MOF-derived Cobalt Sulfide Grown on 3D Graphene Foam as an Efficient Sulfur Host for Long-Life Lithium-Sulfur Batteries
Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical app...
Saved in:
Published in | iScience Vol. 4; no. C; pp. 36 - 43 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
29.06.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm−2 even at a very high sulfur loading (10.4 mg cm−2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries.
[Display omitted]
•Metal-organic framework-derived Co9S8 arrays are grown onto 3D graphene foam•Co9S8-3DGF serves as a free-standing, binder-free host for sulfur cathodes•Co9S8-3DGF/S cathode exhibits high capacity with long cycle life•Co9S8-3DGF/S cathode displays a remarkably high areal capacity
Inorganic Chemistry; Energy Materials; Porous Material |
---|---|
AbstractList | Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. Yet, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm-2 even at a very high sulfur loading (10.4 mg cm-2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. Our work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm-2 even at a very high sulfur loading (10.4 mg cm-2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries.Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm-2 even at a very high sulfur loading (10.4 mg cm-2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries. Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm−2 even at a very high sulfur loading (10.4 mg cm−2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries. : Inorganic Chemistry; Energy Materials; Porous Material Subject Areas: Inorganic Chemistry, Energy Materials, Porous Material Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co S array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co S -3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co S -3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm even at a very high sulfur loading (10.4 mg cm ) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co S -3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries. Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co 9 S 8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co 9 S 8 -3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co 9 S 8 -3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm −2 even at a very high sulfur loading (10.4 mg cm −2 ) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co 9 S 8 -3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries. • Metal-organic framework-derived Co 9 S 8 arrays are grown onto 3D graphene foam • Co 9 S 8 -3DGF serves as a free-standing, binder-free host for sulfur cathodes • Co 9 S 8 -3DGF/S cathode exhibits high capacity with long cycle life • Co 9 S 8 -3DGF/S cathode displays a remarkably high areal capacity Inorganic Chemistry; Energy Materials; Porous Material Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost. However, rapid capacity decay and short cycle life, mainly resulting from polysulfide dissolution, remains a great challenge for practical applications. Herein, we present a metal-organic framework (MOF)-derived Co9S8 array anchored onto a chemical vapor deposition (CVD)-grown three-dimensional graphene foam (Co9S8-3DGF) as an efficient sulfur host for long-life Li-S batteries with good performance. Without polymeric binders, conductive additives, or metallic current collectors, the free-standing Co9S8-3DGF/S cathode achieves a high areal capacity of 10.9 mA hr cm−2 even at a very high sulfur loading (10.4 mg cm−2) and sulfur content (86.9 wt%). These results are attributed to the unique hierarchical nanoarchitecture of Co9S8-3DGF/S. This work is expected to open up a promising direction for the practical viability of high-energy Li-S batteries. [Display omitted] •Metal-organic framework-derived Co9S8 arrays are grown onto 3D graphene foam•Co9S8-3DGF serves as a free-standing, binder-free host for sulfur cathodes•Co9S8-3DGF/S cathode exhibits high capacity with long cycle life•Co9S8-3DGF/S cathode displays a remarkably high areal capacity Inorganic Chemistry; Energy Materials; Porous Material |
Author | Manthiram, Arumugam He, Jiarui Chen, Yuanfu |
AuthorAffiliation | 2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China 1 Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA |
AuthorAffiliation_xml | – name: 2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China – name: 1 Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA |
Author_xml | – sequence: 1 givenname: Jiarui surname: He fullname: He, Jiarui organization: Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA – sequence: 2 givenname: Yuanfu surname: Chen fullname: Chen, Yuanfu email: yfchen@uestc.edu.cn organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China – sequence: 3 givenname: Arumugam orcidid: 0000-0003-0237-9563 surname: Manthiram fullname: Manthiram, Arumugam email: manth@austin.utexas.edu organization: Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30240751$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1438514$$D View this record in Osti.gov |
BookMark | eNp9UsFuEzEQXaEiWkp_gAOyOHHZYHvtXUdCSCU0baWgHoCz5bXHiaONHezdVPw9XjZULYdaljyy33szzzOvixMfPBTFW4JnBJP643bmknYziomYYT7DmL8ozigX8xJjRk8exafFRUpbjDHNm83rV8VplQPccHJW3H-7W5YGojuAQYvQqq5H34fOOgPoOoZ7j4JH1dccq_0GPKBlUDukElIeXVnrtAM_MYaIbkLqkQ0RrYJflytnAa1cv3HDrjwivqi-z8kgvSleWtUluDie58XP5dWPxU25uru-XVyuSs2Z6MtGYC0oKEHaSvDWNJrbOQY7NxQ4MMNZdtVWCtfCEsWE4Kyh0IrWMGiIJdV5cTvpmqC2ch_dTsXfMign_16EuJYq9k53IHHNakqoUFXFWNWathasskJg0jDLWshanyet_dDuwOjsPKruiejTF-82ch0Osias5nOWBd5PAvmfnMzt60FvdPAedC8Jyw7JCPpwzBLDrwFSL3e509B1ykMYkqQkLyYa2mTou8cFPVTyr70ZQCeAjiGlCPYBQrAcx0hu5ThGchwjibnMY5RJ4j9SLlT1LoymXPc89dNEhdzSg4M4mgSvwbg4ejTBPUf_A3WC4RY |
CitedBy_id | crossref_primary_10_1016_j_cej_2025_161470 crossref_primary_10_1016_j_cej_2021_130966 crossref_primary_10_1016_j_esci_2023_100107 crossref_primary_10_1002_chem_201904085 crossref_primary_10_1016_j_cej_2023_141620 crossref_primary_10_1002_smll_201905585 crossref_primary_10_1016_j_jmst_2021_04_033 crossref_primary_10_1002_adfm_202200424 crossref_primary_10_1016_j_electacta_2018_07_129 crossref_primary_10_1016_j_jiec_2021_04_033 crossref_primary_10_1021_acsnano_9b04538 crossref_primary_10_1021_acsami_9b06497 crossref_primary_10_1002_adma_202210166 crossref_primary_10_1016_j_cej_2019_123734 crossref_primary_10_1039_C9RA05202J crossref_primary_10_3390_en15062183 crossref_primary_10_1039_C8NR08262F crossref_primary_10_1016_j_cej_2018_09_132 crossref_primary_10_1016_j_jelechem_2020_114545 crossref_primary_10_1021_acsaem_9b01214 crossref_primary_10_1021_acs_analchem_8b05115 crossref_primary_10_1016_j_electacta_2018_08_049 crossref_primary_10_1016_j_jelechem_2020_114564 crossref_primary_10_1016_j_jechem_2023_02_009 crossref_primary_10_1038_s41598_021_81769_5 crossref_primary_10_1016_j_apsusc_2022_155333 crossref_primary_10_1016_S1872_2067_21_63984_0 crossref_primary_10_1039_D0MA00797H crossref_primary_10_1039_D0NR05727D crossref_primary_10_1016_j_nantod_2019_100796 crossref_primary_10_1016_j_isci_2018_12_029 crossref_primary_10_1016_j_ensm_2020_06_043 crossref_primary_10_1007_s11051_019_4540_3 crossref_primary_10_1039_D1NJ05347G crossref_primary_10_1002_smtd_202100518 crossref_primary_10_1007_s10008_021_05066_x crossref_primary_10_1039_C9TA03123E crossref_primary_10_1088_1361_6528_ab85ec crossref_primary_10_34133_2021_2712391 crossref_primary_10_1016_j_diamond_2018_07_015 crossref_primary_10_1002_aenm_202001017 crossref_primary_10_1007_s11581_021_04341_1 crossref_primary_10_1007_s10008_019_04301_w crossref_primary_10_1016_j_isci_2023_108436 crossref_primary_10_1016_j_cej_2022_139566 crossref_primary_10_1016_j_electacta_2018_10_054 crossref_primary_10_1016_j_mtcomm_2021_102857 crossref_primary_10_1002_sus2_42 crossref_primary_10_1016_j_cej_2020_125670 crossref_primary_10_1016_j_electacta_2019_134843 crossref_primary_10_1021_acs_energyfuels_3c01153 crossref_primary_10_1016_j_jallcom_2020_158343 crossref_primary_10_1002_aenm_201900584 crossref_primary_10_1016_j_ensm_2019_04_038 crossref_primary_10_1016_j_jallcom_2021_159341 crossref_primary_10_1002_adfm_202100970 crossref_primary_10_1007_s12274_022_5215_4 crossref_primary_10_1002_nano_202100177 crossref_primary_10_1007_s42864_023_00248_8 crossref_primary_10_1016_j_apenergy_2020_114625 crossref_primary_10_1002_adma_202204147 crossref_primary_10_1007_s40843_018_9331_x crossref_primary_10_1002_batt_202100229 crossref_primary_10_1016_j_jallcom_2024_174946 crossref_primary_10_1088_1361_6528_ac3ce5 crossref_primary_10_1002_slct_202002090 crossref_primary_10_1021_acs_iecr_0c04960 crossref_primary_10_1039_C8NJ02370K crossref_primary_10_1039_D1TA00800E crossref_primary_10_1016_j_est_2024_112462 crossref_primary_10_1021_acsnano_8b07843 crossref_primary_10_1039_D1SC00095K crossref_primary_10_1007_s11581_022_04755_5 crossref_primary_10_1016_j_cej_2020_125976 crossref_primary_10_1039_D1NR07818F crossref_primary_10_1016_j_jallcom_2022_164120 crossref_primary_10_1039_C9RA10063F crossref_primary_10_1002_smll_201906114 crossref_primary_10_1016_j_enchem_2020_100036 crossref_primary_10_1021_acsami_8b17376 crossref_primary_10_1002_celc_201901568 crossref_primary_10_1002_smll_201901454 crossref_primary_10_1016_j_ccr_2019_05_006 crossref_primary_10_1039_D4CY00243A crossref_primary_10_1016_j_jallcom_2020_154201 crossref_primary_10_1002_advs_201802362 crossref_primary_10_1002_sstr_202000047 crossref_primary_10_1016_j_cclet_2024_110475 crossref_primary_10_1016_j_jallcom_2019_153293 crossref_primary_10_1021_acs_chemrev_9b00326 crossref_primary_10_1016_j_jechem_2020_07_020 crossref_primary_10_1007_s12274_020_3260_4 crossref_primary_10_1016_j_jechem_2019_07_001 crossref_primary_10_1002_smll_202001574 crossref_primary_10_1007_s11581_024_05394_8 crossref_primary_10_1016_j_cej_2020_124241 crossref_primary_10_1088_2399_1984_abb09d crossref_primary_10_1016_j_energy_2020_118779 crossref_primary_10_1016_j_cej_2020_125686 crossref_primary_10_1039_D1TA06499A crossref_primary_10_1016_j_solidstatesciences_2024_107477 crossref_primary_10_1016_j_jallcom_2023_170812 crossref_primary_10_1002_aenm_202103152 crossref_primary_10_1021_acsami_2c22999 crossref_primary_10_1016_j_cej_2019_123385 crossref_primary_10_1002_aenm_202204378 crossref_primary_10_1016_j_cej_2018_10_104 crossref_primary_10_1039_D3DT00288H crossref_primary_10_1016_j_apcatb_2019_117996 crossref_primary_10_1002_celc_202000758 crossref_primary_10_1039_D2NR04526E crossref_primary_10_1016_j_est_2023_109059 crossref_primary_10_1016_j_isci_2018_07_021 crossref_primary_10_1002_aenm_202003410 crossref_primary_10_1021_acsnano_9b01079 crossref_primary_10_1016_j_ceramint_2021_05_261 crossref_primary_10_1016_j_tifs_2020_09_004 crossref_primary_10_1016_j_ensm_2022_08_035 crossref_primary_10_1002_ente_201901057 crossref_primary_10_1016_j_energy_2021_119914 crossref_primary_10_1016_j_jelechem_2020_114652 crossref_primary_10_1016_j_checat_2023_100824 crossref_primary_10_1039_D1MA00247C crossref_primary_10_1021_acs_chemrev_2c00270 crossref_primary_10_1007_s12274_020_2821_x crossref_primary_10_1016_j_jechem_2023_10_054 crossref_primary_10_1002_adfm_201805018 crossref_primary_10_1016_j_nanoen_2024_110098 crossref_primary_10_1016_j_enchem_2019_100001 crossref_primary_10_1039_D0TA06220K crossref_primary_10_1021_acsami_0c01640 crossref_primary_10_1039_C9EE02049G crossref_primary_10_1016_j_cej_2018_10_177 crossref_primary_10_3390_en15217961 crossref_primary_10_1002_adfm_201903842 crossref_primary_10_1016_j_jallcom_2019_151854 crossref_primary_10_1016_j_electacta_2020_137259 crossref_primary_10_1021_acsaem_3c00370 crossref_primary_10_1016_j_jechem_2019_01_005 crossref_primary_10_1002_eem2_12152 crossref_primary_10_1016_j_mseb_2024_117976 crossref_primary_10_1016_j_jpowsour_2021_230929 crossref_primary_10_1021_acsami_2c06067 crossref_primary_10_1007_s11581_019_03047_9 crossref_primary_10_1002_cssc_202002140 crossref_primary_10_1016_j_poly_2018_08_067 crossref_primary_10_3762_bjnano_10_52 crossref_primary_10_1016_j_cej_2022_138287 crossref_primary_10_1016_j_electacta_2023_142145 crossref_primary_10_1016_j_ensm_2022_07_027 crossref_primary_10_1016_j_xcrp_2024_102028 crossref_primary_10_1016_j_ccr_2022_214741 crossref_primary_10_1039_D3CC01167D crossref_primary_10_1039_C9TA08498C crossref_primary_10_1002_aenm_202000082 crossref_primary_10_3390_polym11121946 crossref_primary_10_1016_j_cej_2019_122672 |
Cites_doi | 10.1073/pnas.1615837114 10.1039/C5MH00246J 10.1016/j.nanoen.2017.05.009 10.1021/acsenergylett.6b00033 10.1016/j.nanoen.2016.05.028 10.1002/smll.201602539 10.1002/adma.201405115 10.1021/acsnano.7b03057 10.1039/C5TA04445F 10.1002/adma.201504765 10.1021/nl404721h 10.1016/j.joule.2017.06.003 10.1002/adma.201404210 10.1021/acs.nanolett.5b04166 10.1002/adma.201702707 10.1002/adfm.201606663 10.1021/nl501486n 10.1038/ncomms2163 10.1016/j.cej.2016.11.063 10.1021/acsnano.6b06369 10.1002/ange.201308013 10.1016/j.nanoen.2017.01.007 10.1016/j.jpowsour.2016.07.088 10.1021/acsami.7b05798 10.1016/j.joule.2018.01.002 10.1002/adfm.201400935 10.1021/acsnano.6b04622 10.1002/adma.201600757 10.1021/cr500062v 10.1039/C6TA01377E 10.1021/acsnano.6b05696 10.1002/adma.201601759 10.1002/aenm.201701110 10.1021/nl4016683 10.1039/C7NH00079K 10.1016/j.jpowsour.2017.12.025 10.1016/j.nanoen.2014.12.029 10.1021/jacs.7b06973 10.1002/ange.201506972 |
ContentType | Journal Article |
Copyright | 2018 The Author(s) Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. 2018 The Author(s) 2018 |
Copyright_xml | – notice: 2018 The Author(s) – notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2018 The Author(s) 2018 |
CorporateAuthor | Univ. of Texas, Austin, TX (United States) |
CorporateAuthor_xml | – name: Univ. of Texas, Austin, TX (United States) |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 OTOTI 5PM DOA |
DOI | 10.1016/j.isci.2018.05.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
EndPage | 43 |
ExternalDocumentID | oai_doaj_org_article_06462128a33443bdb6843f880174f4be PMC6146594 1438514 30240751 10_1016_j_isci_2018_05_005 S2589004218300609 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 OTOTI 5PM |
ID | FETCH-LOGICAL-c548t-780c82ea81b385bd7c5f90ef9d2e5e4d54020b3a068f1a4885472eb8bd4e71f13 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:31:43 EDT 2025 Thu Aug 21 14:11:06 EDT 2025 Mon Mar 25 05:12:45 EDT 2024 Fri Jul 11 03:51:46 EDT 2025 Thu Apr 03 06:58:47 EDT 2025 Tue Jul 01 01:03:24 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 Wed May 17 02:13:14 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Energy Materials Porous Material Inorganic Chemistry |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c548t-780c82ea81b385bd7c5f90ef9d2e5e4d54020b3a068f1a4885472eb8bd4e71f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division China Scholarship Council SC000597; SC0005397 Lead Contact |
ORCID | 0000-0003-0237-9563 0000000302379563 |
OpenAccessLink | https://doaj.org/article/06462128a33443bdb6843f880174f4be |
PMID | 30240751 |
PQID | 2111148727 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_06462128a33443bdb6843f880174f4be pubmedcentral_primary_oai_pubmedcentral_nih_gov_6146594 osti_scitechconnect_1438514 proquest_miscellaneous_2111148727 pubmed_primary_30240751 crossref_primary_10_1016_j_isci_2018_05_005 crossref_citationtrail_10_1016_j_isci_2018_05_005 elsevier_sciencedirect_doi_10_1016_j_isci_2018_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-29 |
PublicationDateYYYYMMDD | 2018-06-29 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Netherlands |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | He, Chen, Lv, Wen, Wang, Zhang, Li, Qin, He (bib9) 2016; 10 Zheng, Tian, Wu, Gu, Xu, Wang, Gao, Engelhard, Zhang, Liu, Xiao (bib36) 2014; 14 Zhou, Zhao, Zu, Manthiram (bib39) 2015; 12 Pu, Shen, Zheng, Wu, Zhu, Zhou, Zhang, Pan (bib26) 2017; 37 Chen, Zhang, Cheng, Chen, Hu, Ma, Zhu, Liu, Jin (bib3) 2017; 139 He, Chen, Lv, Wen, Xu, Zhang, Li, Qin, He (bib10) 2016; 10 Kong, Yan, Luo, Wang, Jiang, Li, Fan, Wang (bib17) 2017; 27 Xu, Qie, Manthiram (bib34) 2016; 26 Cao, Zheng, Rui, Shi, Yan, Zhang (bib1) 2014; 126 Xia, Zhong, Fang, Liang, Xiao, Huang, Gan, Zhang, Tao, Zhang (bib32) 2018; 378 He, Lv, Chen, Wen, Xu, Zhang, Li, Qin, He (bib12) 2017; 11 Pang, Kundu, Nazar (bib25) 2016; 3 Liu, Li, Qin, Liang, Han, Zhou, He, Li, Kang (bib21) 2017; 13 Zhou, Tian, Jin, Tao, Liu, Zhang, Seh, Zhuo, Liu, Sun (bib40) 2017; 114 He, Chen, Li, Fu, Wang, Zhang (bib7) 2015; 3 Zhong, Xia, Deng, Zhan, Fang, Xia, Wang, Zhang, Tu (bib37) 2018; 8 Chung, Chang, Manthiram (bib5) 2016; 10 Ji, Zhou, Zhang, Dan, Yang, Yuan (bib15) 2016; 4 Guan, Liu, Elshahawy, Zhang, Wu, Pennycook, Wang (bib6) 2017; 2 Wu, Zhao, Gordon, Xiao, Hu, Yushin (bib30) 2016; 28 Kim, Hwang, Kim, Min, Choi (bib16) 2014; 24 Manthiram, Fu, Chung, Zu, Su (bib24) 2014; 114 Yuan, Peng, Hou, Huang, Chen, Wang, Cheng, Wei, Zhang (bib35) 2016; 16 Liu, Wu, Xiao, Kopold, Gu, van Aken, Maier, Yu (bib20) 2016; 17 Li, Zhang, Lou (bib19) 2015; 127 He, Chen, Lv, Wen, Li, Qi, Wang, Zhang, Li, Qin, He (bib8) 2016; 327 Manthiram, Chung, Zu (bib23) 2015; 27 Liu, Huang, Zhang, Mai (bib22) 2017; 29 Chung, Manthiram (bib4) 2018; 2 Chen, Zhao, Lu, Wu, Li, Chen, Tan, Ye, Amine (bib2) 2013; 13 Su, Manthiram (bib28) 2012; 3 Zhou, Li, Wang, Shan, Pei, Li, Cheng (bib38) 2015; 27 Li, Guan, Zhang, Lou (bib18) 2017; 1 Xu, Manthiram (bib33) 2017; 33 Sun, Li, Jiang, Kong, Jiang, Wang, Fan (bib29) 2014; 14 He, Luo, Chen, Manthiram (bib11) 2017 Qie, Manthiram (bib27) 2016; 1 Xia, Fang, Xiao, Huang, Gan, Yan, Lu, Liang, Zhang, Tao, Zhang (bib31) 2017; 9 Hu, Xu, Sun, Wang, Cheng, Li, Ren (bib13) 2016; 28 Ji, Zhou, Tong, Wang, Zhu, Chen, Yuan (bib14) 2017; 313 Chung (10.1016/j.isci.2018.05.005_bib5) 2016; 10 Hu (10.1016/j.isci.2018.05.005_bib13) 2016; 28 Chen (10.1016/j.isci.2018.05.005_bib2) 2013; 13 Kim (10.1016/j.isci.2018.05.005_bib16) 2014; 24 Xia (10.1016/j.isci.2018.05.005_bib31) 2017; 9 Cao (10.1016/j.isci.2018.05.005_bib1) 2014; 126 He (10.1016/j.isci.2018.05.005_bib10) 2016; 10 Su (10.1016/j.isci.2018.05.005_bib28) 2012; 3 Ji (10.1016/j.isci.2018.05.005_bib14) 2017; 313 Chen (10.1016/j.isci.2018.05.005_bib3) 2017; 139 Guan (10.1016/j.isci.2018.05.005_bib6) 2017; 2 Li (10.1016/j.isci.2018.05.005_bib19) 2015; 127 Manthiram (10.1016/j.isci.2018.05.005_bib24) 2014; 114 Kong (10.1016/j.isci.2018.05.005_bib17) 2017; 27 Zheng (10.1016/j.isci.2018.05.005_bib36) 2014; 14 Ji (10.1016/j.isci.2018.05.005_bib15) 2016; 4 Qie (10.1016/j.isci.2018.05.005_bib27) 2016; 1 He (10.1016/j.isci.2018.05.005_bib11) 2017 He (10.1016/j.isci.2018.05.005_bib9) 2016; 10 Wu (10.1016/j.isci.2018.05.005_bib30) 2016; 28 Xu (10.1016/j.isci.2018.05.005_bib33) 2017; 33 Zhou (10.1016/j.isci.2018.05.005_bib40) 2017; 114 Manthiram (10.1016/j.isci.2018.05.005_bib23) 2015; 27 Liu (10.1016/j.isci.2018.05.005_bib21) 2017; 13 Chung (10.1016/j.isci.2018.05.005_bib4) 2018; 2 Zhou (10.1016/j.isci.2018.05.005_bib39) 2015; 12 Liu (10.1016/j.isci.2018.05.005_bib20) 2016; 17 Xia (10.1016/j.isci.2018.05.005_bib32) 2018; 378 Zhong (10.1016/j.isci.2018.05.005_bib37) 2018; 8 Pang (10.1016/j.isci.2018.05.005_bib25) 2016; 3 Yuan (10.1016/j.isci.2018.05.005_bib35) 2016; 16 Liu (10.1016/j.isci.2018.05.005_bib22) 2017; 29 Pu (10.1016/j.isci.2018.05.005_bib26) 2017; 37 He (10.1016/j.isci.2018.05.005_bib12) 2017; 11 Li (10.1016/j.isci.2018.05.005_bib18) 2017; 1 Xu (10.1016/j.isci.2018.05.005_bib34) 2016; 26 He (10.1016/j.isci.2018.05.005_bib7) 2015; 3 He (10.1016/j.isci.2018.05.005_bib8) 2016; 327 Sun (10.1016/j.isci.2018.05.005_bib29) 2014; 14 Zhou (10.1016/j.isci.2018.05.005_bib38) 2015; 27 |
References_xml | – volume: 3 start-page: 1166 year: 2012 ident: bib28 article-title: Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer publication-title: Nat. Commun. – volume: 1 start-page: 576 year: 2017 end-page: 587 ident: bib18 article-title: A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries publication-title: Joule – volume: 13 start-page: 1602539 year: 2017 ident: bib21 article-title: Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V publication-title: Small – volume: 2 start-page: 710 year: 2018 end-page: 724 ident: bib4 article-title: Designing lithium-sulfur cells with practically necessary parameters publication-title: Joule – volume: 8 start-page: 1701110 year: 2018 ident: bib37 article-title: Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium-sulfur batteries publication-title: Adv. Energy Mater. – year: 2017 ident: bib11 article-title: Yolk-shelled C@Fe publication-title: Adv. Mater. – volume: 37 start-page: 7 year: 2017 end-page: 14 ident: bib26 article-title: Multifunctional Co publication-title: Nano Energy – volume: 114 start-page: 11751 year: 2014 end-page: 11787 ident: bib24 article-title: Rechargeable lithium–sulfur batteries publication-title: Chem. Rev. – volume: 10 start-page: 10462 year: 2016 end-page: 10470 ident: bib5 article-title: A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium–sulfur batteries publication-title: ACS Nano – volume: 3 start-page: 18605 year: 2015 end-page: 18610 ident: bib7 article-title: Three-dimensional cnt/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries publication-title: J. Mater. Chem. A. – volume: 313 start-page: 1623 year: 2017 end-page: 1632 ident: bib14 article-title: Facile fabrication of MOF-derived octahedral CuO wrapped 3d graphene network as binder-free anode for high performance lithium-ion batteries publication-title: Chem. Eng. J. – volume: 28 start-page: 6365 year: 2016 end-page: 6371 ident: bib30 article-title: Infiltrated porous polymer sheets as free-standing flexible lithium-sulfur battery electrodes publication-title: Adv. Mater. – volume: 27 start-page: 1980 year: 2015 end-page: 2006 ident: bib23 article-title: Lithium-sulfur batteries: progress and prospects publication-title: Adv. Mater. – volume: 1 start-page: 46 year: 2016 end-page: 51 ident: bib27 article-title: High-energy-density lithium–sulfur batteries based on blade-cast pure sulfur electrodes publication-title: ACS Energy Lett. – volume: 9 start-page: 23782 year: 2017 end-page: 23791 ident: bib31 article-title: Confining sulfur in n-doped porous carbon microspheres derived from microalgaes for advanced lithium–sulfur batteries publication-title: ACS Appl. Mater. Interfaces – volume: 114 start-page: 840 year: 2017 end-page: 845 ident: bib40 article-title: Catalytic oxidation of Li publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 start-page: 130 year: 2016 end-page: 136 ident: bib25 article-title: A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries publication-title: Mater. Horiz. – volume: 29 start-page: 1601759 year: 2017 ident: bib22 article-title: Nanostructured metal oxides and sulfides for lithium-sulfur batteries publication-title: Adv. Mater. – volume: 26 start-page: 224 year: 2016 end-page: 232 ident: bib34 article-title: An integrally-designed, flexible polysulfide host for high-performance lithium-sulfur batteries with stabilized lithium-metal anode publication-title: Nano Energy – volume: 10 start-page: 10981 year: 2016 end-page: 10987 ident: bib10 article-title: From metal–organic framework to Li publication-title: ACS Nano – volume: 11 start-page: 8144 year: 2017 end-page: 8152 ident: bib12 article-title: Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathodes for lithium–tellurium batteries publication-title: ACS Nano – volume: 12 start-page: 240 year: 2015 end-page: 249 ident: bib39 article-title: Free-standing TiO publication-title: Nano Energy – volume: 14 start-page: 4044 year: 2014 end-page: 4049 ident: bib29 article-title: Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries publication-title: Nano Lett. – volume: 126 start-page: 1428 year: 2014 end-page: 1433 ident: bib1 article-title: Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors publication-title: Angew. Chem. – volume: 327 start-page: 474 year: 2016 end-page: 480 ident: bib8 article-title: Highly-flexible 3d Li publication-title: J. Power Sources – volume: 27 start-page: 1606663 year: 2017 ident: bib17 article-title: Ultrathin MnO publication-title: Adv. Funct. Mater. – volume: 28 start-page: 1603 year: 2016 end-page: 1609 ident: bib13 article-title: 3d graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries publication-title: Adv. Mater. – volume: 17 start-page: 201503821 year: 2016 ident: bib20 article-title: MOF-derived hollow Co publication-title: Small – volume: 10 start-page: 8837 year: 2016 end-page: 8842 ident: bib9 article-title: Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li–Te batteries publication-title: ACS Nano – volume: 14 start-page: 2345 year: 2014 end-page: 2352 ident: bib36 article-title: Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries publication-title: Nano Lett. – volume: 13 start-page: 4642 year: 2013 end-page: 4649 ident: bib2 article-title: Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries publication-title: Nano Lett. – volume: 378 start-page: 73 year: 2018 end-page: 80 ident: bib32 article-title: Biomass derived Ni(OH) publication-title: J. Power Sources – volume: 16 start-page: 519 year: 2016 end-page: 527 ident: bib35 article-title: Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts publication-title: Nano Lett. – volume: 127 start-page: 13078 year: 2015 end-page: 13082 ident: bib19 article-title: Hollow carbon nanofibers filled with MnO publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 8283 year: 2016 end-page: 8290 ident: bib15 article-title: Facile synthesis of a metal–organic framework-derived Mn publication-title: J. Mater. Chem. A – volume: 139 start-page: 12710 year: 2017 end-page: 12715 ident: bib3 article-title: Self-templated formation of interlaced carbon nanotubes threaded hollow Co publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 5359 year: 2014 end-page: 5367 ident: bib16 article-title: A lithium-sulfur battery with a high areal energy density publication-title: Adv. Funct. Mater. – volume: 2 start-page: 342 year: 2017 end-page: 348 ident: bib6 article-title: Metal–organic framework derived hollow CoS publication-title: Nanoscale Horiz. – volume: 33 start-page: 124 year: 2017 end-page: 129 ident: bib33 article-title: Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries publication-title: Nano Energy – volume: 27 start-page: 641 year: 2015 end-page: 647 ident: bib38 article-title: A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced li-s batteries publication-title: Adv. Mater. – volume: 114 start-page: 840 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib40 article-title: Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1615837114 – volume: 3 start-page: 130 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib25 article-title: A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries publication-title: Mater. Horiz. doi: 10.1039/C5MH00246J – volume: 37 start-page: 7 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib26 article-title: Multifunctional Co3S4 @sulfur nanotubes for enhanced lithium-sulfur battery performance publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.009 – volume: 1 start-page: 46 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib27 article-title: High-energy-density lithium–sulfur batteries based on blade-cast pure sulfur electrodes publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00033 – volume: 26 start-page: 224 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib34 article-title: An integrally-designed, flexible polysulfide host for high-performance lithium-sulfur batteries with stabilized lithium-metal anode publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.05.028 – volume: 13 start-page: 1602539 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib21 article-title: Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5-decorated carbon nanofiber interlayer publication-title: Small doi: 10.1002/smll.201602539 – volume: 27 start-page: 1980 year: 2015 ident: 10.1016/j.isci.2018.05.005_bib23 article-title: Lithium-sulfur batteries: progress and prospects publication-title: Adv. Mater. doi: 10.1002/adma.201405115 – volume: 11 start-page: 8144 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib12 article-title: Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathodes for lithium–tellurium batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b03057 – volume: 3 start-page: 18605 year: 2015 ident: 10.1016/j.isci.2018.05.005_bib7 article-title: Three-dimensional cnt/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA04445F – volume: 28 start-page: 1603 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib13 article-title: 3d graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries publication-title: Adv. Mater. doi: 10.1002/adma.201504765 – volume: 14 start-page: 2345 year: 2014 ident: 10.1016/j.isci.2018.05.005_bib36 article-title: Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries publication-title: Nano Lett. doi: 10.1021/nl404721h – volume: 1 start-page: 576 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib18 article-title: A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries publication-title: Joule doi: 10.1016/j.joule.2017.06.003 – volume: 27 start-page: 641 year: 2015 ident: 10.1016/j.isci.2018.05.005_bib38 article-title: A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced li-s batteries publication-title: Adv. Mater. doi: 10.1002/adma.201404210 – volume: 16 start-page: 519 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib35 article-title: Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04166 – year: 2017 ident: 10.1016/j.isci.2018.05.005_bib11 article-title: Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201702707 – volume: 27 start-page: 1606663 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib17 article-title: Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance li-s batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606663 – volume: 14 start-page: 4044 year: 2014 ident: 10.1016/j.isci.2018.05.005_bib29 article-title: Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries publication-title: Nano Lett. doi: 10.1021/nl501486n – volume: 3 start-page: 1166 year: 2012 ident: 10.1016/j.isci.2018.05.005_bib28 article-title: Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer publication-title: Nat. Commun. doi: 10.1038/ncomms2163 – volume: 313 start-page: 1623 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib14 article-title: Facile fabrication of MOF-derived octahedral CuO wrapped 3d graphene network as binder-free anode for high performance lithium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.063 – volume: 10 start-page: 10462 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib5 article-title: A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.6b06369 – volume: 126 start-page: 1428 year: 2014 ident: 10.1016/j.isci.2018.05.005_bib1 article-title: Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors publication-title: Angew. Chem. doi: 10.1002/ange.201308013 – volume: 33 start-page: 124 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib33 article-title: Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.007 – volume: 327 start-page: 474 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib8 article-title: Highly-flexible 3d Li2S/graphene cathode for high-performance lithium sulfur batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.07.088 – volume: 9 start-page: 23782 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib31 article-title: Confining sulfur in n-doped porous carbon microspheres derived from microalgaes for advanced lithium–sulfur batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05798 – volume: 2 start-page: 710 year: 2018 ident: 10.1016/j.isci.2018.05.005_bib4 article-title: Designing lithium-sulfur cells with practically necessary parameters publication-title: Joule doi: 10.1016/j.joule.2018.01.002 – volume: 24 start-page: 5359 year: 2014 ident: 10.1016/j.isci.2018.05.005_bib16 article-title: A lithium-sulfur battery with a high areal energy density publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400935 – volume: 10 start-page: 8837 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib9 article-title: Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li–Te batteries publication-title: ACS Nano doi: 10.1021/acsnano.6b04622 – volume: 28 start-page: 6365 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib30 article-title: Infiltrated porous polymer sheets as free-standing flexible lithium-sulfur battery electrodes publication-title: Adv. Mater. doi: 10.1002/adma.201600757 – volume: 17 start-page: 201503821 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib20 article-title: MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior li-ion storage publication-title: Small – volume: 114 start-page: 11751 year: 2014 ident: 10.1016/j.isci.2018.05.005_bib24 article-title: Rechargeable lithium–sulfur batteries publication-title: Chem. Rev. doi: 10.1021/cr500062v – volume: 4 start-page: 8283 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib15 article-title: Facile synthesis of a metal–organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01377E – volume: 10 start-page: 10981 year: 2016 ident: 10.1016/j.isci.2018.05.005_bib10 article-title: From metal–organic framework to Li2S@C–Co–N nanoporous architecture: a high-capacity cathode for lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.6b05696 – volume: 29 start-page: 1601759 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib22 article-title: Nanostructured metal oxides and sulfides for lithium-sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201601759 – volume: 8 start-page: 1701110 year: 2018 ident: 10.1016/j.isci.2018.05.005_bib37 article-title: Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium-sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701110 – volume: 13 start-page: 4642 year: 2013 ident: 10.1016/j.isci.2018.05.005_bib2 article-title: Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries publication-title: Nano Lett. doi: 10.1021/nl4016683 – volume: 2 start-page: 342 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib6 article-title: Metal–organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting publication-title: Nanoscale Horiz. doi: 10.1039/C7NH00079K – volume: 378 start-page: 73 year: 2018 ident: 10.1016/j.isci.2018.05.005_bib32 article-title: Biomass derived Ni(OH)2@porous carbon/sulfur composites synthesized by a novel sulfur impregnation strategy based on supercritical co2 technology for advanced li-s batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.025 – volume: 12 start-page: 240 year: 2015 ident: 10.1016/j.isci.2018.05.005_bib39 article-title: Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.12.029 – volume: 139 start-page: 12710 year: 2017 ident: 10.1016/j.isci.2018.05.005_bib3 article-title: Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06973 – volume: 127 start-page: 13078 year: 2015 ident: 10.1016/j.isci.2018.05.005_bib19 article-title: Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201506972 |
SSID | ssj0002002496 |
Score | 2.4706938 |
Snippet | Lithium-sulfur (Li-S) batteries are an appealing candidate for advanced energy storage systems because of their high theoretical energy density and low cost.... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 36 |
SubjectTerms | Energy Materials ENERGY STORAGE Inorganic Chemistry Porous Material |
Title | MOF-derived Cobalt Sulfide Grown on 3D Graphene Foam as an Efficient Sulfur Host for Long-Life Lithium-Sulfur Batteries |
URI | https://dx.doi.org/10.1016/j.isci.2018.05.005 https://www.ncbi.nlm.nih.gov/pubmed/30240751 https://www.proquest.com/docview/2111148727 https://www.osti.gov/biblio/1438514 https://pubmed.ncbi.nlm.nih.gov/PMC6146594 https://doaj.org/article/06462128a33443bdb6843f880174f4be |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnrggUPkIBWQkbigi8UfiHKF0WaEtHKBSb5Ydj2mqNkFtUv4-M0l2tYtQuXCLEjuJPc-ZN8r4DWNvIIqqrGmLcvA6VQFc6g2Y1LjMoUcTFeS0UfjkS7E6VZ_P9NlOqS_KCZvkgaeJe4cus8DPq3FSKiV98IVRMiLqkEpH5YG-vujzdoKpi_H3GknhjZXlNOUEITTnHTNTchfteKW8LjPKdlLtuh2vNIr37zmnRYfr7W8c9M9Uyh3ftHzIHsykkr-fBvOI3YP2gP06-bpMAwLsFgI_ItmPnn8bLmMTgH-i4Jt3LZcf8dhRnhfwZeeuuLvhruXHo7AEPmzsMVzzFb4aR37L1137I103Efi66c-b4SqdW0xCnRh3P2any-PvR6t0LrOQ1hiu9GlpstoIcEhgpdE-lLWOVQaxCgI0qKApxPTSZYWJucMFr1UpwBsfFJR5zOUTtmi7Fp4x7oJAC7taiiBVgbcQdRXrYLR2FSnZJyzfTLOtZw1yKoVxaTfJZheWTGPJNDbTFk2TsLfbPj8nBY47W38g621bknr2eAIxZWdM2X9hKmF6Y3s7E5GJYOCtmjsffkhAoT6kwFtTqhJ2ogrzyEsT9nqDH4trmH7MuBa64cYK8lsYOYoyYU8nPG0HIEmErtR5wso9pO2NcP9K25yPOuHIvApdqef_Y0oO2X0aKCXJieoFW_TXA7xEOtb7V-PK-w0rmC7U |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF-derived+Cobalt+Sulfide+Grown+on+3D+Graphene+Foam+as+an+Efficient+Sulfur+Host+for+Long-Life+Lithium-Sulfur+Batteries&rft.jtitle=iScience&rft.au=He%2C+Jiarui&rft.au=Chen%2C+Yuanfu&rft.au=Manthiram%2C+Arumugam&rft.date=2018-06-29&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=4&rft.issue=C&rft_id=info:doi/10.1016%2Fj.isci.2018.05.005&rft.externalDocID=1438514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |