An improved prediction of residual stresses and distortion in additive manufacturing
[Display omitted] •Roles of variables and alloys on stresses and strains in 3D printing are studied.•Quality of residual stress and distortion modeling depends on temperature fields.•Flow of molten metal is considered to accurately calculate transient temperatures.•A finite element model calculates...
Saved in:
Published in | Computational materials science Vol. 126; no. C; pp. 360 - 372 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Roles of variables and alloys on stresses and strains in 3D printing are studied.•Quality of residual stress and distortion modeling depends on temperature fields.•Flow of molten metal is considered to accurately calculate transient temperatures.•A finite element model calculates strain and residual stress from temperature field.•The results are helpful to make distortion free parts with low residual stresses.
In laser assisted additive manufacturing (AM) an accurate estimation of residual stresses and distortion is necessary to achieve dimensional accuracy and prevent premature fatigue failure, delamination and buckling of components. Since many process variables affect AM, experimental measurements of residual stresses and distortion are time consuming and expensive. Numerical thermo-mechanical models can be used for their estimation, but the quality of calculations depends critically on the accurate transient temperature field which affects both the residual stresses and distortion. In this study, a well-tested, three-dimensional, transient heat transfer and fluid flow model is used to accurately calculate transient temperature field for the residual stress and distortion modeling. The calculated residual stress distributions are compared with independent experimental results. It is shown that the residual stresses can be significantly minimized by reducing the layer thickness during AM. Inconel 718 components are found to be more susceptible to delamination than Ti-6Al-4V parts because they encounter higher residual stresses compared to their yield strength. |
---|---|
AbstractList | [Display omitted]
•Roles of variables and alloys on stresses and strains in 3D printing are studied.•Quality of residual stress and distortion modeling depends on temperature fields.•Flow of molten metal is considered to accurately calculate transient temperatures.•A finite element model calculates strain and residual stress from temperature field.•The results are helpful to make distortion free parts with low residual stresses.
In laser assisted additive manufacturing (AM) an accurate estimation of residual stresses and distortion is necessary to achieve dimensional accuracy and prevent premature fatigue failure, delamination and buckling of components. Since many process variables affect AM, experimental measurements of residual stresses and distortion are time consuming and expensive. Numerical thermo-mechanical models can be used for their estimation, but the quality of calculations depends critically on the accurate transient temperature field which affects both the residual stresses and distortion. In this study, a well-tested, three-dimensional, transient heat transfer and fluid flow model is used to accurately calculate transient temperature field for the residual stress and distortion modeling. The calculated residual stress distributions are compared with independent experimental results. It is shown that the residual stresses can be significantly minimized by reducing the layer thickness during AM. Inconel 718 components are found to be more susceptible to delamination than Ti-6Al-4V parts because they encounter higher residual stresses compared to their yield strength. In laser assisted additive manufacturing (AM) an accurate estimation of residual stresses and distortion is necessary to achieve dimensional accuracy and prevent premature fatigue failure, delamination and buckling of components. Since many process variables affect AM, experimental measurements of residual stresses and distortion are time consuming and expensive. Numerical thermo-mechanical models can be used for their estimation, but the quality of calculations depends critically on the accurate transient temperature field which affects both the residual stresses and distortion. In this study, a well-tested, three-dimensional, transient heat transfer and fluid flow model is used to accurately calculate transient temperature field for the residual stress and distortion modeling. The calculated residual stress distributions are compared with independent experimental results. It is shown that the residual stresses can be significantly minimized by reducing the layer thickness during AM. Inconel 718 components are found to be more susceptible to delamination than Ti-6Al-4V parts because they encounter higher residual stresses compared to their yield strength. |
Author | Zhang, W. DebRoy, T. Mukherjee, T. |
Author_xml | – sequence: 1 givenname: T. surname: Mukherjee fullname: Mukherjee, T. organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 2 givenname: W. surname: Zhang fullname: Zhang, W. organization: Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221, USA – sequence: 3 givenname: T. surname: DebRoy fullname: DebRoy, T. email: debroy@psu.edu organization: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA |
BackLink | https://www.osti.gov/biblio/1397597$$D View this record in Osti.gov |
BookMark | eNqNkc1uGyEUhVHlSLWdPkNRV9mMc5k_hkUXltX8SJG6SdeIgTst1gy4wFjK25eJqy66SVagy3eudD42ZOW8Q0I-M9gxYO3tcaf9NKkUtd2VeZCnO4DqA1mzjosCOmArsgZR8gLKpv1INjEeIYOiK9fkee-onU7Bn9HQU0BjdbLeUT_QgNGaWY00pnyNGKlyhhobkw-vjHVUGWOTPSOdlJsHpdMcrPt5Ta4GNUb89Pfckh93354PD8XT9_vHw_6p0E3dpcIow9teAaAWvarroTashr7sta65qIBVAwy9bhWiaHosO1Zz1ivRcN0OwES1JV8ue31MVmYBCfUv7Z1DnSSrBG8Ez9DNBcolf88Yk5xs1DiOyqGfo2RdWzeVgKrK6NcLqoOPMeAg80q1dE1B2VEykItyeZT_lMtF-fKQlec8_y9_CnZS4eUdyf0liVnX2WJY2qDT-T_CUsZ4--aOP0xppN4 |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2023_08_312 crossref_primary_10_3390_alloys1030017 crossref_primary_10_3390_met12081344 crossref_primary_10_1016_j_jmapro_2021_09_059 crossref_primary_10_1016_j_jmapro_2021_08_016 crossref_primary_10_1016_j_ijfatigue_2021_106229 crossref_primary_10_2351_7_0000328 crossref_primary_10_1016_j_finel_2021_103528 crossref_primary_10_1080_01495739_2021_1954572 crossref_primary_10_3390_mi14071480 crossref_primary_10_1142_S0217979220502720 crossref_primary_10_3390_ma16041444 crossref_primary_10_1002_adem_202300489 crossref_primary_10_1016_j_jeurceramsoc_2023_10_067 crossref_primary_10_1016_j_jmapro_2025_01_031 crossref_primary_10_1016_j_dental_2021_12_012 crossref_primary_10_1016_j_jmapro_2018_08_001 crossref_primary_10_1016_j_mtcomm_2024_108056 crossref_primary_10_1080_17452759_2024_2443578 crossref_primary_10_1016_j_mtcomm_2022_103283 crossref_primary_10_1016_j_addlet_2022_100066 crossref_primary_10_1016_j_cossms_2021_100974 crossref_primary_10_1016_j_actamat_2017_06_039 crossref_primary_10_1016_j_jmst_2023_03_064 crossref_primary_10_1016_j_jmapro_2025_02_061 crossref_primary_10_1007_s11665_022_06856_8 crossref_primary_10_1016_j_jmapro_2019_11_020 crossref_primary_10_4028_p_16auf3 crossref_primary_10_1016_j_actamat_2018_07_002 crossref_primary_10_1016_j_jallcom_2022_164179 crossref_primary_10_1080_00295450_2018_1502001 crossref_primary_10_1016_j_matpr_2020_08_030 crossref_primary_10_2351_7_0000464 crossref_primary_10_2139_ssrn_4098269 crossref_primary_10_1016_j_jmapro_2025_01_022 crossref_primary_10_1007_s12541_021_00496_z crossref_primary_10_1038_s41598_023_44108_4 crossref_primary_10_1016_j_jallcom_2023_168946 crossref_primary_10_1108_RPJ_11_2019_0287 crossref_primary_10_1016_j_jmst_2020_04_056 crossref_primary_10_3390_met11111691 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126496 crossref_primary_10_1007_s10853_022_07516_x crossref_primary_10_1080_13621718_2023_2207950 crossref_primary_10_1016_j_ijfatigue_2022_106841 crossref_primary_10_2351_7_0000550 crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_158 crossref_primary_10_1016_j_nanoms_2022_08_001 crossref_primary_10_1016_j_addlet_2022_100084 crossref_primary_10_3390_app11199176 crossref_primary_10_3390_ma14216527 crossref_primary_10_1016_j_addma_2023_103684 crossref_primary_10_1016_j_addma_2022_103287 crossref_primary_10_1016_j_matchar_2023_113538 crossref_primary_10_1007_s00170_021_08501_5 crossref_primary_10_1016_j_matchar_2022_112043 crossref_primary_10_1016_j_cjmeam_2023_100102 crossref_primary_10_1016_j_jmapro_2023_12_008 crossref_primary_10_2139_ssrn_3785854 crossref_primary_10_1016_j_aej_2018_12_010 crossref_primary_10_1016_j_matdes_2020_108779 crossref_primary_10_1007_s00170_022_10562_z crossref_primary_10_1016_j_measurement_2022_111402 crossref_primary_10_26552_com_C_2023_065 crossref_primary_10_1007_s00170_023_12149_8 crossref_primary_10_1016_j_jmatprotec_2021_117358 crossref_primary_10_1016_j_matlet_2021_129369 crossref_primary_10_1016_j_matchar_2020_110692 crossref_primary_10_1016_j_jmst_2021_05_038 crossref_primary_10_1007_s40033_023_00613_4 crossref_primary_10_1016_j_jmapro_2025_01_046 crossref_primary_10_1007_s00170_019_04091_5 crossref_primary_10_1016_j_apacoust_2020_107868 crossref_primary_10_3390_met13111840 crossref_primary_10_1016_j_cirpj_2022_05_017 crossref_primary_10_1089_3dp_2022_0142 crossref_primary_10_33889_PMSL_2023_2_1_005 crossref_primary_10_1016_j_addma_2019_02_020 crossref_primary_10_1038_s41578_020_00236_1 crossref_primary_10_1016_j_promfg_2019_08_031 crossref_primary_10_1016_j_mtcomm_2023_105702 crossref_primary_10_1007_s11666_022_01499_6 crossref_primary_10_1007_s00170_020_05243_8 crossref_primary_10_1016_j_msea_2021_141808 crossref_primary_10_1016_j_actamat_2019_10_047 crossref_primary_10_1016_j_addma_2021_102090 crossref_primary_10_1016_j_cma_2020_113611 crossref_primary_10_1016_j_mtcomm_2023_105701 crossref_primary_10_1016_j_jmrt_2022_02_054 crossref_primary_10_1007_s40516_023_00217_6 crossref_primary_10_1080_17452759_2021_1896173 crossref_primary_10_1016_j_jmsy_2019_08_005 crossref_primary_10_1088_1361_6463_adb3b0 crossref_primary_10_1002_htj_23186 crossref_primary_10_3390_met12071109 crossref_primary_10_1007_s40194_022_01403_4 crossref_primary_10_1177_13621718241307465 crossref_primary_10_1016_j_addma_2019_101027 crossref_primary_10_1016_j_msea_2025_148058 crossref_primary_10_1016_j_addma_2023_103749 crossref_primary_10_3390_ma14144049 crossref_primary_10_2139_ssrn_4171665 crossref_primary_10_1016_j_prostr_2024_01_081 crossref_primary_10_1080_1478422X_2018_1511327 crossref_primary_10_1016_j_ijthermalsci_2022_107538 crossref_primary_10_1016_j_msea_2020_139204 crossref_primary_10_1016_j_ymssp_2023_110819 crossref_primary_10_1007_s40192_022_00278_z crossref_primary_10_1016_j_finel_2021_103558 crossref_primary_10_1007_s00501_025_01560_1 crossref_primary_10_1016_j_addma_2018_10_006 crossref_primary_10_1016_j_pmatsci_2021_100786 crossref_primary_10_1016_j_addma_2024_103974 crossref_primary_10_1016_j_procir_2021_03_102 crossref_primary_10_3390_app12147233 crossref_primary_10_1016_j_msea_2023_145438 crossref_primary_10_1016_j_addma_2018_08_029 crossref_primary_10_1088_1402_4896_aca184 crossref_primary_10_1063_1_4976006 crossref_primary_10_1002_adem_202200504 crossref_primary_10_1007_s12666_024_03552_0 crossref_primary_10_1088_2053_1591_ad5fe2 crossref_primary_10_1007_s00170_022_09910_w crossref_primary_10_1007_s11837_023_06363_8 crossref_primary_10_1089_3dp_2022_0162 crossref_primary_10_1007_s00170_021_07154_8 crossref_primary_10_1016_j_jfoodeng_2020_110127 crossref_primary_10_1109_TCPMT_2021_3108017 crossref_primary_10_1007_s11665_021_06180_7 crossref_primary_10_1016_j_jmapro_2020_07_025 crossref_primary_10_1016_j_jmst_2023_02_012 crossref_primary_10_1016_j_commatsci_2021_110462 crossref_primary_10_1016_j_addma_2023_103765 crossref_primary_10_1007_s11661_018_4702_4 crossref_primary_10_1016_j_addma_2022_103240 crossref_primary_10_1007_s40964_024_00687_w crossref_primary_10_1038_s41598_023_30660_6 crossref_primary_10_56193_matim_1370140 crossref_primary_10_1016_j_jmrt_2024_11_120 crossref_primary_10_7736_KSPE_2018_35_9_853 crossref_primary_10_1016_j_msea_2024_146934 crossref_primary_10_1007_s11665_021_05871_5 crossref_primary_10_1016_j_jmapro_2018_10_028 crossref_primary_10_1007_s11665_022_06820_6 crossref_primary_10_3390_ma18030689 crossref_primary_10_1007_s12206_020_0420_0 crossref_primary_10_1007_s00170_021_07362_2 crossref_primary_10_1016_j_jallcom_2024_174466 crossref_primary_10_1016_j_jmrt_2023_11_067 crossref_primary_10_1016_j_addma_2019_100808 crossref_primary_10_1016_j_ijfatigue_2021_106624 crossref_primary_10_1007_s11665_019_04249_y crossref_primary_10_1016_j_jallcom_2022_166983 crossref_primary_10_1016_j_nxmate_2025_100524 crossref_primary_10_1080_13621718_2019_1607061 crossref_primary_10_1016_j_euromechsol_2020_104147 crossref_primary_10_3390_met11111830 crossref_primary_10_3390_ma15207175 crossref_primary_10_1016_j_actamat_2019_01_050 crossref_primary_10_1016_j_jmps_2024_105888 crossref_primary_10_1016_j_mtcomm_2021_102197 crossref_primary_10_3390_ma17235706 crossref_primary_10_1177_10812865231159676 crossref_primary_10_1016_j_matdes_2020_108605 crossref_primary_10_1007_s11837_024_06699_9 crossref_primary_10_1016_j_addma_2024_104070 crossref_primary_10_1080_15376494_2025_2455509 crossref_primary_10_1016_j_matdes_2022_111574 crossref_primary_10_1016_j_jmatprotec_2020_116978 crossref_primary_10_1016_j_mfglet_2019_02_001 crossref_primary_10_1002_advs_202206486 crossref_primary_10_1007_s00170_024_13255_x crossref_primary_10_1016_j_addma_2019_05_021 crossref_primary_10_3390_ma15248968 crossref_primary_10_1016_j_jmrt_2024_05_119 crossref_primary_10_1016_j_optlastec_2021_106917 crossref_primary_10_1007_s00466_019_01748_6 crossref_primary_10_3390_met12111919 crossref_primary_10_1016_j_ijplas_2025_104264 crossref_primary_10_1016_j_matpr_2022_03_731 crossref_primary_10_3390_jmmp8030116 crossref_primary_10_1016_j_msea_2022_144461 crossref_primary_10_1016_j_addma_2023_103830 crossref_primary_10_1016_j_addma_2023_103951 crossref_primary_10_1016_j_cma_2022_115821 crossref_primary_10_1016_j_commatsci_2020_110112 crossref_primary_10_1016_j_jmapro_2022_01_008 crossref_primary_10_1016_j_jmsy_2024_01_005 crossref_primary_10_1016_j_msea_2023_144940 crossref_primary_10_1080_09506608_2020_1868889 crossref_primary_10_1002_adma_202402130 crossref_primary_10_1016_j_heliyon_2023_e19385 crossref_primary_10_1016_j_apmate_2022_100095 crossref_primary_10_3390_met8110954 crossref_primary_10_1088_1757_899X_1193_1_012095 crossref_primary_10_1007_s11340_019_00513_3 crossref_primary_10_1016_j_prostr_2017_12_041 crossref_primary_10_20965_ijat_2019_p0346 crossref_primary_10_1016_j_addma_2024_104179 crossref_primary_10_1016_j_mtcomm_2024_108471 crossref_primary_10_1007_s11665_023_08141_8 crossref_primary_10_1016_j_jallcom_2018_12_274 crossref_primary_10_1016_j_apsusc_2023_158323 crossref_primary_10_1115_1_4039063 crossref_primary_10_1016_j_addma_2023_103845 crossref_primary_10_3390_met11060861 crossref_primary_10_1007_s11665_022_06815_3 crossref_primary_10_1016_j_matdes_2019_107642 crossref_primary_10_1007_s12541_021_00512_2 crossref_primary_10_1016_j_msea_2018_12_078 crossref_primary_10_1016_j_corsci_2022_110642 crossref_primary_10_1002_adem_202100184 crossref_primary_10_1177_10996362241278214 crossref_primary_10_1016_j_addma_2023_103610 crossref_primary_10_1115_1_4047908 crossref_primary_10_1007_s11223_019_00054_z crossref_primary_10_1016_j_icheatmasstransfer_2025_108714 crossref_primary_10_3390_met11040629 crossref_primary_10_1016_j_compbiomed_2023_106716 crossref_primary_10_1108_RPJ_07_2021_0184 crossref_primary_10_1134_S0018151X19060178 crossref_primary_10_1016_j_jmapro_2018_06_033 crossref_primary_10_1108_RPJ_08_2018_0193 crossref_primary_10_3390_math12060898 crossref_primary_10_1007_s11661_022_06933_6 crossref_primary_10_1007_s40430_023_04077_1 crossref_primary_10_1088_2631_7990_ada099 crossref_primary_10_1007_s00170_021_07988_2 crossref_primary_10_1016_j_jallcom_2020_157555 crossref_primary_10_3389_fmats_2020_00042 crossref_primary_10_1007_s12666_021_02199_5 crossref_primary_10_3390_ma14040911 crossref_primary_10_1016_j_msea_2022_143448 crossref_primary_10_1016_j_jallcom_2022_165469 crossref_primary_10_1016_j_jmapro_2024_09_092 crossref_primary_10_1016_j_addma_2023_103907 crossref_primary_10_5781_JWJ_2021_39_3_9 crossref_primary_10_1016_j_mtla_2021_101308 crossref_primary_10_2351_1_5096147 crossref_primary_10_4028_www_scientific_net_KEM_822_445 crossref_primary_10_1016_j_matdes_2022_110790 crossref_primary_10_1016_j_rinp_2019_01_002 crossref_primary_10_1515_zna_2024_0009 crossref_primary_10_1016_j_actamat_2021_117240 crossref_primary_10_1016_j_addma_2021_102264 crossref_primary_10_1016_j_jmapro_2019_07_010 crossref_primary_10_1016_j_addma_2021_102103 crossref_primary_10_1016_j_addma_2021_102345 crossref_primary_10_1016_j_commatsci_2017_11_026 crossref_primary_10_1016_j_heliyon_2024_e25706 crossref_primary_10_1108_RPJ_04_2019_0097 crossref_primary_10_1016_j_ijmecsci_2018_12_004 crossref_primary_10_1007_s00521_024_10332_w crossref_primary_10_1016_j_jalmes_2024_100134 crossref_primary_10_1038_s41598_020_71112_9 crossref_primary_10_3390_ma15010263 crossref_primary_10_1016_j_addlet_2022_100042 crossref_primary_10_1016_j_addma_2019_03_001 crossref_primary_10_17341_gazimmfd_934143 crossref_primary_10_1016_j_cirpj_2023_08_005 crossref_primary_10_1007_s40195_023_01656_y crossref_primary_10_1016_j_addma_2022_102776 crossref_primary_10_1115_1_4044837 crossref_primary_10_3390_met10050645 crossref_primary_10_1016_j_commatsci_2020_109598 crossref_primary_10_1016_j_jmapro_2022_04_049 crossref_primary_10_1016_j_cma_2019_03_054 crossref_primary_10_1080_17452759_2020_1832793 crossref_primary_10_1016_j_jmapro_2023_11_018 crossref_primary_10_1016_j_mtcomm_2024_109415 crossref_primary_10_1007_s00170_023_11264_w crossref_primary_10_1016_j_addma_2019_100800 crossref_primary_10_1016_j_addma_2021_102365 crossref_primary_10_1016_j_addma_2021_102203 crossref_primary_10_1016_j_jalmes_2024_100120 crossref_primary_10_1016_j_ijfatigue_2022_107035 crossref_primary_10_1016_j_matchar_2021_111499 crossref_primary_10_2139_ssrn_4140213 crossref_primary_10_1016_j_jmst_2022_12_030 crossref_primary_10_3390_met13020287 crossref_primary_10_1016_j_optlastec_2021_107738 crossref_primary_10_1007_s00466_021_02116_z crossref_primary_10_1016_j_matpr_2020_10_538 crossref_primary_10_1016_j_addma_2021_102336 crossref_primary_10_1007_s00170_022_09887_6 crossref_primary_10_1002_mawe_201700169 crossref_primary_10_1016_j_surfcoat_2021_127962 crossref_primary_10_3390_app13010117 crossref_primary_10_1007_s00170_022_09721_z crossref_primary_10_1016_j_ijmecsci_2020_105772 crossref_primary_10_1016_j_ijmecsci_2023_108424 crossref_primary_10_1007_s10765_021_02810_3 crossref_primary_10_1016_j_msea_2021_142145 crossref_primary_10_1007_s12206_024_0132_y crossref_primary_10_1016_j_matchar_2025_114797 crossref_primary_10_1016_j_jallcom_2021_163335 crossref_primary_10_1016_j_msea_2021_141071 crossref_primary_10_26552_com_C_2022_2_B99_B105 crossref_primary_10_1007_s00170_023_12482_y crossref_primary_10_3390_designs2040037 crossref_primary_10_1007_s00339_019_2745_z crossref_primary_10_1016_j_jmrt_2024_10_075 crossref_primary_10_1007_s12540_022_01179_8 crossref_primary_10_1007_s00170_021_06711_5 crossref_primary_10_3390_jmmp6010016 crossref_primary_10_1016_j_jmapro_2019_06_011 crossref_primary_10_1007_s11661_021_06538_5 crossref_primary_10_1088_1757_899X_842_1_012024 crossref_primary_10_1016_j_jmapro_2024_04_063 crossref_primary_10_1007_s00170_023_12822_y crossref_primary_10_1016_j_jallcom_2019_04_052 crossref_primary_10_1016_j_matdes_2024_113210 crossref_primary_10_1016_j_compstruct_2018_01_108 crossref_primary_10_1016_j_matdes_2020_109185 crossref_primary_10_1016_j_heliyon_2023_e19791 crossref_primary_10_1016_j_commatsci_2020_109791 crossref_primary_10_1051_mfreview_2017014 crossref_primary_10_1115_1_4043264 crossref_primary_10_1007_s12206_024_0725_5 crossref_primary_10_1002_app_48777 crossref_primary_10_1007_s11661_022_06928_3 crossref_primary_10_1016_j_ijfatigue_2023_107663 crossref_primary_10_1016_j_ijfatigue_2019_06_008 crossref_primary_10_1016_j_jmapro_2024_09_101 crossref_primary_10_1007_s12206_022_0118_6 crossref_primary_10_1016_j_addma_2020_101294 crossref_primary_10_1016_j_procir_2018_08_068 crossref_primary_10_1520_MPC20170119 crossref_primary_10_1007_s10845_021_01773_4 crossref_primary_10_3390_ma14061571 crossref_primary_10_3390_met12030420 crossref_primary_10_1007_s00170_022_10052_2 crossref_primary_10_1016_j_addma_2020_101036 crossref_primary_10_1016_j_msea_2021_141494 crossref_primary_10_1007_s00707_019_02399_7 crossref_primary_10_1007_s10035_024_01395_6 crossref_primary_10_1007_s00466_023_02273_3 crossref_primary_10_1016_j_cirpj_2020_11_009 crossref_primary_10_1016_j_commatsci_2018_12_051 crossref_primary_10_3390_sym13122331 crossref_primary_10_1016_j_addma_2019_100970 crossref_primary_10_1016_j_rinp_2020_103005 crossref_primary_10_1016_j_scriptamat_2021_113827 crossref_primary_10_1016_j_addma_2025_104674 crossref_primary_10_1016_j_pmatsci_2022_101066 crossref_primary_10_1016_j_jallcom_2023_171345 crossref_primary_10_1016_j_corsci_2021_109553 crossref_primary_10_1007_s00170_019_04371_0 crossref_primary_10_1016_j_pmatsci_2023_101108 crossref_primary_10_1007_s11665_022_07443_7 crossref_primary_10_1016_j_optlastec_2018_04_034 crossref_primary_10_1016_j_addma_2020_101284 crossref_primary_10_1016_j_addma_2025_104670 crossref_primary_10_1016_j_jmatprotec_2024_118439 crossref_primary_10_1016_j_ijrmhm_2022_106041 crossref_primary_10_1007_s40194_023_01634_z crossref_primary_10_1088_1757_899X_227_1_012090 crossref_primary_10_1111_str_12409 crossref_primary_10_3390_ma14040876 crossref_primary_10_1016_j_jmrt_2021_09_027 crossref_primary_10_1002_srin_202200155 crossref_primary_10_3390_jmmp8020078 crossref_primary_10_1016_j_optlastec_2023_109386 crossref_primary_10_1080_13621718_2022_2139446 crossref_primary_10_15407_ufm_24_03_530 crossref_primary_10_3390_ma17235872 crossref_primary_10_1016_j_jmapro_2018_04_009 crossref_primary_10_1007_s12540_021_01015_5 crossref_primary_10_1016_j_ijrmhm_2023_106107 crossref_primary_10_1016_j_ijmachtools_2023_104077 crossref_primary_10_1016_j_addma_2019_06_023 crossref_primary_10_1016_j_jmst_2023_07_047 crossref_primary_10_1016_j_icheatmasstransfer_2023_107066 crossref_primary_10_1016_j_jmapro_2019_01_049 crossref_primary_10_1080_2374068X_2022_2077535 crossref_primary_10_1016_j_surfcoat_2024_131637 crossref_primary_10_1016_j_jmapro_2022_06_025 crossref_primary_10_1016_j_pmatsci_2020_100703 crossref_primary_10_1016_j_addma_2020_101499 crossref_primary_10_1016_j_jmapro_2022_01_043 crossref_primary_10_1016_j_jmapro_2019_05_001 crossref_primary_10_1016_j_tws_2022_110514 crossref_primary_10_1115_1_4039092 crossref_primary_10_1016_j_addma_2022_102708 crossref_primary_10_1016_j_matdes_2019_107678 crossref_primary_10_1016_j_ijmecsci_2019_06_007 crossref_primary_10_1088_1361_665X_ab2eb6 crossref_primary_10_3390_met10111554 crossref_primary_10_1080_13621718_2022_2127211 crossref_primary_10_1016_j_addma_2019_100877 crossref_primary_10_1016_j_addma_2024_104017 crossref_primary_10_1002_adem_201900617 crossref_primary_10_1002_adem_202100895 crossref_primary_10_1016_j_jmst_2024_01_080 crossref_primary_10_1016_j_ceramint_2023_11_162 crossref_primary_10_1007_s11665_021_05954_3 crossref_primary_10_1016_j_addma_2019_05_002 crossref_primary_10_1016_j_addma_2020_101248 crossref_primary_10_1002_srin_202000615 crossref_primary_10_1016_j_optlastec_2020_106477 crossref_primary_10_2139_ssrn_4089066 crossref_primary_10_1038_s41524_024_01296_5 crossref_primary_10_3390_coatings12121971 crossref_primary_10_1016_j_jmst_2021_09_052 crossref_primary_10_1002_mdp2_28 crossref_primary_10_1007_s10853_018_2701_x crossref_primary_10_1016_j_jmrt_2021_12_061 crossref_primary_10_1016_j_scriptamat_2016_12_005 crossref_primary_10_1007_s00170_017_0839_3 crossref_primary_10_1016_j_ijfatigue_2023_107863 crossref_primary_10_4150_KPMI_2020_27_4_318 crossref_primary_10_1016_j_optlaseng_2024_108277 crossref_primary_10_1142_S0218625X25500118 crossref_primary_10_1016_j_addma_2020_101252 crossref_primary_10_1016_j_ijplas_2020_102840 crossref_primary_10_1016_j_msea_2021_141034 crossref_primary_10_3389_fmats_2021_753040 crossref_primary_10_1016_j_addma_2020_101355 crossref_primary_10_1007_s10853_022_06991_6 crossref_primary_10_1016_j_jmrt_2021_12_016 crossref_primary_10_1364_OE_416659 crossref_primary_10_1016_j_pmatsci_2017_10_001 crossref_primary_10_1016_j_addma_2020_101119 crossref_primary_10_1007_s00466_024_02545_6 crossref_primary_10_1016_j_addma_2018_11_028 crossref_primary_10_1007_s11663_021_02218_2 crossref_primary_10_1016_j_engfailanal_2023_107403 crossref_primary_10_1016_j_jmapro_2022_09_051 crossref_primary_10_1002_mdp2_56 crossref_primary_10_1016_j_mtcomm_2023_107883 crossref_primary_10_1007_s40194_020_00951_x crossref_primary_10_1016_j_heliyon_2022_e11725 crossref_primary_10_1080_09506608_2023_2169501 crossref_primary_10_1016_j_tws_2025_113131 crossref_primary_10_1016_j_msea_2023_145266 crossref_primary_10_1016_j_rineng_2021_100330 crossref_primary_10_1007_s40684_019_00164_8 crossref_primary_10_1016_j_measurement_2024_114855 crossref_primary_10_1007_s40430_024_05319_6 crossref_primary_10_1016_j_addma_2020_101228 crossref_primary_10_3389_fmats_2021_747389 crossref_primary_10_1016_S1875_5372_19_30017_7 crossref_primary_10_1177_09544062211013863 crossref_primary_10_1007_s00170_020_05027_0 crossref_primary_10_1007_s11661_018_4653_9 crossref_primary_10_1016_j_applthermaleng_2024_124462 crossref_primary_10_1002_adem_202001443 crossref_primary_10_3390_ma14030512 crossref_primary_10_3390_ma14237176 crossref_primary_10_1007_s11663_019_01669_y crossref_primary_10_1016_j_commatsci_2018_04_027 crossref_primary_10_1016_j_commatsci_2018_04_022 crossref_primary_10_1016_j_addma_2022_102900 crossref_primary_10_1108_RPJ_04_2018_0088 crossref_primary_10_1007_s40964_022_00331_5 crossref_primary_10_1016_j_msea_2022_142962 crossref_primary_10_1007_s00170_020_04987_7 crossref_primary_10_1007_s00170_024_13348_7 crossref_primary_10_1016_j_finel_2024_104282 crossref_primary_10_1016_j_cja_2022_07_020 crossref_primary_10_1177_09544062221101754 crossref_primary_10_1177_09544089231191905 crossref_primary_10_1088_1757_899X_655_1_012026 crossref_primary_10_3390_met14121454 crossref_primary_10_1007_s00170_018_2207_3 crossref_primary_10_1155_2020_4831798 crossref_primary_10_1016_j_addma_2020_101322 crossref_primary_10_1016_j_msea_2024_146618 crossref_primary_10_1016_j_optlastec_2018_06_042 crossref_primary_10_1016_j_addma_2020_101689 crossref_primary_10_3390_app10186616 crossref_primary_10_1088_1757_899X_1281_1_012024 crossref_primary_10_1007_s11837_020_04151_2 crossref_primary_10_7791_jspmee_10_163 crossref_primary_10_1016_j_msea_2019_138093 crossref_primary_10_1115_1_4045290 crossref_primary_10_1016_j_jmapro_2019_04_019 crossref_primary_10_1016_j_finel_2018_02_004 crossref_primary_10_1016_j_msea_2021_141237 crossref_primary_10_1016_j_ijmecsci_2024_109670 crossref_primary_10_1016_j_msea_2021_141111 crossref_primary_10_1016_j_jallcom_2019_153576 crossref_primary_10_1016_j_pmatsci_2019_100590 crossref_primary_10_1016_j_taml_2022_100396 crossref_primary_10_1016_j_ijrmhm_2025_107149 crossref_primary_10_1108_RPJ_07_2019_0189 crossref_primary_10_1016_j_addma_2021_101955 crossref_primary_10_1016_j_jmapro_2020_06_042 crossref_primary_10_22517_23447214_24562 crossref_primary_10_1115_1_4064073 crossref_primary_10_1016_j_applthermaleng_2019_114335 crossref_primary_10_1088_1757_899X_1281_1_012016 crossref_primary_10_1007_s00170_020_05673_4 crossref_primary_10_1177_25165984211036312 crossref_primary_10_1007_s00466_017_1528_7 crossref_primary_10_1007_s11661_019_05322_w crossref_primary_10_1016_j_jmst_2020_11_032 crossref_primary_10_1016_j_jallcom_2024_175147 crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_111 crossref_primary_10_1007_s00170_020_05707_x crossref_primary_10_1016_j_jmapro_2022_07_007 crossref_primary_10_1080_02670836_2021_2023287 crossref_primary_10_1038_s41529_023_00359_0 crossref_primary_10_1016_j_cossms_2023_101106 crossref_primary_10_1038_s41598_019_39849_0 crossref_primary_10_1007_s11665_017_2966_2 crossref_primary_10_1080_17452759_2018_1532799 crossref_primary_10_3390_ma18071462 crossref_primary_10_1016_j_optlastec_2024_111480 crossref_primary_10_1016_j_addma_2025_104721 crossref_primary_10_1016_j_ijplas_2019_06_005 crossref_primary_10_1007_s40430_022_03813_3 crossref_primary_10_1016_j_promfg_2020_04_167 crossref_primary_10_1016_j_addma_2023_103472 crossref_primary_10_1016_j_jmapro_2021_12_018 crossref_primary_10_3390_ma11112327 crossref_primary_10_1016_j_cma_2017_03_005 crossref_primary_10_1007_s00170_019_04315_8 crossref_primary_10_1016_j_addma_2018_06_015 crossref_primary_10_1016_j_addma_2020_101417 crossref_primary_10_1016_j_jallcom_2023_169315 crossref_primary_10_1016_j_actamat_2020_07_063 crossref_primary_10_1007_s12008_022_00916_y crossref_primary_10_1016_j_ijfatigue_2020_105637 crossref_primary_10_1007_s00466_023_02270_6 crossref_primary_10_1016_j_prostr_2019_05_093 crossref_primary_10_1007_s12289_022_01729_w crossref_primary_10_1016_j_jmrt_2023_03_193 crossref_primary_10_1016_j_procir_2020_04_151 crossref_primary_10_1016_j_tafmec_2020_102611 crossref_primary_10_3390_ma14102511 crossref_primary_10_1107_S1600576720015344 crossref_primary_10_1016_j_msea_2021_141541 crossref_primary_10_1016_j_prostr_2021_12_021 crossref_primary_10_1016_j_cma_2025_117913 crossref_primary_10_3390_met12030462 crossref_primary_10_1088_2053_1591_ab4dd4 crossref_primary_10_1016_j_ijmecsci_2019_105362 crossref_primary_10_1007_s11837_019_03913_x crossref_primary_10_3390_ma17071498 crossref_primary_10_46399_muhendismakina_995979 crossref_primary_10_1088_2631_8695_acbd12 crossref_primary_10_1016_j_addma_2018_06_024 crossref_primary_10_1016_j_optlastec_2025_112775 crossref_primary_10_3390_ma17030624 crossref_primary_10_1007_s00161_021_01058_4 crossref_primary_10_3390_ma14216432 crossref_primary_10_1007_s11665_025_10972_6 crossref_primary_10_1016_j_ijfatigue_2019_105428 crossref_primary_10_1016_j_msea_2023_145397 crossref_primary_10_3390_ma16072595 crossref_primary_10_3390_ma17061338 |
Cites_doi | 10.1016/j.engfracmech.2014.03.008 10.1016/j.scriptamat.2016.09.001 10.1088/0965-0393/13/7/013 10.1016/j.matdes.2015.10.141 10.1179/1362171813Y.0000000144 10.1016/j.ijfatigue.2012.11.011 10.1016/S0921-5093(01)01179-0 10.1016/j.msea.2005.02.019 10.1038/srep19717 10.1016/j.commatsci.2005.07.007 10.1590/S1517-70762010000200033 10.1016/S0142-1123(02)00038-5 10.1115/1.2335852 10.1016/S0921-5093(01)01448-4 10.1016/j.optlaseng.2007.06.010 10.1063/1.4896751 10.1016/j.msea.2010.12.010 10.2351/1.4817788 10.1115/1.4025773 10.1007/s11661-014-2549-x 10.1007/s11668-013-9723-0 10.1016/j.commatsci.2003.12.005 10.1179/026708301101509980 10.1016/j.actamat.2016.05.057 10.1016/j.msea.2008.05.044 10.1126/science.257.5069.497 10.2351/1.1961688 10.1155/2014/841549 10.1016/j.jmatprotec.2016.04.006 10.1115/1.1843166 10.1108/13552540610707013 10.1016/j.commatsci.2011.06.023 10.1007/s11661-014-2722-2 10.1179/1743280411Y.0000000014 10.1115/1.3224988 10.1179/1743284714Y.0000000701 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D OTOTI |
DOI | 10.1016/j.commatsci.2016.10.003 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0801 |
EndPage | 372 |
ExternalDocumentID | 1397597 10_1016_j_commatsci_2016_10_003 S0927025616304980 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SR 8BQ 8FD AFXIZ EFKBS JG9 JQ2 L7M L~C L~D 6XO AALMO ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c548t-dad76ba00ec9ba44f4d140b2bcc4793013f0fbc6aee95be281471ba957c6f0193 |
IEDL.DBID | .~1 |
ISSN | 0927-0256 |
IngestDate | Fri May 19 02:11:41 EDT 2023 Thu Aug 07 14:40:18 EDT 2025 Tue Jul 01 00:38:08 EDT 2025 Thu Apr 24 23:10:02 EDT 2025 Fri Feb 23 02:27:22 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Thermo-mechanical modeling Additive manufacturing Fatigue failure Finite element analysis 3D printing Laser deposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c548t-dad76ba00ec9ba44f4d140b2bcc4793013f0fbc6aee95be281471ba957c6f0193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE NE0008280 |
OpenAccessLink | https://www.osti.gov/biblio/1397597 |
PQID | 1864539033 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | osti_scitechconnect_1397597 proquest_miscellaneous_1864539033 crossref_citationtrail_10_1016_j_commatsci_2016_10_003 crossref_primary_10_1016_j_commatsci_2016_10_003 elsevier_sciencedirect_doi_10_1016_j_commatsci_2016_10_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 20170101 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Computational materials science |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Withers, Bhadeshia (b0070) 2001; 17 Manvatkar, De, DebRoy (b0080) 2014; 116 Mills (b0150) 2002 David, DebRoy (b0090) 1992; 257 Alimardani, Toyserkani, Huissoon (b0140) 2007; 45 Mercelis, Kruth (b0120) 2006; 12 P. Scott, R. Olson, J. Bockbrader, M. Wilson, B. Gruen, R. Morbitzer, Y. Yang, C. Williams, F. Brust, L. Fredette, N. Ghadiali Battelle, The Battelle Integrity of Nuclear Piping (BINP), Program Final Report, Columbus, OH, 2005. Chang, Teng (b0020) 2004; 29 Schajer (b0075) 1981; 103 Gu, Meiners, Wissenbach, Poprawe (b0005) 2012; 57 Vasinonta, Beuth, Griffith (b0100) 2007; 129 Manvatkar, De, DebRoy (b0085) 2015; 31 Nie, Wang, McGuffin-Cawley, Narayanan, Zhang, Schwam, Kottman, Rong (b0135) 2016; 235 Al-Mukhtar (b0190) 2013; 13 Moat, Pinkerton, Li, Withers, Preuss (b0030) 2011; 528 Vastola, Zhang, Pei, Zhang (b0130) 2016 Seshacharyulu, Medeiros, Frazier, Prasad (b0170) 2002; 325 Abaqus Documentation, Version 6.14, Dassault Systems, 2015. Ding, Colegrove, Mehnen, Ganguly, Sequeira Almeida, Wang, Williams (b0015) 2011; 50 Rangaswamy, Griffith, Prime, Holden, Rogge, Edwards, Sebring (b0035) 2005; 399 Gavras, Brendan, Lados (b0215) 2010; 15 Wei, Elmer, DebRoy (b0225) 2016; 115 Edwards, O’Conner, Ramulu (b0210) 2013; 135 Nickel, Barnett, Prinz (b0110) 2001; 317 Zhang, Wang, Paddea, Zhang (b0050) 2016; 90 Mukherjee, Manvatkar, De, DebRoy (b0230) 2017; 127 Wang, Felicelli, Pratt (b0125) 2008; 496 Svensson, Gretoft, Bhadeshia (b0145) 1986; 15 Prabhakar, Sames, Dehoff, Babu (b0200) 2015; 7 Qiao, Zhang, Pan, Crooker, David, Feng (b0065) 2013; 18 Mughal, Fawad, Mufti, Siddique (b0105) 2005; 13 Ghosh, Choi (b0115) 2005; 17 Shah, Haq, Shah, Khan, Khan, Khan (b0185) 2014; 2014 Leuders, Thöne, Riemer, Niendorf, Tröster, Richard, Maier (b0205) 2013; 48 Sochalski-Kolbus, Payzant, Cornwell, Watkins, Babu, Dehoff, Lorenz, Ovchinnikova, Duty (b0060) 2015; 46 Kamara, Marimuthu, Li (b0160) 2011; 133 Wu, Brown, Kumar, Gallegos, King (b0045) 2014; 45 P.M. Kenney, D.E. Lindley, General Electric Company, 2013, U.S. Patent Application 14/440, 154. Lia, Martukanitz, Park, DebRoy, Mukherjee, Keist, Patankar (b0180) 2015 Bussu, Irving (b0040) 2003; 25 Riemer, Leuders, Thöne, Richard, Tröster, Niendorf (b0055) 2014; 120 Raghavan, Wei, Palmer, DebRoy (b0095) 2013; 25 Jackson, Chusoipin, Green (b0195) 2005; 127 Sames, List, Pannala, Dehoff, Babu (b0010) 2016 Deng, Murakawa (b0025) 2006; 37 Rangaswamy, Choo, Prime, Bourke, Larsen (b0175) 2000 Mukherjee, Zuback, De, DebRoy (b0220) 2016; 6 Moat (10.1016/j.commatsci.2016.10.003_b0030) 2011; 528 Bussu (10.1016/j.commatsci.2016.10.003_b0040) 2003; 25 Gu (10.1016/j.commatsci.2016.10.003_b0005) 2012; 57 Sochalski-Kolbus (10.1016/j.commatsci.2016.10.003_b0060) 2015; 46 Svensson (10.1016/j.commatsci.2016.10.003_b0145) 1986; 15 Deng (10.1016/j.commatsci.2016.10.003_b0025) 2006; 37 Wei (10.1016/j.commatsci.2016.10.003_b0225) 2016; 115 Nie (10.1016/j.commatsci.2016.10.003_b0135) 2016; 235 Mughal (10.1016/j.commatsci.2016.10.003_b0105) 2005; 13 10.1016/j.commatsci.2016.10.003_b0155 Rangaswamy (10.1016/j.commatsci.2016.10.003_b0175) 2000 Al-Mukhtar (10.1016/j.commatsci.2016.10.003_b0190) 2013; 13 Wu (10.1016/j.commatsci.2016.10.003_b0045) 2014; 45 Withers (10.1016/j.commatsci.2016.10.003_b0070) 2001; 17 Gavras (10.1016/j.commatsci.2016.10.003_b0215) 2010; 15 Ding (10.1016/j.commatsci.2016.10.003_b0015) 2011; 50 Schajer (10.1016/j.commatsci.2016.10.003_b0075) 1981; 103 Alimardani (10.1016/j.commatsci.2016.10.003_b0140) 2007; 45 Vasinonta (10.1016/j.commatsci.2016.10.003_b0100) 2007; 129 Zhang (10.1016/j.commatsci.2016.10.003_b0050) 2016; 90 Lia (10.1016/j.commatsci.2016.10.003_b0180) 2015 Prabhakar (10.1016/j.commatsci.2016.10.003_b0200) 2015; 7 Nickel (10.1016/j.commatsci.2016.10.003_b0110) 2001; 317 Chang (10.1016/j.commatsci.2016.10.003_b0020) 2004; 29 Manvatkar (10.1016/j.commatsci.2016.10.003_b0080) 2014; 116 David (10.1016/j.commatsci.2016.10.003_b0090) 1992; 257 Qiao (10.1016/j.commatsci.2016.10.003_b0065) 2013; 18 10.1016/j.commatsci.2016.10.003_b0235 Mukherjee (10.1016/j.commatsci.2016.10.003_b0220) 2016; 6 Seshacharyulu (10.1016/j.commatsci.2016.10.003_b0170) 2002; 325 Riemer (10.1016/j.commatsci.2016.10.003_b0055) 2014; 120 Mercelis (10.1016/j.commatsci.2016.10.003_b0120) 2006; 12 Kamara (10.1016/j.commatsci.2016.10.003_b0160) 2011; 133 Mills (10.1016/j.commatsci.2016.10.003_b0150) 2002 Edwards (10.1016/j.commatsci.2016.10.003_b0210) 2013; 135 Shah (10.1016/j.commatsci.2016.10.003_b0185) 2014; 2014 Mukherjee (10.1016/j.commatsci.2016.10.003_b0230) 2017; 127 Manvatkar (10.1016/j.commatsci.2016.10.003_b0085) 2015; 31 Wang (10.1016/j.commatsci.2016.10.003_b0125) 2008; 496 10.1016/j.commatsci.2016.10.003_b0165 Sames (10.1016/j.commatsci.2016.10.003_b0010) 2016 Rangaswamy (10.1016/j.commatsci.2016.10.003_b0035) 2005; 399 Ghosh (10.1016/j.commatsci.2016.10.003_b0115) 2005; 17 Jackson (10.1016/j.commatsci.2016.10.003_b0195) 2005; 127 Raghavan (10.1016/j.commatsci.2016.10.003_b0095) 2013; 25 Leuders (10.1016/j.commatsci.2016.10.003_b0205) 2013; 48 Vastola (10.1016/j.commatsci.2016.10.003_b0130) 2016 |
References_xml | – start-page: 1 year: 2016 end-page: 46 ident: b0010 article-title: The metallurgy and processing science of metal additive manufacturing publication-title: Int. Mater. Rev. – reference: Abaqus Documentation, Version 6.14, Dassault Systems, 2015. – volume: 45 start-page: 6260 year: 2014 end-page: 6270 ident: b0045 article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel publication-title: Metal. Mater. Trans. A – volume: 13 start-page: 1187 year: 2005 ident: b0105 article-title: Deformation modelling in layered manufacturing of metallic parts using gas metal arc welding: effect of process parameters publication-title: Model. Simul. Mater. Sci. Eng. – reference: P.M. Kenney, D.E. Lindley, General Electric Company, 2013, U.S. Patent Application 14/440, 154. – volume: 15 start-page: 319 year: 2010 end-page: 329 ident: b0215 article-title: Effects of microstructure on the fatigue crack growth behavior of light metals and design considerations publication-title: Matéria (Rio de Janeiro) – volume: 25 start-page: 77 year: 2003 end-page: 88 ident: b0040 article-title: The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints publication-title: Int. J. Fatigue – volume: 116 start-page: 124905 year: 2014 ident: b0080 article-title: Heat transfer and material flow during laser assisted multi-layer additive manufacturing publication-title: J. Appl. Phys. – volume: 12 start-page: 254 year: 2006 end-page: 265 ident: b0120 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. – volume: 7 start-page: 83 year: 2015 end-page: 91 ident: b0200 article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718 publication-title: Addit. Manuf. – volume: 135 start-page: 061016 year: 2013 ident: b0210 article-title: Electron beam additive manufacturing of titanium components: properties and performance publication-title: J. Manuf. Sci. Eng. – volume: 45 start-page: 1115 year: 2007 end-page: 1130 ident: b0140 article-title: A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process publication-title: Opt. Laser Eng. – volume: 120 start-page: 15 year: 2014 end-page: 25 ident: b0055 article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting publication-title: Eng. Fract. Mech. – volume: 133 start-page: 1 year: 2011 end-page: 9 ident: b0160 article-title: A numerical investigation into residual stress characteristics in laser deposited multiple layer waspaloy parts publication-title: Trans. ASME-B – J. Manuf. Sci. Eng. – volume: 325 start-page: 112 year: 2002 end-page: 125 ident: b0170 article-title: Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure publication-title: Mater. Sci. Eng. A – volume: 6 year: 2016 ident: b0220 article-title: Printability of alloys for additive manufacturing publication-title: Sci. Rep. – volume: 46 start-page: 1419 year: 2015 end-page: 1432 ident: b0060 article-title: Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering publication-title: Metal. Mater. Trans. A – volume: 17 start-page: 355 year: 2001 end-page: 365 ident: b0070 article-title: Residual stress. Part 1 – measurement techniques publication-title: Mater. Sci. Technol. – volume: 496 start-page: 234 year: 2008 end-page: 241 ident: b0125 article-title: Residual stresses in LENS-deposited AISI 410 stainless steel plates publication-title: Mater. Sci. Eng. A – volume: 50 start-page: 3315 year: 2011 end-page: 3322 ident: b0015 article-title: Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts publication-title: Comput. Mater. Sci. – volume: 15 start-page: 97 year: 1986 end-page: 103 ident: b0145 article-title: An analysis of cooling curves from the fusion zone of steel weld deposits publication-title: Scand. J. Metall. – volume: 48 start-page: 300 year: 2013 end-page: 307 ident: b0205 article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance publication-title: Int. J. Fatigue – year: 2016 ident: b0130 article-title: Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling publication-title: Addit. Manuf. – year: 2000 ident: b0175 article-title: High temperature stress assessment in SCS-6/Ti-6Al-4V composite using neutron diffraction and finite element modeling publication-title: International Conference on Processing & Manufacturing of Advanced Materials, Las Vegas, NV, USA – volume: 115 start-page: 123 year: 2016 end-page: 131 ident: b0225 article-title: Origin of grain orientation during solidification of an aluminum alloy publication-title: Acta Mater. – volume: 127 start-page: 79 year: 2017 end-page: 83 ident: b0230 article-title: Mitigation of thermal distortion during additive manufacturing publication-title: Scripta Mater. – volume: 2014 year: 2014 ident: b0185 article-title: Experimental study of direct laser deposition of Ti-6Al-4V and Inconel 718 by using pulsed parameters publication-title: Sci. World J. – volume: 257 start-page: 497 year: 1992 end-page: 502 ident: b0090 article-title: Current issues and problems in welding science publication-title: Science – volume: 129 start-page: 101 year: 2007 end-page: 109 ident: b0100 article-title: Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures publication-title: J. Manuf. Sci. Eng. – volume: 37 start-page: 269 year: 2006 end-page: 277 ident: b0025 article-title: Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements publication-title: Comput. Mater. Sci. – volume: 57 start-page: 133 year: 2012 end-page: 164 ident: b0005 article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms publication-title: Int. Mater. Rev. – volume: 399 start-page: 72 year: 2005 end-page: 83 ident: b0035 article-title: Residual stresses in LENS® components using neutron diffraction and contour method publication-title: Mater. Sci. Eng. A – volume: 31 start-page: 924 year: 2015 end-page: 930 ident: b0085 article-title: Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process publication-title: Mater. Sci. Technol. – reference: P. Scott, R. Olson, J. Bockbrader, M. Wilson, B. Gruen, R. Morbitzer, Y. Yang, C. Williams, F. Brust, L. Fredette, N. Ghadiali Battelle, The Battelle Integrity of Nuclear Piping (BINP), Program Final Report, Columbus, OH, 2005. – year: 2015 ident: b0180 article-title: Process and microstructural validation of the laser-based directed energy deposition process for Ti-6Al-4V and Inconel 625 material publication-title: Mater. Sci. Technol. – volume: 103 start-page: 157 year: 1981 end-page: 163 ident: b0075 article-title: Application of finite element calculations to residual stress measurements publication-title: J. Eng. Mater. Technol. – volume: 127 start-page: 484 year: 2005 end-page: 493 ident: b0195 article-title: A finite element study of the residual stress and deformation in hemispherical contacts publication-title: J. Tribol. – volume: 18 start-page: 624 year: 2013 end-page: 630 ident: b0065 article-title: Evaluation of residual plastic strain distribution in dissimilar metal weld by hardness mapping publication-title: Sci. Technol. Weld. Join. – volume: 17 start-page: 144 year: 2005 end-page: 158 ident: b0115 article-title: Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process publication-title: J. Laser Appl. – volume: 235 start-page: 171 year: 2016 end-page: 186 ident: b0135 article-title: Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing publication-title: J. Mater. Process. Technol. – volume: 13 start-page: 619 year: 2013 end-page: 623 ident: b0190 article-title: Residual stresses and stress intensity factor calculations in T-welded joints publication-title: J. Fail. Anal. Prevent. – volume: 29 start-page: 511 year: 2004 end-page: 522 ident: b0020 article-title: Numerical and experimental investigations on the residual stresses of the butt-welded joints publication-title: Comput. Mater. Sci. – volume: 25 start-page: 052006 year: 2013 ident: b0095 article-title: Heat transfer and fluid flow in additive manufacturing publication-title: J. Laser Appl. – year: 2002 ident: b0150 article-title: Recommended Values of Thermo-Physical Properties for Selected Commercial Alloys – volume: 90 start-page: 551 year: 2016 end-page: 561 ident: b0050 article-title: Fatigue crack propagation behaviour in wire publication-title: Mater. Des. – volume: 317 start-page: 59 year: 2001 end-page: 64 ident: b0110 article-title: Thermal stresses and deposition patterns in layered manufacturing publication-title: Mater. Sci. Eng. A – volume: 528 start-page: 2288 year: 2011 end-page: 2298 ident: b0030 article-title: Residual stresses in laser direct metal deposited Waspaloy publication-title: Mater. Sci. Eng. A – volume: 120 start-page: 15 year: 2014 ident: 10.1016/j.commatsci.2016.10.003_b0055 article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2014.03.008 – volume: 127 start-page: 79 year: 2017 ident: 10.1016/j.commatsci.2016.10.003_b0230 article-title: Mitigation of thermal distortion during additive manufacturing publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2016.09.001 – volume: 13 start-page: 1187 year: 2005 ident: 10.1016/j.commatsci.2016.10.003_b0105 article-title: Deformation modelling in layered manufacturing of metallic parts using gas metal arc welding: effect of process parameters publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/13/7/013 – volume: 90 start-page: 551 year: 2016 ident: 10.1016/j.commatsci.2016.10.003_b0050 article-title: Fatigue crack propagation behaviour in wire+arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.10.141 – volume: 18 start-page: 624 year: 2013 ident: 10.1016/j.commatsci.2016.10.003_b0065 article-title: Evaluation of residual plastic strain distribution in dissimilar metal weld by hardness mapping publication-title: Sci. Technol. Weld. Join. doi: 10.1179/1362171813Y.0000000144 – volume: 48 start-page: 300 year: 2013 ident: 10.1016/j.commatsci.2016.10.003_b0205 article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2012.11.011 – ident: 10.1016/j.commatsci.2016.10.003_b0235 – volume: 317 start-page: 59 year: 2001 ident: 10.1016/j.commatsci.2016.10.003_b0110 article-title: Thermal stresses and deposition patterns in layered manufacturing publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(01)01179-0 – volume: 399 start-page: 72 year: 2005 ident: 10.1016/j.commatsci.2016.10.003_b0035 article-title: Residual stresses in LENS® components using neutron diffraction and contour method publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2005.02.019 – volume: 6 year: 2016 ident: 10.1016/j.commatsci.2016.10.003_b0220 article-title: Printability of alloys for additive manufacturing publication-title: Sci. Rep. doi: 10.1038/srep19717 – volume: 37 start-page: 269 year: 2006 ident: 10.1016/j.commatsci.2016.10.003_b0025 article-title: Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.07.007 – year: 2015 ident: 10.1016/j.commatsci.2016.10.003_b0180 article-title: Process and microstructural validation of the laser-based directed energy deposition process for Ti-6Al-4V and Inconel 625 material publication-title: Mater. Sci. Technol. – volume: 15 start-page: 319 year: 2010 ident: 10.1016/j.commatsci.2016.10.003_b0215 article-title: Effects of microstructure on the fatigue crack growth behavior of light metals and design considerations publication-title: Matéria (Rio de Janeiro) doi: 10.1590/S1517-70762010000200033 – volume: 25 start-page: 77 year: 2003 ident: 10.1016/j.commatsci.2016.10.003_b0040 article-title: The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints publication-title: Int. J. Fatigue doi: 10.1016/S0142-1123(02)00038-5 – volume: 129 start-page: 101 year: 2007 ident: 10.1016/j.commatsci.2016.10.003_b0100 article-title: Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.2335852 – volume: 325 start-page: 112 year: 2002 ident: 10.1016/j.commatsci.2016.10.003_b0170 article-title: Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(01)01448-4 – volume: 45 start-page: 1115 year: 2007 ident: 10.1016/j.commatsci.2016.10.003_b0140 article-title: A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process publication-title: Opt. Laser Eng. doi: 10.1016/j.optlaseng.2007.06.010 – volume: 116 start-page: 124905 year: 2014 ident: 10.1016/j.commatsci.2016.10.003_b0080 article-title: Heat transfer and material flow during laser assisted multi-layer additive manufacturing publication-title: J. Appl. Phys. doi: 10.1063/1.4896751 – volume: 528 start-page: 2288 year: 2011 ident: 10.1016/j.commatsci.2016.10.003_b0030 article-title: Residual stresses in laser direct metal deposited Waspaloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.12.010 – volume: 25 start-page: 052006 year: 2013 ident: 10.1016/j.commatsci.2016.10.003_b0095 article-title: Heat transfer and fluid flow in additive manufacturing publication-title: J. Laser Appl. doi: 10.2351/1.4817788 – volume: 135 start-page: 061016 year: 2013 ident: 10.1016/j.commatsci.2016.10.003_b0210 article-title: Electron beam additive manufacturing of titanium components: properties and performance publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4025773 – volume: 45 start-page: 6260 year: 2014 ident: 10.1016/j.commatsci.2016.10.003_b0045 article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel publication-title: Metal. Mater. Trans. A doi: 10.1007/s11661-014-2549-x – volume: 13 start-page: 619 year: 2013 ident: 10.1016/j.commatsci.2016.10.003_b0190 article-title: Residual stresses and stress intensity factor calculations in T-welded joints publication-title: J. Fail. Anal. Prevent. doi: 10.1007/s11668-013-9723-0 – volume: 29 start-page: 511 year: 2004 ident: 10.1016/j.commatsci.2016.10.003_b0020 article-title: Numerical and experimental investigations on the residual stresses of the butt-welded joints publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2003.12.005 – volume: 17 start-page: 355 year: 2001 ident: 10.1016/j.commatsci.2016.10.003_b0070 article-title: Residual stress. Part 1 – measurement techniques publication-title: Mater. Sci. Technol. doi: 10.1179/026708301101509980 – volume: 115 start-page: 123 year: 2016 ident: 10.1016/j.commatsci.2016.10.003_b0225 article-title: Origin of grain orientation during solidification of an aluminum alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.057 – volume: 496 start-page: 234 year: 2008 ident: 10.1016/j.commatsci.2016.10.003_b0125 article-title: Residual stresses in LENS-deposited AISI 410 stainless steel plates publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.05.044 – volume: 257 start-page: 497 year: 1992 ident: 10.1016/j.commatsci.2016.10.003_b0090 article-title: Current issues and problems in welding science publication-title: Science doi: 10.1126/science.257.5069.497 – volume: 15 start-page: 97 year: 1986 ident: 10.1016/j.commatsci.2016.10.003_b0145 article-title: An analysis of cooling curves from the fusion zone of steel weld deposits publication-title: Scand. J. Metall. – ident: 10.1016/j.commatsci.2016.10.003_b0165 – volume: 17 start-page: 144 year: 2005 ident: 10.1016/j.commatsci.2016.10.003_b0115 article-title: Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process publication-title: J. Laser Appl. doi: 10.2351/1.1961688 – volume: 2014 year: 2014 ident: 10.1016/j.commatsci.2016.10.003_b0185 article-title: Experimental study of direct laser deposition of Ti-6Al-4V and Inconel 718 by using pulsed parameters publication-title: Sci. World J. doi: 10.1155/2014/841549 – start-page: 1 year: 2016 ident: 10.1016/j.commatsci.2016.10.003_b0010 article-title: The metallurgy and processing science of metal additive manufacturing publication-title: Int. Mater. Rev. – volume: 235 start-page: 171 year: 2016 ident: 10.1016/j.commatsci.2016.10.003_b0135 article-title: Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.04.006 – volume: 127 start-page: 484 year: 2005 ident: 10.1016/j.commatsci.2016.10.003_b0195 article-title: A finite element study of the residual stress and deformation in hemispherical contacts publication-title: J. Tribol. doi: 10.1115/1.1843166 – volume: 12 start-page: 254 year: 2006 ident: 10.1016/j.commatsci.2016.10.003_b0120 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. doi: 10.1108/13552540610707013 – volume: 50 start-page: 3315 year: 2011 ident: 10.1016/j.commatsci.2016.10.003_b0015 article-title: Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.06.023 – year: 2016 ident: 10.1016/j.commatsci.2016.10.003_b0130 article-title: Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling publication-title: Addit. Manuf. – volume: 46 start-page: 1419 year: 2015 ident: 10.1016/j.commatsci.2016.10.003_b0060 article-title: Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering publication-title: Metal. Mater. Trans. A doi: 10.1007/s11661-014-2722-2 – ident: 10.1016/j.commatsci.2016.10.003_b0155 – volume: 57 start-page: 133 year: 2012 ident: 10.1016/j.commatsci.2016.10.003_b0005 article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms publication-title: Int. Mater. Rev. doi: 10.1179/1743280411Y.0000000014 – year: 2000 ident: 10.1016/j.commatsci.2016.10.003_b0175 article-title: High temperature stress assessment in SCS-6/Ti-6Al-4V composite using neutron diffraction and finite element modeling – year: 2002 ident: 10.1016/j.commatsci.2016.10.003_b0150 – volume: 103 start-page: 157 year: 1981 ident: 10.1016/j.commatsci.2016.10.003_b0075 article-title: Application of finite element calculations to residual stress measurements publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3224988 – volume: 31 start-page: 924 year: 2015 ident: 10.1016/j.commatsci.2016.10.003_b0085 article-title: Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000701 – volume: 133 start-page: 1 year: 2011 ident: 10.1016/j.commatsci.2016.10.003_b0160 article-title: A numerical investigation into residual stress characteristics in laser deposited multiple layer waspaloy parts publication-title: Trans. ASME-B – J. Manuf. Sci. Eng. – volume: 7 start-page: 83 year: 2015 ident: 10.1016/j.commatsci.2016.10.003_b0200 article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718 publication-title: Addit. Manuf. |
SSID | ssj0016982 |
Score | 2.6429632 |
Snippet | [Display omitted]
•Roles of variables and alloys on stresses and strains in 3D printing are studied.•Quality of residual stress and distortion modeling depends... In laser assisted additive manufacturing (AM) an accurate estimation of residual stresses and distortion is necessary to achieve dimensional accuracy and... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 360 |
SubjectTerms | 3D printing Additive manufacturing Additives Delaminating Delamination Distortion Fatigue failure Finite element analysis Laser deposition Mathematical models Residual stress Temperature distribution Thermo-mechanical modeling Thickness |
Title | An improved prediction of residual stresses and distortion in additive manufacturing |
URI | https://dx.doi.org/10.1016/j.commatsci.2016.10.003 https://www.proquest.com/docview/1864539033 https://www.osti.gov/biblio/1397597 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpSqIzEmtZJHCdmqyqqAqILrdQtsh1HKoK06mPlt3PnJhUVQh1YE58T3dn3sL-7I-Se5T7TGnuEaZN43FfGU3FiPZH5moU20bHLhXkdisGYP0-iSY30qlwYhFWWun-j0522Lp90Sm525tNp541JzKUC-y_wqijBuJ3zGFd5-2sL8_CFdA2jcLCHo3cwXjA3-IUwO2K8RNvBvMK_LFR9Bpvul8p2dqh_Qo5LB5J2N_94Smq2OCNHP8oKnpNRt6BTd1hgMzpf4FUMsp_OcgrBtcu-opscEbukqsho5mqFuDHTgiLECJUg_VTFGhMfXCbjBRn3H0e9gVd2T_AMRCErL1NZLLRizBqpFec5zyCY0iATg6dp4PrlLNdGKGtlpG2Q-GCntJJRbEQOjl94SerFrLBXhDKd5xL8liDQkgdW6kSqJAqkVWDNbGQbRFQcS01ZWhw7XHykFYbsPd2yOkVW4wtgdYOwLeF8U11jP8lDJZJ0Z6GkYAP2EzdRiEiIJXINYomAEr1gCKwa5K6SbQqbDG9OVGFn62XqJ4JHoWRheP2fzzfJYYBegTvBuSH11WJtb8GnWemWW7QtctB9ehkMvwHk7fkP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MHtSD8RnxWROvC91X2XozRIIKXISEW9N2uwlGdwnC1d_uTNklEmM4eN3tdDcz7Tzab2YIuWOZz7TGHmHaJF7kK-OpVmI9nvqahTbRLZcL0x_w7ih6HsfjLdKucmEQVlnq_qVOd9q6fNIsudmcTibNVyYwlwrsP8erogTi9u0Iti-2MWh8rXAePheuYxSO9nD4GsgLJgfHEKZHkBdvOJxX-JeJqhWw637pbGeIOgdkv_Qg6cPyJw_Jls2PyN6PuoLHZPiQ04k7LbApnc7wLgb5T4uMQnTt0q_oMknEflKVpzR1xULcmElOEWOEWpB-qHyBmQ8ulfGEjDqPw3bXK9sneAbCkLmXqrTFtWLMGqFVFGVRCtGUBqEYPE4D3y9jmTZcWStibYPEB0OllYhbhmfg-YWnpJYXuT0jlOksE-C4BIEWUWCFToRK4kBYBebMxrZOeMUxacra4tji4l1WILI3uWK1RFbjC2B1nbAV4XRZXmMzyX0lErm2UiQYgc3EFyhEJMQauQbBRECJbjBEVnVyW8lWwi7DqxOV22LxKf2Ew9oSLAzP__P5G7LTHfZ7svc0eLkguwG6CO4455LU5rOFvQIHZ66v3QL-Bo4v-p0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+prediction+of+residual+stresses+and+distortion+in+additive+manufacturing&rft.jtitle=Computational+materials+science&rft.au=Mukherjee%2C+T&rft.au=Zhang%2C+W&rft.au=DebRoy%2C+T&rft.date=2017-01-01&rft.issn=0927-0256&rft.volume=126&rft.spage=360&rft.epage=372&rft_id=info:doi/10.1016%2Fj.commatsci.2016.10.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |