Revising quantum optical phenomena in adatoms coupled to graphene nanoantennas

Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that electron tunneling might influence the o...

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 11; no. 14; pp. 3281 - 3298
Main Authors Kosik, Miriam, Müller, Marvin M., Słowik, Karolina, Bryant, Garnett, Ayuela, Andrés, Rockstuhl, Carsten, Pelc, Marta
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 01.07.2022
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that electron tunneling might influence the optical and electronic properties of the system. However, tunneling is usually not considered if the optical coupling mechanism between quantum emitters and nanoantennas is at focus. This work presents a framework for describing the electron dynamics in hybrid systems consisting of graphene nanoflakes coupled both electronically and optically to adatoms and subject to external illumination. Our framework combines the single-particle tight-binding approach with a nonlinear master equation formalism that captures both optical and electronic interactions. We apply the framework to demonstrate the impact of electron tunneling between the adatom and the flake on emblematic quantum optical phenomena: degradation of coherent Rabi oscillations and quenching of Purcell spontaneous emission enhancement in two-level adatoms in proximity of triangular graphene nanoflakes.
AbstractList Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that electron tunneling might influence the optical and electronic properties of the system. However, tunneling is usually not considered if the optical coupling mechanism between quantum emitters and nanoantennas is at focus. This work presents a framework for describing the electron dynamics in hybrid systems consisting of graphene nanoflakes coupled both electronically and optically to adatoms and subject to external illumination. Our framework combines the single-particle tight-binding approach with a nonlinear master equation formalism that captures both optical and electronic interactions. We apply the framework to demonstrate the impact of electron tunneling between the adatom and the flake on emblematic quantum optical phenomena: degradation of coherent Rabi oscillations and quenching of Purcell spontaneous emission enhancement in two-level adatoms in proximity of triangular graphene nanoflakes.
Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that electron tunneling might influence the optical and electronic properties of the system. However, tunneling is usually not considered if the optical coupling mechanism between quantum emitters and nanoantennas is at focus. This work presents a framework for describing the electron dynamics in hybrid systems consisting of graphene nanoflakes coupled both electronically and optically to adatoms and subject to external illumination. Our framework combines the single-particle tight-binding approach with a nonlinear master equation formalism that captures both optical and electronic interactions. We apply the framework to demonstrate the impact of electron tunneling between the adatom and the flake on emblematic quantum optical phenomena: degradation of coherent Rabi oscillations and quenching of Purcell spontaneous emission enhancement in two-level adatoms in proximity of triangular graphene nanoflakes.Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that electron tunneling might influence the optical and electronic properties of the system. However, tunneling is usually not considered if the optical coupling mechanism between quantum emitters and nanoantennas is at focus. This work presents a framework for describing the electron dynamics in hybrid systems consisting of graphene nanoflakes coupled both electronically and optically to adatoms and subject to external illumination. Our framework combines the single-particle tight-binding approach with a nonlinear master equation formalism that captures both optical and electronic interactions. We apply the framework to demonstrate the impact of electron tunneling between the adatom and the flake on emblematic quantum optical phenomena: degradation of coherent Rabi oscillations and quenching of Purcell spontaneous emission enhancement in two-level adatoms in proximity of triangular graphene nanoflakes.
Author Ayuela, Andrés
Słowik, Karolina
Rockstuhl, Carsten
Pelc, Marta
Kosik, Miriam
Müller, Marvin M.
Bryant, Garnett
Author_xml – sequence: 1
  givenname: Miriam
  orcidid: 0000-0002-3660-2199
  surname: Kosik
  fullname: Kosik, Miriam
  email: mkosik@doktorant.umk.pl
  organization: Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Toruń 87-100, Poland
– sequence: 2
  givenname: Marvin M.
  surname: Müller
  fullname: Müller, Marvin M.
  email: marvin.mueller@kit.edu
  organization: Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
– sequence: 3
  givenname: Karolina
  surname: Słowik
  fullname: Słowik, Karolina
  organization: Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Toruń 87-100, Poland
– sequence: 4
  givenname: Garnett
  surname: Bryant
  fullname: Bryant, Garnett
  organization: Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg 20899, MD, USA
– sequence: 5
  givenname: Andrés
  surname: Ayuela
  fullname: Ayuela, Andrés
  organization: Donostia International Physics Center (DIPC), Paseo Manuel Lardizabal 4, Donostia-San Sebastián 20018, Spain
– sequence: 6
  givenname: Carsten
  surname: Rockstuhl
  fullname: Rockstuhl, Carsten
  organization: Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76021, Germany
– sequence: 7
  givenname: Marta
  surname: Pelc
  fullname: Pelc, Marta
  organization: Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Toruń 87-100, Poland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39635547$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFARLaV3TigSFy4Bf8QfOQGqoK1UgYTgbL04L7teJXZqJ0X99zhsC20l8MXP9sx4_DzPiwMfPBbFS0reUkHFOw8-TNuKEcYqQkX9pDhitGGVlrQ-uFcfFicp7UgeTcNpI58Vh7yRXIhaHRVfvuG1S85vyqsF_LyMZZhmZ2Eopy36MKKH0vkSOpjDmEoblmnArpxDuYmwQrBcfWQqeg_pRfG0hyHhye18XPz4_On76Xl1-fXs4vTjZWVFreeqtRJ1j5JbrqntWwKC6aZvKehO1apphZBUsR6hbbtaoJbYSoKgteqY6pEfFxd73S7AzkzRjRBvTABnfm-EuDEQ8zsGNJzSBppGMapIbeuuFVwi5XkthVW0zlrv91rT0o7YWfRzhOGB6MMT77ZmE64NpYJkEZ0V3twqxHC1YJrN6JLFYQCPYUnZQi0FI1qvl71-BN2FJfrcK8OkJpJwoVRGvbpv6Y-Xu3_LALkH2BhSitgb62aYXVgdusFQYtaMmH1GzJoRs2YkE8kj4p32fygf9pSfMMwYO9zE5SYXf53_i0ppbi_TlP8C3yjVXw
CitedBy_id crossref_primary_10_1021_acs_jpcc_4c03874
crossref_primary_10_1103_PhysRevA_109_022237
crossref_primary_10_3390_app13042221
crossref_primary_10_1515_zpch_2022_0112
crossref_primary_10_1016_j_optmat_2023_114771
crossref_primary_10_1021_acs_jpclett_2c03205
Cites_doi 10.1103/PhysRevB.82.075427
10.1016/j.ssc.2009.02.040
10.1038/s41467-019-13820-z
10.1103/PhysRevB.77.235430
10.1103/PhysRevLett.113.056602
10.1021/acsphotonics.6b00653
10.1088/0957-4484/27/31/31LT03
10.1103/PhysRevB.98.081411
10.1021/ph5004829
10.1515/nanoph-2012-0035
10.1021/acsphotonics.7b00668
10.1103/PhysRevLett.121.173603
10.1103/PhysRevLett.117.123904
10.1021/nl201771h
10.1021/acs.jpcc.7b04369
10.5772/20477
10.1038/nature11253
10.1103/PhysRevA.60.4094
10.1021/nl404826r
10.1103/PhysRevB.81.125433
10.1039/C9RA07319A
10.1021/nl803811g
10.1063/5.0018944
10.1103/PhysRevLett.58.2059
10.1021/acsphotonics.7b00740
10.1021/nn204780e
10.1038/nphoton.2012.262
10.1103/PhysRevB.97.205433
10.1039/C5NR08630B
10.1117/12.2590037
10.1103/PhysRevB.104.235414
10.1021/acsphotonics.1c00309
10.1038/nphoton.2016.45
10.1038/ncomms6725
10.1103/PhysRevB.89.115428
10.1126/science.1248797
10.1073/pnas.0502848102
10.1017/CBO9780511794193
10.1126/science.abb1570
10.1021/ph500269q
10.1021/acs.jpcc.0c07964
10.1007/BFb0107761
10.1021/acs.accounts.9b00308
10.1093/oso/9780198501770.001.0001
10.1038/nature17974
10.1103/PhysRevLett.112.253601
10.1103/PhysRevB.103.195429
10.1016/j.snb.2018.02.181
10.1021/ph5003472
10.1039/C5CP01177A
10.1103/PhysRevB.88.195414
10.1103/PhysRevB.66.035412
10.1038/ncomms14380
10.1103/PhysRevB.82.075425
10.1126/science.1102896
10.1021/ph400147y
10.1103/PhysRevB.90.161407
10.1103/PhysRevB.83.245442
10.1134/S1063782616030052
10.1103/PhysRevA.82.043845
10.1364/OE.18.016546
10.1038/s41598-020-62629-0
10.1038/nphoton.2014.228
10.1103/PhysRevLett.118.157402
10.1063/5.0038883
10.1021/nn202463g
10.1088/1367-2630/14/4/043022
ContentType Journal Article
Copyright 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston.
2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
Copyright_xml – notice: 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1515/nanoph-2022-0154
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 3298
ExternalDocumentID oai_doaj_org_article_3119a99721704c4db536e1372165c714
PMC11501658
39635547
10_1515_nanoph_2022_0154
10_1515_nanoph_2022_015411143281
Genre Journal Article
GrantInformation_xml – fundername: European Commission
  grantid: H2020-FET OPEN Project MIRACLE (No. GA 964450); NRG-STORAGE Project (No. GA 870114)
– fundername: Narodowe Centrum Nauki
  grantid: 2016/23/G/ST3/04045
– fundername: Ministerio de Ciencia e Innovación
  grantid: ID2019-105488GB- I00; PCI2019-103657
– fundername: Karlsruhe House of Young Scientists
  grantid: Research Travel Grant
– fundername: Euskal Herriko Unibertsitatea
  grantid: Project No. IT-1246- 19
– fundername: Narodowe Centrum Nauki
  grantid: 2020/39/I/ST3/00526
– fundername: Deutsche Forschungsgemeinschaft
  grantid: Project 378579271 within Project RO 3640/8-1
– fundername: Volkswagen Foundation
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
M48
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
QD8
RPM
SA.
SLJYH
AAYXX
CITATION
9-L
AIKXB
F-.
IPNFZ
NPM
RIG
~Z8
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c548t-bc6e8fe63c381cfb0a5289fb1a8d7479b556172feabbd45e86eb60ea887d27fe3
IEDL.DBID M48
ISSN 2192-8614
2192-8606
IngestDate Wed Aug 27 01:02:52 EDT 2025
Thu Aug 21 18:35:18 EDT 2025
Fri Jul 11 04:36:02 EDT 2025
Sun Jul 13 03:36:46 EDT 2025
Wed Feb 19 02:03:19 EST 2025
Tue Jul 01 00:41:52 EDT 2025
Thu Apr 24 23:04:52 EDT 2025
Thu Jul 10 10:34:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords nanoantennas
adatoms
nanoflakes
graphene
two-level system
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-bc6e8fe63c381cfb0a5289fb1a8d7479b556172feabbd45e86eb60ea887d27fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3660-2199
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2022-0154
PMID 39635547
PQID 2680603577
PQPubID 2038884
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_3119a99721704c4db536e1372165c714
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501658
proquest_miscellaneous_3146520884
proquest_journals_2680603577
pubmed_primary_39635547
crossref_citationtrail_10_1515_nanoph_2022_0154
crossref_primary_10_1515_nanoph_2022_0154
walterdegruyter_journals_10_1515_nanoph_2022_015411143281
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationTitleAlternate Nanophotonics
PublicationYear 2022
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023041309512777524_j_nanoph-2022-0154_ref_062
2023041309512777524_j_nanoph-2022-0154_ref_061
2023041309512777524_j_nanoph-2022-0154_ref_060
2023041309512777524_j_nanoph-2022-0154_ref_022
2023041309512777524_j_nanoph-2022-0154_ref_066
2023041309512777524_j_nanoph-2022-0154_ref_021
2023041309512777524_j_nanoph-2022-0154_ref_065
2023041309512777524_j_nanoph-2022-0154_ref_020
2023041309512777524_j_nanoph-2022-0154_ref_064
2023041309512777524_j_nanoph-2022-0154_ref_063
2023041309512777524_j_nanoph-2022-0154_ref_015
2023041309512777524_j_nanoph-2022-0154_ref_059
2023041309512777524_j_nanoph-2022-0154_ref_014
2023041309512777524_j_nanoph-2022-0154_ref_058
2023041309512777524_j_nanoph-2022-0154_ref_013
2023041309512777524_j_nanoph-2022-0154_ref_057
2023041309512777524_j_nanoph-2022-0154_ref_012
2023041309512777524_j_nanoph-2022-0154_ref_056
2023041309512777524_j_nanoph-2022-0154_ref_019
2023041309512777524_j_nanoph-2022-0154_ref_018
2023041309512777524_j_nanoph-2022-0154_ref_017
2023041309512777524_j_nanoph-2022-0154_ref_016
2023041309512777524_j_nanoph-2022-0154_ref_033
2023041309512777524_j_nanoph-2022-0154_ref_032
2023041309512777524_j_nanoph-2022-0154_ref_031
2023041309512777524_j_nanoph-2022-0154_ref_030
2023041309512777524_j_nanoph-2022-0154_ref_026
2023041309512777524_j_nanoph-2022-0154_ref_025
2023041309512777524_j_nanoph-2022-0154_ref_024
2023041309512777524_j_nanoph-2022-0154_ref_068
2023041309512777524_j_nanoph-2022-0154_ref_023
2023041309512777524_j_nanoph-2022-0154_ref_067
2023041309512777524_j_nanoph-2022-0154_ref_029
2023041309512777524_j_nanoph-2022-0154_ref_028
2023041309512777524_j_nanoph-2022-0154_ref_027
2023041309512777524_j_nanoph-2022-0154_ref_040
2023041309512777524_j_nanoph-2022-0154_ref_044
2023041309512777524_j_nanoph-2022-0154_ref_043
2023041309512777524_j_nanoph-2022-0154_ref_042
2023041309512777524_j_nanoph-2022-0154_ref_041
2023041309512777524_j_nanoph-2022-0154_ref_037
2023041309512777524_j_nanoph-2022-0154_ref_036
2023041309512777524_j_nanoph-2022-0154_ref_035
2023041309512777524_j_nanoph-2022-0154_ref_034
2023041309512777524_j_nanoph-2022-0154_ref_039
2023041309512777524_j_nanoph-2022-0154_ref_038
2023041309512777524_j_nanoph-2022-0154_ref_051
2023041309512777524_j_nanoph-2022-0154_ref_050
2023041309512777524_j_nanoph-2022-0154_ref_011
2023041309512777524_j_nanoph-2022-0154_ref_055
2023041309512777524_j_nanoph-2022-0154_ref_010
2023041309512777524_j_nanoph-2022-0154_ref_054
2023041309512777524_j_nanoph-2022-0154_ref_053
2023041309512777524_j_nanoph-2022-0154_ref_052
2023041309512777524_j_nanoph-2022-0154_ref_009
2023041309512777524_j_nanoph-2022-0154_ref_004
2023041309512777524_j_nanoph-2022-0154_ref_048
2023041309512777524_j_nanoph-2022-0154_ref_003
2023041309512777524_j_nanoph-2022-0154_ref_047
2023041309512777524_j_nanoph-2022-0154_ref_002
2023041309512777524_j_nanoph-2022-0154_ref_046
2023041309512777524_j_nanoph-2022-0154_ref_001
2023041309512777524_j_nanoph-2022-0154_ref_045
2023041309512777524_j_nanoph-2022-0154_ref_008
2023041309512777524_j_nanoph-2022-0154_ref_007
2023041309512777524_j_nanoph-2022-0154_ref_006
2023041309512777524_j_nanoph-2022-0154_ref_005
2023041309512777524_j_nanoph-2022-0154_ref_049
References_xml – ident: 2023041309512777524_j_nanoph-2022-0154_ref_067
  doi: 10.1103/PhysRevB.82.075427
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_006
  doi: 10.1016/j.ssc.2009.02.040
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_039
  doi: 10.1038/s41467-019-13820-z
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_052
  doi: 10.1103/PhysRevB.77.235430
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_012
  doi: 10.1103/PhysRevLett.113.056602
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_014
  doi: 10.1021/acsphotonics.6b00653
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_020
  doi: 10.1088/0957-4484/27/31/31LT03
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_015
  doi: 10.1103/PhysRevB.98.081411
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_019
  doi: 10.1021/ph5004829
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_003
  doi: 10.1515/nanoph-2012-0035
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_030
  doi: 10.1021/acsphotonics.7b00668
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_063
  doi: 10.1103/PhysRevLett.121.173603
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_056
  doi: 10.1103/PhysRevLett.117.123904
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_023
  doi: 10.1021/nl201771h
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_051
  doi: 10.1021/acs.jpcc.7b04369
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_055
  doi: 10.5772/20477
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_011
  doi: 10.1038/nature11253
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_065
  doi: 10.1103/PhysRevA.60.4094
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_013
  doi: 10.1021/nl404826r
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_050
  doi: 10.1103/PhysRevB.81.125433
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_058
  doi: 10.1039/C9RA07319A
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_004
  doi: 10.1021/nl803811g
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_026
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_053
  doi: 10.1063/5.0018944
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_027
  doi: 10.1103/PhysRevLett.58.2059
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_001
  doi: 10.1021/acsphotonics.7b00740
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_002
  doi: 10.1021/nn204780e
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_021
  doi: 10.1038/nphoton.2012.262
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_037
  doi: 10.1103/PhysRevB.97.205433
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_054
  doi: 10.1039/C5NR08630B
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_025
  doi: 10.1117/12.2590037
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_045
  doi: 10.1103/PhysRevB.104.235414
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_032
  doi: 10.1021/acsphotonics.1c00309
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_017
  doi: 10.1038/nphoton.2016.45
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_042
  doi: 10.1038/ncomms6725
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_008
  doi: 10.1103/PhysRevB.89.115428
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_005
  doi: 10.1126/science.1248797
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_010
  doi: 10.1073/pnas.0502848102
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_064
  doi: 10.1017/CBO9780511794193
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_024
  doi: 10.1126/science.abb1570
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_060
  doi: 10.1021/ph500269q
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_048
  doi: 10.1021/acs.jpcc.0c07964
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_068
  doi: 10.1007/BFb0107761
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_044
  doi: 10.1021/acs.accounts.9b00308
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_061
  doi: 10.1093/oso/9780198501770.001.0001
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_029
  doi: 10.1038/nature17974
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_035
  doi: 10.1103/PhysRevLett.112.253601
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_057
  doi: 10.1103/PhysRevB.103.195429
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_031
  doi: 10.1016/j.snb.2018.02.181
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_036
  doi: 10.1021/ph5003472
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_041
  doi: 10.1039/C5CP01177A
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_034
  doi: 10.1103/PhysRevB.88.195414
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_046
  doi: 10.1103/PhysRevB.66.035412
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_043
  doi: 10.1038/ncomms14380
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_059
  doi: 10.1103/PhysRevB.82.075425
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_016
  doi: 10.1126/science.1102896
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_022
  doi: 10.1021/ph400147y
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_040
  doi: 10.1103/PhysRevB.90.161407
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_007
  doi: 10.1103/PhysRevB.83.245442
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_009
  doi: 10.1134/S1063782616030052
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_033
  doi: 10.1103/PhysRevA.82.043845
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_062
  doi: 10.1364/OE.18.016546
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_066
  doi: 10.1038/s41598-020-62629-0
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_028
  doi: 10.1038/nphoton.2014.228
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_038
  doi: 10.1103/PhysRevLett.118.157402
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_049
  doi: 10.1063/5.0038883
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_018
  doi: 10.1021/nn202463g
– ident: 2023041309512777524_j_nanoph-2022-0154_ref_047
  doi: 10.1088/1367-2630/14/4/043022
SSID ssj0000993196
Score 2.248296
Snippet Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3281
SubjectTerms Adatoms
Coupling (molecular)
Electromagnetic fields
Electron tunneling
Electronic properties
Emitters
Flakes
Graphene
Hybrid systems
Nanoantennas
nanoflakes
Optical coupling
Optical properties
Spontaneous emission
two-level system
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT90wELYqTr3QhS5pKXKlXnqIXhw7tnNsKxBCKoeqSNwibwEqcB4kUcW_Z8bJe-V1vfQaO9ZkFs9MPP6GkHdeWlZbX-dWa54LJlhuvGN5iRiokkkVFF4U_nwsD0_E0Wl1eq_VF9aETfDAE-MWnLHa4O1OpgrhhLcVl4FxxJypnEotrEvwefeSqW9T3IO6NZ9Lgs9eRBO75TkoRYmlCJXY8EMJrv93MeavpZLb39Mxtg9nN-PtsDo2Td7o4DHZnsNI-mEi_wl5EOJT8mgOKelssP0OOf6Sbo_HM3o9Ag_HK9ot099rirVdiL5g6EWkBvL-7qqnrhuXl7DA0NGEZA0bIcVPQvbHaPpn5ORg_-unw3xuoZA7SEWG3DoZdBskd-CZXWsLU0GG1VpmtIdEorbYHVOVbTDWelEFLYOVRTCw9fhStYE_J1uxi-EloYV3UnEDEQtEIPj3UEKqErSD_JrVXsqMLFYMbdyML45tLi4bzDNABM0kggZF0KAIMvJ-_cZywtb4y9yPKKP1PETFTg9AV5pZV5p_6UpGdlcSbmZT7ZtS6kIWvFIqI2_Xw2BkeHJiYujGHhYWsiphQ4YlXkwKsaaE1ylmg7f1hqpskLo5Ei_OE5A3RuNAms5I_ZNW_SDvTwwBHyV4qdmr_8GY1-ThZBhYhrxLtoabMbyBYGuwe8mu7gC6KyXU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcuklfTebpkWFXnowa1m2LJ9KUxJCoUsJDeRm9NpNIJGdtU3Jv--MrHXYPnK1LSFrXt9oRjOEfLRCs0rbKtFS8iRnOUuUNSzJsAaqYKJ0JV4U_r4Qp-f5t4viIh64dTGtcqMTg6K2jcEz8nkmZCpSXpTl5_Y2wa5RGF2NLTQek11QwRKcr92j48WPs-mUBfAP8hh2mAMok0iA6zFWCXZ87pVv2ktglAzTE4p8yzaFEv7_wp1_p0_u_QqhbetW6-Gu34RSg4U6eUb2IrSkX0ZeeE4eOf-CPI0wk0Yh7l6SxVm4Ue5X9HaAfR1uaNOGE22K-V5YkUHRK0-VBX_8pqOmGdprmKBvaKhuDcqR4i8hSbxX3StyfnL88-tpEtsqJAbckz7RRji5dIIbsNZmqVNVgNe11ExJC85FpbFjZpktndLa5oWTwmmROgXqyGbl0vHXZMc33u0TmlojSq4AxQAqwRNFAe6LkwZ8blZZIWZkvtnQ2sSa49j64rpG3wNIUI8kqJEENZJgRj5NI9qx3sYD3x4hjabvsFJ2eNCsV3UUvJozVim8HczKNDe51QUXjnGsWVSYksEkhxsK11F8u_qe2Wbkw_QaBA-jKcq7Zuhg4lwUGShpmOLNyBDTSngVcByMllussrXU7Tf-6jIU90aEDkuTM1L9wVX3y_vfhoDdynkm2cHD__SWPBlZHpOOD8lOvx7cO4BWvX4f5ec3L0ciyw
  priority: 102
  providerName: ProQuest
Title Revising quantum optical phenomena in adatoms coupled to graphene nanoantennas
URI https://www.degruyter.com/doi/10.1515/nanoph-2022-0154
https://www.ncbi.nlm.nih.gov/pubmed/39635547
https://www.proquest.com/docview/2680603577
https://www.proquest.com/docview/3146520884
https://pubmed.ncbi.nlm.nih.gov/PMC11501658
https://doaj.org/article/3119a99721704c4db536e1372165c714
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe-FS3rBQIiNx4RAa5-E4B4Qo6lIhdYUqVuot8ivbVltnu0kE_ffMONmtFhYOXPOYOJ4Zzzd-fEPIW8MVK5QpQiVEEqYsZaE0moUxcqByxnOb40Hh0wk_maZfz7Pzu-PRQwc2W1M7rCc1Xc7f_7y5_QgO_8FX72HZoZOuXlyAvmPcZZClO2QP4lKObno6gP2rHguhvWG1OYA1oQDoPqxbbhOyEac8nf82DPrnVsr9H36Z29jZsrttV8uqPlqNH5L9AWbST71dPCL3rHtMHgyQkw4O3TwhkzN_utzN6E0Hfdxd03rhZ7cp7v1CdgZJLx2VBnLz64bqulvMQUBbU890DQMlxV9C9Tgnm6dkOj7-_vkkHEoshBpSlTZUmltRWZ5oiNy6UpHMIAOrFJPCQKJRKKyemceVlUqZNLOCW8UjK2FoMnFe2eQZ2XW1sy8IjYzmeSIB0QBCwdlFDqmMFRryb1YYzkfkcNWhpR74x7EMxrzEPARUUPYqKFEFJapgRN6t31j03Bv_ePYIdbR-Dlmz_YV6OSsHJywTxgqJJ4VZHqU6NSpLuGUJ8hdlOmcg5GCl4XJliWXMRcSjJMvzEXmzvg1OiCsr0tm6a0BwyrMYBmwQ8bw3iHVLksJjOnhbbJjKRlM377jLC0_0jWgdmiZGpPjNqu6a97cOgRiWJrFgL___s6_I_d4dcHPyAdltl519DRCsVQHZEeMvAdk7Op58Owv8REbgvS3w82W_AC4CNX4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoPbQX6JNuoa0rtYceoo3jxHEOVdXXdimwhwokbqlfWZDAWTYbIf5Uf2Nn8li0fXDjmsSW4_lm5hs_Zgh5Y4VmmbZZoKXkQcxiFihrWBBhDlTBROpSvCh8MBHjo_j7cXK8Rn71d2HwWGVvExtDbUuDa-TDSMhQhDxJ0w-ziwCrRuHual9Co4XFnru6hJCter_7BeT7NopGXw8_j4OuqkBggJ0vAm2Ek4UT3ICzMoUOVQJBR6GZkha4daaxYGQaFU5pbePESeG0CJ0CbbRRWjgO_d4hd2POM9QoOfq2XNMBtoWIxnp2QJwCCcFBtzMKrGHolS9nJwDLCA9DJPGKJ2wKBvyL5f59WHPjstlIt246r68W_cZt4w9HD8hGR2TpxxZ5D8ma84_IZkdqaWcyqsdk8qO5v-6n9KIGKdbntJw16-cUT5dh_gdFTz1VFqL_84qasp6dQQeLkja5tMEUU_wlBID3qnpCjm5lup-SdV9694zQ0BqRcgWcCTgQrl8KCJacNBDhs8wKMSDDfkJz02U4x0IbZzlGOiCCvBVBjiLIUQQD8m7ZYtZm97jh208oo-V3mJe7eVDOp3mn5jlnLFN4F5mlYWxiqxMuHOOYISkxKYNOdnoJ552xqPJraA_I6-VrUHPcu1HelXUFHcciicAlQBdbLSCWIwEgImuE1nIFKitDXX3jT0-aVOIYD8DQ5IBkf6Dqenj_mxDwkjGPJHt-8z-9IvfGhwf7-f7uZG-b3G_hj8edd8j6Yl67F0DqFvplo0mU_Lxt1f0NQeJgLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVkJcyrssFDASFw7RxnHiJMdSWJbXgoBKvVl-ZVupdcImEeLfM5NkAwuFC9cktiaeGc839vgzIU-t0CzXNg90lvEgZjELlDUsiJADVTCRuhQPCr9fisVx_OYkOdkhR5uzMFhWad1q3X5veobUmS1NiwtlI9cAROCZV76sTkHFERYWJPGsssUVsitEzuMJ2T1cvPr8YVxqARCEhjZsUl7WfCsoddz9lwHOP-sm9751e9qjwL-EpvkNsjdgSnrYG8FNsuP8LXJ9wJd08N76Nll-6o6S-xX92sKAthe0rLqlbIqFXkjFoOiZp8pCIn5RU1O21Tl00JS0o7WGWZHiL6EuvFf1HXI8f_nlaBEM9ykEBvKSJtBGuKxwghsI06bQoUog3So0U5mFrCLXeFVmGhVOaW3jxGXCaRE6BfOQjdLC8btk4kvv7hEaWiNSrgC-ABzBpUQBeYvLDCTbLLdCTMlsM6DSDGTjeOfFucSkA1QgexVIVIFEFUzJs7FF1RNt_OPb56ij8TukyO4elOuVHDxOcsZyhceCWRrGJrY64cIxjmRFiUkZdHKw0bAc_LaWkchCEfIkTafkyfgaPA63UZR3ZVtDx7FIIpidoYv93iBGSXjeAThonW2Zypao22_82WnH6o3QHETLpiT_zap-ive3AYGAFfMoY_f_o-1jcvXji7l893r59gG51rsGViUfkEmzbt1DwF6NfjT41g_cViy_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revising+quantum+optical+phenomena+in+adatoms+coupled+to+graphene+nanoantennas&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Kosik%2C+Miriam&rft.au=M%C3%BCller%2C+Marvin+M.&rft.au=S%C5%82owik%2C+Karolina&rft.au=Bryant%2C+Garnett&rft.date=2022-07-01&rft.pub=De+Gruyter&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=11&rft.issue=14&rft.spage=3281&rft.epage=3298&rft_id=info:doi/10.1515%2Fnanoph-2022-0154&rft.externalDocID=PMC11501658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon