Revising quantum optical phenomena in adatoms coupled to graphene nanoantennas
Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that electron tunneling might influence the o...
Saved in:
Published in | Nanophotonics (Berlin, Germany) Vol. 11; no. 14; pp. 3281 - 3298 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
01.07.2022
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that electron tunneling might influence the optical and electronic properties of the system. However, tunneling is usually not considered if the optical coupling mechanism between quantum emitters and nanoantennas is at focus. This work presents a framework for describing the electron dynamics in hybrid systems consisting of graphene nanoflakes coupled both electronically and optically to adatoms and subject to external illumination. Our framework combines the single-particle tight-binding approach with a nonlinear master equation formalism that captures both optical and electronic interactions. We apply the framework to demonstrate the impact of electron tunneling between the adatom and the flake on emblematic quantum optical phenomena: degradation of coherent Rabi oscillations and quenching of Purcell spontaneous emission enhancement in two-level adatoms in proximity of triangular graphene nanoflakes. |
---|---|
AbstractList | Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that electron tunneling might influence the optical and electronic properties of the system. However, tunneling is usually not considered if the optical coupling mechanism between quantum emitters and nanoantennas is at focus. This work presents a framework for describing the electron dynamics in hybrid systems consisting of graphene nanoflakes coupled both electronically and optically to adatoms and subject to external illumination. Our framework combines the single-particle tight-binding approach with a nonlinear master equation formalism that captures both optical and electronic interactions. We apply the framework to demonstrate the impact of electron tunneling between the adatom and the flake on emblematic quantum optical phenomena: degradation of coherent Rabi oscillations and quenching of Purcell spontaneous emission enhancement in two-level adatoms in proximity of triangular graphene nanoflakes. Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that electron tunneling might influence the optical and electronic properties of the system. However, tunneling is usually not considered if the optical coupling mechanism between quantum emitters and nanoantennas is at focus. This work presents a framework for describing the electron dynamics in hybrid systems consisting of graphene nanoflakes coupled both electronically and optically to adatoms and subject to external illumination. Our framework combines the single-particle tight-binding approach with a nonlinear master equation formalism that captures both optical and electronic interactions. We apply the framework to demonstrate the impact of electron tunneling between the adatom and the flake on emblematic quantum optical phenomena: degradation of coherent Rabi oscillations and quenching of Purcell spontaneous emission enhancement in two-level adatoms in proximity of triangular graphene nanoflakes.Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement, quantum emitters such as atoms or molecules should be positioned in such close proximity to the flake that electron tunneling might influence the optical and electronic properties of the system. However, tunneling is usually not considered if the optical coupling mechanism between quantum emitters and nanoantennas is at focus. This work presents a framework for describing the electron dynamics in hybrid systems consisting of graphene nanoflakes coupled both electronically and optically to adatoms and subject to external illumination. Our framework combines the single-particle tight-binding approach with a nonlinear master equation formalism that captures both optical and electronic interactions. We apply the framework to demonstrate the impact of electron tunneling between the adatom and the flake on emblematic quantum optical phenomena: degradation of coherent Rabi oscillations and quenching of Purcell spontaneous emission enhancement in two-level adatoms in proximity of triangular graphene nanoflakes. |
Author | Ayuela, Andrés Słowik, Karolina Rockstuhl, Carsten Pelc, Marta Kosik, Miriam Müller, Marvin M. Bryant, Garnett |
Author_xml | – sequence: 1 givenname: Miriam orcidid: 0000-0002-3660-2199 surname: Kosik fullname: Kosik, Miriam email: mkosik@doktorant.umk.pl organization: Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Toruń 87-100, Poland – sequence: 2 givenname: Marvin M. surname: Müller fullname: Müller, Marvin M. email: marvin.mueller@kit.edu organization: Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany – sequence: 3 givenname: Karolina surname: Słowik fullname: Słowik, Karolina organization: Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Toruń 87-100, Poland – sequence: 4 givenname: Garnett surname: Bryant fullname: Bryant, Garnett organization: Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg 20899, MD, USA – sequence: 5 givenname: Andrés surname: Ayuela fullname: Ayuela, Andrés organization: Donostia International Physics Center (DIPC), Paseo Manuel Lardizabal 4, Donostia-San Sebastián 20018, Spain – sequence: 6 givenname: Carsten surname: Rockstuhl fullname: Rockstuhl, Carsten organization: Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76021, Germany – sequence: 7 givenname: Marta surname: Pelc fullname: Pelc, Marta organization: Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Toruń 87-100, Poland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39635547$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV3TigSFy4Bf8QfOQGqoK1UgYTgbL04L7teJXZqJ0X99zhsC20l8MXP9sx4_DzPiwMfPBbFS0reUkHFOw8-TNuKEcYqQkX9pDhitGGVlrQ-uFcfFicp7UgeTcNpI58Vh7yRXIhaHRVfvuG1S85vyqsF_LyMZZhmZ2Eopy36MKKH0vkSOpjDmEoblmnArpxDuYmwQrBcfWQqeg_pRfG0hyHhye18XPz4_On76Xl1-fXs4vTjZWVFreeqtRJ1j5JbrqntWwKC6aZvKehO1apphZBUsR6hbbtaoJbYSoKgteqY6pEfFxd73S7AzkzRjRBvTABnfm-EuDEQ8zsGNJzSBppGMapIbeuuFVwi5XkthVW0zlrv91rT0o7YWfRzhOGB6MMT77ZmE64NpYJkEZ0V3twqxHC1YJrN6JLFYQCPYUnZQi0FI1qvl71-BN2FJfrcK8OkJpJwoVRGvbpv6Y-Xu3_LALkH2BhSitgb62aYXVgdusFQYtaMmH1GzJoRs2YkE8kj4p32fygf9pSfMMwYO9zE5SYXf53_i0ppbi_TlP8C3yjVXw |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_4c03874 crossref_primary_10_1103_PhysRevA_109_022237 crossref_primary_10_3390_app13042221 crossref_primary_10_1515_zpch_2022_0112 crossref_primary_10_1016_j_optmat_2023_114771 crossref_primary_10_1021_acs_jpclett_2c03205 |
Cites_doi | 10.1103/PhysRevB.82.075427 10.1016/j.ssc.2009.02.040 10.1038/s41467-019-13820-z 10.1103/PhysRevB.77.235430 10.1103/PhysRevLett.113.056602 10.1021/acsphotonics.6b00653 10.1088/0957-4484/27/31/31LT03 10.1103/PhysRevB.98.081411 10.1021/ph5004829 10.1515/nanoph-2012-0035 10.1021/acsphotonics.7b00668 10.1103/PhysRevLett.121.173603 10.1103/PhysRevLett.117.123904 10.1021/nl201771h 10.1021/acs.jpcc.7b04369 10.5772/20477 10.1038/nature11253 10.1103/PhysRevA.60.4094 10.1021/nl404826r 10.1103/PhysRevB.81.125433 10.1039/C9RA07319A 10.1021/nl803811g 10.1063/5.0018944 10.1103/PhysRevLett.58.2059 10.1021/acsphotonics.7b00740 10.1021/nn204780e 10.1038/nphoton.2012.262 10.1103/PhysRevB.97.205433 10.1039/C5NR08630B 10.1117/12.2590037 10.1103/PhysRevB.104.235414 10.1021/acsphotonics.1c00309 10.1038/nphoton.2016.45 10.1038/ncomms6725 10.1103/PhysRevB.89.115428 10.1126/science.1248797 10.1073/pnas.0502848102 10.1017/CBO9780511794193 10.1126/science.abb1570 10.1021/ph500269q 10.1021/acs.jpcc.0c07964 10.1007/BFb0107761 10.1021/acs.accounts.9b00308 10.1093/oso/9780198501770.001.0001 10.1038/nature17974 10.1103/PhysRevLett.112.253601 10.1103/PhysRevB.103.195429 10.1016/j.snb.2018.02.181 10.1021/ph5003472 10.1039/C5CP01177A 10.1103/PhysRevB.88.195414 10.1103/PhysRevB.66.035412 10.1038/ncomms14380 10.1103/PhysRevB.82.075425 10.1126/science.1102896 10.1021/ph400147y 10.1103/PhysRevB.90.161407 10.1103/PhysRevB.83.245442 10.1134/S1063782616030052 10.1103/PhysRevA.82.043845 10.1364/OE.18.016546 10.1038/s41598-020-62629-0 10.1038/nphoton.2014.228 10.1103/PhysRevLett.118.157402 10.1063/5.0038883 10.1021/nn202463g 10.1088/1367-2630/14/4/043022 |
ContentType | Journal Article |
Copyright | 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston. 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
Copyright_xml | – notice: 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
DBID | AAYXX CITATION NPM 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1515/nanoph-2022-0154 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2192-8614 |
EndPage | 3298 |
ExternalDocumentID | oai_doaj_org_article_3119a99721704c4db536e1372165c714 PMC11501658 39635547 10_1515_nanoph_2022_0154 10_1515_nanoph_2022_015411143281 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Commission grantid: H2020-FET OPEN Project MIRACLE (No. GA 964450); NRG-STORAGE Project (No. GA 870114) – fundername: Narodowe Centrum Nauki grantid: 2016/23/G/ST3/04045 – fundername: Ministerio de Ciencia e Innovación grantid: ID2019-105488GB- I00; PCI2019-103657 – fundername: Karlsruhe House of Young Scientists grantid: Research Travel Grant – fundername: Euskal Herriko Unibertsitatea grantid: Project No. IT-1246- 19 – fundername: Narodowe Centrum Nauki grantid: 2020/39/I/ST3/00526 – fundername: Deutsche Forschungsgemeinschaft grantid: Project 378579271 within Project RO 3640/8-1 – fundername: Volkswagen Foundation |
GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV ADMLS AEJTT AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ HZ~ M48 O9- OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC QD8 RPM SA. SLJYH AAYXX CITATION 9-L AIKXB F-. IPNFZ NPM RIG ~Z8 7SP 7U5 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c548t-bc6e8fe63c381cfb0a5289fb1a8d7479b556172feabbd45e86eb60ea887d27fe3 |
IEDL.DBID | M48 |
ISSN | 2192-8614 2192-8606 |
IngestDate | Wed Aug 27 01:02:52 EDT 2025 Thu Aug 21 18:35:18 EDT 2025 Fri Jul 11 04:36:02 EDT 2025 Sun Jul 13 03:36:46 EDT 2025 Wed Feb 19 02:03:19 EST 2025 Tue Jul 01 00:41:52 EDT 2025 Thu Apr 24 23:04:52 EDT 2025 Thu Jul 10 10:34:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | nanoantennas adatoms nanoflakes graphene two-level system |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 2022 Miriam Kosik et al., published by De Gruyter, Berlin/Boston. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c548t-bc6e8fe63c381cfb0a5289fb1a8d7479b556172feabbd45e86eb60ea887d27fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3660-2199 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2022-0154 |
PMID | 39635547 |
PQID | 2680603577 |
PQPubID | 2038884 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3119a99721704c4db536e1372165c714 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501658 proquest_miscellaneous_3146520884 proquest_journals_2680603577 pubmed_primary_39635547 crossref_citationtrail_10_1515_nanoph_2022_0154 crossref_primary_10_1515_nanoph_2022_0154 walterdegruyter_journals_10_1515_nanoph_2022_015411143281 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Nanophotonics (Berlin, Germany) |
PublicationTitleAlternate | Nanophotonics |
PublicationYear | 2022 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023041309512777524_j_nanoph-2022-0154_ref_062 2023041309512777524_j_nanoph-2022-0154_ref_061 2023041309512777524_j_nanoph-2022-0154_ref_060 2023041309512777524_j_nanoph-2022-0154_ref_022 2023041309512777524_j_nanoph-2022-0154_ref_066 2023041309512777524_j_nanoph-2022-0154_ref_021 2023041309512777524_j_nanoph-2022-0154_ref_065 2023041309512777524_j_nanoph-2022-0154_ref_020 2023041309512777524_j_nanoph-2022-0154_ref_064 2023041309512777524_j_nanoph-2022-0154_ref_063 2023041309512777524_j_nanoph-2022-0154_ref_015 2023041309512777524_j_nanoph-2022-0154_ref_059 2023041309512777524_j_nanoph-2022-0154_ref_014 2023041309512777524_j_nanoph-2022-0154_ref_058 2023041309512777524_j_nanoph-2022-0154_ref_013 2023041309512777524_j_nanoph-2022-0154_ref_057 2023041309512777524_j_nanoph-2022-0154_ref_012 2023041309512777524_j_nanoph-2022-0154_ref_056 2023041309512777524_j_nanoph-2022-0154_ref_019 2023041309512777524_j_nanoph-2022-0154_ref_018 2023041309512777524_j_nanoph-2022-0154_ref_017 2023041309512777524_j_nanoph-2022-0154_ref_016 2023041309512777524_j_nanoph-2022-0154_ref_033 2023041309512777524_j_nanoph-2022-0154_ref_032 2023041309512777524_j_nanoph-2022-0154_ref_031 2023041309512777524_j_nanoph-2022-0154_ref_030 2023041309512777524_j_nanoph-2022-0154_ref_026 2023041309512777524_j_nanoph-2022-0154_ref_025 2023041309512777524_j_nanoph-2022-0154_ref_024 2023041309512777524_j_nanoph-2022-0154_ref_068 2023041309512777524_j_nanoph-2022-0154_ref_023 2023041309512777524_j_nanoph-2022-0154_ref_067 2023041309512777524_j_nanoph-2022-0154_ref_029 2023041309512777524_j_nanoph-2022-0154_ref_028 2023041309512777524_j_nanoph-2022-0154_ref_027 2023041309512777524_j_nanoph-2022-0154_ref_040 2023041309512777524_j_nanoph-2022-0154_ref_044 2023041309512777524_j_nanoph-2022-0154_ref_043 2023041309512777524_j_nanoph-2022-0154_ref_042 2023041309512777524_j_nanoph-2022-0154_ref_041 2023041309512777524_j_nanoph-2022-0154_ref_037 2023041309512777524_j_nanoph-2022-0154_ref_036 2023041309512777524_j_nanoph-2022-0154_ref_035 2023041309512777524_j_nanoph-2022-0154_ref_034 2023041309512777524_j_nanoph-2022-0154_ref_039 2023041309512777524_j_nanoph-2022-0154_ref_038 2023041309512777524_j_nanoph-2022-0154_ref_051 2023041309512777524_j_nanoph-2022-0154_ref_050 2023041309512777524_j_nanoph-2022-0154_ref_011 2023041309512777524_j_nanoph-2022-0154_ref_055 2023041309512777524_j_nanoph-2022-0154_ref_010 2023041309512777524_j_nanoph-2022-0154_ref_054 2023041309512777524_j_nanoph-2022-0154_ref_053 2023041309512777524_j_nanoph-2022-0154_ref_052 2023041309512777524_j_nanoph-2022-0154_ref_009 2023041309512777524_j_nanoph-2022-0154_ref_004 2023041309512777524_j_nanoph-2022-0154_ref_048 2023041309512777524_j_nanoph-2022-0154_ref_003 2023041309512777524_j_nanoph-2022-0154_ref_047 2023041309512777524_j_nanoph-2022-0154_ref_002 2023041309512777524_j_nanoph-2022-0154_ref_046 2023041309512777524_j_nanoph-2022-0154_ref_001 2023041309512777524_j_nanoph-2022-0154_ref_045 2023041309512777524_j_nanoph-2022-0154_ref_008 2023041309512777524_j_nanoph-2022-0154_ref_007 2023041309512777524_j_nanoph-2022-0154_ref_006 2023041309512777524_j_nanoph-2022-0154_ref_005 2023041309512777524_j_nanoph-2022-0154_ref_049 |
References_xml | – ident: 2023041309512777524_j_nanoph-2022-0154_ref_067 doi: 10.1103/PhysRevB.82.075427 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_006 doi: 10.1016/j.ssc.2009.02.040 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_039 doi: 10.1038/s41467-019-13820-z – ident: 2023041309512777524_j_nanoph-2022-0154_ref_052 doi: 10.1103/PhysRevB.77.235430 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_012 doi: 10.1103/PhysRevLett.113.056602 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_014 doi: 10.1021/acsphotonics.6b00653 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_020 doi: 10.1088/0957-4484/27/31/31LT03 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_015 doi: 10.1103/PhysRevB.98.081411 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_019 doi: 10.1021/ph5004829 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_003 doi: 10.1515/nanoph-2012-0035 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_030 doi: 10.1021/acsphotonics.7b00668 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_063 doi: 10.1103/PhysRevLett.121.173603 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_056 doi: 10.1103/PhysRevLett.117.123904 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_023 doi: 10.1021/nl201771h – ident: 2023041309512777524_j_nanoph-2022-0154_ref_051 doi: 10.1021/acs.jpcc.7b04369 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_055 doi: 10.5772/20477 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_011 doi: 10.1038/nature11253 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_065 doi: 10.1103/PhysRevA.60.4094 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_013 doi: 10.1021/nl404826r – ident: 2023041309512777524_j_nanoph-2022-0154_ref_050 doi: 10.1103/PhysRevB.81.125433 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_058 doi: 10.1039/C9RA07319A – ident: 2023041309512777524_j_nanoph-2022-0154_ref_004 doi: 10.1021/nl803811g – ident: 2023041309512777524_j_nanoph-2022-0154_ref_026 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_053 doi: 10.1063/5.0018944 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_027 doi: 10.1103/PhysRevLett.58.2059 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_001 doi: 10.1021/acsphotonics.7b00740 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_002 doi: 10.1021/nn204780e – ident: 2023041309512777524_j_nanoph-2022-0154_ref_021 doi: 10.1038/nphoton.2012.262 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_037 doi: 10.1103/PhysRevB.97.205433 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_054 doi: 10.1039/C5NR08630B – ident: 2023041309512777524_j_nanoph-2022-0154_ref_025 doi: 10.1117/12.2590037 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_045 doi: 10.1103/PhysRevB.104.235414 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_032 doi: 10.1021/acsphotonics.1c00309 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_017 doi: 10.1038/nphoton.2016.45 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_042 doi: 10.1038/ncomms6725 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_008 doi: 10.1103/PhysRevB.89.115428 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_005 doi: 10.1126/science.1248797 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_010 doi: 10.1073/pnas.0502848102 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_064 doi: 10.1017/CBO9780511794193 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_024 doi: 10.1126/science.abb1570 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_060 doi: 10.1021/ph500269q – ident: 2023041309512777524_j_nanoph-2022-0154_ref_048 doi: 10.1021/acs.jpcc.0c07964 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_068 doi: 10.1007/BFb0107761 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_044 doi: 10.1021/acs.accounts.9b00308 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_061 doi: 10.1093/oso/9780198501770.001.0001 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_029 doi: 10.1038/nature17974 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_035 doi: 10.1103/PhysRevLett.112.253601 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_057 doi: 10.1103/PhysRevB.103.195429 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_031 doi: 10.1016/j.snb.2018.02.181 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_036 doi: 10.1021/ph5003472 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_041 doi: 10.1039/C5CP01177A – ident: 2023041309512777524_j_nanoph-2022-0154_ref_034 doi: 10.1103/PhysRevB.88.195414 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_046 doi: 10.1103/PhysRevB.66.035412 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_043 doi: 10.1038/ncomms14380 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_059 doi: 10.1103/PhysRevB.82.075425 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_016 doi: 10.1126/science.1102896 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_022 doi: 10.1021/ph400147y – ident: 2023041309512777524_j_nanoph-2022-0154_ref_040 doi: 10.1103/PhysRevB.90.161407 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_007 doi: 10.1103/PhysRevB.83.245442 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_009 doi: 10.1134/S1063782616030052 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_033 doi: 10.1103/PhysRevA.82.043845 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_062 doi: 10.1364/OE.18.016546 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_066 doi: 10.1038/s41598-020-62629-0 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_028 doi: 10.1038/nphoton.2014.228 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_038 doi: 10.1103/PhysRevLett.118.157402 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_049 doi: 10.1063/5.0038883 – ident: 2023041309512777524_j_nanoph-2022-0154_ref_018 doi: 10.1021/nn202463g – ident: 2023041309512777524_j_nanoph-2022-0154_ref_047 doi: 10.1088/1367-2630/14/4/043022 |
SSID | ssj0000993196 |
Score | 2.248296 |
Snippet | Graphene flakes acting as photonic nanoantennas may sustain strong electromagnetic field localization and enhancement. To exploit the field enhancement,... |
SourceID | doaj pubmedcentral proquest pubmed crossref walterdegruyter |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3281 |
SubjectTerms | Adatoms Coupling (molecular) Electromagnetic fields Electron tunneling Electronic properties Emitters Flakes Graphene Hybrid systems Nanoantennas nanoflakes Optical coupling Optical properties Spontaneous emission two-level system |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT90wELYqTr3QhS5pKXKlXnqIXhw7tnNsKxBCKoeqSNwibwEqcB4kUcW_Z8bJe-V1vfQaO9ZkFs9MPP6GkHdeWlZbX-dWa54LJlhuvGN5iRiokkkVFF4U_nwsD0_E0Wl1eq_VF9aETfDAE-MWnLHa4O1OpgrhhLcVl4FxxJypnEotrEvwefeSqW9T3IO6NZ9Lgs9eRBO75TkoRYmlCJXY8EMJrv93MeavpZLb39Mxtg9nN-PtsDo2Td7o4DHZnsNI-mEi_wl5EOJT8mgOKelssP0OOf6Sbo_HM3o9Ag_HK9ot099rirVdiL5g6EWkBvL-7qqnrhuXl7DA0NGEZA0bIcVPQvbHaPpn5ORg_-unw3xuoZA7SEWG3DoZdBskd-CZXWsLU0GG1VpmtIdEorbYHVOVbTDWelEFLYOVRTCw9fhStYE_J1uxi-EloYV3UnEDEQtEIPj3UEKqErSD_JrVXsqMLFYMbdyML45tLi4bzDNABM0kggZF0KAIMvJ-_cZywtb4y9yPKKP1PETFTg9AV5pZV5p_6UpGdlcSbmZT7ZtS6kIWvFIqI2_Xw2BkeHJiYujGHhYWsiphQ4YlXkwKsaaE1ylmg7f1hqpskLo5Ei_OE5A3RuNAms5I_ZNW_SDvTwwBHyV4qdmr_8GY1-ThZBhYhrxLtoabMbyBYGuwe8mu7gC6KyXU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcuklfTebpkWFXnowa1m2LJ9KUxJCoUsJDeRm9NpNIJGdtU3Jv--MrHXYPnK1LSFrXt9oRjOEfLRCs0rbKtFS8iRnOUuUNSzJsAaqYKJ0JV4U_r4Qp-f5t4viIh64dTGtcqMTg6K2jcEz8nkmZCpSXpTl5_Y2wa5RGF2NLTQek11QwRKcr92j48WPs-mUBfAP8hh2mAMok0iA6zFWCXZ87pVv2ktglAzTE4p8yzaFEv7_wp1_p0_u_QqhbetW6-Gu34RSg4U6eUb2IrSkX0ZeeE4eOf-CPI0wk0Yh7l6SxVm4Ue5X9HaAfR1uaNOGE22K-V5YkUHRK0-VBX_8pqOmGdprmKBvaKhuDcqR4i8hSbxX3StyfnL88-tpEtsqJAbckz7RRji5dIIbsNZmqVNVgNe11ExJC85FpbFjZpktndLa5oWTwmmROgXqyGbl0vHXZMc33u0TmlojSq4AxQAqwRNFAe6LkwZ8blZZIWZkvtnQ2sSa49j64rpG3wNIUI8kqJEENZJgRj5NI9qx3sYD3x4hjabvsFJ2eNCsV3UUvJozVim8HczKNDe51QUXjnGsWVSYksEkhxsK11F8u_qe2Wbkw_QaBA-jKcq7Zuhg4lwUGShpmOLNyBDTSngVcByMllussrXU7Tf-6jIU90aEDkuTM1L9wVX3y_vfhoDdynkm2cHD__SWPBlZHpOOD8lOvx7cO4BWvX4f5ec3L0ciyw priority: 102 providerName: ProQuest |
Title | Revising quantum optical phenomena in adatoms coupled to graphene nanoantennas |
URI | https://www.degruyter.com/doi/10.1515/nanoph-2022-0154 https://www.ncbi.nlm.nih.gov/pubmed/39635547 https://www.proquest.com/docview/2680603577 https://www.proquest.com/docview/3146520884 https://pubmed.ncbi.nlm.nih.gov/PMC11501658 https://doaj.org/article/3119a99721704c4db536e1372165c714 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe-FS3rBQIiNx4RAa5-E4B4Qo6lIhdYUqVuot8ivbVltnu0kE_ffMONmtFhYOXPOYOJ4Zzzd-fEPIW8MVK5QpQiVEEqYsZaE0moUxcqByxnOb40Hh0wk_maZfz7Pzu-PRQwc2W1M7rCc1Xc7f_7y5_QgO_8FX72HZoZOuXlyAvmPcZZClO2QP4lKObno6gP2rHguhvWG1OYA1oQDoPqxbbhOyEac8nf82DPrnVsr9H36Z29jZsrttV8uqPlqNH5L9AWbST71dPCL3rHtMHgyQkw4O3TwhkzN_utzN6E0Hfdxd03rhZ7cp7v1CdgZJLx2VBnLz64bqulvMQUBbU890DQMlxV9C9Tgnm6dkOj7-_vkkHEoshBpSlTZUmltRWZ5oiNy6UpHMIAOrFJPCQKJRKKyemceVlUqZNLOCW8UjK2FoMnFe2eQZ2XW1sy8IjYzmeSIB0QBCwdlFDqmMFRryb1YYzkfkcNWhpR74x7EMxrzEPARUUPYqKFEFJapgRN6t31j03Bv_ePYIdbR-Dlmz_YV6OSsHJywTxgqJJ4VZHqU6NSpLuGUJ8hdlOmcg5GCl4XJliWXMRcSjJMvzEXmzvg1OiCsr0tm6a0BwyrMYBmwQ8bw3iHVLksJjOnhbbJjKRlM377jLC0_0jWgdmiZGpPjNqu6a97cOgRiWJrFgL___s6_I_d4dcHPyAdltl519DRCsVQHZEeMvAdk7Op58Owv8REbgvS3w82W_AC4CNX4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoPbQX6JNuoa0rtYceoo3jxHEOVdXXdimwhwokbqlfWZDAWTYbIf5Uf2Nn8li0fXDjmsSW4_lm5hs_Zgh5Y4VmmbZZoKXkQcxiFihrWBBhDlTBROpSvCh8MBHjo_j7cXK8Rn71d2HwWGVvExtDbUuDa-TDSMhQhDxJ0w-ziwCrRuHual9Co4XFnru6hJCter_7BeT7NopGXw8_j4OuqkBggJ0vAm2Ek4UT3ICzMoUOVQJBR6GZkha4daaxYGQaFU5pbePESeG0CJ0CbbRRWjgO_d4hd2POM9QoOfq2XNMBtoWIxnp2QJwCCcFBtzMKrGHolS9nJwDLCA9DJPGKJ2wKBvyL5f59WHPjstlIt246r68W_cZt4w9HD8hGR2TpxxZ5D8ma84_IZkdqaWcyqsdk8qO5v-6n9KIGKdbntJw16-cUT5dh_gdFTz1VFqL_84qasp6dQQeLkja5tMEUU_wlBID3qnpCjm5lup-SdV9694zQ0BqRcgWcCTgQrl8KCJacNBDhs8wKMSDDfkJz02U4x0IbZzlGOiCCvBVBjiLIUQQD8m7ZYtZm97jh208oo-V3mJe7eVDOp3mn5jlnLFN4F5mlYWxiqxMuHOOYISkxKYNOdnoJ552xqPJraA_I6-VrUHPcu1HelXUFHcciicAlQBdbLSCWIwEgImuE1nIFKitDXX3jT0-aVOIYD8DQ5IBkf6Dqenj_mxDwkjGPJHt-8z-9IvfGhwf7-f7uZG-b3G_hj8edd8j6Yl67F0DqFvplo0mU_Lxt1f0NQeJgLQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVkJcyrssFDASFw7RxnHiJMdSWJbXgoBKvVl-ZVupdcImEeLfM5NkAwuFC9cktiaeGc839vgzIU-t0CzXNg90lvEgZjELlDUsiJADVTCRuhQPCr9fisVx_OYkOdkhR5uzMFhWad1q3X5veobUmS1NiwtlI9cAROCZV76sTkHFERYWJPGsssUVsitEzuMJ2T1cvPr8YVxqARCEhjZsUl7WfCsoddz9lwHOP-sm9751e9qjwL-EpvkNsjdgSnrYG8FNsuP8LXJ9wJd08N76Nll-6o6S-xX92sKAthe0rLqlbIqFXkjFoOiZp8pCIn5RU1O21Tl00JS0o7WGWZHiL6EuvFf1HXI8f_nlaBEM9ykEBvKSJtBGuKxwghsI06bQoUog3So0U5mFrCLXeFVmGhVOaW3jxGXCaRE6BfOQjdLC8btk4kvv7hEaWiNSrgC-ABzBpUQBeYvLDCTbLLdCTMlsM6DSDGTjeOfFucSkA1QgexVIVIFEFUzJs7FF1RNt_OPb56ij8TukyO4elOuVHDxOcsZyhceCWRrGJrY64cIxjmRFiUkZdHKw0bAc_LaWkchCEfIkTafkyfgaPA63UZR3ZVtDx7FIIpidoYv93iBGSXjeAThonW2Zypao22_82WnH6o3QHETLpiT_zap-ive3AYGAFfMoY_f_o-1jcvXji7l893r59gG51rsGViUfkEmzbt1DwF6NfjT41g_cViy_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revising+quantum+optical+phenomena+in+adatoms+coupled+to+graphene+nanoantennas&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Kosik%2C+Miriam&rft.au=M%C3%BCller%2C+Marvin+M.&rft.au=S%C5%82owik%2C+Karolina&rft.au=Bryant%2C+Garnett&rft.date=2022-07-01&rft.pub=De+Gruyter&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=11&rft.issue=14&rft.spage=3281&rft.epage=3298&rft_id=info:doi/10.1515%2Fnanoph-2022-0154&rft.externalDocID=PMC11501658 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon |