Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems

Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these s...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 36; no. 6; pp. 779 - 785
Main Authors Gao, Lei, Bourke, A.K., Nelson, John
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with “light-weight” signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system.
AbstractList Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system.
Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system.Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system.
Abstract Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with “light-weight” signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system.
Author Bourke, A.K.
Gao, Lei
Nelson, John
Author_xml – sequence: 1
  givenname: Lei
  surname: Gao
  fullname: Gao, Lei
  email: lei.gao@ul.ie
– sequence: 2
  givenname: A.K.
  surname: Bourke
  fullname: Bourke, A.K.
– sequence: 3
  givenname: John
  surname: Nelson
  fullname: Nelson, John
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24636448$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEUhUeoiD7gL8As2Ux6_ZrHAlBVFYpUiQWwNh7PdXCYsYPtiZR_X6dpWFRCzepa1jnH1_e758WJ8w6L4h2BBQFSX64WEw7oluvf2wUFwhdAF0Doi-KMtA2rODA4yWcmoOKCsdPiPMYVAHBes1fFKc2l5rw9K37dbNQ4q2S9K70pldY4YvATJgxlryIO5TSPyVYRXfSh3GCIcyyjdcsRD5dKJ7uxaVsG1H7p7ENa3MaEU3xdvDRqjPjmsV4UPz_f_Li-re6-ffl6fXVXacHbVImuM11jKGdd0yuAHrFnpG80CEENbQcQ2kBXI697ZQyjuhsoqBqpMW07UHZRvN_nroP_O2NMcrIxf2ZUDv0cJakFtAKga56XCsZbQVtOjpDSuqFdTbssffsonfsMR66DnVTYysOss-DDXqCDjzGgkdqmh8mnoOwoCcgdW7mS_9jKHVsJVGa22d888R-eeN55tXdiBrCxGGTUFp3GwWZiSQ7eHpHx8UmGHq2zWo1_cItx5efgMl9JZMwG-X23e7vVIzyvHeM8B3z6f8BRLdwD_TnvRA
CitedBy_id crossref_primary_10_1016_j_cobme_2019_01_001
crossref_primary_10_1080_00140139_2019_1578419
crossref_primary_10_1109_MSP_2015_2503881
crossref_primary_10_1249_MSS_0000000000000915
crossref_primary_10_1109_ACCESS_2024_3413822
crossref_primary_10_1016_j_cogsys_2018_11_009
crossref_primary_10_3390_s22082829
crossref_primary_10_3390_s22134755
crossref_primary_10_1016_j_measurement_2022_110945
crossref_primary_10_1109_JSEN_2019_2915524
crossref_primary_10_3390_s151229858
crossref_primary_10_1155_2022_4199985
crossref_primary_10_1186_s12938_019_0677_7
crossref_primary_10_2196_23681
crossref_primary_10_3233_IDA_163329
crossref_primary_10_1098_rsos_171442
crossref_primary_10_7717_peerj_5764
crossref_primary_10_1109_ACCESS_2020_2998842
crossref_primary_10_1249_MSS_0000000000002306
crossref_primary_10_1186_s12911_021_01626_3
crossref_primary_10_1108_SR_02_2020_0027
crossref_primary_10_3390_s18124132
crossref_primary_10_1108_CW_12_2017_0072
crossref_primary_10_1007_s00521_018_3437_x
crossref_primary_10_1093_comjnl_bxad035
crossref_primary_10_1007_s00521_020_04742_9
crossref_primary_10_1016_j_cmpb_2016_02_012
crossref_primary_10_1109_JSEN_2017_2707921
crossref_primary_10_1109_TSUSC_2021_3101494
crossref_primary_10_1007_s11257_020_09268_2
crossref_primary_10_3390_technologies12090166
crossref_primary_10_3390_app11167630
crossref_primary_10_3390_s16122105
crossref_primary_10_1088_1361_6501_aa60a9
crossref_primary_10_3390_s23125472
crossref_primary_10_1186_s13102_022_00492_4
crossref_primary_10_1109_JSEN_2022_3194677
crossref_primary_10_3390_s22072489
crossref_primary_10_1080_1091367X_2020_1815749
crossref_primary_10_1109_ACCESS_2018_2871732
crossref_primary_10_3390_s19194286
crossref_primary_10_1007_s11277_018_5715_4
crossref_primary_10_1016_j_enbuild_2023_113216
crossref_primary_10_1038_s41467_020_15086_2
crossref_primary_10_1109_JSEN_2016_2628346
crossref_primary_10_1109_JSEN_2021_3095176
crossref_primary_10_1016_j_knosys_2021_106970
crossref_primary_10_1155_2018_9762098
crossref_primary_10_3390_s16020202
crossref_primary_10_1088_1742_6596_1314_1_012150
crossref_primary_10_1016_j_jbi_2018_11_003
crossref_primary_10_3390_s20195625
crossref_primary_10_1007_s40846_018_0404_z
crossref_primary_10_1109_JSEN_2016_2545708
crossref_primary_10_1016_j_inffus_2018_06_008
crossref_primary_10_57062_ijpem_st_2023_0073
crossref_primary_10_1007_s12243_023_00964_9
crossref_primary_10_1109_JSEN_2016_2559804
crossref_primary_10_1152_japplphysiol_01189_2013
crossref_primary_10_1007_s11042_018_6662_5
crossref_primary_10_1016_j_measurement_2020_107480
crossref_primary_10_1016_j_pmcj_2016_09_009
crossref_primary_10_1016_j_inffus_2014_08_003
crossref_primary_10_3390_s19040804
crossref_primary_10_1016_j_buildenv_2017_12_010
crossref_primary_10_1109_JSEN_2022_3161797
crossref_primary_10_1016_j_pmcj_2019_03_006
crossref_primary_10_5057_ijae_IJAE_D_17_00020
crossref_primary_10_1093_jcde_qwac030
crossref_primary_10_1016_j_gaitpost_2015_10_016
crossref_primary_10_1371_journal_pone_0188215
crossref_primary_10_1016_j_ergon_2018_02_002
crossref_primary_10_1007_s00521_020_05638_4
crossref_primary_10_1108_SR_05_2016_0085
crossref_primary_10_1016_j_procs_2020_09_301
crossref_primary_10_1186_s12984_022_00984_x
crossref_primary_10_1016_j_eswa_2019_04_057
crossref_primary_10_1016_j_jbi_2016_07_005
crossref_primary_10_1007_s00500_016_2100_7
crossref_primary_10_1007_s00779_014_0824_x
crossref_primary_10_1186_s12984_016_0114_0
crossref_primary_10_3390_info10060197
crossref_primary_10_1016_j_asoc_2015_01_025
crossref_primary_10_3390_s21237853
crossref_primary_10_1249_MSS_0000000000002107
crossref_primary_10_1109_JIOT_2018_2846359
crossref_primary_10_1109_JSEN_2020_3044315
crossref_primary_10_1109_TBME_2015_2471094
crossref_primary_10_1016_j_procs_2021_08_052
crossref_primary_10_1007_s40860_022_00181_6
crossref_primary_10_1155_2015_140820
crossref_primary_10_1111_obr_12506
crossref_primary_10_3390_mi9090450
crossref_primary_10_1109_TNSRE_2022_3197993
crossref_primary_10_1109_COMST_2023_3246993
crossref_primary_10_1007_s12652_017_0513_5
crossref_primary_10_1016_j_cmpb_2019_105309
crossref_primary_10_3233_JIFS_189133
crossref_primary_10_1109_ACCESS_2023_3320707
crossref_primary_10_1155_2022_9933018
crossref_primary_10_1007_s12652_020_02035_6
crossref_primary_10_1038_s41597_023_02567_4
crossref_primary_10_3390_s21030799
crossref_primary_10_1109_JSEN_2023_3267243
crossref_primary_10_1007_s12652_019_01214_4
crossref_primary_10_1016_j_engappai_2024_109217
crossref_primary_10_1109_JBHI_2020_2999902
crossref_primary_10_1109_TMC_2016_2599158
crossref_primary_10_3390_s19112426
crossref_primary_10_1177_1550147716683687
crossref_primary_10_1109_JSEN_2017_2722105
crossref_primary_10_1016_j_eswa_2014_04_037
crossref_primary_10_3390_s18010268
crossref_primary_10_1109_JBHI_2018_2820179
crossref_primary_10_1109_RBME_2015_2427254
crossref_primary_10_1016_j_procs_2023_10_222
crossref_primary_10_4015_S101623721750003X
crossref_primary_10_1007_s43926_021_00004_9
crossref_primary_10_1108_SR_05_2021_0157
crossref_primary_10_3390_s21082875
crossref_primary_10_3390_s22165957
crossref_primary_10_1007_s13042_020_01182_8
crossref_primary_10_3390_app11199096
crossref_primary_10_1109_ACCESS_2019_2911450
crossref_primary_10_3390_s150511312
crossref_primary_10_3390_s22176605
crossref_primary_10_3390_jsan8030040
crossref_primary_10_1007_s11042_021_11410_0
crossref_primary_10_3389_fphys_2021_668350
crossref_primary_10_3390_computers9020031
crossref_primary_10_32604_cmc_2021_015660
crossref_primary_10_1186_s12911_021_01723_3
crossref_primary_10_1007_s12652_018_0880_6
crossref_primary_10_1109_TETC_2018_2870047
crossref_primary_10_32604_cmc_2020_012251
crossref_primary_10_1123_jpah_2019_0088
crossref_primary_10_3233_JIFS_181315
crossref_primary_10_1155_2022_5075122
crossref_primary_10_3390_s21217278
crossref_primary_10_1007_s11042_020_09150_8
Cites_doi 10.1109/TITB.2011.2107916
10.1093/ageing/afq034
10.1109/TITB.2005.856864
10.1016/j.medengphy.2013.06.005
10.1109/TITB.2009.2028575
10.1109/TBME.2003.812189
10.1007/978-3-540-24646-6_1
10.1145/1964897.1964918
10.1016/j.medengphy.2011.05.002
10.1109/TBME.2008.2006190
10.1007/978-3-642-28765-7_18
10.1109/TITB.2010.2051955
10.1016/j.medengphy.2008.09.005
10.1109/TITB.2005.856863
10.1016/j.artmed.2007.11.006
10.1007/978-3-540-39863-9_17
10.1017/S0144686X08008337
10.1109/JSEN.2010.2045498
10.1016/j.patrec.2008.08.002
10.1016/j.jbiomech.2010.07.005
10.1007/BF02348434
10.3390/ijerph6071947
ContentType Journal Article
Copyright 2014 IPEM
IPEM
Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 IPEM
– notice: IPEM
– notice: Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1016/j.medengphy.2014.02.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 785
ExternalDocumentID 24636448
10_1016_j_medengphy_2014_02_012
S1350453314000344
1_s2_0_S1350453314000344
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c548t-599f97f24397ba00beeb31b7c0552f28d05cf096e46baff32c9d20a6e2ff88d23
IEDL.DBID .~1
ISSN 1350-4533
1873-4030
IngestDate Thu Jul 10 22:40:04 EDT 2025
Tue Aug 05 10:58:36 EDT 2025
Tue Aug 05 11:15:56 EDT 2025
Thu Apr 03 07:00:50 EDT 2025
Thu Apr 24 23:06:13 EDT 2025
Tue Jul 01 04:24:49 EDT 2025
Fri Feb 23 02:29:18 EST 2024
Sun Feb 23 10:19:58 EST 2025
Tue Aug 26 16:31:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Activity recognition
Accelerometer
Multi-sensor fusion
Activities of daily living
Language English
License Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-599f97f24397ba00beeb31b7c0552f28d05cf096e46baff32c9d20a6e2ff88d23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 24636448
PQID 1526729629
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1650850097
proquest_miscellaneous_1534852841
proquest_miscellaneous_1526729629
pubmed_primary_24636448
crossref_citationtrail_10_1016_j_medengphy_2014_02_012
crossref_primary_10_1016_j_medengphy_2014_02_012
elsevier_sciencedirect_doi_10_1016_j_medengphy_2014_02_012
elsevier_clinicalkeyesjournals_1_s2_0_S1350453314000344
elsevier_clinicalkey_doi_10_1016_j_medengphy_2014_02_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Parkka, Ermes (bib0025) 2006; 10
Bolstad (bib0135) 2007
Bourke, van de Ven, Gamble, O’Connor, Murphy, Bogan (bib0165) 2010; 43
Bao (bib0060) 2004; 3001
Kern, Schiele, Schmidt (bib0105) 2003; 2875
Kwapisz, Weiss (bib0050) 2011; 12
Yang, Wang, Chen (bib0145) 2008; 29
Lugade, Fortune, Morrow, Kaufman (bib0030) 2013; 36
Godfrey, Conway, Meagher, OLaighin (bib0015) 2008; 30
Curone, Bertolotti, Cristiani (bib0020) 2010; 14
Guiry, Van de Ven, Nelson (bib0055) 2012
Preece, Goulermas, Kenney, Howard (bib0085) 2009; 56
Wu, Bui, Batalin, Au, Binney, Kaiser (bib0155) 2008; 42
Atallah, Lo, Ali, King, Yang (bib0120) 2009; 13
Marks (bib0075) 1991
Boulos, Lou, Kamel Boulos, Anastasiou, Nugent, Alexandersson (bib0130) 2009; 6
Paillard-Borg, Wang, Winblad, Fratiglioni (bib0005) 2009; 29
Khan, Lee, Lee (bib0095) 2010; 14
Yang, Dinh, Chen (bib0115) 2010
Godfrey, Bourke, Olaighin, van de Ven, Nelson (bib0035) 2011; 33
Burns, Greene, McGrath, O'Shea, Kuris, Ayer (bib0065) 2010; 10
Najafi, Aminian, Paraschiv-Ionescu, Loew, Büla, Robert (bib0040) 2003; 50
Mathie, Coster, Lovell, Celler (bib0080) 2003; 41
Gil, Jesús, De Lopéz (bib0100) 2012; 151
Cruz-Jentoft, Baeyens, Bauer, Boirie, Cederholm, Landi (bib0010) 2010; 39
Lombriser, Bharatula, Roggen (bib0140) 2007
Kasteren, Van Noulas, Englebienne, Krose (bib0125) 2008
Gao, Bourke, Nelson (bib0070) 2011
Karantonis, Narayanan, Mathie, Lovell, Celler (bib0160) 2006; 10
Ward, Lukowicz, Tröster (bib0150) 2005
Maurer, Smailagic, Siewiorek (bib0090) 2006
Doukas (bib0110) 2008
Palmerini, Rocchi, Mellone, Valzania, Chiari (bib0045) 2011; 15
Kasteren (10.1016/j.medengphy.2014.02.012_bib0125) 2008
Yang (10.1016/j.medengphy.2014.02.012_bib0145) 2008; 29
Godfrey (10.1016/j.medengphy.2014.02.012_bib0015) 2008; 30
Atallah (10.1016/j.medengphy.2014.02.012_bib0120) 2009; 13
Preece (10.1016/j.medengphy.2014.02.012_bib0085) 2009; 56
Doukas (10.1016/j.medengphy.2014.02.012_bib0110) 2008
Yang (10.1016/j.medengphy.2014.02.012_bib0115) 2010
Bao (10.1016/j.medengphy.2014.02.012_bib0060) 2004; 3001
Maurer (10.1016/j.medengphy.2014.02.012_bib0090) 2006
Paillard-Borg (10.1016/j.medengphy.2014.02.012_bib0005) 2009; 29
Khan (10.1016/j.medengphy.2014.02.012_bib0095) 2010; 14
Kwapisz (10.1016/j.medengphy.2014.02.012_bib0050) 2011; 12
Marks (10.1016/j.medengphy.2014.02.012_bib0075) 1991
Palmerini (10.1016/j.medengphy.2014.02.012_bib0045) 2011; 15
Najafi (10.1016/j.medengphy.2014.02.012_bib0040) 2003; 50
Gao (10.1016/j.medengphy.2014.02.012_bib0070) 2011
Karantonis (10.1016/j.medengphy.2014.02.012_bib0160) 2006; 10
Cruz-Jentoft (10.1016/j.medengphy.2014.02.012_bib0010) 2010; 39
Lombriser (10.1016/j.medengphy.2014.02.012_bib0140) 2007
Bolstad (10.1016/j.medengphy.2014.02.012_bib0135) 2007
Lugade (10.1016/j.medengphy.2014.02.012_bib0030) 2013; 36
Gil (10.1016/j.medengphy.2014.02.012_bib0100) 2012; 151
Bourke (10.1016/j.medengphy.2014.02.012_bib0165) 2010; 43
Godfrey (10.1016/j.medengphy.2014.02.012_bib0035) 2011; 33
Curone (10.1016/j.medengphy.2014.02.012_bib0020) 2010; 14
Guiry (10.1016/j.medengphy.2014.02.012_bib0055) 2012
Ward (10.1016/j.medengphy.2014.02.012_bib0150) 2005
Wu (10.1016/j.medengphy.2014.02.012_bib0155) 2008; 42
Burns (10.1016/j.medengphy.2014.02.012_bib0065) 2010; 10
Mathie (10.1016/j.medengphy.2014.02.012_bib0080) 2003; 41
Kern (10.1016/j.medengphy.2014.02.012_bib0105) 2003; 2875
Boulos (10.1016/j.medengphy.2014.02.012_bib0130) 2009; 6
Parkka (10.1016/j.medengphy.2014.02.012_bib0025) 2006; 10
References_xml – year: 1991
  ident: bib0075
  article-title: Introduction to Shannon sampling and interpolation theory
– volume: 29
  start-page: 2213
  year: 2008
  end-page: 2220
  ident: bib0145
  article-title: Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers
  publication-title: Pattern Recognition Letters
– volume: 15
  start-page: 481
  year: 2011
  end-page: 490
  ident: bib0045
  article-title: Feature selection for accelerometer-based posture analysis in Parkinson's disease
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– start-page: 7869
  year: 2011
  end-page: 7872
  ident: bib0070
  article-title: A system for activity recognition using multi-sensor fusion
  publication-title: Proceedings of 2011 annual international conference of the ieee engineering in medicine and biology society
– start-page: 101
  year: 2010
  end-page: 105
  ident: bib0115
  article-title: Implementation of a wearerable real-time system for physical activity recognition based on naive Bayes classifier
  publication-title: 2010 international conference on bioinformatics and biomedical technology (ICBBT)
– volume: 42
  start-page: 137
  year: 2008
  end-page: 152
  ident: bib0155
  article-title: MEDIC: medical embedded device for individualized care
  publication-title: Artificial Intelligence in Medicine
– start-page: 99
  year: 2005
  ident: bib0150
  article-title: Gesture spotting using wrist worn microphone and 3-axis accelerometer
  publication-title: Proceedings of the 2005 joint conference on Smart objects and ambient intelligence innovative context-aware services: usages and technologies
– volume: 36
  start-page: 169
  year: 2013
  end-page: 176
  ident: bib0030
  article-title: Validity of using tri-axial accelerometers to measure human movement. Part I: posture and movement detection
  publication-title: Medical Engineering and Physics
– volume: 10
  start-page: 156
  year: 2006
  end-page: 167
  ident: bib0160
  article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 33
  start-page: 1127
  year: 2011
  end-page: 1135
  ident: bib0035
  article-title: Activity classification using a single chest mounted tri-axial accelerometer
  publication-title: Medical Engineering and Physics
– volume: 151
  start-page: 141
  year: 2012
  end-page: 150
  ident: bib0100
  article-title: Using J48 for activity recognition on mobile phones
  publication-title: Advances in Intelligent and Soft Computing
– volume: 13
  start-page: 1031
  year: 2009
  end-page: 1039
  ident: bib0120
  article-title: Real-time activity classification using ambient and wearable sensors
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 43
  start-page: 3051
  year: 2010
  end-page: 3057
  ident: bib0165
  article-title: Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities
  publication-title: Journal of Biomechanics
– volume: 10
  start-page: 1527
  year: 2010
  end-page: 1534
  ident: bib0065
  article-title: SHIMMERTM – a wireless sensor platform for noninvasive biomedical research
  publication-title: IEEE Sensors Journal
– volume: 41
  start-page: 296
  year: 2003
  end-page: 301
  ident: bib0080
  article-title: Detection of daily physical activities using a triaxial accelerometer
  publication-title: Medical and Biological Engineering and Computing
– volume: 50
  start-page: 711
  year: 2003
  end-page: 723
  ident: bib0040
  article-title: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 1
  year: 2008
  end-page: 9
  ident: bib0125
  article-title: Accurate activity recognition in a home setting
  publication-title: Proc. UbiComp 2008
– year: 2012
  ident: bib0055
  article-title: Orientation independent human mobility monitoring with an android smartphone
  publication-title: Proceedings of the 9th IASTED international conference on biomedical engineering
– volume: 6
  start-page: 1947
  year: 2009
  end-page: 1971
  ident: bib0130
  article-title: Connectivity for healthcare and well-being management: examples from six European projects
  publication-title: International Journal of Environmental Research and Public Health
– year: 2007
  ident: bib0135
  article-title: Introduction to Bayesian statistics
– start-page: 113
  year: 2006
  end-page: 116
  ident: bib0090
  article-title: Activity recognition and monitoring using multiple sensors on different body positions
  publication-title: International workshop on wearable and implementable body sensor networks (BSN)
– volume: 2875
  start-page: 220
  year: 2003
  end-page: 232
  ident: bib0105
  article-title: Multi-sensor activity context detection for wearable computing
  publication-title: Ambient Intelligence
– volume: 12
  start-page: 74
  year: 2011
  end-page: 82
  ident: bib0050
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SIGKDD Explorations
– start-page: 1
  year: 2007
  end-page: 6
  ident: bib0140
  article-title: On-body activity recognition in a dynamic sensor network
  publication-title: Proceedings of the ICST 2nd international conference on body area networks
– start-page: 103
  year: 2008
  end-page: 107
  ident: bib0110
  article-title: Advanced patient or elder fall detection based on movement and sound data
  publication-title: Proceedings of 2nd international conference on pervasive computing technologies for healthcare
– volume: 39
  start-page: 412
  year: 2010
  end-page: 423
  ident: bib0010
  article-title: Sarcopenia: European consensus on definition and diagnosis: report of the European working group on Sarcopenia in older people
  publication-title: Age and Ageing
– volume: 14
  start-page: 1098
  year: 2010
  end-page: 1105
  ident: bib0020
  article-title: A real-time and self-calibrating algorithm based on triaxial accelerometer signals for the detection of human posture and activity
  publication-title: Information
– volume: 3001
  start-page: 1
  year: 2004
  end-page: 17
  ident: bib0060
  article-title: Activity recognition from user-annotated acceleration data
  publication-title: Pervasive Computing
– volume: 56
  start-page: 871
  year: 2009
  end-page: 879
  ident: bib0085
  article-title: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 29
  start-page: 803
  year: 2009
  ident: bib0005
  article-title: Pattern of participation in leisure activities among older people in relation to their health conditions and contextual factors: a survey in a Swedish urban area
  publication-title: Ageing and Society
– volume: 30
  start-page: 1364
  year: 2008
  end-page: 1386
  ident: bib0015
  article-title: Direct measurement of human movement by accelerometry
  publication-title: Medical Engineering and Physics
– volume: 10
  start-page: 119
  year: 2006
  end-page: 128
  ident: bib0025
  article-title: Activity classification using realistic data from wearable sensors
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 14
  start-page: 1166
  year: 2010
  end-page: 1172
  ident: bib0095
  article-title: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– start-page: 7869
  year: 2011
  ident: 10.1016/j.medengphy.2014.02.012_bib0070
  article-title: A system for activity recognition using multi-sensor fusion
– volume: 14
  start-page: 1098
  year: 2010
  ident: 10.1016/j.medengphy.2014.02.012_bib0020
  article-title: A real-time and self-calibrating algorithm based on triaxial accelerometer signals for the detection of human posture and activity
  publication-title: Information
– volume: 15
  start-page: 481
  year: 2011
  ident: 10.1016/j.medengphy.2014.02.012_bib0045
  article-title: Feature selection for accelerometer-based posture analysis in Parkinson's disease
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2011.2107916
– volume: 39
  start-page: 412
  year: 2010
  ident: 10.1016/j.medengphy.2014.02.012_bib0010
  article-title: Sarcopenia: European consensus on definition and diagnosis: report of the European working group on Sarcopenia in older people
  publication-title: Age and Ageing
  doi: 10.1093/ageing/afq034
– year: 2012
  ident: 10.1016/j.medengphy.2014.02.012_bib0055
  article-title: Orientation independent human mobility monitoring with an android smartphone
– volume: 10
  start-page: 156
  year: 2006
  ident: 10.1016/j.medengphy.2014.02.012_bib0160
  article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2005.856864
– volume: 36
  start-page: 169
  issue: 2
  year: 2013
  ident: 10.1016/j.medengphy.2014.02.012_bib0030
  article-title: Validity of using tri-axial accelerometers to measure human movement. Part I: posture and movement detection
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2013.06.005
– volume: 13
  start-page: 1031
  year: 2009
  ident: 10.1016/j.medengphy.2014.02.012_bib0120
  article-title: Real-time activity classification using ambient and wearable sensors
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2009.2028575
– year: 2007
  ident: 10.1016/j.medengphy.2014.02.012_bib0135
– volume: 50
  start-page: 711
  year: 2003
  ident: 10.1016/j.medengphy.2014.02.012_bib0040
  article-title: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2003.812189
– volume: 3001
  start-page: 1
  year: 2004
  ident: 10.1016/j.medengphy.2014.02.012_bib0060
  article-title: Activity recognition from user-annotated acceleration data
  publication-title: Pervasive Computing
  doi: 10.1007/978-3-540-24646-6_1
– year: 1991
  ident: 10.1016/j.medengphy.2014.02.012_bib0075
– start-page: 1
  year: 2007
  ident: 10.1016/j.medengphy.2014.02.012_bib0140
  article-title: On-body activity recognition in a dynamic sensor network
– volume: 12
  start-page: 74
  year: 2011
  ident: 10.1016/j.medengphy.2014.02.012_bib0050
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SIGKDD Explorations
  doi: 10.1145/1964897.1964918
– volume: 33
  start-page: 1127
  year: 2011
  ident: 10.1016/j.medengphy.2014.02.012_bib0035
  article-title: Activity classification using a single chest mounted tri-axial accelerometer
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2011.05.002
– start-page: 99
  year: 2005
  ident: 10.1016/j.medengphy.2014.02.012_bib0150
  article-title: Gesture spotting using wrist worn microphone and 3-axis accelerometer
– start-page: 113
  year: 2006
  ident: 10.1016/j.medengphy.2014.02.012_bib0090
  article-title: Activity recognition and monitoring using multiple sensors on different body positions
– volume: 56
  start-page: 871
  year: 2009
  ident: 10.1016/j.medengphy.2014.02.012_bib0085
  article-title: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2008.2006190
– volume: 151
  start-page: 141
  year: 2012
  ident: 10.1016/j.medengphy.2014.02.012_bib0100
  article-title: Using J48 for activity recognition on mobile phones
  publication-title: Advances in Intelligent and Soft Computing
  doi: 10.1007/978-3-642-28765-7_18
– volume: 14
  start-page: 1166
  year: 2010
  ident: 10.1016/j.medengphy.2014.02.012_bib0095
  article-title: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2010.2051955
– volume: 30
  start-page: 1364
  year: 2008
  ident: 10.1016/j.medengphy.2014.02.012_bib0015
  article-title: Direct measurement of human movement by accelerometry
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2008.09.005
– volume: 10
  start-page: 119
  year: 2006
  ident: 10.1016/j.medengphy.2014.02.012_bib0025
  article-title: Activity classification using realistic data from wearable sensors
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2005.856863
– start-page: 103
  year: 2008
  ident: 10.1016/j.medengphy.2014.02.012_bib0110
  article-title: Advanced patient or elder fall detection based on movement and sound data
– start-page: 101
  year: 2010
  ident: 10.1016/j.medengphy.2014.02.012_bib0115
  article-title: Implementation of a wearerable real-time system for physical activity recognition based on naive Bayes classifier
– volume: 42
  start-page: 137
  year: 2008
  ident: 10.1016/j.medengphy.2014.02.012_bib0155
  article-title: MEDIC: medical embedded device for individualized care
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2007.11.006
– volume: 2875
  start-page: 220
  year: 2003
  ident: 10.1016/j.medengphy.2014.02.012_bib0105
  article-title: Multi-sensor activity context detection for wearable computing
  publication-title: Ambient Intelligence
  doi: 10.1007/978-3-540-39863-9_17
– volume: 29
  start-page: 803
  year: 2009
  ident: 10.1016/j.medengphy.2014.02.012_bib0005
  article-title: Pattern of participation in leisure activities among older people in relation to their health conditions and contextual factors: a survey in a Swedish urban area
  publication-title: Ageing and Society
  doi: 10.1017/S0144686X08008337
– volume: 10
  start-page: 1527
  year: 2010
  ident: 10.1016/j.medengphy.2014.02.012_bib0065
  article-title: SHIMMERTM – a wireless sensor platform for noninvasive biomedical research
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2010.2045498
– start-page: 1
  year: 2008
  ident: 10.1016/j.medengphy.2014.02.012_bib0125
  article-title: Accurate activity recognition in a home setting
– volume: 29
  start-page: 2213
  year: 2008
  ident: 10.1016/j.medengphy.2014.02.012_bib0145
  article-title: Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2008.08.002
– volume: 43
  start-page: 3051
  year: 2010
  ident: 10.1016/j.medengphy.2014.02.012_bib0165
  article-title: Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2010.07.005
– volume: 41
  start-page: 296
  year: 2003
  ident: 10.1016/j.medengphy.2014.02.012_bib0080
  article-title: Detection of daily physical activities using a triaxial accelerometer
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/BF02348434
– volume: 6
  start-page: 1947
  year: 2009
  ident: 10.1016/j.medengphy.2014.02.012_bib0130
  article-title: Connectivity for healthcare and well-being management: examples from six European projects
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph6071947
SSID ssj0004463
Score 2.500126
Snippet Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult...
Abstract Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 779
SubjectTerms Accelerometer
Accelerometry - instrumentation
Accelerometry - methods
Activities of Daily Living
Activity recognition
Aged
Aged, 80 and over
Algorithms
Equipment Design
Humans
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - methods
Movement - physiology
Multi-sensor fusion
Pattern Recognition, Automated - methods
Posture - physiology
Radiology
Signal Processing, Computer-Assisted
Thigh
Thorax
Time
Walking - physiology
Title Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453314000344
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453314000344
https://dx.doi.org/10.1016/j.medengphy.2014.02.012
https://www.ncbi.nlm.nih.gov/pubmed/24636448
https://www.proquest.com/docview/1526729629
https://www.proquest.com/docview/1534852841
https://www.proquest.com/docview/1650850097
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VReJxQGV5LS1VkLiG9XtjbtWq1QKiF6jUm4ljGxVV2arZvfLbmcmrVNAWiWOsmTw8E89M8s1ngLeVDd5IWeaJe50r5UNuMQzlvAqh4ErbGFu0xbFZnqiPp_p0CxZDLwzBKvu1v1vT29W6H5n1szm7ODubfeFSYz4iJZYILXEddbCrOXn5u59XMA8sd1qQPQrnJH0N44UBJ9bf8XkI46Va8k4ubopQN2WgbSQ62oHHfQqZHXR3-QS2Yj2BB4th57YJPPqNZHAC9z_3v8-fwrfDkds7W6WsrCoMOsRXgJObUTwLWQswzBssbleXGUE2Nk1GnxPO4zBInRC04UQ2Yo_wbB0hdPMMTo4Ovy6Web_FQl5hqbLOtbXJzpOgtMSXjPmIxTX384ppLZIoAtNVwionKuPLlKRA2wpWmihSKoog5HPYrld1fAlZNNEaXwXPglcyBCsZSwUOSp5KxeMUzDCtrur5x2kbjHM3AM1-uNEejuzhmHBojymwUfGio-C4W6UY7OaGDlNcEx2GibtV539TjU3_bjeOuwYl3R_-N4X3o-Y1F_63y74Z3Muht9Bfm7KOqw1eTguDFZAR9jYZqQqNmQa_RYZycU19O1N40fnvOJ2CaOOwUH_1P4-wCw_pqMPR7cH2-nITX2PGtvb77Su5D_cOPnxaHv8CGIRDNA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrUThgGB5Lc8gcY3Wz2zCrVq12tJ2L7RSbyaO7aqoylbN7v9nJnECFbRF4up48vBMPDPJN98AfK4KZzMpyzRwq1OlrEsLdEMpr5zLudKF9y3aYpktTtXXM322BfO-FoZglXHv7_b0dreOI9O4mtOri4vpNy41xiNSYorQEtc9gG1ip9Ij2N49OFwsf5VHqrahGs1PSeAGzAt9jq_P8ZEI5qVa_k4ubnNStwWhrTPafwpPYhSZ7HY3-gy2fD2GnXnfvG0Mj3_jGRzDw-P4B_05fN8b6L2TVUjKqkK_Q5QFuL4JuTSXtBjDtMH8dnWdEGpj0yT0ReHS94NUDEE9J5IBfoRn6zihmxdwur93Ml-ksctCWmG2sk51UYRiFgRFJrZkzHrMr7mdVUxrEUTumK4CJjpeZbYMQQpUr2Bl5kUIee6EfAmjelX715D4zBeZrZxlzirpXCEZCzkOSh5Kxf0Esn5ZTRUpyKkTxqXpsWY_zKAPQ_owTBjUxwTYIHjVsXDcL5L3ejN9kSluiwY9xf2is7-J-ia-3o3hpsGZ5g8TnMCXQfKGFf_bZT_15mXQWujHTVn71QYvp0WGSVAmirvmSJVrDDb4HXMoHNdUujOBV539DsspiDkOc_U3__MIH2FncXJ8ZI4Olodv4REd6WB172C0vt749xjAre2H-IL-BACKReU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+accelerometer+based+multi-sensor+versus+single-sensor+activity+recognition+systems&rft.jtitle=Medical+engineering+%26+physics&rft.au=Gao%2C+Lei&rft.au=Bourke%2C+A.K.&rft.au=Nelson%2C+John&rft.date=2014-06-01&rft.issn=1350-4533&rft.volume=36&rft.issue=6&rft.spage=779&rft.epage=785&rft_id=info:doi/10.1016%2Fj.medengphy.2014.02.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_medengphy_2014_02_012
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453314X00068%2Fcov150h.gif