MOF-derived Cobalt Sulfide Grown on 3D Graphene Foam as an Efficient Sulfur Host for Long-Life Lithium-Sulfur Batteries

Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical app...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 4; no. C; pp. 36 - 43
Main Authors He, Jiarui, Chen, Yuanfu, Manthiram, Arumugam
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 29.06.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm−2 even at a very high sulfur loading (10.4 mg cm−2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries. [Display omitted] •Metal-organic framework-derived Co9S8 arrays are grown onto 3D graphene foam•Co9S8-3DGF serves as a free-standing, binder-free host for sulfur cathodes•Co9S8-3DGF/S cathode exhibits high capacity with long cycle life•Co9S8-3DGF/S cathode displays a remarkably high areal capacity Inorganic Chemistry; Energy Materials; Porous Material
AbstractList Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. Yet, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm-2 even at a very high sulfur loading (10.4 mg cm-2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. Our work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries
Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm-2 even at a very high sulfur loading (10.4 mg cm-2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries.Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm-2 even at a very high sulfur loading (10.4 mg cm-2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries.
Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm−2 even at a very high sulfur loading (10.4 mg cm−2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries. : Inorganic Chemistry; Energy Materials; Porous Material Subject Areas: Inorganic Chemistry, Energy Materials, Porous Material
Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co S array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co S -3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co S -3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm even at a very high sulfur loading (10.4 mg cm ) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co S -3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries.
Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co 9 S 8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co 9 S 8 -3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co 9 S 8 -3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm −2 even at a very high sulfur loading (10.4 mg cm −2 ) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co 9 S 8 -3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries. • Metal-organic framework-derived Co 9 S 8 arrays are grown onto 3D graphene foam • Co 9 S 8 -3DGF serves as a free-standing, binder-free host for sulfur cathodes • Co 9 S 8 -3DGF/S cathode exhibits high capacity with long cycle life • Co 9 S 8 -3DGF/S cathode displays a remarkably high areal capacity Inorganic Chemistry; Energy Materials; Porous Material
Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm−2 even at a very high sulfur loading (10.4 mg cm−2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries. [Display omitted] •Metal-organic framework-derived Co9S8 arrays are grown onto 3D graphene foam•Co9S8-3DGF serves as a free-standing, binder-free host for sulfur cathodes•Co9S8-3DGF/S cathode exhibits high capacity with long cycle life•Co9S8-3DGF/S cathode displays a remarkably high areal capacity Inorganic Chemistry; Energy Materials; Porous Material
Author Manthiram, Arumugam
He, Jiarui
Chen, Yuanfu
AuthorAffiliation 2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
1 Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
AuthorAffiliation_xml – name: 2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
– name: 1 Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
Author_xml – sequence: 1
  givenname: Jiarui
  surname: He
  fullname: He, Jiarui
  organization: Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
– sequence: 2
  givenname: Yuanfu
  surname: Chen
  fullname: Chen, Yuanfu
  email: yfchen@uestc.edu.cn
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
– sequence: 3
  givenname: Arumugam
  orcidid: 0000-0003-0237-9563
  surname: Manthiram
  fullname: Manthiram, Arumugam
  email: manth@austin.utexas.edu
  organization: Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30240751$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1438514$$D View this record in Osti.gov
BookMark eNp9UsFuEzEQXaEiWkp_gAOyOHHZYHvtXUdCSCU0baWgHoCz5bXHiaONHezdVPw9XjZULYdaljyy33szzzOvixMfPBTFW4JnBJP643bmknYziomYYT7DmL8ozigX8xJjRk8exafFRUpbjDHNm83rV8VplQPccHJW3H-7W5YGojuAQYvQqq5H34fOOgPoOoZ7j4JH1dccq_0GPKBlUDukElIeXVnrtAM_MYaIbkLqkQ0RrYJflytnAa1cv3HDrjwivqi-z8kgvSleWtUluDie58XP5dWPxU25uru-XVyuSs2Z6MtGYC0oKEHaSvDWNJrbOQY7NxQ4MMNZdtVWCtfCEsWE4Kyh0IrWMGiIJdV5cTvpmqC2ch_dTsXfMign_16EuJYq9k53IHHNakqoUFXFWNWathasskJg0jDLWshanyet_dDuwOjsPKruiejTF-82ch0Osias5nOWBd5PAvmfnMzt60FvdPAedC8Jyw7JCPpwzBLDrwFSL3e509B1ykMYkqQkLyYa2mTou8cFPVTyr70ZQCeAjiGlCPYBQrAcx0hu5ThGchwjibnMY5RJ4j9SLlT1LoymXPc89dNEhdzSg4M4mgSvwbg4ejTBPUf_A3WC4RY
CitedBy_id crossref_primary_10_1016_j_cej_2025_161470
crossref_primary_10_1016_j_cej_2021_130966
crossref_primary_10_1016_j_esci_2023_100107
crossref_primary_10_1002_chem_201904085
crossref_primary_10_1016_j_cej_2023_141620
crossref_primary_10_1002_smll_201905585
crossref_primary_10_1016_j_jmst_2021_04_033
crossref_primary_10_1002_adfm_202200424
crossref_primary_10_1016_j_electacta_2018_07_129
crossref_primary_10_1016_j_jiec_2021_04_033
crossref_primary_10_1021_acsnano_9b04538
crossref_primary_10_1021_acsami_9b06497
crossref_primary_10_1002_adma_202210166
crossref_primary_10_1016_j_cej_2019_123734
crossref_primary_10_1039_C9RA05202J
crossref_primary_10_3390_en15062183
crossref_primary_10_1039_C8NR08262F
crossref_primary_10_1016_j_cej_2018_09_132
crossref_primary_10_1016_j_jelechem_2020_114545
crossref_primary_10_1021_acsaem_9b01214
crossref_primary_10_1021_acs_analchem_8b05115
crossref_primary_10_1016_j_electacta_2018_08_049
crossref_primary_10_1016_j_jelechem_2020_114564
crossref_primary_10_1016_j_jechem_2023_02_009
crossref_primary_10_1038_s41598_021_81769_5
crossref_primary_10_1016_j_apsusc_2022_155333
crossref_primary_10_1016_S1872_2067_21_63984_0
crossref_primary_10_1039_D0MA00797H
crossref_primary_10_1039_D0NR05727D
crossref_primary_10_1016_j_nantod_2019_100796
crossref_primary_10_1016_j_isci_2018_12_029
crossref_primary_10_1016_j_ensm_2020_06_043
crossref_primary_10_1007_s11051_019_4540_3
crossref_primary_10_1039_D1NJ05347G
crossref_primary_10_1002_smtd_202100518
crossref_primary_10_1007_s10008_021_05066_x
crossref_primary_10_1039_C9TA03123E
crossref_primary_10_1088_1361_6528_ab85ec
crossref_primary_10_34133_2021_2712391
crossref_primary_10_1016_j_diamond_2018_07_015
crossref_primary_10_1002_aenm_202001017
crossref_primary_10_1007_s11581_021_04341_1
crossref_primary_10_1007_s10008_019_04301_w
crossref_primary_10_1016_j_isci_2023_108436
crossref_primary_10_1016_j_cej_2022_139566
crossref_primary_10_1016_j_electacta_2018_10_054
crossref_primary_10_1016_j_mtcomm_2021_102857
crossref_primary_10_1002_sus2_42
crossref_primary_10_1016_j_cej_2020_125670
crossref_primary_10_1016_j_electacta_2019_134843
crossref_primary_10_1021_acs_energyfuels_3c01153
crossref_primary_10_1016_j_jallcom_2020_158343
crossref_primary_10_1002_aenm_201900584
crossref_primary_10_1016_j_ensm_2019_04_038
crossref_primary_10_1016_j_jallcom_2021_159341
crossref_primary_10_1002_adfm_202100970
crossref_primary_10_1007_s12274_022_5215_4
crossref_primary_10_1002_nano_202100177
crossref_primary_10_1007_s42864_023_00248_8
crossref_primary_10_1016_j_apenergy_2020_114625
crossref_primary_10_1002_adma_202204147
crossref_primary_10_1007_s40843_018_9331_x
crossref_primary_10_1002_batt_202100229
crossref_primary_10_1016_j_jallcom_2024_174946
crossref_primary_10_1088_1361_6528_ac3ce5
crossref_primary_10_1002_slct_202002090
crossref_primary_10_1021_acs_iecr_0c04960
crossref_primary_10_1039_C8NJ02370K
crossref_primary_10_1039_D1TA00800E
crossref_primary_10_1016_j_est_2024_112462
crossref_primary_10_1021_acsnano_8b07843
crossref_primary_10_1039_D1SC00095K
crossref_primary_10_1007_s11581_022_04755_5
crossref_primary_10_1016_j_cej_2020_125976
crossref_primary_10_1039_D1NR07818F
crossref_primary_10_1016_j_jallcom_2022_164120
crossref_primary_10_1039_C9RA10063F
crossref_primary_10_1002_smll_201906114
crossref_primary_10_1016_j_enchem_2020_100036
crossref_primary_10_1021_acsami_8b17376
crossref_primary_10_1002_celc_201901568
crossref_primary_10_1002_smll_201901454
crossref_primary_10_1016_j_ccr_2019_05_006
crossref_primary_10_1039_D4CY00243A
crossref_primary_10_1016_j_jallcom_2020_154201
crossref_primary_10_1002_advs_201802362
crossref_primary_10_1002_sstr_202000047
crossref_primary_10_1016_j_cclet_2024_110475
crossref_primary_10_1016_j_jallcom_2019_153293
crossref_primary_10_1021_acs_chemrev_9b00326
crossref_primary_10_1016_j_jechem_2020_07_020
crossref_primary_10_1007_s12274_020_3260_4
crossref_primary_10_1016_j_jechem_2019_07_001
crossref_primary_10_1002_smll_202001574
crossref_primary_10_1007_s11581_024_05394_8
crossref_primary_10_1016_j_cej_2020_124241
crossref_primary_10_1088_2399_1984_abb09d
crossref_primary_10_1016_j_energy_2020_118779
crossref_primary_10_1016_j_cej_2020_125686
crossref_primary_10_1039_D1TA06499A
crossref_primary_10_1016_j_solidstatesciences_2024_107477
crossref_primary_10_1016_j_jallcom_2023_170812
crossref_primary_10_1002_aenm_202103152
crossref_primary_10_1021_acsami_2c22999
crossref_primary_10_1016_j_cej_2019_123385
crossref_primary_10_1002_aenm_202204378
crossref_primary_10_1016_j_cej_2018_10_104
crossref_primary_10_1039_D3DT00288H
crossref_primary_10_1016_j_apcatb_2019_117996
crossref_primary_10_1002_celc_202000758
crossref_primary_10_1039_D2NR04526E
crossref_primary_10_1016_j_est_2023_109059
crossref_primary_10_1016_j_isci_2018_07_021
crossref_primary_10_1002_aenm_202003410
crossref_primary_10_1021_acsnano_9b01079
crossref_primary_10_1016_j_ceramint_2021_05_261
crossref_primary_10_1016_j_tifs_2020_09_004
crossref_primary_10_1016_j_ensm_2022_08_035
crossref_primary_10_1002_ente_201901057
crossref_primary_10_1016_j_energy_2021_119914
crossref_primary_10_1016_j_jelechem_2020_114652
crossref_primary_10_1016_j_checat_2023_100824
crossref_primary_10_1039_D1MA00247C
crossref_primary_10_1021_acs_chemrev_2c00270
crossref_primary_10_1007_s12274_020_2821_x
crossref_primary_10_1016_j_jechem_2023_10_054
crossref_primary_10_1002_adfm_201805018
crossref_primary_10_1016_j_nanoen_2024_110098
crossref_primary_10_1016_j_enchem_2019_100001
crossref_primary_10_1039_D0TA06220K
crossref_primary_10_1021_acsami_0c01640
crossref_primary_10_1039_C9EE02049G
crossref_primary_10_1016_j_cej_2018_10_177
crossref_primary_10_3390_en15217961
crossref_primary_10_1002_adfm_201903842
crossref_primary_10_1016_j_jallcom_2019_151854
crossref_primary_10_1016_j_electacta_2020_137259
crossref_primary_10_1021_acsaem_3c00370
crossref_primary_10_1016_j_jechem_2019_01_005
crossref_primary_10_1002_eem2_12152
crossref_primary_10_1016_j_mseb_2024_117976
crossref_primary_10_1016_j_jpowsour_2021_230929
crossref_primary_10_1021_acsami_2c06067
crossref_primary_10_1007_s11581_019_03047_9
crossref_primary_10_1002_cssc_202002140
crossref_primary_10_1016_j_poly_2018_08_067
crossref_primary_10_3762_bjnano_10_52
crossref_primary_10_1016_j_cej_2022_138287
crossref_primary_10_1016_j_electacta_2023_142145
crossref_primary_10_1016_j_ensm_2022_07_027
crossref_primary_10_1016_j_xcrp_2024_102028
crossref_primary_10_1016_j_ccr_2022_214741
crossref_primary_10_1039_D3CC01167D
crossref_primary_10_1039_C9TA08498C
crossref_primary_10_1002_aenm_202000082
crossref_primary_10_3390_polym11121946
crossref_primary_10_1016_j_cej_2019_122672
Cites_doi 10.1073/pnas.1615837114
10.1039/C5MH00246J
10.1016/j.nanoen.2017.05.009
10.1021/acsenergylett.6b00033
10.1016/j.nanoen.2016.05.028
10.1002/smll.201602539
10.1002/adma.201405115
10.1021/acsnano.7b03057
10.1039/C5TA04445F
10.1002/adma.201504765
10.1021/nl404721h
10.1016/j.joule.2017.06.003
10.1002/adma.201404210
10.1021/acs.nanolett.5b04166
10.1002/adma.201702707
10.1002/adfm.201606663
10.1021/nl501486n
10.1038/ncomms2163
10.1016/j.cej.2016.11.063
10.1021/acsnano.6b06369
10.1002/ange.201308013
10.1016/j.nanoen.2017.01.007
10.1016/j.jpowsour.2016.07.088
10.1021/acsami.7b05798
10.1016/j.joule.2018.01.002
10.1002/adfm.201400935
10.1021/acsnano.6b04622
10.1002/adma.201600757
10.1021/cr500062v
10.1039/C6TA01377E
10.1021/acsnano.6b05696
10.1002/adma.201601759
10.1002/aenm.201701110
10.1021/nl4016683
10.1039/C7NH00079K
10.1016/j.jpowsour.2017.12.025
10.1016/j.nanoen.2014.12.029
10.1021/jacs.7b06973
10.1002/ange.201506972
ContentType Journal Article
Copyright 2018 The Author(s)
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
2018 The Author(s) 2018
Copyright_xml – notice: 2018 The Author(s)
– notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2018 The Author(s) 2018
CorporateAuthor Univ. of Texas, Austin, TX (United States)
CorporateAuthor_xml – name: Univ. of Texas, Austin, TX (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
OTOTI
5PM
DOA
DOI 10.1016/j.isci.2018.05.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 43
ExternalDocumentID oai_doaj_org_article_06462128a33443bdb6843f880174f4be
PMC6146594
1438514
30240751
10_1016_j_isci_2018_05_005
S2589004218300609
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
OTOTI
5PM
ID FETCH-LOGICAL-c548t-780c82ea81b385bd7c5f90ef9d2e5e4d54020b3a068f1a4885472eb8bd4e71f13
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:31:43 EDT 2025
Thu Aug 21 14:11:06 EDT 2025
Mon Mar 25 05:12:45 EDT 2024
Fri Jul 11 03:51:46 EDT 2025
Thu Apr 03 06:58:47 EDT 2025
Tue Jul 01 01:03:24 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Wed May 17 02:13:14 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Energy Materials
Porous Material
Inorganic Chemistry
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-780c82ea81b385bd7c5f90ef9d2e5e4d54020b3a068f1a4885472eb8bd4e71f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
China Scholarship Council
SC000597; SC0005397
Lead Contact
ORCID 0000-0003-0237-9563
0000000302379563
OpenAccessLink https://doaj.org/article/06462128a33443bdb6843f880174f4be
PMID 30240751
PQID 2111148727
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_06462128a33443bdb6843f880174f4be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6146594
osti_scitechconnect_1438514
proquest_miscellaneous_2111148727
pubmed_primary_30240751
crossref_primary_10_1016_j_isci_2018_05_005
crossref_citationtrail_10_1016_j_isci_2018_05_005
elsevier_sciencedirect_doi_10_1016_j_isci_2018_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-29
PublicationDateYYYYMMDD 2018-06-29
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Netherlands
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References He, Chen, Lv, Wen, Wang, Zhang, Li, Qin, He (bib9) 2016; 10
Zheng, Tian, Wu, Gu, Xu, Wang, Gao, Engelhard, Zhang, Liu, Xiao (bib36) 2014; 14
Zhou, Zhao, Zu, Manthiram (bib39) 2015; 12
Pu, Shen, Zheng, Wu, Zhu, Zhou, Zhang, Pan (bib26) 2017; 37
Chen, Zhang, Cheng, Chen, Hu, Ma, Zhu, Liu, Jin (bib3) 2017; 139
He, Chen, Lv, Wen, Xu, Zhang, Li, Qin, He (bib10) 2016; 10
Kong, Yan, Luo, Wang, Jiang, Li, Fan, Wang (bib17) 2017; 27
Xu, Qie, Manthiram (bib34) 2016; 26
Cao, Zheng, Rui, Shi, Yan, Zhang (bib1) 2014; 126
Xia, Zhong, Fang, Liang, Xiao, Huang, Gan, Zhang, Tao, Zhang (bib32) 2018; 378
He, Lv, Chen, Wen, Xu, Zhang, Li, Qin, He (bib12) 2017; 11
Pang, Kundu, Nazar (bib25) 2016; 3
Liu, Li, Qin, Liang, Han, Zhou, He, Li, Kang (bib21) 2017; 13
Zhou, Tian, Jin, Tao, Liu, Zhang, Seh, Zhuo, Liu, Sun (bib40) 2017; 114
He, Chen, Li, Fu, Wang, Zhang (bib7) 2015; 3
Zhong, Xia, Deng, Zhan, Fang, Xia, Wang, Zhang, Tu (bib37) 2018; 8
Chung, Chang, Manthiram (bib5) 2016; 10
Ji, Zhou, Zhang, Dan, Yang, Yuan (bib15) 2016; 4
Guan, Liu, Elshahawy, Zhang, Wu, Pennycook, Wang (bib6) 2017; 2
Wu, Zhao, Gordon, Xiao, Hu, Yushin (bib30) 2016; 28
Kim, Hwang, Kim, Min, Choi (bib16) 2014; 24
Manthiram, Fu, Chung, Zu, Su (bib24) 2014; 114
Yuan, Peng, Hou, Huang, Chen, Wang, Cheng, Wei, Zhang (bib35) 2016; 16
Liu, Wu, Xiao, Kopold, Gu, van Aken, Maier, Yu (bib20) 2016; 17
Li, Zhang, Lou (bib19) 2015; 127
He, Chen, Lv, Wen, Li, Qi, Wang, Zhang, Li, Qin, He (bib8) 2016; 327
Manthiram, Chung, Zu (bib23) 2015; 27
Liu, Huang, Zhang, Mai (bib22) 2017; 29
Chung, Manthiram (bib4) 2018; 2
Chen, Zhao, Lu, Wu, Li, Chen, Tan, Ye, Amine (bib2) 2013; 13
Su, Manthiram (bib28) 2012; 3
Zhou, Li, Wang, Shan, Pei, Li, Cheng (bib38) 2015; 27
Li, Guan, Zhang, Lou (bib18) 2017; 1
Xu, Manthiram (bib33) 2017; 33
Sun, Li, Jiang, Kong, Jiang, Wang, Fan (bib29) 2014; 14
He, Luo, Chen, Manthiram (bib11) 2017
Qie, Manthiram (bib27) 2016; 1
Xia, Fang, Xiao, Huang, Gan, Yan, Lu, Liang, Zhang, Tao, Zhang (bib31) 2017; 9
Hu, Xu, Sun, Wang, Cheng, Li, Ren (bib13) 2016; 28
Ji, Zhou, Tong, Wang, Zhu, Chen, Yuan (bib14) 2017; 313
Chung (10.1016/j.isci.2018.05.005_bib5) 2016; 10
Hu (10.1016/j.isci.2018.05.005_bib13) 2016; 28
Chen (10.1016/j.isci.2018.05.005_bib2) 2013; 13
Kim (10.1016/j.isci.2018.05.005_bib16) 2014; 24
Xia (10.1016/j.isci.2018.05.005_bib31) 2017; 9
Cao (10.1016/j.isci.2018.05.005_bib1) 2014; 126
He (10.1016/j.isci.2018.05.005_bib10) 2016; 10
Su (10.1016/j.isci.2018.05.005_bib28) 2012; 3
Ji (10.1016/j.isci.2018.05.005_bib14) 2017; 313
Chen (10.1016/j.isci.2018.05.005_bib3) 2017; 139
Guan (10.1016/j.isci.2018.05.005_bib6) 2017; 2
Li (10.1016/j.isci.2018.05.005_bib19) 2015; 127
Manthiram (10.1016/j.isci.2018.05.005_bib24) 2014; 114
Kong (10.1016/j.isci.2018.05.005_bib17) 2017; 27
Zheng (10.1016/j.isci.2018.05.005_bib36) 2014; 14
Ji (10.1016/j.isci.2018.05.005_bib15) 2016; 4
Qie (10.1016/j.isci.2018.05.005_bib27) 2016; 1
He (10.1016/j.isci.2018.05.005_bib11) 2017
He (10.1016/j.isci.2018.05.005_bib9) 2016; 10
Wu (10.1016/j.isci.2018.05.005_bib30) 2016; 28
Xu (10.1016/j.isci.2018.05.005_bib33) 2017; 33
Zhou (10.1016/j.isci.2018.05.005_bib40) 2017; 114
Manthiram (10.1016/j.isci.2018.05.005_bib23) 2015; 27
Liu (10.1016/j.isci.2018.05.005_bib21) 2017; 13
Chung (10.1016/j.isci.2018.05.005_bib4) 2018; 2
Zhou (10.1016/j.isci.2018.05.005_bib39) 2015; 12
Liu (10.1016/j.isci.2018.05.005_bib20) 2016; 17
Xia (10.1016/j.isci.2018.05.005_bib32) 2018; 378
Zhong (10.1016/j.isci.2018.05.005_bib37) 2018; 8
Pang (10.1016/j.isci.2018.05.005_bib25) 2016; 3
Yuan (10.1016/j.isci.2018.05.005_bib35) 2016; 16
Liu (10.1016/j.isci.2018.05.005_bib22) 2017; 29
Pu (10.1016/j.isci.2018.05.005_bib26) 2017; 37
He (10.1016/j.isci.2018.05.005_bib12) 2017; 11
Li (10.1016/j.isci.2018.05.005_bib18) 2017; 1
Xu (10.1016/j.isci.2018.05.005_bib34) 2016; 26
He (10.1016/j.isci.2018.05.005_bib7) 2015; 3
He (10.1016/j.isci.2018.05.005_bib8) 2016; 327
Sun (10.1016/j.isci.2018.05.005_bib29) 2014; 14
Zhou (10.1016/j.isci.2018.05.005_bib38) 2015; 27
References_xml – volume: 3
  start-page: 1166
  year: 2012
  ident: bib28
  article-title: Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer
  publication-title: Nat. Commun.
– volume: 1
  start-page: 576
  year: 2017
  end-page: 587
  ident: bib18
  article-title: A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries
  publication-title: Joule
– volume: 13
  start-page: 1602539
  year: 2017
  ident: bib21
  article-title: Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V
  publication-title: Small
– volume: 2
  start-page: 710
  year: 2018
  end-page: 724
  ident: bib4
  article-title: Designing lithium-sulfur cells with practically necessary parameters
  publication-title: Joule
– volume: 8
  start-page: 1701110
  year: 2018
  ident: bib37
  article-title: Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
– year: 2017
  ident: bib11
  article-title: Yolk-shelled C@Fe
  publication-title: Adv. Mater.
– volume: 37
  start-page: 7
  year: 2017
  end-page: 14
  ident: bib26
  article-title: Multifunctional Co
  publication-title: Nano Energy
– volume: 114
  start-page: 11751
  year: 2014
  end-page: 11787
  ident: bib24
  article-title: Rechargeable lithium–sulfur batteries
  publication-title: Chem. Rev.
– volume: 10
  start-page: 10462
  year: 2016
  end-page: 10470
  ident: bib5
  article-title: A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium–sulfur batteries
  publication-title: ACS Nano
– volume: 3
  start-page: 18605
  year: 2015
  end-page: 18610
  ident: bib7
  article-title: Three-dimensional cnt/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries
  publication-title: J. Mater. Chem. A.
– volume: 313
  start-page: 1623
  year: 2017
  end-page: 1632
  ident: bib14
  article-title: Facile fabrication of MOF-derived octahedral CuO wrapped 3d graphene network as binder-free anode for high performance lithium-ion batteries
  publication-title: Chem. Eng. J.
– volume: 28
  start-page: 6365
  year: 2016
  end-page: 6371
  ident: bib30
  article-title: Infiltrated porous polymer sheets as free-standing flexible lithium-sulfur battery electrodes
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1980
  year: 2015
  end-page: 2006
  ident: bib23
  article-title: Lithium-sulfur batteries: progress and prospects
  publication-title: Adv. Mater.
– volume: 1
  start-page: 46
  year: 2016
  end-page: 51
  ident: bib27
  article-title: High-energy-density lithium–sulfur batteries based on blade-cast pure sulfur electrodes
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 23782
  year: 2017
  end-page: 23791
  ident: bib31
  article-title: Confining sulfur in n-doped porous carbon microspheres derived from microalgaes for advanced lithium–sulfur batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 114
  start-page: 840
  year: 2017
  end-page: 845
  ident: bib40
  article-title: Catalytic oxidation of Li
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: 130
  year: 2016
  end-page: 136
  ident: bib25
  article-title: A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries
  publication-title: Mater. Horiz.
– volume: 29
  start-page: 1601759
  year: 2017
  ident: bib22
  article-title: Nanostructured metal oxides and sulfides for lithium-sulfur batteries
  publication-title: Adv. Mater.
– volume: 26
  start-page: 224
  year: 2016
  end-page: 232
  ident: bib34
  article-title: An integrally-designed, flexible polysulfide host for high-performance lithium-sulfur batteries with stabilized lithium-metal anode
  publication-title: Nano Energy
– volume: 10
  start-page: 10981
  year: 2016
  end-page: 10987
  ident: bib10
  article-title: From metal–organic framework to Li
  publication-title: ACS Nano
– volume: 11
  start-page: 8144
  year: 2017
  end-page: 8152
  ident: bib12
  article-title: Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathodes for lithium–tellurium batteries
  publication-title: ACS Nano
– volume: 12
  start-page: 240
  year: 2015
  end-page: 249
  ident: bib39
  article-title: Free-standing TiO
  publication-title: Nano Energy
– volume: 14
  start-page: 4044
  year: 2014
  end-page: 4049
  ident: bib29
  article-title: Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries
  publication-title: Nano Lett.
– volume: 126
  start-page: 1428
  year: 2014
  end-page: 1433
  ident: bib1
  article-title: Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors
  publication-title: Angew. Chem.
– volume: 327
  start-page: 474
  year: 2016
  end-page: 480
  ident: bib8
  article-title: Highly-flexible 3d Li
  publication-title: J. Power Sources
– volume: 27
  start-page: 1606663
  year: 2017
  ident: bib17
  article-title: Ultrathin MnO
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 1603
  year: 2016
  end-page: 1609
  ident: bib13
  article-title: 3d graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries
  publication-title: Adv. Mater.
– volume: 17
  start-page: 201503821
  year: 2016
  ident: bib20
  article-title: MOF-derived hollow Co
  publication-title: Small
– volume: 10
  start-page: 8837
  year: 2016
  end-page: 8842
  ident: bib9
  article-title: Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li–Te batteries
  publication-title: ACS Nano
– volume: 14
  start-page: 2345
  year: 2014
  end-page: 2352
  ident: bib36
  article-title: Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries
  publication-title: Nano Lett.
– volume: 13
  start-page: 4642
  year: 2013
  end-page: 4649
  ident: bib2
  article-title: Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries
  publication-title: Nano Lett.
– volume: 378
  start-page: 73
  year: 2018
  end-page: 80
  ident: bib32
  article-title: Biomass derived Ni(OH)
  publication-title: J. Power Sources
– volume: 16
  start-page: 519
  year: 2016
  end-page: 527
  ident: bib35
  article-title: Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts
  publication-title: Nano Lett.
– volume: 127
  start-page: 13078
  year: 2015
  end-page: 13082
  ident: bib19
  article-title: Hollow carbon nanofibers filled with MnO
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 8283
  year: 2016
  end-page: 8290
  ident: bib15
  article-title: Facile synthesis of a metal–organic framework-derived Mn
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 12710
  year: 2017
  end-page: 12715
  ident: bib3
  article-title: Self-templated formation of interlaced carbon nanotubes threaded hollow Co
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 5359
  year: 2014
  end-page: 5367
  ident: bib16
  article-title: A lithium-sulfur battery with a high areal energy density
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 342
  year: 2017
  end-page: 348
  ident: bib6
  article-title: Metal–organic framework derived hollow CoS
  publication-title: Nanoscale Horiz.
– volume: 33
  start-page: 124
  year: 2017
  end-page: 129
  ident: bib33
  article-title: Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries
  publication-title: Nano Energy
– volume: 27
  start-page: 641
  year: 2015
  end-page: 647
  ident: bib38
  article-title: A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced li-s batteries
  publication-title: Adv. Mater.
– volume: 114
  start-page: 840
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib40
  article-title: Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1615837114
– volume: 3
  start-page: 130
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib25
  article-title: A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries
  publication-title: Mater. Horiz.
  doi: 10.1039/C5MH00246J
– volume: 37
  start-page: 7
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib26
  article-title: Multifunctional Co3S4 @sulfur nanotubes for enhanced lithium-sulfur battery performance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.009
– volume: 1
  start-page: 46
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib27
  article-title: High-energy-density lithium–sulfur batteries based on blade-cast pure sulfur electrodes
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00033
– volume: 26
  start-page: 224
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib34
  article-title: An integrally-designed, flexible polysulfide host for high-performance lithium-sulfur batteries with stabilized lithium-metal anode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.05.028
– volume: 13
  start-page: 1602539
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib21
  article-title: Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5-decorated carbon nanofiber interlayer
  publication-title: Small
  doi: 10.1002/smll.201602539
– volume: 27
  start-page: 1980
  year: 2015
  ident: 10.1016/j.isci.2018.05.005_bib23
  article-title: Lithium-sulfur batteries: progress and prospects
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405115
– volume: 11
  start-page: 8144
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib12
  article-title: Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathodes for lithium–tellurium batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03057
– volume: 3
  start-page: 18605
  year: 2015
  ident: 10.1016/j.isci.2018.05.005_bib7
  article-title: Three-dimensional cnt/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA04445F
– volume: 28
  start-page: 1603
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib13
  article-title: 3d graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504765
– volume: 14
  start-page: 2345
  year: 2014
  ident: 10.1016/j.isci.2018.05.005_bib36
  article-title: Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl404721h
– volume: 1
  start-page: 576
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib18
  article-title: A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2017.06.003
– volume: 27
  start-page: 641
  year: 2015
  ident: 10.1016/j.isci.2018.05.005_bib38
  article-title: A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced li-s batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404210
– volume: 16
  start-page: 519
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib35
  article-title: Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04166
– year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib11
  article-title: Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702707
– volume: 27
  start-page: 1606663
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib17
  article-title: Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance li-s batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606663
– volume: 14
  start-page: 4044
  year: 2014
  ident: 10.1016/j.isci.2018.05.005_bib29
  article-title: Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl501486n
– volume: 3
  start-page: 1166
  year: 2012
  ident: 10.1016/j.isci.2018.05.005_bib28
  article-title: Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2163
– volume: 313
  start-page: 1623
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib14
  article-title: Facile fabrication of MOF-derived octahedral CuO wrapped 3d graphene network as binder-free anode for high performance lithium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.063
– volume: 10
  start-page: 10462
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib5
  article-title: A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06369
– volume: 126
  start-page: 1428
  year: 2014
  ident: 10.1016/j.isci.2018.05.005_bib1
  article-title: Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201308013
– volume: 33
  start-page: 124
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib33
  article-title: Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.007
– volume: 327
  start-page: 474
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib8
  article-title: Highly-flexible 3d Li2S/graphene cathode for high-performance lithium sulfur batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.07.088
– volume: 9
  start-page: 23782
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib31
  article-title: Confining sulfur in n-doped porous carbon microspheres derived from microalgaes for advanced lithium–sulfur batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05798
– volume: 2
  start-page: 710
  year: 2018
  ident: 10.1016/j.isci.2018.05.005_bib4
  article-title: Designing lithium-sulfur cells with practically necessary parameters
  publication-title: Joule
  doi: 10.1016/j.joule.2018.01.002
– volume: 24
  start-page: 5359
  year: 2014
  ident: 10.1016/j.isci.2018.05.005_bib16
  article-title: A lithium-sulfur battery with a high areal energy density
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400935
– volume: 10
  start-page: 8837
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib9
  article-title: Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li–Te batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04622
– volume: 28
  start-page: 6365
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib30
  article-title: Infiltrated porous polymer sheets as free-standing flexible lithium-sulfur battery electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600757
– volume: 17
  start-page: 201503821
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib20
  article-title: MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior li-ion storage
  publication-title: Small
– volume: 114
  start-page: 11751
  year: 2014
  ident: 10.1016/j.isci.2018.05.005_bib24
  article-title: Rechargeable lithium–sulfur batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500062v
– volume: 4
  start-page: 8283
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib15
  article-title: Facile synthesis of a metal–organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01377E
– volume: 10
  start-page: 10981
  year: 2016
  ident: 10.1016/j.isci.2018.05.005_bib10
  article-title: From metal–organic framework to Li2S@C–Co–N nanoporous architecture: a high-capacity cathode for lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05696
– volume: 29
  start-page: 1601759
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib22
  article-title: Nanostructured metal oxides and sulfides for lithium-sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601759
– volume: 8
  start-page: 1701110
  year: 2018
  ident: 10.1016/j.isci.2018.05.005_bib37
  article-title: Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701110
– volume: 13
  start-page: 4642
  year: 2013
  ident: 10.1016/j.isci.2018.05.005_bib2
  article-title: Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl4016683
– volume: 2
  start-page: 342
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib6
  article-title: Metal–organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C7NH00079K
– volume: 378
  start-page: 73
  year: 2018
  ident: 10.1016/j.isci.2018.05.005_bib32
  article-title: Biomass derived Ni(OH)2@porous carbon/sulfur composites synthesized by a novel sulfur impregnation strategy based on supercritical co2 technology for advanced li-s batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.12.025
– volume: 12
  start-page: 240
  year: 2015
  ident: 10.1016/j.isci.2018.05.005_bib39
  article-title: Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.12.029
– volume: 139
  start-page: 12710
  year: 2017
  ident: 10.1016/j.isci.2018.05.005_bib3
  article-title: Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06973
– volume: 127
  start-page: 13078
  year: 2015
  ident: 10.1016/j.isci.2018.05.005_bib19
  article-title: Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201506972
SSID ssj0002002496
Score 2.4706938
Snippet Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost....
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36
SubjectTerms Energy Materials
ENERGY STORAGE
Inorganic Chemistry
Porous Material
Title MOF-derived Cobalt Sulfide Grown on 3D Graphene Foam as an Efficient Sulfur Host for Long-Life Lithium-Sulfur Batteries
URI https://dx.doi.org/10.1016/j.isci.2018.05.005
https://www.ncbi.nlm.nih.gov/pubmed/30240751
https://www.proquest.com/docview/2111148727
https://www.osti.gov/biblio/1438514
https://pubmed.ncbi.nlm.nih.gov/PMC6146594
https://doaj.org/article/06462128a33443bdb6843f880174f4be
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnrggUPkIBWQkbigi8UfiHKF0WaEtHKBSb5Ydj2mqNkFtUv4-M0l2tYtQuXCLEjuJPc-ZN8r4DWNvIIqqrGmLcvA6VQFc6g2Y1LjMoUcTFeS0UfjkS7E6VZ_P9NlOqS_KCZvkgaeJe4cus8DPq3FSKiV98IVRMiLqkEpH5YG-vujzdoKpi_H3GknhjZXlNOUEITTnHTNTchfteKW8LjPKdlLtuh2vNIr37zmnRYfr7W8c9M9Uyh3ftHzIHsykkr-fBvOI3YP2gP06-bpMAwLsFgI_ItmPnn8bLmMTgH-i4Jt3LZcf8dhRnhfwZeeuuLvhruXHo7AEPmzsMVzzFb4aR37L1137I103Efi66c-b4SqdW0xCnRh3P2any-PvR6t0LrOQ1hiu9GlpstoIcEhgpdE-lLWOVQaxCgI0qKApxPTSZYWJucMFr1UpwBsfFJR5zOUTtmi7Fp4x7oJAC7taiiBVgbcQdRXrYLR2FSnZJyzfTLOtZw1yKoVxaTfJZheWTGPJNDbTFk2TsLfbPj8nBY47W38g621bknr2eAIxZWdM2X9hKmF6Y3s7E5GJYOCtmjsffkhAoT6kwFtTqhJ2ogrzyEsT9nqDH4trmH7MuBa64cYK8lsYOYoyYU8nPG0HIEmErtR5wso9pO2NcP9K25yPOuHIvApdqef_Y0oO2X0aKCXJieoFW_TXA7xEOtb7V-PK-w0rmC7U
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF-derived+Cobalt+Sulfide+Grown+on+3D+Graphene+Foam+as+an+Efficient+Sulfur+Host+for+Long-Life+Lithium-Sulfur+Batteries&rft.jtitle=iScience&rft.au=He%2C+Jiarui&rft.au=Chen%2C+Yuanfu&rft.au=Manthiram%2C+Arumugam&rft.date=2018-06-29&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=4&rft.issue=C&rft_id=info:doi/10.1016%2Fj.isci.2018.05.005&rft.externalDocID=1438514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon