Giant enhancement of second harmonic generation from monolayer 2D materials placed on photonic moiré superlattice
We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials....
Saved in:
Published in | Nanophotonics (Berlin, Germany) Vol. 12; no. 21; pp. 4009 - 4016 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
01.10.2023
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS
monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10
at a relatively low intensity of fundamental light 1 kW/cm
, which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics. |
---|---|
AbstractList | We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS
monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10
at a relatively low intensity of fundamental light 1 kW/cm
, which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics. We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS 2 monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10 −1 at a relatively low intensity of fundamental light 1 kW/cm 2 , which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics. We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS2 monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10-1 at a relatively low intensity of fundamental light 1 kW/cm2, which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics.We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS2 monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10-1 at a relatively low intensity of fundamental light 1 kW/cm2, which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics. We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS2 monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10−1 at a relatively low intensity of fundamental light 1 kW/cm2, which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics. |
Author | Zhao, Lina Cai, Yangjian Ning, Tingyin Ren, Yingying Huo, Yanyan |
Author_xml | – sequence: 1 givenname: Tingyin orcidid: 0000-0003-4683-9197 surname: Ning fullname: Ning, Tingyin organization: Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China – sequence: 2 givenname: Lina surname: Zhao fullname: Zhao, Lina email: lnzhao@sdnu.edu.cn organization: Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China – sequence: 3 givenname: Yanyan surname: Huo fullname: Huo, Yanyan organization: Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China – sequence: 4 givenname: Yangjian surname: Cai fullname: Cai, Yangjian organization: Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China – sequence: 5 givenname: Yingying surname: Ren fullname: Ren, Yingying email: ryywly@sdnu.edu.cn organization: Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39635636$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV3TsgSFy4Bjz_ycQJUoFSqxKV3a-JMdr1K7OAkRfuT-B38Mby7pbSVwBePxu89Pc-859mRD56y7CXwt6BBv_Pow7jOBRcy5yDUk-xEQC3yqgB1dK8-zs6macPTqWsJdfEsO5Z1IXUhi5MsXjj0MyO_Rm9poFSHjk1kg2_ZGuMQvLNsRZ4izi541sUwsNQNPW4pMvGJDThTdNhPbOzRUssSalyHec8cgou_frJpGSn2OM_O0ovsaZfQdHZ7n2bXXz5fn3_Nr75dXJ5_vMqtVtWcWysLXjQd8bZtQFvUwuqmanRD0FQdcl7armq4tqBLglaKolEtyU5rZWuUp9nlQbYNuDFjdAPGrQnozL4R4spgTH56MqQVVQJbKdMYG6URrQBRCyRedrzkSev9QWtcmoFam8YUsX8g-vDFu7VZhRsDoDkUe4U3twoxfF9oms3gJkt9j57CMhkJqtCCl7JO0NePoJuwRJ9GZURVAShQqkyoV_ct3Xn5s9oE4AeAjWGaInV3EOBmFyBzCJDZBcjsApQoxSOKdfN-7elTrv8f8cOB-AP7FIaWVnHZpuKv839RQQhQKZnyN6c748M |
CitedBy_id | crossref_primary_10_1364_OL_530541 crossref_primary_10_1039_D4NR03467H crossref_primary_10_1088_1674_1056_ada2f0 crossref_primary_10_1039_D3NR05805K crossref_primary_10_1038_s41467_024_45580_w crossref_primary_10_1515_nanoph_2024_0267 crossref_primary_10_1038_s41586_024_07826_x crossref_primary_10_1016_j_optcom_2025_131585 crossref_primary_10_1364_OL_525441 |
Cites_doi | 10.1002/adma.201603928 10.1038/s41565-021-00956-7 10.1002/adpr.202000180 10.1021/acs.nanolett.5b04448 10.1364/OE.445348 10.1039/C5NR03133H 10.1002/adfm.202206507 10.1016/j.matt.2020.09.013 10.1364/OL.468191 10.1002/lpor.201800188 10.1039/C4NR01600A 10.1038/nnano.2015.73 10.1088/2053-1583/4/1/015031 10.1103/PhysRevLett.114.097403 10.1038/s41377-020-00459-5 10.1103/PhysRevB.87.201401 10.1038/s41566-021-00859-y 10.1038/s41586-019-1851-6 10.1016/j.ssc.2020.114043 10.1140/epjp/i2018-12154-3 10.1038/nature26160 10.1021/acsnano.7b08682 10.1364/OL.453625 10.1002/inf2.12024 10.1038/lsa.2017.60 10.1038/s41566-018-0175-7 10.1021/acsnano.2c03033 10.1021/nl401561r 10.1103/PhysRevB.87.161403 10.1038/s41566-020-0679-9 10.1021/acsomega.1c06855 10.1007/s11468-019-00986-x 10.1038/s41566-022-01067-y 10.1016/j.matt.2020.08.018 10.1038/s41565-021-00963-8 10.1103/PhysRevB.103.L161401 10.1063/1.5051965 10.1021/acsnano.5b06110 10.1364/OME.6.002360 10.1038/s41586-019-0975-z 10.1021/acsnano.7b03819 10.1103/PhysRevB.104.L201408 10.1002/adma.201606128 10.1038/nature12186 10.1038/s41377-018-0115-9 10.1103/PhysRevLett.128.253901 10.1364/OE.409276 10.1038/nature26154 |
ContentType | Journal Article |
Copyright | 2023 the author(s), published by De Gruyter, Berlin/Boston. 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
Copyright_xml | – notice: 2023 the author(s), published by De Gruyter, Berlin/Boston. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
DBID | AAYXX CITATION NPM 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1515/nanoph-2023-0124 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2192-8614 |
EndPage | 4016 |
ExternalDocumentID | oai_doaj_org_article_e54e82ad33124b45aac21292ae07f070 PMC11501670 39635636 10_1515_nanoph_2023_0124 10_1515_nanoph_2023_012412214009 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12274271,12174228 |
GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV ADMLS AEJTT AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ HZ~ M48 O9- OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC QD8 RPM SA. SLJYH AAYXX CITATION 9-L AIKXB F-. IPNFZ NPM RIG ~Z8 7SP 7U5 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c548t-cc3606bfe0ddb15ca52c5b8b5be1b8fa007cf8b05c157e1d326b4de3f554c9a3 |
IEDL.DBID | M48 |
ISSN | 2192-8614 2192-8606 |
IngestDate | Wed Aug 27 01:03:55 EDT 2025 Thu Aug 21 18:35:18 EDT 2025 Fri Jul 11 09:08:58 EDT 2025 Sun Jul 13 05:16:12 EDT 2025 Wed Feb 19 02:03:20 EST 2025 Thu Apr 24 23:12:31 EDT 2025 Tue Jul 01 00:41:54 EDT 2025 Thu Jul 10 10:34:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | moiré superlattice 2D-material second harmonic generation |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 2023 the author(s), published by De Gruyter, Berlin/Boston. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c548t-cc3606bfe0ddb15ca52c5b8b5be1b8fa007cf8b05c157e1d326b4de3f554c9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4683-9197 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2023-0124 |
PMID | 39635636 |
PQID | 2881141447 |
PQPubID | 2038884 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e54e82ad33124b45aac21292ae07f070 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501670 proquest_miscellaneous_3146520739 proquest_journals_2881141447 pubmed_primary_39635636 crossref_primary_10_1515_nanoph_2023_0124 crossref_citationtrail_10_1515_nanoph_2023_0124 walterdegruyter_journals_10_1515_nanoph_2023_012412214009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Nanophotonics (Berlin, Germany) |
PublicationTitleAlternate | Nanophotonics |
PublicationYear | 2023 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023102508065646937_j_nanoph-2023-0124_ref_031 2023102508065646937_j_nanoph-2023-0124_ref_032 2023102508065646937_j_nanoph-2023-0124_ref_033 2023102508065646937_j_nanoph-2023-0124_ref_034 2023102508065646937_j_nanoph-2023-0124_ref_030 2023102508065646937_j_nanoph-2023-0124_ref_028 2023102508065646937_j_nanoph-2023-0124_ref_029 2023102508065646937_j_nanoph-2023-0124_ref_024 2023102508065646937_j_nanoph-2023-0124_ref_025 2023102508065646937_j_nanoph-2023-0124_ref_026 2023102508065646937_j_nanoph-2023-0124_ref_027 2023102508065646937_j_nanoph-2023-0124_ref_020 2023102508065646937_j_nanoph-2023-0124_ref_021 2023102508065646937_j_nanoph-2023-0124_ref_022 2023102508065646937_j_nanoph-2023-0124_ref_023 2023102508065646937_j_nanoph-2023-0124_ref_017 2023102508065646937_j_nanoph-2023-0124_ref_018 2023102508065646937_j_nanoph-2023-0124_ref_019 2023102508065646937_j_nanoph-2023-0124_ref_013 2023102508065646937_j_nanoph-2023-0124_ref_014 2023102508065646937_j_nanoph-2023-0124_ref_015 2023102508065646937_j_nanoph-2023-0124_ref_016 2023102508065646937_j_nanoph-2023-0124_ref_010 2023102508065646937_j_nanoph-2023-0124_ref_011 2023102508065646937_j_nanoph-2023-0124_ref_012 2023102508065646937_j_nanoph-2023-0124_ref_006 2023102508065646937_j_nanoph-2023-0124_ref_007 2023102508065646937_j_nanoph-2023-0124_ref_008 2023102508065646937_j_nanoph-2023-0124_ref_009 2023102508065646937_j_nanoph-2023-0124_ref_002 2023102508065646937_j_nanoph-2023-0124_ref_046 2023102508065646937_j_nanoph-2023-0124_ref_003 2023102508065646937_j_nanoph-2023-0124_ref_047 2023102508065646937_j_nanoph-2023-0124_ref_004 2023102508065646937_j_nanoph-2023-0124_ref_048 2023102508065646937_j_nanoph-2023-0124_ref_005 2023102508065646937_j_nanoph-2023-0124_ref_049 2023102508065646937_j_nanoph-2023-0124_ref_042 2023102508065646937_j_nanoph-2023-0124_ref_043 2023102508065646937_j_nanoph-2023-0124_ref_044 2023102508065646937_j_nanoph-2023-0124_ref_001 2023102508065646937_j_nanoph-2023-0124_ref_045 2023102508065646937_j_nanoph-2023-0124_ref_040 2023102508065646937_j_nanoph-2023-0124_ref_041 2023102508065646937_j_nanoph-2023-0124_ref_039 2023102508065646937_j_nanoph-2023-0124_ref_035 2023102508065646937_j_nanoph-2023-0124_ref_036 2023102508065646937_j_nanoph-2023-0124_ref_037 2023102508065646937_j_nanoph-2023-0124_ref_038 |
References_xml | – ident: 2023102508065646937_j_nanoph-2023-0124_ref_048 doi: 10.1002/adma.201603928 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_034 doi: 10.1038/s41565-021-00956-7 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_043 doi: 10.1002/adpr.202000180 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_024 doi: 10.1021/acs.nanolett.5b04448 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_036 doi: 10.1364/OE.445348 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_015 doi: 10.1039/C5NR03133H – ident: 2023102508065646937_j_nanoph-2023-0124_ref_009 doi: 10.1002/adfm.202206507 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_040 doi: 10.1016/j.matt.2020.09.013 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_037 doi: 10.1364/OL.468191 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_016 doi: 10.1002/lpor.201800188 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_008 doi: 10.1039/C4NR01600A – ident: 2023102508065646937_j_nanoph-2023-0124_ref_004 doi: 10.1038/nnano.2015.73 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_018 doi: 10.1088/2053-1583/4/1/015031 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_014 doi: 10.1103/PhysRevLett.114.097403 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_038 doi: 10.1038/s41377-020-00459-5 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_003 doi: 10.1103/PhysRevB.87.201401 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_007 doi: 10.1038/s41566-021-00859-y – ident: 2023102508065646937_j_nanoph-2023-0124_ref_032 doi: 10.1038/s41586-019-1851-6 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_019 doi: 10.1016/j.ssc.2020.114043 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_020 doi: 10.1140/epjp/i2018-12154-3 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_028 doi: 10.1038/nature26160 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_017 doi: 10.1021/acsnano.7b08682 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_041 doi: 10.1364/OL.453625 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_045 doi: 10.1002/inf2.12024 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_021 doi: 10.1038/lsa.2017.60 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_005 doi: 10.1038/s41566-018-0175-7 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_026 doi: 10.1021/acsnano.2c03033 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_044 doi: 10.1021/nl401561r – ident: 2023102508065646937_j_nanoph-2023-0124_ref_002 doi: 10.1103/PhysRevB.87.161403 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_033 doi: 10.1038/s41566-020-0679-9 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_049 doi: 10.1021/acsomega.1c06855 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_012 doi: 10.1007/s11468-019-00986-x – ident: 2023102508065646937_j_nanoph-2023-0124_ref_023 doi: 10.1038/s41566-022-01067-y – ident: 2023102508065646937_j_nanoph-2023-0124_ref_039 doi: 10.1016/j.matt.2020.08.018 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_047 doi: 10.1038/s41565-021-00963-8 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_013 doi: 10.1103/PhysRevB.103.L161401 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_006 doi: 10.1063/1.5051965 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_011 doi: 10.1021/acsnano.5b06110 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_025 doi: 10.1364/OME.6.002360 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_030 doi: 10.1038/s41586-019-0975-z – ident: 2023102508065646937_j_nanoph-2023-0124_ref_046 doi: 10.1021/acsnano.7b03819 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_031 doi: 10.1103/PhysRevB.104.L201408 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_010 doi: 10.1002/adma.201606128 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_027 doi: 10.1038/nature12186 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_022 doi: 10.1038/s41377-018-0115-9 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_035 doi: 10.1103/PhysRevLett.128.253901 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_001 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_042 doi: 10.1364/OE.409276 – ident: 2023102508065646937_j_nanoph-2023-0124_ref_029 doi: 10.1038/nature26154 |
SSID | ssj0000993196 |
Score | 2.2680607 |
Snippet | We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric... |
SourceID | doaj pubmedcentral proquest pubmed crossref walterdegruyter |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4009 |
SubjectTerms | 2D-material Dielectrics Efficiency Luminous intensity moiré superlattice Monolayers Nonlinear optics Photonics Second harmonic generation Superlattices Two dimensional materials |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JjtQwELXQnLgMO2QYkJG4cIg63hLnyDaMOHAapLlZXqcHQdLqpIX4JL6DH6PKSTfTrBeuiSNVXK9Sr-LyMyFPhW8boapQQrqTpdSpKS1uzrGpZszZyHjIap_v6tP38u25Or9y1Bf2hE3ywNPELaKSUXMbhIBM5KSy1sPXtuU2Vk0CvOLXF3LelWLqw8R7EFvzuiTk7EVnu361LPG0cCifudzLQ1mu_3cc89dWycPPeRk7xIv15su4XTbN2ejkJjmcaSR9Ppl_i1yL3W1yY6aUdA7Y4Q5ZvwH3jzR2S_Qu_gmkfaIDVsGBomo1KuPSi6w9jS6iuN2EwlWoeIGMU_6KAqWdUEpz_1agMGq17Mf85Kf-cv3tKx02K_wvOGIn3V1ydvL67OVpOR-zUHooV8bSewFVjEuxCsEx5a3iXjntlIvM6WSBRfikXaU8U01kAQifkyGKBEzEt1bcIwdd38UHhGoga0FFARRJy8ArG5JydazbKGWoQ12QxXbOjZ8lyPEkjI8GSxHwkpm8ZNBLBr1UkGe7J1aT_MZfxr5AN-7GoXB2vgBwMjOczL_gVJDjLQjMHM2D4VpD2QilZ1OQJ7vbEIe4uGK72G8GIyDlKI7rngW5P2FmZ4loUQVQwPvrPTTtmbp_p7tcZq1vJOysRrvan4D3w7w_TQjjHMrnqj36HxPzkFzPsZP7GI_JwbjexEfAx0b3OIfedx4YNrE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-HS8iZQkJG4cIg2sePEOSEKLRWHCqEi9Rb5ld1KkIQkq4qfxO_gjzHjeFMtj14TW3I8M55vPJNvCHnFTVlwkdgY3F0WZ7IuYoU_56g6T1OtXMqsZ_s8y0-_ZB8vxEW4cBtCWeX2TPQHtW0N3pEvmZQA3QH-F2-67zF2jcLsamihcZvswREs5YLsHR2fffo837IA_kEdww5zAGViCXA95CrBjy8b1bTdOsYO4hBSs2zHN3kK_3_hzr_LJ_evfGrbulW_-TFuU6neQ53cJfsBWtK3ky7cI7dcc58cBJhJgxEPD0j_AVRipK5Zo8TxdpC2NR0wMrYUmayRLZeuPB81io3iLygUnkIUDACdsvcUYO6kudTXdFkKo7p1O_qZ39rL_tdPOmw6vCscsbruITk_OT5_dxqH1guxgRBmjI3hsFW6dom1OhVGCWaEllpol2pZK0AWppY6ESYVhUstgECdWcdrQCemVPwRWTRt454QKgHAWeE4wCaZWZYoWwudu7x0WWZzm0dkud3zygRacuyO8bXC8ASkVE1SqlBKFUopIq_nGd1EyXHD2CMU4zwOybT9g7ZfVcE2KycyJ5mynMMMnQmlDGhTyZRLihqOxIgcbpWgChY-VNf6GJGX82uwTUy4qMa1m6Hi4IYEw1xoRB5POjOvhJfIDMjh--WONu0sdfdNc7n2_N8I4tMc11X-oXjXy_vfhqSMQUidlE9v_qZn5I63Cl-1eEgWY79xzwF9jfpFMLHfQIMx6w priority: 102 providerName: ProQuest |
Title | Giant enhancement of second harmonic generation from monolayer 2D materials placed on photonic moiré superlattice |
URI | https://www.degruyter.com/doi/10.1515/nanoph-2023-0124 https://www.ncbi.nlm.nih.gov/pubmed/39635636 https://www.proquest.com/docview/2881141447 https://www.proquest.com/docview/3146520739 https://pubmed.ncbi.nlm.nih.gov/PMC11501670 https://doaj.org/article/e54e82ad33124b45aac21292ae07f070 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe-FS3hAokZG4cAhN7DhxDghR6LZCokKolXqL_MpuUUmWJCvoT-J38MeYcbJbLSwcuCb2rnceO9947G8Iec5NkXMR2wjCXRqlssojhZdzVJUliVYuYdazfZ5kx2fp-3Nxfn09ehRgtzG1w35SZ-3ly-9fr16Dw7_y3XsSsV-rupnPImwEDpkxS7fIDsSlHPsZfBjB_ucBC6G9Ybc5gDWRBOg-1i03fchanPJ0_psw6J9HKXe_-TK3ddN2cdUvy6o-Wk1uk90RZtI3g13cITdcfZfcGiEnHR26u0faIzCPnrp6htrHnULaVLTDLNlSZLVG5lw69dzUqEKK11EoPAWxAVin7B0FyDtYMfXnuyyFUfNZ0_uZX5qL9ucP2i3muG_Y40m7--R0cnj69jga2zBEBtKZPjKGg6h05WJrdSKMEswILbXQLtGyUoAyTCV1LEwicpdYAIQ6tY5XgFRMofgDsl03tXtEqAQwZ4XjAKFkalmsbCV05rLCpanNbBaQ_aXMSzNSlGOnjMsSUxXQUjloqUQtlailgLxYzZgP9Bz_GHuAalyNQ2Jt_6Bpp-Xop6UTqZNMWc5hhk6FUgaCe8GUi_MK_h4Dsrc0gnJprCWTEtJKSE3zgDxbvQY_xeKLql2z6EoOIUkwrIsG5OFgM6uV8AJZAjn8frlmTWtLXX9TX8w8FzgC-iTDdRW_Gd718v4mkIQxSK_j4vH_f-0TctN7jD_duEe2-3bhngJK63VItuTkKCQ7B4cnHz-Ffq8j9A4Z-i21X8cvRJ4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcClvGGhgJHgwCHaxI6zzgEhoGy3tPS0SL1ZfmW3EiTLJquqP4kDv4I_xoyTbLU8eus1sRMn83nmG489Q8hLbvMRF7GLwNylUSqLUaTxcI4usiQx2ifMhWyfx9nkS_rpRJxskZ_9WRjcVtnrxKCoXWVxjXzIpATqDvR_9HbxPcKqURhd7UtotLA49Odn4LLVbw72QL6vGBt_nH6YRF1VgcgCO28iazmQdlP42DmTCKsFs8JII4xPjCw0GE1bSBMLm4iRTxzwG5M6zwswvDbXHB57jVxPORhyPJg-3l8v6QDZQkBjOTvgTZGE13SBUSANw1KX1WIeYbly8N9ZumEIQ72Af5Hcv_dq7pyFOLrzs-XqvOnjtsEcjm-TnY7H0nct8O6QLV_eJbc6Tks7jVHfI8t9wF9DfTlHeOFSJK0KWqMb7iimzcbUvHQWkl8jRiied6FwFVxu8AYo26PAqdtpQsMGMkeh1WJeNaHnt-p0-esHrVcLXJhscCvffTK9Cok8INtlVfpHhEpgi054DhxNpo7F2hXCZD7LfZq6zGUDMuz_ubJdDnQsxfFVoS8EUlKtlBRKSaGUBuT1useizf9xSdv3KMZ1O8zcHS5Uy5nqFIHyIvWSacc59DCp0NoCe8iZ9vGoAP07ILs9CFSnTmp1Af4BebG-DYoAozu69NWqVhxsnmAYeB2Qhy1m1iPhOaYh5PD9cgNNG0PdvFOezkOycfQYkgzHlf8BvIvh_e-HJIyB_x7njy__pufkxmT6-UgdHRwfPiE3wwwJ2yV3yXazXPmnQPsa8yxMNkrUFU_u36y8bts |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVkJcyhtSChiJC4doEzvO41hatstDBYki9Wb5ld1KkER5qOIn8Tv4Y8wk2cBC4cI19kiTzEzmG3v8mZDn3GQJF4H1Id1FfpTmia_wcI7K4zDUyoXM9myfp_HyU_TmXJzvkKPNWRhsq7RuVXdf24EhdW5L0-FC2cQ1ABl4XqiirNY-3v0NxTCL5pXNr5HdOM64mJHdw-XJx_fTUguAIHS0cZPyKvGtpNRz918FOP_sm9y77Pe0J4V_SU2LW2RvxJT0cHCC22THFXfIzRFf0jF6m7ukPgFfaKkr1mhqfFta5rTBkthSpLBGmly66omo0V4Uz55QeArlLyBzyo4p4NvBZWnfzGUpzKrWZdtLfikv6u_faNNVuEjYYlvdPXK2eHV2tPTHOxd8A7VL6xvDoaTRuQus1aEwSjAjdKqFdqFOcwWQwuSpDoQJReJCC-hPR9bxHGCJyRS_T2ZFWbiHhKaA3KxwHPBSGlkWKJsLHbs4c1FkYxt7ZL755tKMfOR4LcZniXUJWEkOVpJoJYlW8siLSaIauDj-MfclmnGahyza_YOyXskxKKUTkUuZspyDhI6EUgYyecaUC5Ic_oUeOdg4gRxDu5EsTaGGhDo08cizaRiCEndaVOHKrpEc8o9guAnqkQeDz0ya8AwpATm8f7rlTVuqbo8UF-ue-BvRexijXtlvjvdTvb99kJAxqKWDbP8_ZJ-S6x-OF_Ld69O3j8iNPnr6tsYDMmvrzj0GeNbqJ2P4_QASYzvh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+enhancement+of+second+harmonic+generation+from+monolayer+2D+materials+placed+on+photonic+moir%C3%A9+superlattice&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Ning%2C+Tingyin&rft.au=Zhao%2C+Lina&rft.au=Huo%2C+Yanyan&rft.au=Cai%2C+Yangjian&rft.date=2023-10-01&rft.pub=De+Gruyter&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=12&rft.issue=21&rft.spage=4009&rft.epage=4016&rft_id=info:doi/10.1515%2Fnanoph-2023-0124&rft.externalDocID=PMC11501670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon |