Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems
Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these s...
Saved in:
Published in | Medical engineering & physics Vol. 36; no. 6; pp. 779 - 785 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with “light-weight” signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. |
---|---|
AbstractList | Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system.Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Abstract Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with “light-weight” signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. |
Author | Bourke, A.K. Gao, Lei Nelson, John |
Author_xml | – sequence: 1 givenname: Lei surname: Gao fullname: Gao, Lei email: lei.gao@ul.ie – sequence: 2 givenname: A.K. surname: Bourke fullname: Bourke, A.K. – sequence: 3 givenname: John surname: Nelson fullname: Nelson, John |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24636448$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvEzEUhUeoiD7gL8As2Ux6_ZrHAlBVFYpUiQWwNh7PdXCYsYPtiZR_X6dpWFRCzepa1jnH1_e758WJ8w6L4h2BBQFSX64WEw7oluvf2wUFwhdAF0Doi-KMtA2rODA4yWcmoOKCsdPiPMYVAHBes1fFKc2l5rw9K37dbNQ4q2S9K70pldY4YvATJgxlryIO5TSPyVYRXfSh3GCIcyyjdcsRD5dKJ7uxaVsG1H7p7ENa3MaEU3xdvDRqjPjmsV4UPz_f_Li-re6-ffl6fXVXacHbVImuM11jKGdd0yuAHrFnpG80CEENbQcQ2kBXI697ZQyjuhsoqBqpMW07UHZRvN_nroP_O2NMcrIxf2ZUDv0cJakFtAKga56XCsZbQVtOjpDSuqFdTbssffsonfsMR66DnVTYysOss-DDXqCDjzGgkdqmh8mnoOwoCcgdW7mS_9jKHVsJVGa22d888R-eeN55tXdiBrCxGGTUFp3GwWZiSQ7eHpHx8UmGHq2zWo1_cItx5efgMl9JZMwG-X23e7vVIzyvHeM8B3z6f8BRLdwD_TnvRA |
CitedBy_id | crossref_primary_10_1016_j_cobme_2019_01_001 crossref_primary_10_1080_00140139_2019_1578419 crossref_primary_10_1109_MSP_2015_2503881 crossref_primary_10_1249_MSS_0000000000000915 crossref_primary_10_1109_ACCESS_2024_3413822 crossref_primary_10_1016_j_cogsys_2018_11_009 crossref_primary_10_3390_s22082829 crossref_primary_10_3390_s22134755 crossref_primary_10_1016_j_measurement_2022_110945 crossref_primary_10_1109_JSEN_2019_2915524 crossref_primary_10_3390_s151229858 crossref_primary_10_1155_2022_4199985 crossref_primary_10_1186_s12938_019_0677_7 crossref_primary_10_2196_23681 crossref_primary_10_3233_IDA_163329 crossref_primary_10_1098_rsos_171442 crossref_primary_10_7717_peerj_5764 crossref_primary_10_1109_ACCESS_2020_2998842 crossref_primary_10_1249_MSS_0000000000002306 crossref_primary_10_1186_s12911_021_01626_3 crossref_primary_10_1108_SR_02_2020_0027 crossref_primary_10_3390_s18124132 crossref_primary_10_1108_CW_12_2017_0072 crossref_primary_10_1007_s00521_018_3437_x crossref_primary_10_1093_comjnl_bxad035 crossref_primary_10_1007_s00521_020_04742_9 crossref_primary_10_1016_j_cmpb_2016_02_012 crossref_primary_10_1109_JSEN_2017_2707921 crossref_primary_10_1109_TSUSC_2021_3101494 crossref_primary_10_1007_s11257_020_09268_2 crossref_primary_10_3390_technologies12090166 crossref_primary_10_3390_app11167630 crossref_primary_10_3390_s16122105 crossref_primary_10_1088_1361_6501_aa60a9 crossref_primary_10_3390_s23125472 crossref_primary_10_1186_s13102_022_00492_4 crossref_primary_10_1109_JSEN_2022_3194677 crossref_primary_10_3390_s22072489 crossref_primary_10_1080_1091367X_2020_1815749 crossref_primary_10_1109_ACCESS_2018_2871732 crossref_primary_10_3390_s19194286 crossref_primary_10_1007_s11277_018_5715_4 crossref_primary_10_1016_j_enbuild_2023_113216 crossref_primary_10_1038_s41467_020_15086_2 crossref_primary_10_1109_JSEN_2016_2628346 crossref_primary_10_1109_JSEN_2021_3095176 crossref_primary_10_1016_j_knosys_2021_106970 crossref_primary_10_1155_2018_9762098 crossref_primary_10_3390_s16020202 crossref_primary_10_1088_1742_6596_1314_1_012150 crossref_primary_10_1016_j_jbi_2018_11_003 crossref_primary_10_3390_s20195625 crossref_primary_10_1007_s40846_018_0404_z crossref_primary_10_1109_JSEN_2016_2545708 crossref_primary_10_1016_j_inffus_2018_06_008 crossref_primary_10_57062_ijpem_st_2023_0073 crossref_primary_10_1007_s12243_023_00964_9 crossref_primary_10_1109_JSEN_2016_2559804 crossref_primary_10_1152_japplphysiol_01189_2013 crossref_primary_10_1007_s11042_018_6662_5 crossref_primary_10_1016_j_measurement_2020_107480 crossref_primary_10_1016_j_pmcj_2016_09_009 crossref_primary_10_1016_j_inffus_2014_08_003 crossref_primary_10_3390_s19040804 crossref_primary_10_1016_j_buildenv_2017_12_010 crossref_primary_10_1109_JSEN_2022_3161797 crossref_primary_10_1016_j_pmcj_2019_03_006 crossref_primary_10_5057_ijae_IJAE_D_17_00020 crossref_primary_10_1093_jcde_qwac030 crossref_primary_10_1016_j_gaitpost_2015_10_016 crossref_primary_10_1371_journal_pone_0188215 crossref_primary_10_1016_j_ergon_2018_02_002 crossref_primary_10_1007_s00521_020_05638_4 crossref_primary_10_1108_SR_05_2016_0085 crossref_primary_10_1016_j_procs_2020_09_301 crossref_primary_10_1186_s12984_022_00984_x crossref_primary_10_1016_j_eswa_2019_04_057 crossref_primary_10_1016_j_jbi_2016_07_005 crossref_primary_10_1007_s00500_016_2100_7 crossref_primary_10_1007_s00779_014_0824_x crossref_primary_10_1186_s12984_016_0114_0 crossref_primary_10_3390_info10060197 crossref_primary_10_1016_j_asoc_2015_01_025 crossref_primary_10_3390_s21237853 crossref_primary_10_1249_MSS_0000000000002107 crossref_primary_10_1109_JIOT_2018_2846359 crossref_primary_10_1109_JSEN_2020_3044315 crossref_primary_10_1109_TBME_2015_2471094 crossref_primary_10_1016_j_procs_2021_08_052 crossref_primary_10_1007_s40860_022_00181_6 crossref_primary_10_1155_2015_140820 crossref_primary_10_1111_obr_12506 crossref_primary_10_3390_mi9090450 crossref_primary_10_1109_TNSRE_2022_3197993 crossref_primary_10_1109_COMST_2023_3246993 crossref_primary_10_1007_s12652_017_0513_5 crossref_primary_10_1016_j_cmpb_2019_105309 crossref_primary_10_3233_JIFS_189133 crossref_primary_10_1109_ACCESS_2023_3320707 crossref_primary_10_1155_2022_9933018 crossref_primary_10_1007_s12652_020_02035_6 crossref_primary_10_1038_s41597_023_02567_4 crossref_primary_10_3390_s21030799 crossref_primary_10_1109_JSEN_2023_3267243 crossref_primary_10_1007_s12652_019_01214_4 crossref_primary_10_1016_j_engappai_2024_109217 crossref_primary_10_1109_JBHI_2020_2999902 crossref_primary_10_1109_TMC_2016_2599158 crossref_primary_10_3390_s19112426 crossref_primary_10_1177_1550147716683687 crossref_primary_10_1109_JSEN_2017_2722105 crossref_primary_10_1016_j_eswa_2014_04_037 crossref_primary_10_3390_s18010268 crossref_primary_10_1109_JBHI_2018_2820179 crossref_primary_10_1109_RBME_2015_2427254 crossref_primary_10_1016_j_procs_2023_10_222 crossref_primary_10_4015_S101623721750003X crossref_primary_10_1007_s43926_021_00004_9 crossref_primary_10_1108_SR_05_2021_0157 crossref_primary_10_3390_s21082875 crossref_primary_10_3390_s22165957 crossref_primary_10_1007_s13042_020_01182_8 crossref_primary_10_3390_app11199096 crossref_primary_10_1109_ACCESS_2019_2911450 crossref_primary_10_3390_s150511312 crossref_primary_10_3390_s22176605 crossref_primary_10_3390_jsan8030040 crossref_primary_10_1007_s11042_021_11410_0 crossref_primary_10_3389_fphys_2021_668350 crossref_primary_10_3390_computers9020031 crossref_primary_10_32604_cmc_2021_015660 crossref_primary_10_1186_s12911_021_01723_3 crossref_primary_10_1007_s12652_018_0880_6 crossref_primary_10_1109_TETC_2018_2870047 crossref_primary_10_32604_cmc_2020_012251 crossref_primary_10_1123_jpah_2019_0088 crossref_primary_10_3233_JIFS_181315 crossref_primary_10_1155_2022_5075122 crossref_primary_10_3390_s21217278 crossref_primary_10_1007_s11042_020_09150_8 |
Cites_doi | 10.1109/TITB.2011.2107916 10.1093/ageing/afq034 10.1109/TITB.2005.856864 10.1016/j.medengphy.2013.06.005 10.1109/TITB.2009.2028575 10.1109/TBME.2003.812189 10.1007/978-3-540-24646-6_1 10.1145/1964897.1964918 10.1016/j.medengphy.2011.05.002 10.1109/TBME.2008.2006190 10.1007/978-3-642-28765-7_18 10.1109/TITB.2010.2051955 10.1016/j.medengphy.2008.09.005 10.1109/TITB.2005.856863 10.1016/j.artmed.2007.11.006 10.1007/978-3-540-39863-9_17 10.1017/S0144686X08008337 10.1109/JSEN.2010.2045498 10.1016/j.patrec.2008.08.002 10.1016/j.jbiomech.2010.07.005 10.1007/BF02348434 10.3390/ijerph6071947 |
ContentType | Journal Article |
Copyright | 2014 IPEM IPEM Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 IPEM – notice: IPEM – notice: Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
DOI | 10.1016/j.medengphy.2014.02.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 785 |
ExternalDocumentID | 24636448 10_1016_j_medengphy_2014_02_012 S1350453314000344 1_s2_0_S1350453314000344 |
Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c548t-599f97f24397ba00beeb31b7c0552f28d05cf096e46baff32c9d20a6e2ff88d23 |
IEDL.DBID | .~1 |
ISSN | 1350-4533 1873-4030 |
IngestDate | Thu Jul 10 22:40:04 EDT 2025 Tue Aug 05 10:58:36 EDT 2025 Tue Aug 05 11:15:56 EDT 2025 Thu Apr 03 07:00:50 EDT 2025 Thu Apr 24 23:06:13 EDT 2025 Tue Jul 01 04:24:49 EDT 2025 Fri Feb 23 02:29:18 EST 2024 Sun Feb 23 10:19:58 EST 2025 Tue Aug 26 16:31:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Activity recognition Accelerometer Multi-sensor fusion Activities of daily living |
Language | English |
License | Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c548t-599f97f24397ba00beeb31b7c0552f28d05cf096e46baff32c9d20a6e2ff88d23 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 24636448 |
PQID | 1526729629 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1650850097 proquest_miscellaneous_1534852841 proquest_miscellaneous_1526729629 pubmed_primary_24636448 crossref_citationtrail_10_1016_j_medengphy_2014_02_012 crossref_primary_10_1016_j_medengphy_2014_02_012 elsevier_sciencedirect_doi_10_1016_j_medengphy_2014_02_012 elsevier_clinicalkeyesjournals_1_s2_0_S1350453314000344 elsevier_clinicalkey_doi_10_1016_j_medengphy_2014_02_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Parkka, Ermes (bib0025) 2006; 10 Bolstad (bib0135) 2007 Bourke, van de Ven, Gamble, O’Connor, Murphy, Bogan (bib0165) 2010; 43 Bao (bib0060) 2004; 3001 Kern, Schiele, Schmidt (bib0105) 2003; 2875 Kwapisz, Weiss (bib0050) 2011; 12 Yang, Wang, Chen (bib0145) 2008; 29 Lugade, Fortune, Morrow, Kaufman (bib0030) 2013; 36 Godfrey, Conway, Meagher, OLaighin (bib0015) 2008; 30 Curone, Bertolotti, Cristiani (bib0020) 2010; 14 Guiry, Van de Ven, Nelson (bib0055) 2012 Preece, Goulermas, Kenney, Howard (bib0085) 2009; 56 Wu, Bui, Batalin, Au, Binney, Kaiser (bib0155) 2008; 42 Atallah, Lo, Ali, King, Yang (bib0120) 2009; 13 Marks (bib0075) 1991 Boulos, Lou, Kamel Boulos, Anastasiou, Nugent, Alexandersson (bib0130) 2009; 6 Paillard-Borg, Wang, Winblad, Fratiglioni (bib0005) 2009; 29 Khan, Lee, Lee (bib0095) 2010; 14 Yang, Dinh, Chen (bib0115) 2010 Godfrey, Bourke, Olaighin, van de Ven, Nelson (bib0035) 2011; 33 Burns, Greene, McGrath, O'Shea, Kuris, Ayer (bib0065) 2010; 10 Najafi, Aminian, Paraschiv-Ionescu, Loew, Büla, Robert (bib0040) 2003; 50 Mathie, Coster, Lovell, Celler (bib0080) 2003; 41 Gil, Jesús, De Lopéz (bib0100) 2012; 151 Cruz-Jentoft, Baeyens, Bauer, Boirie, Cederholm, Landi (bib0010) 2010; 39 Lombriser, Bharatula, Roggen (bib0140) 2007 Kasteren, Van Noulas, Englebienne, Krose (bib0125) 2008 Gao, Bourke, Nelson (bib0070) 2011 Karantonis, Narayanan, Mathie, Lovell, Celler (bib0160) 2006; 10 Ward, Lukowicz, Tröster (bib0150) 2005 Maurer, Smailagic, Siewiorek (bib0090) 2006 Doukas (bib0110) 2008 Palmerini, Rocchi, Mellone, Valzania, Chiari (bib0045) 2011; 15 Kasteren (10.1016/j.medengphy.2014.02.012_bib0125) 2008 Yang (10.1016/j.medengphy.2014.02.012_bib0145) 2008; 29 Godfrey (10.1016/j.medengphy.2014.02.012_bib0015) 2008; 30 Atallah (10.1016/j.medengphy.2014.02.012_bib0120) 2009; 13 Preece (10.1016/j.medengphy.2014.02.012_bib0085) 2009; 56 Doukas (10.1016/j.medengphy.2014.02.012_bib0110) 2008 Yang (10.1016/j.medengphy.2014.02.012_bib0115) 2010 Bao (10.1016/j.medengphy.2014.02.012_bib0060) 2004; 3001 Maurer (10.1016/j.medengphy.2014.02.012_bib0090) 2006 Paillard-Borg (10.1016/j.medengphy.2014.02.012_bib0005) 2009; 29 Khan (10.1016/j.medengphy.2014.02.012_bib0095) 2010; 14 Kwapisz (10.1016/j.medengphy.2014.02.012_bib0050) 2011; 12 Marks (10.1016/j.medengphy.2014.02.012_bib0075) 1991 Palmerini (10.1016/j.medengphy.2014.02.012_bib0045) 2011; 15 Najafi (10.1016/j.medengphy.2014.02.012_bib0040) 2003; 50 Gao (10.1016/j.medengphy.2014.02.012_bib0070) 2011 Karantonis (10.1016/j.medengphy.2014.02.012_bib0160) 2006; 10 Cruz-Jentoft (10.1016/j.medengphy.2014.02.012_bib0010) 2010; 39 Lombriser (10.1016/j.medengphy.2014.02.012_bib0140) 2007 Bolstad (10.1016/j.medengphy.2014.02.012_bib0135) 2007 Lugade (10.1016/j.medengphy.2014.02.012_bib0030) 2013; 36 Gil (10.1016/j.medengphy.2014.02.012_bib0100) 2012; 151 Bourke (10.1016/j.medengphy.2014.02.012_bib0165) 2010; 43 Godfrey (10.1016/j.medengphy.2014.02.012_bib0035) 2011; 33 Curone (10.1016/j.medengphy.2014.02.012_bib0020) 2010; 14 Guiry (10.1016/j.medengphy.2014.02.012_bib0055) 2012 Ward (10.1016/j.medengphy.2014.02.012_bib0150) 2005 Wu (10.1016/j.medengphy.2014.02.012_bib0155) 2008; 42 Burns (10.1016/j.medengphy.2014.02.012_bib0065) 2010; 10 Mathie (10.1016/j.medengphy.2014.02.012_bib0080) 2003; 41 Kern (10.1016/j.medengphy.2014.02.012_bib0105) 2003; 2875 Boulos (10.1016/j.medengphy.2014.02.012_bib0130) 2009; 6 Parkka (10.1016/j.medengphy.2014.02.012_bib0025) 2006; 10 |
References_xml | – year: 1991 ident: bib0075 article-title: Introduction to Shannon sampling and interpolation theory – volume: 29 start-page: 2213 year: 2008 end-page: 2220 ident: bib0145 article-title: Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers publication-title: Pattern Recognition Letters – volume: 15 start-page: 481 year: 2011 end-page: 490 ident: bib0045 article-title: Feature selection for accelerometer-based posture analysis in Parkinson's disease publication-title: IEEE Transactions on Information Technology in Biomedicine – start-page: 7869 year: 2011 end-page: 7872 ident: bib0070 article-title: A system for activity recognition using multi-sensor fusion publication-title: Proceedings of 2011 annual international conference of the ieee engineering in medicine and biology society – start-page: 101 year: 2010 end-page: 105 ident: bib0115 article-title: Implementation of a wearerable real-time system for physical activity recognition based on naive Bayes classifier publication-title: 2010 international conference on bioinformatics and biomedical technology (ICBBT) – volume: 42 start-page: 137 year: 2008 end-page: 152 ident: bib0155 article-title: MEDIC: medical embedded device for individualized care publication-title: Artificial Intelligence in Medicine – start-page: 99 year: 2005 ident: bib0150 article-title: Gesture spotting using wrist worn microphone and 3-axis accelerometer publication-title: Proceedings of the 2005 joint conference on Smart objects and ambient intelligence innovative context-aware services: usages and technologies – volume: 36 start-page: 169 year: 2013 end-page: 176 ident: bib0030 article-title: Validity of using tri-axial accelerometers to measure human movement. Part I: posture and movement detection publication-title: Medical Engineering and Physics – volume: 10 start-page: 156 year: 2006 end-page: 167 ident: bib0160 article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 33 start-page: 1127 year: 2011 end-page: 1135 ident: bib0035 article-title: Activity classification using a single chest mounted tri-axial accelerometer publication-title: Medical Engineering and Physics – volume: 151 start-page: 141 year: 2012 end-page: 150 ident: bib0100 article-title: Using J48 for activity recognition on mobile phones publication-title: Advances in Intelligent and Soft Computing – volume: 13 start-page: 1031 year: 2009 end-page: 1039 ident: bib0120 article-title: Real-time activity classification using ambient and wearable sensors publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 43 start-page: 3051 year: 2010 end-page: 3057 ident: bib0165 article-title: Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities publication-title: Journal of Biomechanics – volume: 10 start-page: 1527 year: 2010 end-page: 1534 ident: bib0065 article-title: SHIMMERTM – a wireless sensor platform for noninvasive biomedical research publication-title: IEEE Sensors Journal – volume: 41 start-page: 296 year: 2003 end-page: 301 ident: bib0080 article-title: Detection of daily physical activities using a triaxial accelerometer publication-title: Medical and Biological Engineering and Computing – volume: 50 start-page: 711 year: 2003 end-page: 723 ident: bib0040 article-title: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly publication-title: IEEE Transactions on Biomedical Engineering – start-page: 1 year: 2008 end-page: 9 ident: bib0125 article-title: Accurate activity recognition in a home setting publication-title: Proc. UbiComp 2008 – year: 2012 ident: bib0055 article-title: Orientation independent human mobility monitoring with an android smartphone publication-title: Proceedings of the 9th IASTED international conference on biomedical engineering – volume: 6 start-page: 1947 year: 2009 end-page: 1971 ident: bib0130 article-title: Connectivity for healthcare and well-being management: examples from six European projects publication-title: International Journal of Environmental Research and Public Health – year: 2007 ident: bib0135 article-title: Introduction to Bayesian statistics – start-page: 113 year: 2006 end-page: 116 ident: bib0090 article-title: Activity recognition and monitoring using multiple sensors on different body positions publication-title: International workshop on wearable and implementable body sensor networks (BSN) – volume: 2875 start-page: 220 year: 2003 end-page: 232 ident: bib0105 article-title: Multi-sensor activity context detection for wearable computing publication-title: Ambient Intelligence – volume: 12 start-page: 74 year: 2011 end-page: 82 ident: bib0050 article-title: Activity recognition using cell phone accelerometers publication-title: ACM SIGKDD Explorations – start-page: 1 year: 2007 end-page: 6 ident: bib0140 article-title: On-body activity recognition in a dynamic sensor network publication-title: Proceedings of the ICST 2nd international conference on body area networks – start-page: 103 year: 2008 end-page: 107 ident: bib0110 article-title: Advanced patient or elder fall detection based on movement and sound data publication-title: Proceedings of 2nd international conference on pervasive computing technologies for healthcare – volume: 39 start-page: 412 year: 2010 end-page: 423 ident: bib0010 article-title: Sarcopenia: European consensus on definition and diagnosis: report of the European working group on Sarcopenia in older people publication-title: Age and Ageing – volume: 14 start-page: 1098 year: 2010 end-page: 1105 ident: bib0020 article-title: A real-time and self-calibrating algorithm based on triaxial accelerometer signals for the detection of human posture and activity publication-title: Information – volume: 3001 start-page: 1 year: 2004 end-page: 17 ident: bib0060 article-title: Activity recognition from user-annotated acceleration data publication-title: Pervasive Computing – volume: 56 start-page: 871 year: 2009 end-page: 879 ident: bib0085 article-title: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data publication-title: IEEE Transactions on Biomedical Engineering – volume: 29 start-page: 803 year: 2009 ident: bib0005 article-title: Pattern of participation in leisure activities among older people in relation to their health conditions and contextual factors: a survey in a Swedish urban area publication-title: Ageing and Society – volume: 30 start-page: 1364 year: 2008 end-page: 1386 ident: bib0015 article-title: Direct measurement of human movement by accelerometry publication-title: Medical Engineering and Physics – volume: 10 start-page: 119 year: 2006 end-page: 128 ident: bib0025 article-title: Activity classification using realistic data from wearable sensors publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 14 start-page: 1166 year: 2010 end-page: 1172 ident: bib0095 article-title: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer publication-title: IEEE Transactions on Information Technology in Biomedicine – start-page: 7869 year: 2011 ident: 10.1016/j.medengphy.2014.02.012_bib0070 article-title: A system for activity recognition using multi-sensor fusion – volume: 14 start-page: 1098 year: 2010 ident: 10.1016/j.medengphy.2014.02.012_bib0020 article-title: A real-time and self-calibrating algorithm based on triaxial accelerometer signals for the detection of human posture and activity publication-title: Information – volume: 15 start-page: 481 year: 2011 ident: 10.1016/j.medengphy.2014.02.012_bib0045 article-title: Feature selection for accelerometer-based posture analysis in Parkinson's disease publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2011.2107916 – volume: 39 start-page: 412 year: 2010 ident: 10.1016/j.medengphy.2014.02.012_bib0010 article-title: Sarcopenia: European consensus on definition and diagnosis: report of the European working group on Sarcopenia in older people publication-title: Age and Ageing doi: 10.1093/ageing/afq034 – year: 2012 ident: 10.1016/j.medengphy.2014.02.012_bib0055 article-title: Orientation independent human mobility monitoring with an android smartphone – volume: 10 start-page: 156 year: 2006 ident: 10.1016/j.medengphy.2014.02.012_bib0160 article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2005.856864 – volume: 36 start-page: 169 issue: 2 year: 2013 ident: 10.1016/j.medengphy.2014.02.012_bib0030 article-title: Validity of using tri-axial accelerometers to measure human movement. Part I: posture and movement detection publication-title: Medical Engineering and Physics doi: 10.1016/j.medengphy.2013.06.005 – volume: 13 start-page: 1031 year: 2009 ident: 10.1016/j.medengphy.2014.02.012_bib0120 article-title: Real-time activity classification using ambient and wearable sensors publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2009.2028575 – year: 2007 ident: 10.1016/j.medengphy.2014.02.012_bib0135 – volume: 50 start-page: 711 year: 2003 ident: 10.1016/j.medengphy.2014.02.012_bib0040 article-title: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2003.812189 – volume: 3001 start-page: 1 year: 2004 ident: 10.1016/j.medengphy.2014.02.012_bib0060 article-title: Activity recognition from user-annotated acceleration data publication-title: Pervasive Computing doi: 10.1007/978-3-540-24646-6_1 – year: 1991 ident: 10.1016/j.medengphy.2014.02.012_bib0075 – start-page: 1 year: 2007 ident: 10.1016/j.medengphy.2014.02.012_bib0140 article-title: On-body activity recognition in a dynamic sensor network – volume: 12 start-page: 74 year: 2011 ident: 10.1016/j.medengphy.2014.02.012_bib0050 article-title: Activity recognition using cell phone accelerometers publication-title: ACM SIGKDD Explorations doi: 10.1145/1964897.1964918 – volume: 33 start-page: 1127 year: 2011 ident: 10.1016/j.medengphy.2014.02.012_bib0035 article-title: Activity classification using a single chest mounted tri-axial accelerometer publication-title: Medical Engineering and Physics doi: 10.1016/j.medengphy.2011.05.002 – start-page: 99 year: 2005 ident: 10.1016/j.medengphy.2014.02.012_bib0150 article-title: Gesture spotting using wrist worn microphone and 3-axis accelerometer – start-page: 113 year: 2006 ident: 10.1016/j.medengphy.2014.02.012_bib0090 article-title: Activity recognition and monitoring using multiple sensors on different body positions – volume: 56 start-page: 871 year: 2009 ident: 10.1016/j.medengphy.2014.02.012_bib0085 article-title: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2008.2006190 – volume: 151 start-page: 141 year: 2012 ident: 10.1016/j.medengphy.2014.02.012_bib0100 article-title: Using J48 for activity recognition on mobile phones publication-title: Advances in Intelligent and Soft Computing doi: 10.1007/978-3-642-28765-7_18 – volume: 14 start-page: 1166 year: 2010 ident: 10.1016/j.medengphy.2014.02.012_bib0095 article-title: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2010.2051955 – volume: 30 start-page: 1364 year: 2008 ident: 10.1016/j.medengphy.2014.02.012_bib0015 article-title: Direct measurement of human movement by accelerometry publication-title: Medical Engineering and Physics doi: 10.1016/j.medengphy.2008.09.005 – volume: 10 start-page: 119 year: 2006 ident: 10.1016/j.medengphy.2014.02.012_bib0025 article-title: Activity classification using realistic data from wearable sensors publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2005.856863 – start-page: 103 year: 2008 ident: 10.1016/j.medengphy.2014.02.012_bib0110 article-title: Advanced patient or elder fall detection based on movement and sound data – start-page: 101 year: 2010 ident: 10.1016/j.medengphy.2014.02.012_bib0115 article-title: Implementation of a wearerable real-time system for physical activity recognition based on naive Bayes classifier – volume: 42 start-page: 137 year: 2008 ident: 10.1016/j.medengphy.2014.02.012_bib0155 article-title: MEDIC: medical embedded device for individualized care publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2007.11.006 – volume: 2875 start-page: 220 year: 2003 ident: 10.1016/j.medengphy.2014.02.012_bib0105 article-title: Multi-sensor activity context detection for wearable computing publication-title: Ambient Intelligence doi: 10.1007/978-3-540-39863-9_17 – volume: 29 start-page: 803 year: 2009 ident: 10.1016/j.medengphy.2014.02.012_bib0005 article-title: Pattern of participation in leisure activities among older people in relation to their health conditions and contextual factors: a survey in a Swedish urban area publication-title: Ageing and Society doi: 10.1017/S0144686X08008337 – volume: 10 start-page: 1527 year: 2010 ident: 10.1016/j.medengphy.2014.02.012_bib0065 article-title: SHIMMERTM – a wireless sensor platform for noninvasive biomedical research publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2010.2045498 – start-page: 1 year: 2008 ident: 10.1016/j.medengphy.2014.02.012_bib0125 article-title: Accurate activity recognition in a home setting – volume: 29 start-page: 2213 year: 2008 ident: 10.1016/j.medengphy.2014.02.012_bib0145 article-title: Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2008.08.002 – volume: 43 start-page: 3051 year: 2010 ident: 10.1016/j.medengphy.2014.02.012_bib0165 article-title: Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2010.07.005 – volume: 41 start-page: 296 year: 2003 ident: 10.1016/j.medengphy.2014.02.012_bib0080 article-title: Detection of daily physical activities using a triaxial accelerometer publication-title: Medical and Biological Engineering and Computing doi: 10.1007/BF02348434 – volume: 6 start-page: 1947 year: 2009 ident: 10.1016/j.medengphy.2014.02.012_bib0130 article-title: Connectivity for healthcare and well-being management: examples from six European projects publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph6071947 |
SSID | ssj0004463 |
Score | 2.500126 |
Snippet | Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult... Abstract Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 779 |
SubjectTerms | Accelerometer Accelerometry - instrumentation Accelerometry - methods Activities of Daily Living Activity recognition Aged Aged, 80 and over Algorithms Equipment Design Humans Monitoring, Ambulatory - instrumentation Monitoring, Ambulatory - methods Movement - physiology Multi-sensor fusion Pattern Recognition, Automated - methods Posture - physiology Radiology Signal Processing, Computer-Assisted Thigh Thorax Time Walking - physiology |
Title | Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453314000344 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453314000344 https://dx.doi.org/10.1016/j.medengphy.2014.02.012 https://www.ncbi.nlm.nih.gov/pubmed/24636448 https://www.proquest.com/docview/1526729629 https://www.proquest.com/docview/1534852841 https://www.proquest.com/docview/1650850097 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VReJxQGV5LS1VkLiG9XtjbtWq1QKiF6jUm4ljGxVV2arZvfLbmcmrVNAWiWOsmTw8E89M8s1ngLeVDd5IWeaJe50r5UNuMQzlvAqh4ErbGFu0xbFZnqiPp_p0CxZDLwzBKvu1v1vT29W6H5n1szm7ODubfeFSYz4iJZYILXEddbCrOXn5u59XMA8sd1qQPQrnJH0N44UBJ9bf8XkI46Va8k4ubopQN2WgbSQ62oHHfQqZHXR3-QS2Yj2BB4th57YJPPqNZHAC9z_3v8-fwrfDkds7W6WsrCoMOsRXgJObUTwLWQswzBssbleXGUE2Nk1GnxPO4zBInRC04UQ2Yo_wbB0hdPMMTo4Ovy6Web_FQl5hqbLOtbXJzpOgtMSXjPmIxTX384ppLZIoAtNVwionKuPLlKRA2wpWmihSKoog5HPYrld1fAlZNNEaXwXPglcyBCsZSwUOSp5KxeMUzDCtrur5x2kbjHM3AM1-uNEejuzhmHBojymwUfGio-C4W6UY7OaGDlNcEx2GibtV539TjU3_bjeOuwYl3R_-N4X3o-Y1F_63y74Z3Muht9Bfm7KOqw1eTguDFZAR9jYZqQqNmQa_RYZycU19O1N40fnvOJ2CaOOwUH_1P4-wCw_pqMPR7cH2-nITX2PGtvb77Su5D_cOPnxaHv8CGIRDNA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrUThgGB5Lc8gcY3Wz2zCrVq12tJ2L7RSbyaO7aqoylbN7v9nJnECFbRF4up48vBMPDPJN98AfK4KZzMpyzRwq1OlrEsLdEMpr5zLudKF9y3aYpktTtXXM322BfO-FoZglXHv7_b0dreOI9O4mtOri4vpNy41xiNSYorQEtc9gG1ip9Ij2N49OFwsf5VHqrahGs1PSeAGzAt9jq_P8ZEI5qVa_k4ubnNStwWhrTPafwpPYhSZ7HY3-gy2fD2GnXnfvG0Mj3_jGRzDw-P4B_05fN8b6L2TVUjKqkK_Q5QFuL4JuTSXtBjDtMH8dnWdEGpj0yT0ReHS94NUDEE9J5IBfoRn6zihmxdwur93Ml-ksctCWmG2sk51UYRiFgRFJrZkzHrMr7mdVUxrEUTumK4CJjpeZbYMQQpUr2Bl5kUIee6EfAmjelX715D4zBeZrZxlzirpXCEZCzkOSh5Kxf0Esn5ZTRUpyKkTxqXpsWY_zKAPQ_owTBjUxwTYIHjVsXDcL5L3ejN9kSluiwY9xf2is7-J-ia-3o3hpsGZ5g8TnMCXQfKGFf_bZT_15mXQWujHTVn71QYvp0WGSVAmirvmSJVrDDb4HXMoHNdUujOBV539DsspiDkOc_U3__MIH2FncXJ8ZI4Olodv4REd6WB172C0vt749xjAre2H-IL-BACKReU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+accelerometer+based+multi-sensor+versus+single-sensor+activity+recognition+systems&rft.jtitle=Medical+engineering+%26+physics&rft.au=Gao%2C+Lei&rft.au=Bourke%2C+A.K.&rft.au=Nelson%2C+John&rft.date=2014-06-01&rft.issn=1350-4533&rft.volume=36&rft.issue=6&rft.spage=779&rft.epage=785&rft_id=info:doi/10.1016%2Fj.medengphy.2014.02.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_medengphy_2014_02_012 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453314X00068%2Fcov150h.gif |