Microdisk array based Weyl semimetal nanofilm terahertz detector

High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demo...

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 11; no. 16; pp. 3595 - 3602
Main Authors Song, Qi, Zhou, Zhiwen, Zhu, Gangyi, Liang, Huawei, Zhang, Min, Zhang, Bingyuan, Liu, Fang, Yan, Peiguang
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 01.09.2022
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe –air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity ( ) of 5.52 × 10  cm Hz pW at 0.1 THz is achieved at room temperature. In addition, the responsivity ( ) of 8.78 A W is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing.
AbstractList High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe2 nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe2 layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe2–air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity (D *) of 5.52 × 1012 cm Hz1/2 pW−1 at 0.1 THz is achieved at room temperature. In addition, the responsivity (R A) of 8.78 A W−1 is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing.
High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe 2 nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe 2 layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe 2 –air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity ( D * ) of 5.52 × 10 12  cm Hz 1/2 pW −1 at 0.1 THz is achieved at room temperature. In addition, the responsivity ( R A ) of 8.78 A W −1 is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing.
High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe –air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity ( ) of 5.52 × 10  cm Hz pW at 0.1 THz is achieved at room temperature. In addition, the responsivity ( ) of 8.78 A W is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing.
High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe2 nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe2 layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe2-air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity (D *) of 5.52 × 1012 cm Hz1/2 pW-1 at 0.1 THz is achieved at room temperature. In addition, the responsivity (R A) of 8.78 A W-1 is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing.High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe2 nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe2 layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe2-air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity (D *) of 5.52 × 1012 cm Hz1/2 pW-1 at 0.1 THz is achieved at room temperature. In addition, the responsivity (R A) of 8.78 A W-1 is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing.
High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, complicated structure, and high noise equivalent power (NEP). Here, we have demonstrated a Weyl semimetal surface plasmon-enhanced high-performance terahertz wave detectors which are based on microdisk array deposited WTe2 nanofilm epitaxially grown on GaN substrate for room temperature operation. With the microdisk array combined the WTe2 layer, strong terahertz wave surface plasmon polaritons can be generated at the WTe2–air interfaces, which results in significant improvement in detecting performance. For the 40 μm diameter microdisk array, a detectivity (D*) of 5.52 × 1012 cm Hz1/2 pW−1 at 0.1 THz is achieved at room temperature. In addition, the responsivity (RA) of 8.78 A W−1 is also obtained. Such high-performance millimeter and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing.
Author Liang, Huawei
Yan, Peiguang
Zhang, Bingyuan
Zhou, Zhiwen
Song, Qi
Liu, Fang
Zhu, Gangyi
Zhang, Min
Author_xml – sequence: 1
  givenname: Qi
  surname: Song
  fullname: Song, Qi
  organization: Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
– sequence: 2
  givenname: Zhiwen
  surname: Zhou
  fullname: Zhou, Zhiwen
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
– sequence: 3
  givenname: Gangyi
  surname: Zhu
  fullname: Zhu, Gangyi
  organization: School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
– sequence: 4
  givenname: Huawei
  orcidid: 0000-0003-2508-9606
  surname: Liang
  fullname: Liang, Huawei
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
– sequence: 5
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
– sequence: 6
  givenname: Bingyuan
  surname: Zhang
  fullname: Zhang, Bingyuan
  organization: Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
– sequence: 7
  givenname: Fang
  surname: Liu
  fullname: Liu, Fang
  organization: Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 8
  givenname: Peiguang
  orcidid: 0000-0002-8969-8948
  surname: Yan
  fullname: Yan, Peiguang
  email: yanpg@szu.edu.cn
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39634441$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFARLaV3TigSFy4BP39tfKJVxUelIi4gjpbtvOx6SeLF9oK2v74O20JbCSxZfnqeGY_85ml1MIUJq-o5kNcgQLyZzBQ2q4YSSpuyF4-qIwqKNq0EfnCnPqxOUlqTspRioOST6pApyTjncFSdfvIuhs6n77WJ0exqaxJ29TfcDXXC0Y-YzVDPT_V-GOuM0aww5qu6w4wuh_isetybIeHJzXlcfX3_7sv5x-by84eL87PLxgne5sZ0sm97Y2ULhFuwVgrhLAOnLOFAnKRcSAk9Co7WFpBsnZQo0IqFMRLYcXWx1-2CWetN9KOJOx2M178bIS61idm7AbXlHVFUdYxZzluQRnauNFASJXtlFkXr7V5rs7Ujdg6nHM1wT_T-zeRXehl-agBBgHFZFF7dKMTwY4sp69Enh8NgJgzbpBlwKShZUFWgLx9A12Ebp_JXmi4IFZxy1hbUi7uW_ni5nVQByD2gjCuliL12Ppvsw-zQDxqInlOh96nQcyr0nIpCJA-It9r_oZzuKb_MUCbe4TJud6X46_xfVACQTCjBrgFWAM-3
CitedBy_id crossref_primary_10_1364_AO_486815
crossref_primary_10_1002_smll_202402668
crossref_primary_10_1007_s11431_023_2478_0
crossref_primary_10_1007_s40843_024_3230_1
crossref_primary_10_1021_acsaom_3c00450
crossref_primary_10_1039_D3MH02250A
crossref_primary_10_1109_JSEN_2024_3385537
crossref_primary_10_1088_1402_4896_ad75d3
crossref_primary_10_3390_rs15143682
crossref_primary_10_1016_j_optcom_2024_130982
crossref_primary_10_1364_AO_545642
crossref_primary_10_3390_photonics12030255
crossref_primary_10_1016_j_colsurfa_2023_132561
crossref_primary_10_1109_TED_2023_3297080
crossref_primary_10_1002_mop_34130
crossref_primary_10_1016_j_infrared_2024_105190
crossref_primary_10_1063_5_0131368
crossref_primary_10_1016_j_infrared_2023_104868
crossref_primary_10_1002_aelm_202300149
crossref_primary_10_1016_j_cej_2024_158917
crossref_primary_10_1364_BOE_517272
crossref_primary_10_1109_JSEN_2023_3278690
crossref_primary_10_1007_s10946_023_10161_7
Cites_doi 10.1103/PhysRevB.100.220301
10.1002/qute.202100038
10.1002/adfm.201801786
10.1021/acs.nanolett.8b04171
10.1038/nphys3969
10.3390/mi12060641
10.1007/s10854-016-5598-7
10.1364/OL.43.005423
10.1002/admt.202000963
10.1038/s41467-021-22056-9
10.1038/s41928-019-0357-4
10.1021/acs.jpcc.8b00679
10.1002/adma.201707152
10.1038/s41563-019-0296-5
10.1109/TTHZ.2019.2917782
10.1002/advs.201902699
10.1364/OL.388771
10.1117/1.AP.2.5.055001
10.1002/adma.202008126
10.1038/s41377-021-00505-w
10.1039/D0NA00928H
10.1016/j.infrared.2019.103024
10.1039/C8NR09060B
10.1021/acsanm.0c00182
10.1088/1361-6463/ab588f
10.1021/acsnano.8b01897
10.1103/PhysRevB.93.241402
10.1021/acs.nanolett.7b03625
10.1126/sciadv.abb6500
10.1021/acs.nanolett.5b01635
10.1126/sciadv.aax8821
10.1007/s00339-020-03936-1
10.1126/science.aav2334
10.1063/1.5088578
10.1038/s41427-018-0032-7
10.1016/j.nanoen.2020.105517
10.1021/acsami.0c08543
10.1021/acsnano.0c10304
10.1021/acs.nanolett.0c04456
10.1103/PhysRevB.79.245311
10.1002/smll.201903362
10.1038/nnano.2014.182
10.1038/s41563-019-0320-9
10.1016/j.optmat.2018.10.042
ContentType Journal Article
Copyright 2022 the author(s), published by De Gruyter, Berlin/Boston.
2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 the author(s), published by De Gruyter, Berlin/Boston 2022 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
Copyright_xml – notice: 2022 the author(s), published by De Gruyter, Berlin/Boston.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 the author(s), published by De Gruyter, Berlin/Boston 2022 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1515/nanoph-2022-0227
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Publicly Available Content Database

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 2192-8614
EndPage 3602
ExternalDocumentID oai_doaj_org_article_b4d0929d33b44816a6dc092e6096f9a7
PMC11501346
39634441
10_1515_nanoph_2022_0227
10_1515_nanoph_2022_022711163595
Genre Journal Article
GrantInformation_xml – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  grantid: JCYJ20190808160205460
– fundername: National Natural Science Foundation of China
  grantid: 12104314
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
M48
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
QD8
RPM
SA.
SLJYH
AAYXX
CITATION
9-L
AIKXB
F-.
IPNFZ
NPM
RIG
~Z8
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c548t-ad6f8fab68104b1bb655cb31c9b0410c6245661fe54ebb81068c66e5eb57aa613
IEDL.DBID M48
ISSN 2192-8614
2192-8606
IngestDate Wed Aug 27 01:24:35 EDT 2025
Thu Aug 21 18:35:27 EDT 2025
Fri Jul 11 10:46:18 EDT 2025
Fri Jul 25 08:35:30 EDT 2025
Wed Feb 19 02:03:16 EST 2025
Thu Apr 24 23:08:00 EDT 2025
Tue Jul 01 00:41:53 EDT 2025
Thu Jul 10 10:34:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Weyl semimetal
microdisk array
terahertz detector
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
2022 the author(s), published by De Gruyter, Berlin/Boston.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-ad6f8fab68104b1bb655cb31c9b0410c6245661fe54ebb81068c66e5eb57aa613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8969-8948
0000-0003-2508-9606
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/nanoph-2022-0227
PMID 39634441
PQID 2702542438
PQPubID 2038884
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_b4d0929d33b44816a6dc092e6096f9a7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501346
proquest_miscellaneous_3146520729
proquest_journals_2702542438
pubmed_primary_39634441
crossref_citationtrail_10_1515_nanoph_2022_0227
crossref_primary_10_1515_nanoph_2022_0227
walterdegruyter_journals_10_1515_nanoph_2022_022711163595
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationTitleAlternate Nanophotonics
PublicationYear 2022
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2022120714143639187_j_nanoph-2022-0227_ref_019
2022120714143639187_j_nanoph-2022-0227_ref_018
2022120714143639187_j_nanoph-2022-0227_ref_017
2022120714143639187_j_nanoph-2022-0227_ref_039
2022120714143639187_j_nanoph-2022-0227_ref_016
2022120714143639187_j_nanoph-2022-0227_ref_038
2022120714143639187_j_nanoph-2022-0227_ref_011
2022120714143639187_j_nanoph-2022-0227_ref_033
2022120714143639187_j_nanoph-2022-0227_ref_010
2022120714143639187_j_nanoph-2022-0227_ref_032
2022120714143639187_j_nanoph-2022-0227_ref_031
2022120714143639187_j_nanoph-2022-0227_ref_030
2022120714143639187_j_nanoph-2022-0227_ref_015
2022120714143639187_j_nanoph-2022-0227_ref_037
2022120714143639187_j_nanoph-2022-0227_ref_014
2022120714143639187_j_nanoph-2022-0227_ref_036
2022120714143639187_j_nanoph-2022-0227_ref_013
2022120714143639187_j_nanoph-2022-0227_ref_035
2022120714143639187_j_nanoph-2022-0227_ref_012
2022120714143639187_j_nanoph-2022-0227_ref_034
2022120714143639187_j_nanoph-2022-0227_ref_040
2022120714143639187_j_nanoph-2022-0227_ref_008
2022120714143639187_j_nanoph-2022-0227_ref_007
2022120714143639187_j_nanoph-2022-0227_ref_029
2022120714143639187_j_nanoph-2022-0227_ref_006
2022120714143639187_j_nanoph-2022-0227_ref_028
2022120714143639187_j_nanoph-2022-0227_ref_005
2022120714143639187_j_nanoph-2022-0227_ref_027
2022120714143639187_j_nanoph-2022-0227_ref_009
2022120714143639187_j_nanoph-2022-0227_ref_022
2022120714143639187_j_nanoph-2022-0227_ref_044
2022120714143639187_j_nanoph-2022-0227_ref_021
2022120714143639187_j_nanoph-2022-0227_ref_043
2022120714143639187_j_nanoph-2022-0227_ref_020
2022120714143639187_j_nanoph-2022-0227_ref_042
2022120714143639187_j_nanoph-2022-0227_ref_041
2022120714143639187_j_nanoph-2022-0227_ref_004
2022120714143639187_j_nanoph-2022-0227_ref_026
2022120714143639187_j_nanoph-2022-0227_ref_003
2022120714143639187_j_nanoph-2022-0227_ref_025
2022120714143639187_j_nanoph-2022-0227_ref_002
2022120714143639187_j_nanoph-2022-0227_ref_024
2022120714143639187_j_nanoph-2022-0227_ref_001
2022120714143639187_j_nanoph-2022-0227_ref_023
2022120714143639187_j_nanoph-2022-0227_ref_045
References_xml – ident: 2022120714143639187_j_nanoph-2022-0227_ref_019
  doi: 10.1103/PhysRevB.100.220301
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_024
  doi: 10.1002/qute.202100038
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_036
  doi: 10.1002/adfm.201801786
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_035
  doi: 10.1021/acs.nanolett.8b04171
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_020
  doi: 10.1038/nphys3969
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_045
  doi: 10.3390/mi12060641
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_029
  doi: 10.1007/s10854-016-5598-7
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_010
  doi: 10.1364/OL.43.005423
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_003
  doi: 10.1002/admt.202000963
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_025
  doi: 10.1038/s41467-021-22056-9
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_001
  doi: 10.1038/s41928-019-0357-4
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_026
  doi: 10.1021/acs.jpcc.8b00679
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_006
  doi: 10.1002/adma.201707152
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_008
  doi: 10.1038/s41563-019-0296-5
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_037
  doi: 10.1109/TTHZ.2019.2917782
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_043
  doi: 10.1002/advs.201902699
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_009
  doi: 10.1364/OL.388771
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_030
  doi: 10.1117/1.AP.2.5.055001
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_002
  doi: 10.1002/adma.202008126
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_004
  doi: 10.1038/s41377-021-00505-w
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_012
  doi: 10.1039/D0NA00928H
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_013
  doi: 10.1016/j.infrared.2019.103024
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_038
  doi: 10.1039/C8NR09060B
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_044
  doi: 10.1021/acsanm.0c00182
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_039
  doi: 10.1088/1361-6463/ab588f
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_007
  doi: 10.1021/acsnano.8b01897
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_022
  doi: 10.1103/PhysRevB.93.241402
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_033
  doi: 10.1021/acs.nanolett.7b03625
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_042
  doi: 10.1126/sciadv.abb6500
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_040
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_015
  doi: 10.1021/acs.nanolett.5b01635
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_017
  doi: 10.1126/sciadv.aax8821
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_027
  doi: 10.1007/s00339-020-03936-1
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_021
  doi: 10.1126/science.aav2334
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_011
  doi: 10.1063/1.5088578
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_034
  doi: 10.1038/s41427-018-0032-7
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_032
  doi: 10.1016/j.nanoen.2020.105517
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_016
  doi: 10.1021/acsami.0c08543
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_014
  doi: 10.1021/acsnano.0c10304
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_031
  doi: 10.1021/acs.nanolett.0c04456
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_005
  doi: 10.1103/PhysRevB.79.245311
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_041
  doi: 10.1002/smll.201903362
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_028
  doi: 10.1038/nnano.2014.182
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_018
  doi: 10.1038/s41563-019-0320-9
– ident: 2022120714143639187_j_nanoph-2022-0227_ref_023
  doi: 10.1016/j.optmat.2018.10.042
SSID ssj0000993196
Score 2.3313358
Snippet High-performance terahertz wave detectors at room temperature are still urgently required for a wide range of applications. The available technologies,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3595
SubjectTerms Arrays
Communication
Design
Electrodes
Engineering
Epitaxial growth
Etching
Graphene
Information technology
Laboratories
microdisk array
Physics
Polaritons
Power supply
Remote sensing
Room temperature
Science
Sensors
Silicon wafers
Spectral sensitivity
Spectrum analysis
Substrates
terahertz detector
Terahertz frequencies
Weyl semimetal
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9swDCWGnnbpPtu66wYN2GUHI3EsKfat27AiGJCdViw3QZTkJVviFLGDIv31JW0na_bRXXa1ZYOgSL9HU3oCeCMTl_k8wRi9x1gSxsW5siFWxTDP7VDm2PzMGX_Wo0v5aaImd4764jVhrTxw67geSt8nCPdpilRJJNpq7-hC0MS9C3obf30J8-4UU99b3sOx1fUlCbN7pS2XV1MKCiq-WDZvD4cauf4_cczfl0oeXjdtbB--rdabets2bdDo4jEcdjRSvGvNfwIPQvkUHnWUUnQJWz2D8zEvuPOz6oewq5XdCEYtL76GzVxUYTFbBCLfgq0uZvOF4O3INIn1jfChbv7nP4fLi49fPozi7tCE2FHxUcfW6yIrLLLOmMQEUSvlME1cjn2Z9J3mTqdOiqBkQKRBOnNaBxVQDa0lcD-Cg3JZhhMQg0KyeI2WrkDpMnqnwoxKmKFVSESmH0Fv60LjOkVxPthibriyIKeb1umGnW7Y6RG83T1x1app3DP2Pc_KbhzrYDcXKDpMFx3mX9ERwdl2Tk2XnJXhLXhKDmSaRfB6d5vSinsltgzLdWVSQhA1YFn1CI7bENhZktJHSxKNjCDbC449U_fvlLNpI93N_DtJpY4g_yWOfpr3N4cQKmneRn36PxzzAh62qcCr5c7goF6tw0uiVzW-ajLpFr2QIuE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BKiR6KBAoGAoyEhcOVuJ4d2OfgKJWFVIrhKjobbUvtxGJndqOUPj1zNgbl_Do1V5ba8_szjeP_QbgDYtNarNYR9paHTG0cVHGlYt4Ps0yNWWZboM5p2fi5Jx9uuAXPuBW-7LKzZ7YbtS2NBQjH9G5Kc4mLEnfLa8j6hpF2VXfQuMu7OAWnKYD2Dk8Ovv8pY-yIP4hHaMOcwhlohThus9Voh0fFaool1eoKOiQEZXelm1qKfz_hTv_Lp_c-9Gmtq27rFbrZpNKbS3U8UPY89Ay_NDpwiO444ohPPAwM_SLuB7C7m8chEO419aAmvoxvD-l4jw7q7-HqqrUOiQLZ8Nvbj0Pa7eYLRwC9ZC-Jp_NFyEdXUaBNz9D65o29v8Ezo-Pvn48iXyDhcigo9JEyoo8zZUmTjKmY60F50Ynscn0mMVjIygrKuLccea0xkEiNUI47jSfKoVAYB8GRVm4ZxBOckZEN4KZXDOT4ju5TtHdmSquEfSMAxhtfq00nn2cmmDMJXkhKAzZCUOSMCQJI4C3_RPLjnnjlrGHJK1-HHFmtxfK6lL6JSg1s2MEgzZJNPqksVDCGrzgBHpxOeplAAcbWUu_kGt5o3YBvO5v4xKkvIoqXLmqZYLWhk-Igj2Ap51q9DNJcINjCDkDSLeUZmuq23eK2VVL801YPU6YCCD7Q79upve_H4IWTNCR6-e3f9MLuN8pP9XMHcCgqVbuJYKsRr_yK-kXlW8ltw
  priority: 102
  providerName: ProQuest
Title Microdisk array based Weyl semimetal nanofilm terahertz detector
URI https://www.degruyter.com/doi/10.1515/nanoph-2022-0227
https://www.ncbi.nlm.nih.gov/pubmed/39634441
https://www.proquest.com/docview/2702542438
https://www.proquest.com/docview/3146520729
https://pubmed.ncbi.nlm.nih.gov/PMC11501346
https://doaj.org/article/b4d0929d33b44816a6dc092e6096f9a7
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-x7YWX8c0CozISLzyENY3tJA8IGFqZkDohRMXeIn9lK7TpSFJB-eu5c9JOhcIDr7HjWOe73O989u8AnvHIpDaLdKit1SFHHxdmQrlQFEmWqYRn2m_mjM7k6Zi_Pxfn19ejOwHWW0M7qic1rqYvfnxbvkKDf-mr90TiqFTl_OoS1xvjKmLE24E99EsJ1TMYdWD_S4uFSN-o2hzCmjBF6N7lLbcNsuGnPJ3_Ngz651HK_e8-zW3dRbVYNqu0qvdWw9uw38FM9qbViztww5V34VYHOVln0PU9eD2iA3l2Un9lqqrUkpFXs-yzW05Z7WaTmUO5MJp1MZnOGF1XxkVufjLrGr_ffx_Gw5NPb0_DrqhCaDA4aUJlZZEWShMPGdeR1lIIo-PIZLrPo76RlAmVUeEEd1pjJ5kaKZ1wWiRKofN_ALvlvHQHwAYFJ3IbyU2huUlxTKFTDHESJTQCnX4ARysR5qZjHKfCF9OcIg8Uet4KPSeh5yT0AJ6v37hq2Tb-0feYVmXdj3iy_YN5dZF3ZpdrbvsIAG0ca4xDI6mkNfjASYzcCtTFAA5Xa5qvdC-nK3qCD3icBvB03YxmR7kUVbr5os5j9DBiQLTrATxsVWA9kxh_ahxhZgDphnJsTHWzpZxcempvwudRzGUA2W96dD29vwkEvZaka9aP_v-zj-FmawB0hu4Qdptq4Z4g6Gp0D3bS4bse7B2fnH342PNbFz1vXz2_Q_YLfEAw7Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQcCoSXocAiwYGDlTje3dgHxDuktOmpFb25-3IbkTghdlSFH8VvZMaPlPDorVfv2lrvzOx8s_MCeMEDE9k40L62VvscdZwfC-V8kfbiWPV4rMvLnOG-HBzyL0fiaAN-NrkwFFbZnInlQW2nhu7I25Q3JXiXh9Gb2XefukaRd7VpoVGxxa5bnqHJlr_e-Yj0fdnt9j8dfBj4dVcB3yA6L3xlZRqlSlMhLq4DraUQRoeBiXWHBx0jyRUog9QJ7rTGSTIyUjrhtOgphdoPv3sFrvIQNTllpvc_r-50EG0RR1M_OwROfoTGQe0ZRdTQzlQ2nZ0iW6L5R4X71jRh2TDgXyj372DNrbPSkW7dyXyxLBrHbakP-7dhqway7F3FeXdgw2UtuFWDWlYfGXkLbv5W8bAF18qIU5PfhbdDCgW0o_wbU_O5WjLSp5Z9dcsxy91kNHFoFjD6m3Q0njBKlEb2Kn4w64rS03APDi9l4-_DZjbN3ENg3ZRTWR3JTaq5ifCbQkdoXPWU0AixOh60m61NTF3rnFpujBOyeZAYSUWMhIiREDE8eLV6Y1bV-bhg7nui1moeVeguH0znJ0kt8InmtoPQ04ahRgs4kEpagw-cRJsxRSnwYLuhdVIfG3lyzuQePF8No8CTF0dlbrrIkxB1m-hSwXcPHlSssVpJiMcpR4DrQbTGNGtLXR_JRqdlUXGyDIKQSw_iP_jrfHn_2xDUl5ISvB9d_E_P4PrgYLiX7O3s7z6GG5UgULTeNmwW84V7gvCu0E9LmWJwfNlC_AuqB2FB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVEJcyrsYCiwSFw5W4nh3Y98ohRAeLUhQ0dtqX24jEjuKHaHw65mxHUOgcOG6D2s0D883-_gW4CmPbOLSyITGORNyzHFhKrQPRTZKUz3iqakXc45P5OSUvz0TZztwtLkLQ8cqnT9frtZVw5Dad4Vd0UJZxzWAGbif67xYXKCJsZQiErz-wmVXYFfKNBY92D2cvP70oVtqQRBEjtZuUl42fSsp1dz9lwHOP89N7n2r97Q7gX9JTeMbsNdiSnbYOMFN2PH5Lbje4kvWRm95G54f0-k7Ny2_Mr1c6jWjFObYF7-esdLPp3OPSJyR1Nl0Nmd0NxktWn1nzlf14v4dOB2_-nw0CdsXFEKLlUgVaiezJNOGSMe4iYyRQlgTRzY1Ax4NrKRtTxllXnBvDA6SiZXSC2_ESGvM9Hehlxe5vwdsmHFispHcZobbBL8pTIL1zEgLg6hmEEB_o0JlW3pxeuVipqjMQKWrRumKlK5I6QE862YsGmqNf4x9QVbpxhEpdt1QLM9VG2PKcDdAtOfi2GDRGUktncUGL7FMy9DxAjjY2FS1kVoquo8n-JDHSQBPum6MMdo40bkvVqWKMZ2IIXGsB7DfuEAnSYx_MI6YMoBkyzm2RN3uyacXNY83gfEo5jKA9Dc_-ine3xSCKUrSner7_zH3MVz9-HKs3r85efcArjXBQIfnDqBXLVf-IaKtyjxqo-kHogYoPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microdisk+array+based+Weyl+semimetal+nanofilm+terahertz+detector&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Song%2C+Qi&rft.au=Zhou%2C+Zhiwen&rft.au=Zhu%2C+Gangyi&rft.au=Liang%2C+Huawei&rft.date=2022-09-01&rft.pub=De+Gruyter&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=11&rft.issue=16&rft.spage=3595&rft.epage=3602&rft_id=info:doi/10.1515%2Fnanoph-2022-0227&rft.externalDocID=PMC11501346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon