) 2016; 90
Lia (10.1016/j.commatsci.2016.10.003_b0180) 2015
Prabhakar (10.1016/j.commatsci.2016.10.003_b0200) 2015; 7
Nickel (10.1016/j.commatsci.2016.10.003_b0110) 2001; 317
Chang (10.1016/j.commatsci.2016.10.003_b0020) 2004; 29
Manvatkar (10.1016/j.commatsci.2016.10.003_b0080) 2014; 116
David (10.1016/j.commatsci.2016.10.003_b0090) 1992; 257
Qiao (10.1016/j.commatsci.2016.10.003_b0065) 2013; 18
10.1016/j.commatsci.2016.10.003_b0235
Mukherjee (10.1016/j.commatsci.2016.10.003_b0220) 2016; 6
Seshacharyulu (10.1016/j.commatsci.2016.10.003_b0170) 2002; 325
Riemer (10.1016/j.commatsci.2016.10.003_b0055) 2014; 120
Mercelis (10.1016/j.commatsci.2016.10.003_b0120) 2006; 12
Kamara (10.1016/j.commatsci.2016.10.003_b0160) 2011; 133
Mills (10.1016/j.commatsci.2016.10.003_b0150) 2002
Edwards (10.1016/j.commatsci.2016.10.003_b0210) 2013; 135
Shah (10.1016/j.commatsci.2016.10.003_b0185) 2014; 2014
Mukherjee (10.1016/j.commatsci.2016.10.003_b0230) 2017; 127
Manvatkar (10.1016/j.commatsci.2016.10.003_b0085) 2015; 31
Wang (10.1016/j.commatsci.2016.10.003_b0125) 2008; 496
10.1016/j.commatsci.2016.10.003_b0165
Sames (10.1016/j.commatsci.2016.10.003_b0010) 2016
Rangaswamy (10.1016/j.commatsci.2016.10.003_b0035) 2005; 399
Ghosh (10.1016/j.commatsci.2016.10.003_b0115) 2005; 17
Jackson (10.1016/j.commatsci.2016.10.003_b0195) 2005; 127
Raghavan (10.1016/j.commatsci.2016.10.003_b0095) 2013; 25
Leuders (10.1016/j.commatsci.2016.10.003_b0205) 2013; 48
Vastola (10.1016/j.commatsci.2016.10.003_b0130) 2016
References_xml – start-page: 1
  year: 2016
  end-page: 46
  ident: b0010
  article-title: The metallurgy and processing science of metal additive manufacturing
  publication-title: Int. Mater. Rev.
– reference: Abaqus Documentation, Version 6.14, Dassault Systems, 2015.
– volume: 45
  start-page: 6260
  year: 2014
  end-page: 6270
  ident: b0045
  article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel
  publication-title: Metal. Mater. Trans. A
– volume: 13
  start-page: 1187
  year: 2005
  ident: b0105
  article-title: Deformation modelling in layered manufacturing of metallic parts using gas metal arc welding: effect of process parameters
  publication-title: Model. Simul. Mater. Sci. Eng.
– reference: P.M. Kenney, D.E. Lindley, General Electric Company, 2013, U.S. Patent Application 14/440, 154.
– volume: 15
  start-page: 319
  year: 2010
  end-page: 329
  ident: b0215
  article-title: Effects of microstructure on the fatigue crack growth behavior of light metals and design considerations
  publication-title: Matéria (Rio de Janeiro)
– volume: 25
  start-page: 77
  year: 2003
  end-page: 88
  ident: b0040
  article-title: The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints
  publication-title: Int. J. Fatigue
– volume: 116
  start-page: 124905
  year: 2014
  ident: b0080
  article-title: Heat transfer and material flow during laser assisted multi-layer additive manufacturing
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 254
  year: 2006
  end-page: 265
  ident: b0120
  article-title: Residual stresses in selective laser sintering and selective laser melting
  publication-title: Rapid Prototyp. J.
– volume: 7
  start-page: 83
  year: 2015
  end-page: 91
  ident: b0200
  article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718
  publication-title: Addit. Manuf.
– volume: 135
  start-page: 061016
  year: 2013
  ident: b0210
  article-title: Electron beam additive manufacturing of titanium components: properties and performance
  publication-title: J. Manuf. Sci. Eng.
– volume: 45
  start-page: 1115
  year: 2007
  end-page: 1130
  ident: b0140
  article-title: A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process
  publication-title: Opt. Laser Eng.
– volume: 120
  start-page: 15
  year: 2014
  end-page: 25
  ident: b0055
  article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
  publication-title: Eng. Fract. Mech.
– volume: 133
  start-page: 1
  year: 2011
  end-page: 9
  ident: b0160
  article-title: A numerical investigation into residual stress characteristics in laser deposited multiple layer waspaloy parts
  publication-title: Trans. ASME-B – J. Manuf. Sci. Eng.
– volume: 325
  start-page: 112
  year: 2002
  end-page: 125
  ident: b0170
  article-title: Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure
  publication-title: Mater. Sci. Eng. A
– volume: 6
  year: 2016
  ident: b0220
  article-title: Printability of alloys for additive manufacturing
  publication-title: Sci. Rep.
– volume: 46
  start-page: 1419
  year: 2015
  end-page: 1432
  ident: b0060
  article-title: Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering
  publication-title: Metal. Mater. Trans. A
– volume: 17
  start-page: 355
  year: 2001
  end-page: 365
  ident: b0070
  article-title: Residual stress. Part 1 – measurement techniques
  publication-title: Mater. Sci. Technol.
– volume: 496
  start-page: 234
  year: 2008
  end-page: 241
  ident: b0125
  article-title: Residual stresses in LENS-deposited AISI 410 stainless steel plates
  publication-title: Mater. Sci. Eng. A
– volume: 50
  start-page: 3315
  year: 2011
  end-page: 3322
  ident: b0015
  article-title: Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts
  publication-title: Comput. Mater. Sci.
– volume: 15
  start-page: 97
  year: 1986
  end-page: 103
  ident: b0145
  article-title: An analysis of cooling curves from the fusion zone of steel weld deposits
  publication-title: Scand. J. Metall.
– volume: 48
  start-page: 300
  year: 2013
  end-page: 307
  ident: b0205
  article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance
  publication-title: Int. J. Fatigue
– year: 2016
  ident: b0130
  article-title: Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling
  publication-title: Addit. Manuf.
– year: 2000
  ident: b0175
  article-title: High temperature stress assessment in SCS-6/Ti-6Al-4V composite using neutron diffraction and finite element modeling
  publication-title: International Conference on Processing & Manufacturing of Advanced Materials, Las Vegas, NV, USA
– volume: 115
  start-page: 123
  year: 2016
  end-page: 131
  ident: b0225
  article-title: Origin of grain orientation during solidification of an aluminum alloy
  publication-title: Acta Mater.
– volume: 127
  start-page: 79
  year: 2017
  end-page: 83
  ident: b0230
  article-title: Mitigation of thermal distortion during additive manufacturing
  publication-title: Scripta Mater.
– volume: 2014
  year: 2014
  ident: b0185
  article-title: Experimental study of direct laser deposition of Ti-6Al-4V and Inconel 718 by using pulsed parameters
  publication-title: Sci. World J.
– volume: 257
  start-page: 497
  year: 1992
  end-page: 502
  ident: b0090
  article-title: Current issues and problems in welding science
  publication-title: Science
– volume: 129
  start-page: 101
  year: 2007
  end-page: 109
  ident: b0100
  article-title: Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures
  publication-title: J. Manuf. Sci. Eng.
– volume: 37
  start-page: 269
  year: 2006
  end-page: 277
  ident: b0025
  article-title: Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements
  publication-title: Comput. Mater. Sci.
– volume: 57
  start-page: 133
  year: 2012
  end-page: 164
  ident: b0005
  article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms
  publication-title: Int. Mater. Rev.
– volume: 399
  start-page: 72
  year: 2005
  end-page: 83
  ident: b0035
  article-title: Residual stresses in LENS® components using neutron diffraction and contour method
  publication-title: Mater. Sci. Eng. A
– volume: 31
  start-page: 924
  year: 2015
  end-page: 930
  ident: b0085
  article-title: Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process
  publication-title: Mater. Sci. Technol.
– reference: P. Scott, R. Olson, J. Bockbrader, M. Wilson, B. Gruen, R. Morbitzer, Y. Yang, C. Williams, F. Brust, L. Fredette, N. Ghadiali Battelle, The Battelle Integrity of Nuclear Piping (BINP), Program Final Report, Columbus, OH, 2005.
– year: 2015
  ident: b0180
  article-title: Process and microstructural validation of the laser-based directed energy deposition process for Ti-6Al-4V and Inconel 625 material
  publication-title: Mater. Sci. Technol.
– volume: 103
  start-page: 157
  year: 1981
  end-page: 163
  ident: b0075
  article-title: Application of finite element calculations to residual stress measurements
  publication-title: J. Eng. Mater. Technol.
– volume: 127
  start-page: 484
  year: 2005
  end-page: 493
  ident: b0195
  article-title: A finite element study of the residual stress and deformation in hemispherical contacts
  publication-title: J. Tribol.
– volume: 18
  start-page: 624
  year: 2013
  end-page: 630
  ident: b0065
  article-title: Evaluation of residual plastic strain distribution in dissimilar metal weld by hardness mapping
  publication-title: Sci. Technol. Weld. Join.
– volume: 17
  start-page: 144
  year: 2005
  end-page: 158
  ident: b0115
  article-title: Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process
  publication-title: J. Laser Appl.
– volume: 235
  start-page: 171
  year: 2016
  end-page: 186
  ident: b0135
  article-title: Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing
  publication-title: J. Mater. Process. Technol.
– volume: 13
  start-page: 619
  year: 2013
  end-page: 623
  ident: b0190
  article-title: Residual stresses and stress intensity factor calculations in T-welded joints
  publication-title: J. Fail. Anal. Prevent.
– volume: 29
  start-page: 511
  year: 2004
  end-page: 522
  ident: b0020
  article-title: Numerical and experimental investigations on the residual stresses of the butt-welded joints
  publication-title: Comput. Mater. Sci.
– volume: 25
  start-page: 052006
  year: 2013
  ident: b0095
  article-title: Heat transfer and fluid flow in additive manufacturing
  publication-title: J. Laser Appl.
– year: 2002
  ident: b0150
  article-title: Recommended Values of Thermo-Physical Properties for Selected Commercial Alloys
– volume: 90
  start-page: 551
  year: 2016
  end-page: 561
  ident: b0050
  article-title: Fatigue crack propagation behaviour in wire
  publication-title: Mater. Des.
– volume: 317
  start-page: 59
  year: 2001
  end-page: 64
  ident: b0110
  article-title: Thermal stresses and deposition patterns in layered manufacturing
  publication-title: Mater. Sci. Eng. A
– volume: 528
  start-page: 2288
  year: 2011
  end-page: 2298
  ident: b0030
  article-title: Residual stresses in laser direct metal deposited Waspaloy
  publication-title: Mater. Sci. Eng. A
– volume: 120
  start-page: 15
  year: 2014
  ident: 10.1016/j.commatsci.2016.10.003_b0055
  article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2014.03.008
– volume: 127
  start-page: 79
  year: 2017
  ident: 10.1016/j.commatsci.2016.10.003_b0230
  article-title: Mitigation of thermal distortion during additive manufacturing
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2016.09.001
– volume: 13
  start-page: 1187
  year: 2005
  ident: 10.1016/j.commatsci.2016.10.003_b0105
  article-title: Deformation modelling in layered manufacturing of metallic parts using gas metal arc welding: effect of process parameters
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/13/7/013
– volume: 90
  start-page: 551
  year: 2016
  ident: 10.1016/j.commatsci.2016.10.003_b0050
  article-title: Fatigue crack propagation behaviour in wire+arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.10.141
– volume: 18
  start-page: 624
  year: 2013
  ident: 10.1016/j.commatsci.2016.10.003_b0065
  article-title: Evaluation of residual plastic strain distribution in dissimilar metal weld by hardness mapping
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/1362171813Y.0000000144
– volume: 48
  start-page: 300
  year: 2013
  ident: 10.1016/j.commatsci.2016.10.003_b0205
  article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2012.11.011
– ident: 10.1016/j.commatsci.2016.10.003_b0235
– volume: 317
  start-page: 59
  year: 2001
  ident: 10.1016/j.commatsci.2016.10.003_b0110
  article-title: Thermal stresses and deposition patterns in layered manufacturing
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(01)01179-0
– volume: 399
  start-page: 72
  year: 2005
  ident: 10.1016/j.commatsci.2016.10.003_b0035
  article-title: Residual stresses in LENS® components using neutron diffraction and contour method
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2005.02.019
– volume: 6
  year: 2016
  ident: 10.1016/j.commatsci.2016.10.003_b0220
  article-title: Printability of alloys for additive manufacturing
  publication-title: Sci. Rep.
  doi: 10.1038/srep19717
– volume: 37
  start-page: 269
  year: 2006
  ident: 10.1016/j.commatsci.2016.10.003_b0025
  article-title: Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.07.007
– year: 2015
  ident: 10.1016/j.commatsci.2016.10.003_b0180
  article-title: Process and microstructural validation of the laser-based directed energy deposition process for Ti-6Al-4V and Inconel 625 material
  publication-title: Mater. Sci. Technol.
– volume: 15
  start-page: 319
  year: 2010
  ident: 10.1016/j.commatsci.2016.10.003_b0215
  article-title: Effects of microstructure on the fatigue crack growth behavior of light metals and design considerations
  publication-title: Matéria (Rio de Janeiro)
  doi: 10.1590/S1517-70762010000200033
– volume: 25
  start-page: 77
  year: 2003
  ident: 10.1016/j.commatsci.2016.10.003_b0040
  article-title: The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints
  publication-title: Int. J. Fatigue
  doi: 10.1016/S0142-1123(02)00038-5
– volume: 129
  start-page: 101
  year: 2007
  ident: 10.1016/j.commatsci.2016.10.003_b0100
  article-title: Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.2335852
– volume: 325
  start-page: 112
  year: 2002
  ident: 10.1016/j.commatsci.2016.10.003_b0170
  article-title: Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(01)01448-4
– volume: 45
  start-page: 1115
  year: 2007
  ident: 10.1016/j.commatsci.2016.10.003_b0140
  article-title: A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process
  publication-title: Opt. Laser Eng.
  doi: 10.1016/j.optlaseng.2007.06.010
– volume: 116
  start-page: 124905
  year: 2014
  ident: 10.1016/j.commatsci.2016.10.003_b0080
  article-title: Heat transfer and material flow during laser assisted multi-layer additive manufacturing
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4896751
– volume: 528
  start-page: 2288
  year: 2011
  ident: 10.1016/j.commatsci.2016.10.003_b0030
  article-title: Residual stresses in laser direct metal deposited Waspaloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.12.010
– volume: 25
  start-page: 052006
  year: 2013
  ident: 10.1016/j.commatsci.2016.10.003_b0095
  article-title: Heat transfer and fluid flow in additive manufacturing
  publication-title: J. Laser Appl.
  doi: 10.2351/1.4817788
– volume: 135
  start-page: 061016
  year: 2013
  ident: 10.1016/j.commatsci.2016.10.003_b0210
  article-title: Electron beam additive manufacturing of titanium components: properties and performance
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4025773
– volume: 45
  start-page: 6260
  year: 2014
  ident: 10.1016/j.commatsci.2016.10.003_b0045
  article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel
  publication-title: Metal. Mater. Trans. A
  doi: 10.1007/s11661-014-2549-x
– volume: 13
  start-page: 619
  year: 2013
  ident: 10.1016/j.commatsci.2016.10.003_b0190
  article-title: Residual stresses and stress intensity factor calculations in T-welded joints
  publication-title: J. Fail. Anal. Prevent.
  doi: 10.1007/s11668-013-9723-0
– volume: 29
  start-page: 511
  year: 2004
  ident: 10.1016/j.commatsci.2016.10.003_b0020
  article-title: Numerical and experimental investigations on the residual stresses of the butt-welded joints
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2003.12.005
– volume: 17
  start-page: 355
  year: 2001
  ident: 10.1016/j.commatsci.2016.10.003_b0070
  article-title: Residual stress. Part 1 – measurement techniques
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708301101509980
– volume: 115
  start-page: 123
  year: 2016
  ident: 10.1016/j.commatsci.2016.10.003_b0225
  article-title: Origin of grain orientation during solidification of an aluminum alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.057
– volume: 496
  start-page: 234
  year: 2008
  ident: 10.1016/j.commatsci.2016.10.003_b0125
  article-title: Residual stresses in LENS-deposited AISI 410 stainless steel plates
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.05.044
– volume: 257
  start-page: 497
  year: 1992
  ident: 10.1016/j.commatsci.2016.10.003_b0090
  article-title: Current issues and problems in welding science
  publication-title: Science
  doi: 10.1126/science.257.5069.497
– volume: 15
  start-page: 97
  year: 1986
  ident: 10.1016/j.commatsci.2016.10.003_b0145
  article-title: An analysis of cooling curves from the fusion zone of steel weld deposits
  publication-title: Scand. J. Metall.
– ident: 10.1016/j.commatsci.2016.10.003_b0165
– volume: 17
  start-page: 144
  year: 2005
  ident: 10.1016/j.commatsci.2016.10.003_b0115
  article-title: Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process
  publication-title: J. Laser Appl.
  doi: 10.2351/1.1961688
– volume: 2014
  year: 2014
  ident: 10.1016/j.commatsci.2016.10.003_b0185
  article-title: Experimental study of direct laser deposition of Ti-6Al-4V and Inconel 718 by using pulsed parameters
  publication-title: Sci. World J.
  doi: 10.1155/2014/841549
– start-page: 1
  year: 2016
  ident: 10.1016/j.commatsci.2016.10.003_b0010
  article-title: The metallurgy and processing science of metal additive manufacturing
  publication-title: Int. Mater. Rev.
– volume: 235
  start-page: 171
  year: 2016
  ident: 10.1016/j.commatsci.2016.10.003_b0135
  article-title: Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.04.006
– volume: 127
  start-page: 484
  year: 2005
  ident: 10.1016/j.commatsci.2016.10.003_b0195
  article-title: A finite element study of the residual stress and deformation in hemispherical contacts
  publication-title: J. Tribol.
  doi: 10.1115/1.1843166
– volume: 12
  start-page: 254
  year: 2006
  ident: 10.1016/j.commatsci.2016.10.003_b0120
  article-title: Residual stresses in selective laser sintering and selective laser melting
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540610707013
– volume: 50
  start-page: 3315
  year: 2011
  ident: 10.1016/j.commatsci.2016.10.003_b0015
  article-title: Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.06.023
– year: 2016
  ident: 10.1016/j.commatsci.2016.10.003_b0130
  article-title: Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling
  publication-title: Addit. Manuf.
– volume: 46
  start-page: 1419
  year: 2015
  ident: 10.1016/j.commatsci.2016.10.003_b0060
  article-title: Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering
  publication-title: Metal. Mater. Trans. A
  doi: 10.1007/s11661-014-2722-2
– ident: 10.1016/j.commatsci.2016.10.003_b0155
– volume: 57
  start-page: 133
  year: 2012
  ident: 10.1016/j.commatsci.2016.10.003_b0005
  article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms
  publication-title: Int. Mater. Rev.
  doi: 10.1179/1743280411Y.0000000014
– year: 2000
  ident: 10.1016/j.commatsci.2016.10.003_b0175
  article-title: High temperature stress assessment in SCS-6/Ti-6Al-4V composite using neutron diffraction and finite element modeling
– year: 2002
  ident: 10.1016/j.commatsci.2016.10.003_b0150
– volume: 103
  start-page: 157
  year: 1981
  ident: 10.1016/j.commatsci.2016.10.003_b0075
  article-title: Application of finite element calculations to residual stress measurements
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.3224988
– volume: 31
  start-page: 924
  year: 2015
  ident: 10.1016/j.commatsci.2016.10.003_b0085
  article-title: Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000701
– volume: 133
  start-page: 1
  year: 2011
  ident: 10.1016/j.commatsci.2016.10.003_b0160
  article-title: A numerical investigation into residual stress characteristics in laser deposited multiple layer waspaloy parts
  publication-title: Trans. ASME-B – J. Manuf. Sci. Eng.
– volume: 7
  start-page: 83
  year: 2015
  ident: 10.1016/j.commatsci.2016.10.003_b0200
  article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718
  publication-title: Addit. Manuf.
SSID ssj0016982
Score 2.6429632
Snippet [Display omitted] •Roles of variables and alloys on stresses and strains in 3D printing are studied.•Quality of residual stress and distortion modeling depends...
In laser assisted additive manufacturing (AM) an accurate estimation of residual stresses and distortion is necessary to achieve dimensional accuracy and...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 360
SubjectTerms 3D printing
Additive manufacturing
Additives
Delaminating
Delamination
Distortion
Fatigue failure
Finite element analysis
Laser deposition
Mathematical models
Residual stress
Temperature distribution
Thermo-mechanical modeling
Thickness
Title An improved prediction of residual stresses and distortion in additive manufacturing
URI https://dx.doi.org/10.1016/j.commatsci.2016.10.003
https://www.proquest.com/docview/1864539033
https://www.osti.gov/biblio/1397597
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpSqIzEmtZJHCdmqyqqAqILrdQtsh1HKoK06mPlt3PnJhUVQh1YE58T3dn3sL-7I-Se5T7TGnuEaZN43FfGU3FiPZH5moU20bHLhXkdisGYP0-iSY30qlwYhFWWun-j0522Lp90Sm525tNp541JzKUC-y_wqijBuJ3zGFd5-2sL8_CFdA2jcLCHo3cwXjA3-IUwO2K8RNvBvMK_LFR9Bpvul8p2dqh_Qo5LB5J2N_94Smq2OCNHP8oKnpNRt6BTd1hgMzpf4FUMsp_OcgrBtcu-opscEbukqsho5mqFuDHTgiLECJUg_VTFGhMfXCbjBRn3H0e9gVd2T_AMRCErL1NZLLRizBqpFec5zyCY0iATg6dp4PrlLNdGKGtlpG2Q-GCntJJRbEQOjl94SerFrLBXhDKd5xL8liDQkgdW6kSqJAqkVWDNbGQbRFQcS01ZWhw7XHykFYbsPd2yOkVW4wtgdYOwLeF8U11jP8lDJZJ0Z6GkYAP2EzdRiEiIJXINYomAEr1gCKwa5K6SbQqbDG9OVGFn62XqJ4JHoWRheP2fzzfJYYBegTvBuSH11WJtb8GnWemWW7QtctB9ehkMvwHk7fkP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MHtSD8RnxWROvC91X2XozRIIKXISEW9N2uwlGdwnC1d_uTNklEmM4eN3tdDcz7Tzab2YIuWOZz7TGHmHaJF7kK-OpVmI9nvqahTbRLZcL0x_w7ih6HsfjLdKucmEQVlnq_qVOd9q6fNIsudmcTibNVyYwlwrsP8erogTi9u0Iti-2MWh8rXAePheuYxSO9nD4GsgLJgfHEKZHkBdvOJxX-JeJqhWw637pbGeIOgdkv_Qg6cPyJw_Jls2PyN6PuoLHZPiQ04k7LbApnc7wLgb5T4uMQnTt0q_oMknEflKVpzR1xULcmElOEWOEWpB-qHyBmQ8ulfGEjDqPw3bXK9sneAbCkLmXqrTFtWLMGqFVFGVRCtGUBqEYPE4D3y9jmTZcWStibYPEB0OllYhbhmfg-YWnpJYXuT0jlOksE-C4BIEWUWCFToRK4kBYBebMxrZOeMUxacra4tji4l1WILI3uWK1RFbjC2B1nbAV4XRZXmMzyX0lErm2UiQYgc3EFyhEJMQauQbBRECJbjBEVnVyW8lWwi7DqxOV22LxKf2Ew9oSLAzP__P5G7LTHfZ7svc0eLkguwG6CO4455LU5rOFvQIHZ66v3QL-Bo4v-p0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+prediction+of+residual+stresses+and+distortion+in+additive+manufacturing&rft.jtitle=Computational+materials+science&rft.au=Mukherjee%2C+T&rft.au=Zhang%2C+W&rft.au=DebRoy%2C+T&rft.date=2017-01-01&rft.issn=0927-0256&rft.volume=126&rft.spage=360&rft.epage=372&rft_id=info:doi/10.1016%2Fj.commatsci.2016.10.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon