Giant enhancement of second harmonic generation from monolayer 2D materials placed on photonic moiré superlattice

We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials....

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 12; no. 21; pp. 4009 - 4016
Main Authors Ning, Tingyin, Zhao, Lina, Huo, Yanyan, Cai, Yangjian, Ren, Yingying
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 01.10.2023
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10 at a relatively low intensity of fundamental light 1 kW/cm , which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics.
AbstractList We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10 at a relatively low intensity of fundamental light 1 kW/cm , which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics.
We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS 2 monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10 −1 at a relatively low intensity of fundamental light 1 kW/cm 2 , which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics.
We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS2 monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10-1 at a relatively low intensity of fundamental light 1 kW/cm2, which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics.We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS2 monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10-1 at a relatively low intensity of fundamental light 1 kW/cm2, which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics.
We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric materials. The greatly enhanced local field at the resonance modes of moiré superlattice can dramatically boost the SHG response in 2D materials. Considering a typical 2D-material MoS2 monolayer placed on a photonic moiré superlattice of a twist angle 9.43°, the maximum SHG conversion efficiency reaches up to 10−1 at a relatively low intensity of fundamental light 1 kW/cm2, which is around 14 orders of magnitude larger than that from the monolayer placed on a flat dielectric slab without moiré superlattices. The SHG conversion efficiency from the monolayer can be further enhanced with the decrease of the twist angles of moiré superlattice due to the even more confinement of local field. The flat bands in the moiré superlattices formed by the small twist angles can particularly ensure the efficiency even under wide-angle illuminations. The results indicate that photonic moiré superlattice which can tightly confine light is a promising platform for efficient nonlinear optics.
Author Zhao, Lina
Cai, Yangjian
Ning, Tingyin
Ren, Yingying
Huo, Yanyan
Author_xml – sequence: 1
  givenname: Tingyin
  orcidid: 0000-0003-4683-9197
  surname: Ning
  fullname: Ning, Tingyin
  organization: Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
– sequence: 2
  givenname: Lina
  surname: Zhao
  fullname: Zhao, Lina
  email: lnzhao@sdnu.edu.cn
  organization: Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
– sequence: 3
  givenname: Yanyan
  surname: Huo
  fullname: Huo, Yanyan
  organization: Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
– sequence: 4
  givenname: Yangjian
  surname: Cai
  fullname: Cai, Yangjian
  organization: Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
– sequence: 5
  givenname: Yingying
  surname: Ren
  fullname: Ren, Yingying
  email: ryywly@sdnu.edu.cn
  organization: Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39635636$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV3TsgSFy4Bjz_ycQJUoFSqxKV3a-JMdr1K7OAkRfuT-B38Mby7pbSVwBePxu89Pc-859mRD56y7CXwt6BBv_Pow7jOBRcy5yDUk-xEQC3yqgB1dK8-zs6macPTqWsJdfEsO5Z1IXUhi5MsXjj0MyO_Rm9poFSHjk1kg2_ZGuMQvLNsRZ4izi541sUwsNQNPW4pMvGJDThTdNhPbOzRUssSalyHec8cgou_frJpGSn2OM_O0ovsaZfQdHZ7n2bXXz5fn3_Nr75dXJ5_vMqtVtWcWysLXjQd8bZtQFvUwuqmanRD0FQdcl7armq4tqBLglaKolEtyU5rZWuUp9nlQbYNuDFjdAPGrQnozL4R4spgTH56MqQVVQJbKdMYG6URrQBRCyRedrzkSev9QWtcmoFam8YUsX8g-vDFu7VZhRsDoDkUe4U3twoxfF9oms3gJkt9j57CMhkJqtCCl7JO0NePoJuwRJ9GZURVAShQqkyoV_ct3Xn5s9oE4AeAjWGaInV3EOBmFyBzCJDZBcjsApQoxSOKdfN-7elTrv8f8cOB-AP7FIaWVnHZpuKv839RQQhQKZnyN6c748M
CitedBy_id crossref_primary_10_1364_OL_530541
crossref_primary_10_1039_D4NR03467H
crossref_primary_10_1088_1674_1056_ada2f0
crossref_primary_10_1039_D3NR05805K
crossref_primary_10_1038_s41467_024_45580_w
crossref_primary_10_1515_nanoph_2024_0267
crossref_primary_10_1038_s41586_024_07826_x
crossref_primary_10_1016_j_optcom_2025_131585
crossref_primary_10_1364_OL_525441
Cites_doi 10.1002/adma.201603928
10.1038/s41565-021-00956-7
10.1002/adpr.202000180
10.1021/acs.nanolett.5b04448
10.1364/OE.445348
10.1039/C5NR03133H
10.1002/adfm.202206507
10.1016/j.matt.2020.09.013
10.1364/OL.468191
10.1002/lpor.201800188
10.1039/C4NR01600A
10.1038/nnano.2015.73
10.1088/2053-1583/4/1/015031
10.1103/PhysRevLett.114.097403
10.1038/s41377-020-00459-5
10.1103/PhysRevB.87.201401
10.1038/s41566-021-00859-y
10.1038/s41586-019-1851-6
10.1016/j.ssc.2020.114043
10.1140/epjp/i2018-12154-3
10.1038/nature26160
10.1021/acsnano.7b08682
10.1364/OL.453625
10.1002/inf2.12024
10.1038/lsa.2017.60
10.1038/s41566-018-0175-7
10.1021/acsnano.2c03033
10.1021/nl401561r
10.1103/PhysRevB.87.161403
10.1038/s41566-020-0679-9
10.1021/acsomega.1c06855
10.1007/s11468-019-00986-x
10.1038/s41566-022-01067-y
10.1016/j.matt.2020.08.018
10.1038/s41565-021-00963-8
10.1103/PhysRevB.103.L161401
10.1063/1.5051965
10.1021/acsnano.5b06110
10.1364/OME.6.002360
10.1038/s41586-019-0975-z
10.1021/acsnano.7b03819
10.1103/PhysRevB.104.L201408
10.1002/adma.201606128
10.1038/nature12186
10.1038/s41377-018-0115-9
10.1103/PhysRevLett.128.253901
10.1364/OE.409276
10.1038/nature26154
ContentType Journal Article
Copyright 2023 the author(s), published by De Gruyter, Berlin/Boston.
2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
Copyright_xml – notice: 2023 the author(s), published by De Gruyter, Berlin/Boston.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1515/nanoph-2023-0124
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 4016
ExternalDocumentID oai_doaj_org_article_e54e82ad33124b45aac21292ae07f070
PMC11501670
39635636
10_1515_nanoph_2023_0124
10_1515_nanoph_2023_012412214009
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12274271,12174228
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
M48
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
QD8
RPM
SA.
SLJYH
AAYXX
CITATION
9-L
AIKXB
F-.
IPNFZ
NPM
RIG
~Z8
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c548t-cc3606bfe0ddb15ca52c5b8b5be1b8fa007cf8b05c157e1d326b4de3f554c9a3
IEDL.DBID M48
ISSN 2192-8614
2192-8606
IngestDate Wed Aug 27 01:03:55 EDT 2025
Thu Aug 21 18:35:18 EDT 2025
Fri Jul 11 09:08:58 EDT 2025
Sun Jul 13 05:16:12 EDT 2025
Wed Feb 19 02:03:20 EST 2025
Thu Apr 24 23:12:31 EDT 2025
Tue Jul 01 00:41:54 EDT 2025
Thu Jul 10 10:34:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords moiré superlattice
2D-material
second harmonic generation
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
2023 the author(s), published by De Gruyter, Berlin/Boston.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-cc3606bfe0ddb15ca52c5b8b5be1b8fa007cf8b05c157e1d326b4de3f554c9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4683-9197
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2023-0124
PMID 39635636
PQID 2881141447
PQPubID 2038884
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_e54e82ad33124b45aac21292ae07f070
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501670
proquest_miscellaneous_3146520739
proquest_journals_2881141447
pubmed_primary_39635636
crossref_primary_10_1515_nanoph_2023_0124
crossref_citationtrail_10_1515_nanoph_2023_0124
walterdegruyter_journals_10_1515_nanoph_2023_012412214009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Oct
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationTitleAlternate Nanophotonics
PublicationYear 2023
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023102508065646937_j_nanoph-2023-0124_ref_031
2023102508065646937_j_nanoph-2023-0124_ref_032
2023102508065646937_j_nanoph-2023-0124_ref_033
2023102508065646937_j_nanoph-2023-0124_ref_034
2023102508065646937_j_nanoph-2023-0124_ref_030
2023102508065646937_j_nanoph-2023-0124_ref_028
2023102508065646937_j_nanoph-2023-0124_ref_029
2023102508065646937_j_nanoph-2023-0124_ref_024
2023102508065646937_j_nanoph-2023-0124_ref_025
2023102508065646937_j_nanoph-2023-0124_ref_026
2023102508065646937_j_nanoph-2023-0124_ref_027
2023102508065646937_j_nanoph-2023-0124_ref_020
2023102508065646937_j_nanoph-2023-0124_ref_021
2023102508065646937_j_nanoph-2023-0124_ref_022
2023102508065646937_j_nanoph-2023-0124_ref_023
2023102508065646937_j_nanoph-2023-0124_ref_017
2023102508065646937_j_nanoph-2023-0124_ref_018
2023102508065646937_j_nanoph-2023-0124_ref_019
2023102508065646937_j_nanoph-2023-0124_ref_013
2023102508065646937_j_nanoph-2023-0124_ref_014
2023102508065646937_j_nanoph-2023-0124_ref_015
2023102508065646937_j_nanoph-2023-0124_ref_016
2023102508065646937_j_nanoph-2023-0124_ref_010
2023102508065646937_j_nanoph-2023-0124_ref_011
2023102508065646937_j_nanoph-2023-0124_ref_012
2023102508065646937_j_nanoph-2023-0124_ref_006
2023102508065646937_j_nanoph-2023-0124_ref_007
2023102508065646937_j_nanoph-2023-0124_ref_008
2023102508065646937_j_nanoph-2023-0124_ref_009
2023102508065646937_j_nanoph-2023-0124_ref_002
2023102508065646937_j_nanoph-2023-0124_ref_046
2023102508065646937_j_nanoph-2023-0124_ref_003
2023102508065646937_j_nanoph-2023-0124_ref_047
2023102508065646937_j_nanoph-2023-0124_ref_004
2023102508065646937_j_nanoph-2023-0124_ref_048
2023102508065646937_j_nanoph-2023-0124_ref_005
2023102508065646937_j_nanoph-2023-0124_ref_049
2023102508065646937_j_nanoph-2023-0124_ref_042
2023102508065646937_j_nanoph-2023-0124_ref_043
2023102508065646937_j_nanoph-2023-0124_ref_044
2023102508065646937_j_nanoph-2023-0124_ref_001
2023102508065646937_j_nanoph-2023-0124_ref_045
2023102508065646937_j_nanoph-2023-0124_ref_040
2023102508065646937_j_nanoph-2023-0124_ref_041
2023102508065646937_j_nanoph-2023-0124_ref_039
2023102508065646937_j_nanoph-2023-0124_ref_035
2023102508065646937_j_nanoph-2023-0124_ref_036
2023102508065646937_j_nanoph-2023-0124_ref_037
2023102508065646937_j_nanoph-2023-0124_ref_038
References_xml – ident: 2023102508065646937_j_nanoph-2023-0124_ref_048
  doi: 10.1002/adma.201603928
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_034
  doi: 10.1038/s41565-021-00956-7
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_043
  doi: 10.1002/adpr.202000180
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_024
  doi: 10.1021/acs.nanolett.5b04448
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_036
  doi: 10.1364/OE.445348
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_015
  doi: 10.1039/C5NR03133H
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_009
  doi: 10.1002/adfm.202206507
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_040
  doi: 10.1016/j.matt.2020.09.013
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_037
  doi: 10.1364/OL.468191
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_016
  doi: 10.1002/lpor.201800188
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_008
  doi: 10.1039/C4NR01600A
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_004
  doi: 10.1038/nnano.2015.73
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_018
  doi: 10.1088/2053-1583/4/1/015031
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_014
  doi: 10.1103/PhysRevLett.114.097403
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_038
  doi: 10.1038/s41377-020-00459-5
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_003
  doi: 10.1103/PhysRevB.87.201401
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_007
  doi: 10.1038/s41566-021-00859-y
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_032
  doi: 10.1038/s41586-019-1851-6
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_019
  doi: 10.1016/j.ssc.2020.114043
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_020
  doi: 10.1140/epjp/i2018-12154-3
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_028
  doi: 10.1038/nature26160
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_017
  doi: 10.1021/acsnano.7b08682
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_041
  doi: 10.1364/OL.453625
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_045
  doi: 10.1002/inf2.12024
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_021
  doi: 10.1038/lsa.2017.60
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_005
  doi: 10.1038/s41566-018-0175-7
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_026
  doi: 10.1021/acsnano.2c03033
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_044
  doi: 10.1021/nl401561r
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_002
  doi: 10.1103/PhysRevB.87.161403
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_033
  doi: 10.1038/s41566-020-0679-9
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_049
  doi: 10.1021/acsomega.1c06855
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_012
  doi: 10.1007/s11468-019-00986-x
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_023
  doi: 10.1038/s41566-022-01067-y
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_039
  doi: 10.1016/j.matt.2020.08.018
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_047
  doi: 10.1038/s41565-021-00963-8
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_013
  doi: 10.1103/PhysRevB.103.L161401
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_006
  doi: 10.1063/1.5051965
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_011
  doi: 10.1021/acsnano.5b06110
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_025
  doi: 10.1364/OME.6.002360
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_030
  doi: 10.1038/s41586-019-0975-z
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_046
  doi: 10.1021/acsnano.7b03819
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_031
  doi: 10.1103/PhysRevB.104.L201408
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_010
  doi: 10.1002/adma.201606128
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_027
  doi: 10.1038/nature12186
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_022
  doi: 10.1038/s41377-018-0115-9
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_035
  doi: 10.1103/PhysRevLett.128.253901
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_001
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_042
  doi: 10.1364/OE.409276
– ident: 2023102508065646937_j_nanoph-2023-0124_ref_029
  doi: 10.1038/nature26154
SSID ssj0000993196
Score 2.2680607
Snippet We numerically investigate second harmonic generation (SHG) from a monolayer of 2D-material placed on photonic moiré superlattice fabricated by dielectric...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4009
SubjectTerms 2D-material
Dielectrics
Efficiency
Luminous intensity
moiré superlattice
Monolayers
Nonlinear optics
Photonics
Second harmonic generation
Superlattices
Two dimensional materials
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JjtQwELXQnLgMO2QYkJG4cIg63hLnyDaMOHAapLlZXqcHQdLqpIX4JL6DH6PKSTfTrBeuiSNVXK9Sr-LyMyFPhW8boapQQrqTpdSpKS1uzrGpZszZyHjIap_v6tP38u25Or9y1Bf2hE3ywNPELaKSUXMbhIBM5KSy1sPXtuU2Vk0CvOLXF3LelWLqw8R7EFvzuiTk7EVnu361LPG0cCifudzLQ1mu_3cc89dWycPPeRk7xIv15su4XTbN2ejkJjmcaSR9Ppl_i1yL3W1yY6aUdA7Y4Q5ZvwH3jzR2S_Qu_gmkfaIDVsGBomo1KuPSi6w9jS6iuN2EwlWoeIGMU_6KAqWdUEpz_1agMGq17Mf85Kf-cv3tKx02K_wvOGIn3V1ydvL67OVpOR-zUHooV8bSewFVjEuxCsEx5a3iXjntlIvM6WSBRfikXaU8U01kAQifkyGKBEzEt1bcIwdd38UHhGoga0FFARRJy8ArG5JydazbKGWoQ12QxXbOjZ8lyPEkjI8GSxHwkpm8ZNBLBr1UkGe7J1aT_MZfxr5AN-7GoXB2vgBwMjOczL_gVJDjLQjMHM2D4VpD2QilZ1OQJ7vbEIe4uGK72G8GIyDlKI7rngW5P2FmZ4loUQVQwPvrPTTtmbp_p7tcZq1vJOysRrvan4D3w7w_TQjjHMrnqj36HxPzkFzPsZP7GI_JwbjexEfAx0b3OIfedx4YNrE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-HS8iZQkJG4cIg2sePEOSEKLRWHCqEi9Rb5ld1KkIQkq4qfxO_gjzHjeFMtj14TW3I8M55vPJNvCHnFTVlwkdgY3F0WZ7IuYoU_56g6T1OtXMqsZ_s8y0-_ZB8vxEW4cBtCWeX2TPQHtW0N3pEvmZQA3QH-F2-67zF2jcLsamihcZvswREs5YLsHR2fffo837IA_kEdww5zAGViCXA95CrBjy8b1bTdOsYO4hBSs2zHN3kK_3_hzr_LJ_evfGrbulW_-TFuU6neQ53cJfsBWtK3ky7cI7dcc58cBJhJgxEPD0j_AVRipK5Zo8TxdpC2NR0wMrYUmayRLZeuPB81io3iLygUnkIUDACdsvcUYO6kudTXdFkKo7p1O_qZ39rL_tdPOmw6vCscsbruITk_OT5_dxqH1guxgRBmjI3hsFW6dom1OhVGCWaEllpol2pZK0AWppY6ESYVhUstgECdWcdrQCemVPwRWTRt454QKgHAWeE4wCaZWZYoWwudu7x0WWZzm0dkud3zygRacuyO8bXC8ASkVE1SqlBKFUopIq_nGd1EyXHD2CMU4zwOybT9g7ZfVcE2KycyJ5mynMMMnQmlDGhTyZRLihqOxIgcbpWgChY-VNf6GJGX82uwTUy4qMa1m6Hi4IYEw1xoRB5POjOvhJfIDMjh--WONu0sdfdNc7n2_N8I4tMc11X-oXjXy_vfhqSMQUidlE9v_qZn5I63Cl-1eEgWY79xzwF9jfpFMLHfQIMx6w
  priority: 102
  providerName: ProQuest
Title Giant enhancement of second harmonic generation from monolayer 2D materials placed on photonic moiré superlattice
URI https://www.degruyter.com/doi/10.1515/nanoph-2023-0124
https://www.ncbi.nlm.nih.gov/pubmed/39635636
https://www.proquest.com/docview/2881141447
https://www.proquest.com/docview/3146520739
https://pubmed.ncbi.nlm.nih.gov/PMC11501670
https://doaj.org/article/e54e82ad33124b45aac21292ae07f070
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe-FS3hAokZG4cAhN7DhxDghR6LZCokKolXqL_MpuUUmWJCvoT-J38MeYcbJbLSwcuCb2rnceO9947G8Iec5NkXMR2wjCXRqlssojhZdzVJUliVYuYdazfZ5kx2fp-3Nxfn09ehRgtzG1w35SZ-3ly-9fr16Dw7_y3XsSsV-rupnPImwEDpkxS7fIDsSlHPsZfBjB_ucBC6G9Ybc5gDWRBOg-1i03fchanPJ0_psw6J9HKXe_-TK3ddN2cdUvy6o-Wk1uk90RZtI3g13cITdcfZfcGiEnHR26u0faIzCPnrp6htrHnULaVLTDLNlSZLVG5lw69dzUqEKK11EoPAWxAVin7B0FyDtYMfXnuyyFUfNZ0_uZX5qL9ucP2i3muG_Y40m7--R0cnj69jga2zBEBtKZPjKGg6h05WJrdSKMEswILbXQLtGyUoAyTCV1LEwicpdYAIQ6tY5XgFRMofgDsl03tXtEqAQwZ4XjAKFkalmsbCV05rLCpanNbBaQ_aXMSzNSlGOnjMsSUxXQUjloqUQtlailgLxYzZgP9Bz_GHuAalyNQ2Jt_6Bpp-Xop6UTqZNMWc5hhk6FUgaCe8GUi_MK_h4Dsrc0gnJprCWTEtJKSE3zgDxbvQY_xeKLql2z6EoOIUkwrIsG5OFgM6uV8AJZAjn8frlmTWtLXX9TX8w8FzgC-iTDdRW_Gd718v4mkIQxSK_j4vH_f-0TctN7jD_duEe2-3bhngJK63VItuTkKCQ7B4cnHz-Ffq8j9A4Z-i21X8cvRJ4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcClvGGhgJHgwCHaxI6zzgEhoGy3tPS0SL1ZfmW3EiTLJquqP4kDv4I_xoyTbLU8eus1sRMn83nmG489Q8hLbvMRF7GLwNylUSqLUaTxcI4usiQx2ifMhWyfx9nkS_rpRJxskZ_9WRjcVtnrxKCoXWVxjXzIpATqDvR_9HbxPcKqURhd7UtotLA49Odn4LLVbw72QL6vGBt_nH6YRF1VgcgCO28iazmQdlP42DmTCKsFs8JII4xPjCw0GE1bSBMLm4iRTxzwG5M6zwswvDbXHB57jVxPORhyPJg-3l8v6QDZQkBjOTvgTZGE13SBUSANw1KX1WIeYbly8N9ZumEIQ72Af5Hcv_dq7pyFOLrzs-XqvOnjtsEcjm-TnY7H0nct8O6QLV_eJbc6Tks7jVHfI8t9wF9DfTlHeOFSJK0KWqMb7iimzcbUvHQWkl8jRiied6FwFVxu8AYo26PAqdtpQsMGMkeh1WJeNaHnt-p0-esHrVcLXJhscCvffTK9Cok8INtlVfpHhEpgi054DhxNpo7F2hXCZD7LfZq6zGUDMuz_ubJdDnQsxfFVoS8EUlKtlBRKSaGUBuT1useizf9xSdv3KMZ1O8zcHS5Uy5nqFIHyIvWSacc59DCp0NoCe8iZ9vGoAP07ILs9CFSnTmp1Af4BebG-DYoAozu69NWqVhxsnmAYeB2Qhy1m1iPhOaYh5PD9cgNNG0PdvFOezkOycfQYkgzHlf8BvIvh_e-HJIyB_x7njy__pufkxmT6-UgdHRwfPiE3wwwJ2yV3yXazXPmnQPsa8yxMNkrUFU_u36y8bts
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVkJcyhtSChiJC4doEzvO41hatstDBYki9Wb5ld1KkER5qOIn8Tv4Y8wk2cBC4cI19kiTzEzmG3v8mZDn3GQJF4H1Id1FfpTmia_wcI7K4zDUyoXM9myfp_HyU_TmXJzvkKPNWRhsq7RuVXdf24EhdW5L0-FC2cQ1ABl4XqiirNY-3v0NxTCL5pXNr5HdOM64mJHdw-XJx_fTUguAIHS0cZPyKvGtpNRz918FOP_sm9y77Pe0J4V_SU2LW2RvxJT0cHCC22THFXfIzRFf0jF6m7ukPgFfaKkr1mhqfFta5rTBkthSpLBGmly66omo0V4Uz55QeArlLyBzyo4p4NvBZWnfzGUpzKrWZdtLfikv6u_faNNVuEjYYlvdPXK2eHV2tPTHOxd8A7VL6xvDoaTRuQus1aEwSjAjdKqFdqFOcwWQwuSpDoQJReJCC-hPR9bxHGCJyRS_T2ZFWbiHhKaA3KxwHPBSGlkWKJsLHbs4c1FkYxt7ZL755tKMfOR4LcZniXUJWEkOVpJoJYlW8siLSaIauDj-MfclmnGahyza_YOyXskxKKUTkUuZspyDhI6EUgYyecaUC5Ic_oUeOdg4gRxDu5EsTaGGhDo08cizaRiCEndaVOHKrpEc8o9guAnqkQeDz0ya8AwpATm8f7rlTVuqbo8UF-ue-BvRexijXtlvjvdTvb99kJAxqKWDbP8_ZJ-S6x-OF_Ld69O3j8iNPnr6tsYDMmvrzj0GeNbqJ2P4_QASYzvh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+enhancement+of+second+harmonic+generation+from+monolayer+2D+materials+placed+on+photonic+moir%C3%A9+superlattice&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Ning%2C+Tingyin&rft.au=Zhao%2C+Lina&rft.au=Huo%2C+Yanyan&rft.au=Cai%2C+Yangjian&rft.date=2023-10-01&rft.pub=De+Gruyter&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=12&rft.issue=21&rft.spage=4009&rft.epage=4016&rft_id=info:doi/10.1515%2Fnanoph-2023-0124&rft.externalDocID=PMC11501670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon