Microdisk array based Weyl semimetal nanofilm terahertz detector
High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demo...
Saved in:
Published in | Nanophotonics (Berlin, Germany) Vol. 11; no. 16; pp. 3595 - 3602 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
01.09.2022
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe
nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe
layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe
–air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity (
) of 5.52 × 10
cm Hz
pW
at 0.1 THz is achieved at room temperature. In addition, the responsivity (
) of 8.78 A W
is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing. |
---|---|
AbstractList | High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe2 nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe2 layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe2–air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity (D *) of 5.52 × 1012 cm Hz1/2 pW−1 at 0.1 THz is achieved at room temperature. In addition, the responsivity (R A) of 8.78 A W−1 is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing. High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe 2 nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe 2 layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe 2 –air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity ( D * ) of 5.52 × 10 12 cm Hz 1/2 pW −1 at 0.1 THz is achieved at room temperature. In addition, the responsivity ( R A ) of 8.78 A W −1 is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing. High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe –air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity ( ) of 5.52 × 10 cm Hz pW at 0.1 THz is achieved at room temperature. In addition, the responsivity ( ) of 8.78 A W is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing. High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe2 nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe2 layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe2-air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity (D *) of 5.52 × 1012 cm Hz1/2 pW-1 at 0.1 THz is achieved at room temperature. In addition, the responsivity (R A) of 8.78 A W-1 is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing.High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe2 nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe2 layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe2-air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity (D *) of 5.52 × 1012 cm Hz1/2 pW-1 at 0.1 THz is achieved at room temperature. In addition, the responsivity (R A) of 8.78 A W-1 is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing. High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe2 nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe2 layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe2–air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity (D*) of 5.52 × 1012 cm Hz1/2 pW−1 at 0.1 THz is achieved at room temperature. In addition, the responsivity (RA) of 8.78 A W−1 is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing. |
Author | Liang, Huawei Yan, Peiguang Zhang, Bingyuan Zhou, Zhiwen Song, Qi Liu, Fang Zhu, Gangyi Zhang, Min |
Author_xml | – sequence: 1 givenname: Qi surname: Song fullname: Song, Qi organization: Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China – sequence: 2 givenname: Zhiwen surname: Zhou fullname: Zhou, Zhiwen organization: College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China – sequence: 3 givenname: Gangyi surname: Zhu fullname: Zhu, Gangyi organization: School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China – sequence: 4 givenname: Huawei orcidid: 0000-0003-2508-9606 surname: Liang fullname: Liang, Huawei organization: College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China – sequence: 5 givenname: Min surname: Zhang fullname: Zhang, Min organization: College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China – sequence: 6 givenname: Bingyuan surname: Zhang fullname: Zhang, Bingyuan organization: Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China – sequence: 7 givenname: Fang surname: Liu fullname: Liu, Fang organization: Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China – sequence: 8 givenname: Peiguang orcidid: 0000-0002-8969-8948 surname: Yan fullname: Yan, Peiguang email: yanpg@szu.edu.cn organization: College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39634441$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV3TigSFy4BP39tfKJVxUelIi4gjpbtvOx6SeLF9oK2v74O20JbCSxZfnqeGY_85ml1MIUJq-o5kNcgQLyZzBQ2q4YSSpuyF4-qIwqKNq0EfnCnPqxOUlqTspRioOST6pApyTjncFSdfvIuhs6n77WJ0exqaxJ29TfcDXXC0Y-YzVDPT_V-GOuM0aww5qu6w4wuh_isetybIeHJzXlcfX3_7sv5x-by84eL87PLxgne5sZ0sm97Y2ULhFuwVgrhLAOnLOFAnKRcSAk9Co7WFpBsnZQo0IqFMRLYcXWx1-2CWetN9KOJOx2M178bIS61idm7AbXlHVFUdYxZzluQRnauNFASJXtlFkXr7V5rs7Ujdg6nHM1wT_T-zeRXehl-agBBgHFZFF7dKMTwY4sp69Enh8NgJgzbpBlwKShZUFWgLx9A12Ebp_JXmi4IFZxy1hbUi7uW_ni5nVQByD2gjCuliL12Ppvsw-zQDxqInlOh96nQcyr0nIpCJA-It9r_oZzuKb_MUCbe4TJud6X46_xfVACQTCjBrgFWAM-3 |
CitedBy_id | crossref_primary_10_1364_AO_486815 crossref_primary_10_1002_smll_202402668 crossref_primary_10_1007_s11431_023_2478_0 crossref_primary_10_1007_s40843_024_3230_1 crossref_primary_10_1021_acsaom_3c00450 crossref_primary_10_1039_D3MH02250A crossref_primary_10_1109_JSEN_2024_3385537 crossref_primary_10_1088_1402_4896_ad75d3 crossref_primary_10_3390_rs15143682 crossref_primary_10_1016_j_optcom_2024_130982 crossref_primary_10_1364_AO_545642 crossref_primary_10_3390_photonics12030255 crossref_primary_10_1016_j_colsurfa_2023_132561 crossref_primary_10_1109_TED_2023_3297080 crossref_primary_10_1002_mop_34130 crossref_primary_10_1016_j_infrared_2024_105190 crossref_primary_10_1063_5_0131368 crossref_primary_10_1016_j_infrared_2023_104868 crossref_primary_10_1002_aelm_202300149 crossref_primary_10_1016_j_cej_2024_158917 crossref_primary_10_1364_BOE_517272 crossref_primary_10_1109_JSEN_2023_3278690 crossref_primary_10_1007_s10946_023_10161_7 |
Cites_doi | 10.1103/PhysRevB.100.220301 10.1002/qute.202100038 10.1002/adfm.201801786 10.1021/acs.nanolett.8b04171 10.1038/nphys3969 10.3390/mi12060641 10.1007/s10854-016-5598-7 10.1364/OL.43.005423 10.1002/admt.202000963 10.1038/s41467-021-22056-9 10.1038/s41928-019-0357-4 10.1021/acs.jpcc.8b00679 10.1002/adma.201707152 10.1038/s41563-019-0296-5 10.1109/TTHZ.2019.2917782 10.1002/advs.201902699 10.1364/OL.388771 10.1117/1.AP.2.5.055001 10.1002/adma.202008126 10.1038/s41377-021-00505-w 10.1039/D0NA00928H 10.1016/j.infrared.2019.103024 10.1039/C8NR09060B 10.1021/acsanm.0c00182 10.1088/1361-6463/ab588f 10.1021/acsnano.8b01897 10.1103/PhysRevB.93.241402 10.1021/acs.nanolett.7b03625 10.1126/sciadv.abb6500 10.1021/acs.nanolett.5b01635 10.1126/sciadv.aax8821 10.1007/s00339-020-03936-1 10.1126/science.aav2334 10.1063/1.5088578 10.1038/s41427-018-0032-7 10.1016/j.nanoen.2020.105517 10.1021/acsami.0c08543 10.1021/acsnano.0c10304 10.1021/acs.nanolett.0c04456 10.1103/PhysRevB.79.245311 10.1002/smll.201903362 10.1038/nnano.2014.182 10.1038/s41563-019-0320-9 10.1016/j.optmat.2018.10.042 |
ContentType | Journal Article |
Copyright | 2022 the author(s), published by De Gruyter, Berlin/Boston. 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 the author(s), published by De Gruyter, Berlin/Boston 2022 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
Copyright_xml | – notice: 2022 the author(s), published by De Gruyter, Berlin/Boston. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 the author(s), published by De Gruyter, Berlin/Boston 2022 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
DBID | AAYXX CITATION NPM 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1515/nanoph-2022-0227 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 2192-8614 |
EndPage | 3602 |
ExternalDocumentID | oai_doaj_org_article_b4d0929d33b44816a6dc092e6096f9a7 PMC11501346 39634441 10_1515_nanoph_2022_0227 10_1515_nanoph_2022_022711163595 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality grantid: JCYJ20190808160205460 – fundername: National Natural Science Foundation of China grantid: 12104314 |
GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV ADMLS AEJTT AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ HZ~ M48 O9- OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC QD8 RPM SA. SLJYH AAYXX CITATION 9-L AIKXB F-. IPNFZ NPM RIG ~Z8 7SP 7U5 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c548t-ad6f8fab68104b1bb655cb31c9b0410c6245661fe54ebb81068c66e5eb57aa613 |
IEDL.DBID | M48 |
ISSN | 2192-8614 2192-8606 |
IngestDate | Wed Aug 27 01:24:35 EDT 2025 Thu Aug 21 18:35:27 EDT 2025 Fri Jul 11 10:46:18 EDT 2025 Fri Jul 25 08:35:30 EDT 2025 Wed Feb 19 02:03:16 EST 2025 Thu Apr 24 23:08:00 EDT 2025 Tue Jul 01 00:41:53 EDT 2025 Thu Jul 10 10:34:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Weyl semimetal microdisk array terahertz detector |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 2022 the author(s), published by De Gruyter, Berlin/Boston. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c548t-ad6f8fab68104b1bb655cb31c9b0410c6245661fe54ebb81068c66e5eb57aa613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8969-8948 0000-0003-2508-9606 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2022-0227 |
PMID | 39634441 |
PQID | 2702542438 |
PQPubID | 2038884 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b4d0929d33b44816a6dc092e6096f9a7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501346 proquest_miscellaneous_3146520729 proquest_journals_2702542438 pubmed_primary_39634441 crossref_citationtrail_10_1515_nanoph_2022_0227 crossref_primary_10_1515_nanoph_2022_0227 walterdegruyter_journals_10_1515_nanoph_2022_022711163595 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Nanophotonics (Berlin, Germany) |
PublicationTitleAlternate | Nanophotonics |
PublicationYear | 2022 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2022120714143639187_j_nanoph-2022-0227_ref_019 2022120714143639187_j_nanoph-2022-0227_ref_018 2022120714143639187_j_nanoph-2022-0227_ref_017 2022120714143639187_j_nanoph-2022-0227_ref_039 2022120714143639187_j_nanoph-2022-0227_ref_016 2022120714143639187_j_nanoph-2022-0227_ref_038 2022120714143639187_j_nanoph-2022-0227_ref_011 2022120714143639187_j_nanoph-2022-0227_ref_033 2022120714143639187_j_nanoph-2022-0227_ref_010 2022120714143639187_j_nanoph-2022-0227_ref_032 2022120714143639187_j_nanoph-2022-0227_ref_031 2022120714143639187_j_nanoph-2022-0227_ref_030 2022120714143639187_j_nanoph-2022-0227_ref_015 2022120714143639187_j_nanoph-2022-0227_ref_037 2022120714143639187_j_nanoph-2022-0227_ref_014 2022120714143639187_j_nanoph-2022-0227_ref_036 2022120714143639187_j_nanoph-2022-0227_ref_013 2022120714143639187_j_nanoph-2022-0227_ref_035 2022120714143639187_j_nanoph-2022-0227_ref_012 2022120714143639187_j_nanoph-2022-0227_ref_034 2022120714143639187_j_nanoph-2022-0227_ref_040 2022120714143639187_j_nanoph-2022-0227_ref_008 2022120714143639187_j_nanoph-2022-0227_ref_007 2022120714143639187_j_nanoph-2022-0227_ref_029 2022120714143639187_j_nanoph-2022-0227_ref_006 2022120714143639187_j_nanoph-2022-0227_ref_028 2022120714143639187_j_nanoph-2022-0227_ref_005 2022120714143639187_j_nanoph-2022-0227_ref_027 2022120714143639187_j_nanoph-2022-0227_ref_009 2022120714143639187_j_nanoph-2022-0227_ref_022 2022120714143639187_j_nanoph-2022-0227_ref_044 2022120714143639187_j_nanoph-2022-0227_ref_021 2022120714143639187_j_nanoph-2022-0227_ref_043 2022120714143639187_j_nanoph-2022-0227_ref_020 2022120714143639187_j_nanoph-2022-0227_ref_042 2022120714143639187_j_nanoph-2022-0227_ref_041 2022120714143639187_j_nanoph-2022-0227_ref_004 2022120714143639187_j_nanoph-2022-0227_ref_026 2022120714143639187_j_nanoph-2022-0227_ref_003 2022120714143639187_j_nanoph-2022-0227_ref_025 2022120714143639187_j_nanoph-2022-0227_ref_002 2022120714143639187_j_nanoph-2022-0227_ref_024 2022120714143639187_j_nanoph-2022-0227_ref_001 2022120714143639187_j_nanoph-2022-0227_ref_023 2022120714143639187_j_nanoph-2022-0227_ref_045 |
References_xml | – ident: 2022120714143639187_j_nanoph-2022-0227_ref_019 doi: 10.1103/PhysRevB.100.220301 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_024 doi: 10.1002/qute.202100038 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_036 doi: 10.1002/adfm.201801786 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_035 doi: 10.1021/acs.nanolett.8b04171 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_020 doi: 10.1038/nphys3969 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_045 doi: 10.3390/mi12060641 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_029 doi: 10.1007/s10854-016-5598-7 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_010 doi: 10.1364/OL.43.005423 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_003 doi: 10.1002/admt.202000963 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_025 doi: 10.1038/s41467-021-22056-9 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_001 doi: 10.1038/s41928-019-0357-4 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_026 doi: 10.1021/acs.jpcc.8b00679 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_006 doi: 10.1002/adma.201707152 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_008 doi: 10.1038/s41563-019-0296-5 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_037 doi: 10.1109/TTHZ.2019.2917782 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_043 doi: 10.1002/advs.201902699 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_009 doi: 10.1364/OL.388771 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_030 doi: 10.1117/1.AP.2.5.055001 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_002 doi: 10.1002/adma.202008126 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_004 doi: 10.1038/s41377-021-00505-w – ident: 2022120714143639187_j_nanoph-2022-0227_ref_012 doi: 10.1039/D0NA00928H – ident: 2022120714143639187_j_nanoph-2022-0227_ref_013 doi: 10.1016/j.infrared.2019.103024 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_038 doi: 10.1039/C8NR09060B – ident: 2022120714143639187_j_nanoph-2022-0227_ref_044 doi: 10.1021/acsanm.0c00182 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_039 doi: 10.1088/1361-6463/ab588f – ident: 2022120714143639187_j_nanoph-2022-0227_ref_007 doi: 10.1021/acsnano.8b01897 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_022 doi: 10.1103/PhysRevB.93.241402 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_033 doi: 10.1021/acs.nanolett.7b03625 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_042 doi: 10.1126/sciadv.abb6500 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_040 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_015 doi: 10.1021/acs.nanolett.5b01635 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_017 doi: 10.1126/sciadv.aax8821 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_027 doi: 10.1007/s00339-020-03936-1 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_021 doi: 10.1126/science.aav2334 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_011 doi: 10.1063/1.5088578 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_034 doi: 10.1038/s41427-018-0032-7 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_032 doi: 10.1016/j.nanoen.2020.105517 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_016 doi: 10.1021/acsami.0c08543 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_014 doi: 10.1021/acsnano.0c10304 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_031 doi: 10.1021/acs.nanolett.0c04456 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_005 doi: 10.1103/PhysRevB.79.245311 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_041 doi: 10.1002/smll.201903362 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_028 doi: 10.1038/nnano.2014.182 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_018 doi: 10.1038/s41563-019-0320-9 – ident: 2022120714143639187_j_nanoph-2022-0227_ref_023 doi: 10.1016/j.optmat.2018.10.042 |
SSID | ssj0000993196 |
Score | 2.3313358 |
Snippet | High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies,... |
SourceID | doaj pubmedcentral proquest pubmed crossref walterdegruyter |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3595 |
SubjectTerms | Arrays Communication Design Electrodes Engineering Epitaxial growth Etching Graphene Information technology Laboratories microdisk array Physics Polaritons Power supply Remote sensing Room temperature Science Sensors Silicon wafers Spectral sensitivity Spectrum analysis Substrates terahertz detector Terahertz frequencies Weyl semimetal |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9swDCWGnnbpPtu66wYN2GUHI3EsKfat27AiGJCdViw3QZTkJVviFLGDIv31JW0na_bRXXa1ZYOgSL9HU3oCeCMTl_k8wRi9x1gSxsW5siFWxTDP7VDm2PzMGX_Wo0v5aaImd4764jVhrTxw67geSt8nCPdpilRJJNpq7-hC0MS9C3obf30J8-4UU99b3sOx1fUlCbN7pS2XV1MKCiq-WDZvD4cauf4_cczfl0oeXjdtbB--rdabets2bdDo4jEcdjRSvGvNfwIPQvkUHnWUUnQJWz2D8zEvuPOz6oewq5XdCEYtL76GzVxUYTFbBCLfgq0uZvOF4O3INIn1jfChbv7nP4fLi49fPozi7tCE2FHxUcfW6yIrLLLOmMQEUSvlME1cjn2Z9J3mTqdOiqBkQKRBOnNaBxVQDa0lcD-Cg3JZhhMQg0KyeI2WrkDpMnqnwoxKmKFVSESmH0Fv60LjOkVxPthibriyIKeb1umGnW7Y6RG83T1x1app3DP2Pc_KbhzrYDcXKDpMFx3mX9ERwdl2Tk2XnJXhLXhKDmSaRfB6d5vSinsltgzLdWVSQhA1YFn1CI7bENhZktJHSxKNjCDbC449U_fvlLNpI93N_DtJpY4g_yWOfpr3N4cQKmneRn36PxzzAh62qcCr5c7goF6tw0uiVzW-ajLpFr2QIuE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BKiR6KBAoGAoyEhcOVuJ4d2OfgKJWFVIrhKjobbUvtxGJndqOUPj1zNgbl_Do1V5ba8_szjeP_QbgDYtNarNYR9paHTG0cVHGlYt4Ps0yNWWZboM5p2fi5Jx9uuAXPuBW-7LKzZ7YbtS2NBQjH9G5Kc4mLEnfLa8j6hpF2VXfQuMu7OAWnKYD2Dk8Ovv8pY-yIP4hHaMOcwhlohThus9Voh0fFaool1eoKOiQEZXelm1qKfz_hTv_Lp_c-9Gmtq27rFbrZpNKbS3U8UPY89Ay_NDpwiO444ohPPAwM_SLuB7C7m8chEO419aAmvoxvD-l4jw7q7-HqqrUOiQLZ8Nvbj0Pa7eYLRwC9ZC-Jp_NFyEdXUaBNz9D65o29v8Ezo-Pvn48iXyDhcigo9JEyoo8zZUmTjKmY60F50Ynscn0mMVjIygrKuLccea0xkEiNUI47jSfKoVAYB8GRVm4ZxBOckZEN4KZXDOT4ju5TtHdmSquEfSMAxhtfq00nn2cmmDMJXkhKAzZCUOSMCQJI4C3_RPLjnnjlrGHJK1-HHFmtxfK6lL6JSg1s2MEgzZJNPqksVDCGrzgBHpxOeplAAcbWUu_kGt5o3YBvO5v4xKkvIoqXLmqZYLWhk-Igj2Ap51q9DNJcINjCDkDSLeUZmuq23eK2VVL801YPU6YCCD7Q79upve_H4IWTNCR6-e3f9MLuN8pP9XMHcCgqVbuJYKsRr_yK-kXlW8ltw priority: 102 providerName: ProQuest |
Title | Microdisk array based Weyl semimetal nanofilm terahertz detector |
URI | https://www.degruyter.com/doi/10.1515/nanoph-2022-0227 https://www.ncbi.nlm.nih.gov/pubmed/39634441 https://www.proquest.com/docview/2702542438 https://www.proquest.com/docview/3146520729 https://pubmed.ncbi.nlm.nih.gov/PMC11501346 https://doaj.org/article/b4d0929d33b44816a6dc092e6096f9a7 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-x7YWX8c0CozISLzyENY3tJA8IGFqZkDohRMXeIn9lK7TpSFJB-eu5c9JOhcIDr7HjWOe73O989u8AnvHIpDaLdKit1SFHHxdmQrlQFEmWqYRn2m_mjM7k6Zi_Pxfn19ejOwHWW0M7qic1rqYvfnxbvkKDf-mr90TiqFTl_OoS1xvjKmLE24E99EsJ1TMYdWD_S4uFSN-o2hzCmjBF6N7lLbcNsuGnPJ3_Ngz651HK_e8-zW3dRbVYNqu0qvdWw9uw38FM9qbViztww5V34VYHOVln0PU9eD2iA3l2Un9lqqrUkpFXs-yzW05Z7WaTmUO5MJp1MZnOGF1XxkVufjLrGr_ffx_Gw5NPb0_DrqhCaDA4aUJlZZEWShMPGdeR1lIIo-PIZLrPo76RlAmVUeEEd1pjJ5kaKZ1wWiRKofN_ALvlvHQHwAYFJ3IbyU2huUlxTKFTDHESJTQCnX4ARysR5qZjHKfCF9OcIg8Uet4KPSeh5yT0AJ6v37hq2Tb-0feYVmXdj3iy_YN5dZF3ZpdrbvsIAG0ca4xDI6mkNfjASYzcCtTFAA5Xa5qvdC-nK3qCD3icBvB03YxmR7kUVbr5os5j9DBiQLTrATxsVWA9kxh_ahxhZgDphnJsTHWzpZxcempvwudRzGUA2W96dD29vwkEvZaka9aP_v-zj-FmawB0hu4Qdptq4Z4g6Gp0D3bS4bse7B2fnH342PNbFz1vXz2_Q_YLfEAw7Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQcCoSXocAiwYGDlTje3dgHxDuktOmpFb25-3IbkTghdlSFH8VvZMaPlPDorVfv2lrvzOx8s_MCeMEDE9k40L62VvscdZwfC-V8kfbiWPV4rMvLnOG-HBzyL0fiaAN-NrkwFFbZnInlQW2nhu7I25Q3JXiXh9Gb2XefukaRd7VpoVGxxa5bnqHJlr_e-Yj0fdnt9j8dfBj4dVcB3yA6L3xlZRqlSlMhLq4DraUQRoeBiXWHBx0jyRUog9QJ7rTGSTIyUjrhtOgphdoPv3sFrvIQNTllpvc_r-50EG0RR1M_OwROfoTGQe0ZRdTQzlQ2nZ0iW6L5R4X71jRh2TDgXyj372DNrbPSkW7dyXyxLBrHbakP-7dhqway7F3FeXdgw2UtuFWDWlYfGXkLbv5W8bAF18qIU5PfhbdDCgW0o_wbU_O5WjLSp5Z9dcsxy91kNHFoFjD6m3Q0njBKlEb2Kn4w64rS03APDi9l4-_DZjbN3ENg3ZRTWR3JTaq5ifCbQkdoXPWU0AixOh60m61NTF3rnFpujBOyeZAYSUWMhIiREDE8eLV6Y1bV-bhg7nui1moeVeguH0znJ0kt8InmtoPQ04ahRgs4kEpagw-cRJsxRSnwYLuhdVIfG3lyzuQePF8No8CTF0dlbrrIkxB1m-hSwXcPHlSssVpJiMcpR4DrQbTGNGtLXR_JRqdlUXGyDIKQSw_iP_jrfHn_2xDUl5ISvB9d_E_P4PrgYLiX7O3s7z6GG5UgULTeNmwW84V7gvCu0E9LmWJwfNlC_AuqB2FB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVEJcyrsYCiwSFw5W4nh3Y98ohRAeLUhQ0dtqX24jEjuKHaHw65mxHUOgcOG6D2s0D883-_gW4CmPbOLSyITGORNyzHFhKrQPRTZKUz3iqakXc45P5OSUvz0TZztwtLkLQ8cqnT9frtZVw5Dad4Vd0UJZxzWAGbif67xYXKCJsZQiErz-wmVXYFfKNBY92D2cvP70oVtqQRBEjtZuUl42fSsp1dz9lwHOP89N7n2r97Q7gX9JTeMbsNdiSnbYOMFN2PH5Lbje4kvWRm95G54f0-k7Ny2_Mr1c6jWjFObYF7-esdLPp3OPSJyR1Nl0Nmd0NxktWn1nzlf14v4dOB2_-nw0CdsXFEKLlUgVaiezJNOGSMe4iYyRQlgTRzY1Ax4NrKRtTxllXnBvDA6SiZXSC2_ESGvM9Hehlxe5vwdsmHFispHcZobbBL8pTIL1zEgLg6hmEEB_o0JlW3pxeuVipqjMQKWrRumKlK5I6QE862YsGmqNf4x9QVbpxhEpdt1QLM9VG2PKcDdAtOfi2GDRGUktncUGL7FMy9DxAjjY2FS1kVoquo8n-JDHSQBPum6MMdo40bkvVqWKMZ2IIXGsB7DfuEAnSYx_MI6YMoBkyzm2RN3uyacXNY83gfEo5jKA9Dc_-ine3xSCKUrSner7_zH3MVz9-HKs3r85efcArjXBQIfnDqBXLVf-IaKtyjxqo-kHogYoPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microdisk+array+based+Weyl+semimetal+nanofilm+terahertz+detector&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Song%2C+Qi&rft.au=Zhou%2C+Zhiwen&rft.au=Zhu%2C+Gangyi&rft.au=Liang%2C+Huawei&rft.date=2022-09-01&rft.pub=De+Gruyter&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=11&rft.issue=16&rft.spage=3595&rft.epage=3602&rft_id=info:doi/10.1515%2Fnanoph-2022-0227&rft.externalDocID=PMC11501346 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon |