Familial Defective Apolipoprotein B-100: Low Density Lipoproteins with Abnormal Receptor Binding
Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 84; no. 19; pp. 6919 - 6923 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
National Academy of Sciences of the United States of America
01.10.1987
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity (≈ 9.3 μ g of G.R. LDL per ml were required to displace 50% of 125I-labeled normal LDL, vs. ≈ 3.0 μ g of normal LDL per ml). Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, wherease a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated with an abnormal lipid composition or structure of the LDL: the chemical and physical properties of the particles were normal, and partial delipidation of the LDL did not alter receptor binding activity. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients. |
---|---|
AbstractList | Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity (approximately equal to 9.3 micrograms of G.R. LDL per ml were required to displace 50% of 125I-labeled normal LDL, vs. approximately equal to 3.0 micrograms of normal LDL per ml). Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, whereas a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated with an abnormal lipid composition or structure of the LDL: the chemical and physical properties of the particles were normal, and partial delipidation of the LDL did not alter receptor binding activity. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients. Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity (approximately equal to 9.3 micrograms of G.R. LDL per ml were required to displace 50% of 125I-labeled normal LDL, vs. approximately equal to 3.0 micrograms of normal LDL per ml). Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, whereas a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated with an abnormal lipid composition or structure of the LDL: the chemical and physical properties of the particles were normal, and partial delipidation of the LDL did not alter receptor binding activity. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients.Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity (approximately equal to 9.3 micrograms of G.R. LDL per ml were required to displace 50% of 125I-labeled normal LDL, vs. approximately equal to 3.0 micrograms of normal LDL per ml). Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, whereas a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated with an abnormal lipid composition or structure of the LDL: the chemical and physical properties of the particles were normal, and partial delipidation of the LDL did not alter receptor binding activity. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients. Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity (≈ 9.3 μ g of G.R. LDL per ml were required to displace 50% of 125I-labeled normal LDL, vs. ≈ 3.0 μ g of normal LDL per ml). Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, wherease a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated with an abnormal lipid composition or structure of the LDL: the chemical and physical properties of the particles were normal, and partial delipidation of the LDL did not alter receptor binding activity. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients. Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. Affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. The studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients. |
Author | Vega, Gloria L. Weisgraber, Karl H. Arnold, Kay S. Grundy, Scott M. Innerarity, Thomas L. Mahley, Robert W. Krauss, Ronald M. |
AuthorAffiliation | Gladstone Foundation Laboratories for Cardiovascular Disease, University of California, San Francisco 94140-0608 |
AuthorAffiliation_xml | – name: Gladstone Foundation Laboratories for Cardiovascular Disease, University of California, San Francisco 94140-0608 |
Author_xml | – sequence: 1 givenname: Thomas L. surname: Innerarity fullname: Innerarity, Thomas L. – sequence: 2 givenname: Karl H. surname: Weisgraber fullname: Weisgraber, Karl H. – sequence: 3 givenname: Kay S. surname: Arnold fullname: Arnold, Kay S. – sequence: 4 givenname: Robert W. surname: Mahley fullname: Mahley, Robert W. – sequence: 5 givenname: Ronald M. surname: Krauss fullname: Krauss, Ronald M. – sequence: 6 givenname: Gloria L. surname: Vega fullname: Vega, Gloria L. – sequence: 7 givenname: Scott M. surname: Grundy fullname: Grundy, Scott M. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7392621$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/3477815$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFrFDEUxoNU6rZ6FgRlDlJPs00myUwieNhWq8KCIHqOmUymTckk0yTb2v--GXbaVUE9vcP3-x7fe3wHYM95pwF4juASwQYfj07GJSNLxJc1R_wRWCDIUVkTDvfAAsKqKRmpyBNwEOMlhJBTBvfBPiZNwxBdgB9ncjDWSFu8171WyVzrYjV6a0Y_Bp-0ccVJiSB8W6z9TWZcNOm2WO_kWNyYdFGsWufDkNd81UqPyYfixLjOuPOn4HEvbdTP5nkIvp99-Hb6qVx_-fj5dLUuFSUslYRjTalueqQZ7KuOMNpgJlnXIow7SmFb5eyqRzVnrWoUl23bUdJ2CuMeQY0Pwbvt3nHTDrpT2qUgrRiDGWS4FV4a8bvizIU499ei4vlvdfYfzf7grzY6JjGYqLS10mm_iYIhSBpawf-CiDDeMEwz-PLXRA9R5t9n_fWsy6ik7YN0ysQHrMG8qiuUMbrFVPAxBt0LZZJMxk9nGCsQFFMTxNQEwYhAXExNyL7jP3z3m__ueDMHmoR7egeIfmNt0j9TJl_9k8zAiy1wGXMXdqfDmlf4Dj_y2JQ |
CODEN | PNASA6 |
CitedBy_id | crossref_primary_10_3389_fgene_2021_809256 crossref_primary_10_2217_clp_15_33 crossref_primary_10_4049_jimmunol_1003557 crossref_primary_10_1006_mcpr_2000_0318 crossref_primary_10_1111_j_1365_2362_1994_tb02057_x crossref_primary_10_1016_S0021_9150_98_00198_1 crossref_primary_10_1373_clinchem_2011_173963 crossref_primary_10_1016_j_jacl_2016_04_007 crossref_primary_10_1016_S0025_7125_16_30175_4 crossref_primary_10_1161_01_ATV_17_2_348 crossref_primary_10_1016_S0140_6736_12_60771_5 crossref_primary_10_1093_clinchem_43_6_916 crossref_primary_10_1248_yakushi_24_00177_5 crossref_primary_10_1007_BF00215683 crossref_primary_10_1016_S0022_2275_20_43168_2 crossref_primary_10_1161_01_ATV_20_4_1089 crossref_primary_10_1016_j_ecl_2015_09_009 crossref_primary_10_1016_j_atherosclerosis_2017_12_028 crossref_primary_10_1016_j_cca_2006_05_007 crossref_primary_10_1016_S0021_9150_02_00190_9 crossref_primary_10_1016_j_jacc_2005_02_056 crossref_primary_10_1016_j_atherosclerosis_2017_03_007 crossref_primary_10_5551_jat_62807 crossref_primary_10_1038_srep18184 crossref_primary_10_1161_CIRCGENETICS_111_962456 crossref_primary_10_1590_1678_4685_gmb_2017_0195 crossref_primary_10_1136_jmg_30_4_273 crossref_primary_10_1016_S0021_9258_18_35646_1 crossref_primary_10_1161_CIRCGENETICS_116_001572 crossref_primary_10_3389_fphys_2019_00280 crossref_primary_10_1177_000456329603300508 crossref_primary_10_1002_hlca_202200169 crossref_primary_10_1016_j_arteri_2013_07_005 crossref_primary_10_1517_14712598_2014_902929 crossref_primary_10_1038_nrcardio_2011_6 crossref_primary_10_1038_sj_ejhg_5200720 crossref_primary_10_2217_clp_13_74 crossref_primary_10_1161_01_RES_0000064174_69165_66 crossref_primary_10_1016_j_atherosclerosis_2006_08_055 crossref_primary_10_1016_S0021_9258_19_38766_6 crossref_primary_10_2217_clp_13_79 crossref_primary_10_1016_S0531_5131_03_00134_1 crossref_primary_10_1038_s44161_023_00375_y crossref_primary_10_1161_01_CIR_91_6_1847 crossref_primary_10_1194_jlr_R500010_JLR200 crossref_primary_10_1097_00029330_200805010_00002 crossref_primary_10_1016_S0022_2275_20_42269_2 crossref_primary_10_4158_EP_2_1_37 crossref_primary_10_1016_j_jacl_2017_09_001 crossref_primary_10_1016_S0021_9150_99_00470_0 crossref_primary_10_1046_j_1365_2796_1999_00518_x crossref_primary_10_1016_j_jacl_2014_01_001 crossref_primary_10_1016_S0022_2275_20_37419_8 crossref_primary_10_1074_jbc_270_18_10828 crossref_primary_10_1006_mcpr_2001_0378 crossref_primary_10_1002_ejlt_200800196 crossref_primary_10_1016_j_atherosclerosis_2018_11_040 crossref_primary_10_1016_j_jacl_2017_02_004 crossref_primary_10_1016_j_cca_2015_10_033 crossref_primary_10_1016_S0022_2275_20_39700_5 crossref_primary_10_1016_S0022_2275_20_41098_3 crossref_primary_10_1016_S0021_9150_97_00159_7 crossref_primary_10_1016_S0022_2275_20_37290_4 crossref_primary_10_1002_14651858_CD011748_pub2 crossref_primary_10_1016_S0188_4409_02_00452_6 crossref_primary_10_1002_14651858_CD011748_pub3 crossref_primary_10_1016_S0021_9150_00_00648_1 crossref_primary_10_1146_annurev_biochem_74_082803_133354 crossref_primary_10_1093_clinchem_45_7_1094 crossref_primary_10_1016_j_arteri_2011_04_001 crossref_primary_10_1016_j_atherosclerosis_2009_01_004 crossref_primary_10_1016_j_pepo_2013_09_001 crossref_primary_10_1016_S0021_9150_02_00249_6 crossref_primary_10_3390_nu10121842 crossref_primary_10_1007_s11883_021_00926_3 crossref_primary_10_1016_S0022_2275_20_38250_X crossref_primary_10_1016_S1957_2557_10_70162_0 crossref_primary_10_1016_j_cca_2006_10_005 crossref_primary_10_1016_S0022_2275_20_36962_5 crossref_primary_10_1016_j_jacl_2022_01_007 crossref_primary_10_1016_S0214_9168_04_78955_X crossref_primary_10_1194_jlr_M900273_JLR200 crossref_primary_10_1007_s11886_015_0629_1 crossref_primary_10_1002_humu_21258 crossref_primary_10_1177_0004563219864379 crossref_primary_10_1292_jvms_62_1297 crossref_primary_10_1161_circ_106_25_3373 crossref_primary_10_1002_humu_1380040308 crossref_primary_10_1016_S0022_2275_20_40088_4 crossref_primary_10_1016_S0009_8981_00_00367_3 crossref_primary_10_1016_S0031_3955_16_37021_3 crossref_primary_10_1016_S0021_9258_18_49900_0 crossref_primary_10_1016_j_ando_2007_02_002 crossref_primary_10_1016_j_atherosclerosis_2014_11_015 crossref_primary_10_1161_CIRCULATIONAHA_112_144055 crossref_primary_10_1089_met_2015_1503 crossref_primary_10_1586_14779072_6_3_369 crossref_primary_10_1373_clinchem_2008_118356 crossref_primary_10_1016_S0022_2275_20_42758_0 crossref_primary_10_1086_302370 crossref_primary_10_3389_fgene_2017_00189 crossref_primary_10_1016_j_jhep_2016_02_025 crossref_primary_10_1016_S0022_2275_20_41410_5 crossref_primary_10_1016_S0021_9150_99_00481_5 crossref_primary_10_1006_geno_1997_4898 crossref_primary_10_1111_j_1749_6632_2002_tb04312_x crossref_primary_10_1161_01_ATV_16_4_517 crossref_primary_10_1161_01_ATV_20_7_1796 crossref_primary_10_1093_hmg_ddt573 crossref_primary_10_1080_21678707_2016_1189323 crossref_primary_10_1016_j_jacl_2013_01_005 crossref_primary_10_1194_jlr_P023994 crossref_primary_10_1586_14779072_1_1_107 crossref_primary_10_1007_BF00207370 crossref_primary_10_1051_jbio_2016006 crossref_primary_10_1111_j_1469_1809_1994_tb00724_x crossref_primary_10_1089_gte_2008_0060 crossref_primary_10_1016_j_ccl_2015_02_006 crossref_primary_10_1177_1474651412466272 crossref_primary_10_1371_journal_pone_0024838 crossref_primary_10_1517_14796678_1_1_17 crossref_primary_10_1016_j_atherosclerosis_2003_12_021 crossref_primary_10_1016_j_ejim_2011_01_003 crossref_primary_10_1016_0021_9150_90_90161_B crossref_primary_10_1016_j_cca_2008_02_019 crossref_primary_10_1016_S0022_2275_20_42834_2 crossref_primary_10_1016_S0022_2275_20_38429_7 crossref_primary_10_1007_s11883_023_01154_7 crossref_primary_10_1007_s40265_015_0466_y crossref_primary_10_1007_s11033_006_9041_7 crossref_primary_10_1161_ATVBAHA_113_302426 crossref_primary_10_1210_clinem_dgac572 crossref_primary_10_3389_fgene_2022_849008 crossref_primary_10_1016_j_ymgme_2017_11_008 crossref_primary_10_1097_MD_0000000000014247 crossref_primary_10_1007_s11883_023_01094_2 crossref_primary_10_1016_S0022_2275_20_42751_8 crossref_primary_10_1111_j_1365_2362_1995_tb01989_x crossref_primary_10_1371_journal_pone_0225780 crossref_primary_10_1111_j_1399_0004_2007_00915_x crossref_primary_10_1016_S0021_9150_96_05990_4 crossref_primary_10_1016_S0021_9258_19_40266_4 crossref_primary_10_1007_BF00422946 crossref_primary_10_1258_acb_2010_010087 crossref_primary_10_33549_physiolres_933599 crossref_primary_10_1016_S0021_9258_17_42379_9 crossref_primary_10_1016_S0140_6736_88_90930_0 crossref_primary_10_1124_pr_116_012989 crossref_primary_10_1161_CIRCULATIONAHA_116_021765 crossref_primary_10_1016_j_atherosclerosis_2016_07_925 crossref_primary_10_1097_MOL_0000000000000868 crossref_primary_10_1186_1471_2350_11_115 crossref_primary_10_1074_jbc_M008890200 crossref_primary_10_1161_01_ATV_17_5_826 crossref_primary_10_1093_clinchem_46_2_224 crossref_primary_10_1111_j_1749_6632_1990_tb42274_x crossref_primary_10_1016_S0009_8981_01_00681_7 crossref_primary_10_1002_humu_20882 crossref_primary_10_1016_S0022_2275_20_35728_X crossref_primary_10_1038_s44161_022_00085_x crossref_primary_10_1111_j_1365_2796_1992_tb00606_x crossref_primary_10_1016_S0022_2275_20_42605_7 crossref_primary_10_1097_MOL_0000000000000177 crossref_primary_10_1016_j_ymgme_2010_11_006 crossref_primary_10_1517_13543776_2010_518615 crossref_primary_10_1111_j_1365_2362_1991_tb01386_x crossref_primary_10_1007_s11883_014_0439_8 crossref_primary_10_1016_S0022_2275_20_41997_2 crossref_primary_10_1016_0140_6736_92_90875_4 crossref_primary_10_1161_01_ATV_15_10_1719 crossref_primary_10_1016_j_jacl_2016_03_043 crossref_primary_10_1016_0140_6736_91_90920_K crossref_primary_10_1016_j_atherosclerosis_2021_06_001 crossref_primary_10_1016_j_atherosclerosis_2022_08_014 crossref_primary_10_1016_j_jacl_2016_09_009 crossref_primary_10_1111_j_1365_2362_2006_01735_x crossref_primary_10_3390_ijms23084281 crossref_primary_10_3390_ijms24087635 crossref_primary_10_1517_14728222_2011_547480 crossref_primary_10_1016_S0022_2275_20_37702_6 crossref_primary_10_1016_j_jacl_2019_01_004 crossref_primary_10_1007_s00018_018_2859_z crossref_primary_10_1016_S0021_9258_18_43815_X crossref_primary_10_1089_cmb_2017_0018 crossref_primary_10_1016_j_jacl_2016_09_003 crossref_primary_10_1016_j_antiviral_2014_01_007 crossref_primary_10_1016_j_atherosclerosis_2019_08_004 crossref_primary_10_1073_pnas_0508677102 crossref_primary_10_1097_MOL_0000000000000156 crossref_primary_10_1097_MOL_0000000000000398 crossref_primary_10_1007_BF01644767 crossref_primary_10_1186_1755_8794_7_17 crossref_primary_10_1373_clinchem_2004_038026 crossref_primary_10_1016_j_atherosclerosis_2016_03_017 crossref_primary_10_1161_01_ATV_20_10_e63 crossref_primary_10_1038_s42003_018_0015_9 crossref_primary_10_1007_s10528_013_9609_6 crossref_primary_10_1093_eurheartj_ehs010 crossref_primary_10_1097_MOL_0000000000000281 crossref_primary_10_1186_s12944_020_01266_y crossref_primary_10_1016_S0021_9258_19_37612_4 crossref_primary_10_1093_eurheartj_ehac660 crossref_primary_10_1080_14779072_2018_1497975 crossref_primary_10_3390_biomedicines9111728 crossref_primary_10_1016_j_rccar_2016_05_002 crossref_primary_10_1258_acb_2007_007077 crossref_primary_10_1007_s11886_018_1079_3 crossref_primary_10_1097_00029330_200710010_00010 crossref_primary_10_1186_1743_7075_8_23 crossref_primary_10_1016_S0002_9149_98_00849_2 crossref_primary_10_4103_jrms_JRMS_970_19 crossref_primary_10_1056_NEJM199805283382203 crossref_primary_10_1093_eurheartj_eht015 crossref_primary_10_1161_CIRCULATIONAHA_106_661751 crossref_primary_10_1016_S0889_8529_18_30323_2 crossref_primary_10_1586_erc_13_7 crossref_primary_10_1161_CIRCULATIONAHA_107_708388 crossref_primary_10_1161_ATVBAHA_111_224139 crossref_primary_10_1111_j_1399_0004_1990_tb03514_x crossref_primary_10_1016_j_patbio_2008_09_015 crossref_primary_10_1093_clinchem_44_8_1659 crossref_primary_10_1016_j_gene_2023_147738 crossref_primary_10_1016_S0140_6736_14_61399_4 crossref_primary_10_1016_S1388_1981_99_00083_9 crossref_primary_10_1016_j_cca_2010_02_008 crossref_primary_10_1016_S0021_9150_96_06007_8 crossref_primary_10_1016_S0022_2275_20_41171_X crossref_primary_10_1038_s41598_019_48402_y crossref_primary_10_1253_jjcsc_3_1_5 crossref_primary_10_1007_BF00145346 crossref_primary_10_1016_S0022_2275_20_41629_3 crossref_primary_10_1016_S0889_8529_05_70024_4 crossref_primary_10_1007_s40272_013_0060_2 crossref_primary_10_1016_j_jacadv_2024_101297 crossref_primary_10_1016_S0022_2275_20_40763_1 crossref_primary_10_1038_ncpcardio0836 crossref_primary_10_1016_S0021_9150_99_00469_4 crossref_primary_10_1016_S0021_9150_01_00439_7 crossref_primary_10_1016_S0022_2275_20_32452_4 crossref_primary_10_1016_S0022_2275_20_37178_9 crossref_primary_10_1016_j_atherosclerosis_2019_02_003 crossref_primary_10_1016_S0021_9150_99_00166_5 crossref_primary_10_1016_S0140_6736_89_91659_0 crossref_primary_10_1016_S0022_2275_20_39866_7 crossref_primary_10_1080_14740338_2024_2389989 crossref_primary_10_2147_VHRM_S266249 crossref_primary_10_2217_clp_10_9 crossref_primary_10_5551_jat_34405 crossref_primary_10_1097_CRD_0000000000000014 crossref_primary_10_1111_jmp_12642 crossref_primary_10_1002_humu_20105 crossref_primary_10_1111_j_1365_2796_1992_tb01253_x crossref_primary_10_1038_s41598_018_20281_9 crossref_primary_10_1016_j_jacl_2013_03_005 crossref_primary_10_1016_j_atherosclerosis_2012_04_006 crossref_primary_10_1161_ATVBAHA_119_313470 crossref_primary_10_1016_j_jlr_2021_100062 crossref_primary_10_1155_2012_658526 crossref_primary_10_1016_j_metabol_2006_12_011 crossref_primary_10_1016_j_atherosclerosis_2021_05_007 crossref_primary_10_1111_joim_13577 crossref_primary_10_17816_MAJ630505 crossref_primary_10_3389_fmmed_2023_1140997 crossref_primary_10_2174_1874192401711010066 crossref_primary_10_1016_S0022_2275_20_41985_6 crossref_primary_10_1016_j_atherosclerosis_2008_07_011 crossref_primary_10_1111_j_1399_0004_1991_tb03073_x crossref_primary_10_1016_j_jacl_2014_11_008 crossref_primary_10_1016_S0025_7125_16_30643_5 |
ContentType | Journal Article |
Copyright | 1988 INIST-CNRS |
Copyright_xml | – notice: 1988 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8FD FR3 M7Z P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.84.19.6919 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 6923 |
ExternalDocumentID | PMC299196 3477815 7392621 10_1073_pnas_84_19_6919 84_19_6919 30692 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Case Reports |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL18 – fundername: NHLBI NIH HHS grantid: HL36701 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R ZCA ZCG ~02 ~KM - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AFDAS AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM OHM PQEST RHF VQA X XFK XHC ZA5 692 6TJ 79B AAYJJ AAYXX ACKIV AFHIN AFQQW BKOMP CITATION NHB TAE YBH YKV YSK IQODW CGR CUY CVF ECM EIF NPM VXZ YIF YIN 8FD FR3 M7Z P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c548t-493e55e7f1e80f2d485738a8db133d550b2095cf1698bc7c9abbd54bdc33f10e3 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 14:08:38 EDT 2025 Thu Jul 10 17:42:56 EDT 2025 Fri Jul 11 00:30:59 EDT 2025 Wed Feb 19 02:33:23 EST 2025 Mon Jul 21 09:14:42 EDT 2025 Tue Jul 01 03:58:48 EDT 2025 Thu Apr 24 23:12:41 EDT 2025 Wed Nov 11 00:29:28 EST 2020 Thu May 30 08:52:15 EDT 2019 Thu May 29 08:43:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Human Family study Molecular interaction Clearance Apolipoproteins Metabolism Cholesterol Membrane receptor Hypercholesterolemia Atherosclerosis β-Lipoprotein Ratio Defectivity |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c548t-493e55e7f1e80f2d485738a8db133d550b2095cf1698bc7c9abbd54bdc33f10e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Case Study-2 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/299196 |
PMID | 3477815 |
PQID | 14897835 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | pascalfrancis_primary_7392621 proquest_miscellaneous_81047520 pnas_primary_84_19_6919 pubmed_primary_3477815 crossref_citationtrail_10_1073_pnas_84_19_6919 proquest_miscellaneous_14897835 jstor_primary_30692 pubmedcentral_primary_oai_pubmedcentral_nih_gov_299196 pnas_primary_84_19_6919_fulltext crossref_primary_10_1073_pnas_84_19_6919 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1987-10-01 |
PublicationDateYYYYMMDD | 1987-10-01 |
PublicationDate_xml | – month: 10 year: 1987 text: 1987-10-01 day: 01 |
PublicationDecade | 1980 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 1987 |
Publisher | National Academy of Sciences of the United States of America National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences of the United States of America – name: National Acad Sciences |
SSID | ssj0009580 |
Score | 1.7763623 |
Snippet | Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6919 |
SubjectTerms | Analytical, structural and metabolic biochemistry Apolipoprotein B-100 Apolipoproteins B - blood Apolipoproteins B - genetics Apolipoproteins B - metabolism Biological and medical sciences Brothers Cells, Cultured Cholesterols Family members Fibroblasts Fibroblasts - metabolism Fundamental and applied biological sciences. Psychology Heterozygotes Humans Hypercholesterolemia Hyperlipoproteinemia Type II - blood Hyperlipoproteinemia Type II - genetics Infant Kinetics Lipids Lipoproteins Lipoproteins, LDL - blood Lipoproteins, myelin Male man Proteins Receptors Receptors, LDL - metabolism Sons |
Title | Familial Defective Apolipoprotein B-100: Low Density Lipoproteins with Abnormal Receptor Binding |
URI | https://www.jstor.org/stable/30692 http://www.pnas.org/content/84/19/6919.abstract https://www.ncbi.nlm.nih.gov/pubmed/3477815 https://www.proquest.com/docview/14897835 https://www.proquest.com/docview/81047520 https://pubmed.ncbi.nlm.nih.gov/PMC299196 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5F5cIF0ULBQGEOHIoiGy9je8wthUICKFQhFeVkPPaMiFQ5FUmFxN_kD_Fm8xISsVyseLbYfp_fMn4LQk-LovQrwalb8Th1iUgCt-BEuEFQ-ZSJAFigyvY5Tcbn5O1FfDEY_Ox4LV2vmVf-2BpX8j9UhTagq4yS_QfKNotCA_wG-sIRKAzHv6Kxqloht7wrLjTjGhay6sLVUqVfWNTDE2CAvrT6L5ffYVStPDA6A2xwG6ul7ipz_Es3F-nBuagbqWZ017NG1q2sZ8HUbiWO2sAUwy1WQ3d4Nm3LHE-m0kduNpl_VhDxhs2u86fTycc3s9GJ9sl457XxEqPZ9MP7V6a13TwfjUGrVtjwtH-g3raQGxuNA9y6m_V7-_WZe-hp3Uox1x-xuvw8BBlLdBS25ee65JzFbdbhzklmTrk51aHOv0kRYHuy9HFdrDxKvCDz2ondfN0bcrTxbkwjmYQRTPIbIdguoZIW3UzQVMdFmUu3-abS6PnGP_ZUJe0tK113ixW8vUKXXZEpeWHSNvNo08u3ozbNb6Nbxt7BIw3efTTg9QHatzTAxybt-bM76ItFM27QjPtoxgrNLzBgGRss4y6WscQytljGFsvYYPkuOn99On85dk39D7cEO3rtkiziccxTEXDqi7AiNE4jWtCKBVFUgWnNQniapQiSjLIyLbOCsSomrCqjSAQ-jw7RXr2s-X2ERVEVsFIpJQ4RJGEgh8qwYhkhFJYhDvLso85Lkxxf1mi5zJWTRhrl8jHnlORBlkvaOOi4mXCl88LsHnqgaNeMAys9Cx101KNk02vQ46B7ah3b3F0P7-jJhXEYc9ATi4ccxIX8BljUfHm9Akufqs3e3SOoTN4Sh76DDjV-2usmaUoDmJr0gNX0y0z1_Z568VVlrAedFyT9gz_c8kN0s-UUj9De-ts1PwKVf80eq1foF8NPA_Q |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Familial+defective+apolipoprotein+B-100%3A+low+density+lipoproteins+with+abnormal+receptor+binding&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=INNERARITY%2C+T.+L&rft.au=WEISGRABER%2C+K.+H&rft.au=ARNOLD%2C+K.+S&rft.au=MAHLEY%2C+R.+W&rft.date=1987-10-01&rft.pub=National+Academy+of+Sciences+of+the+United+States+of+America&rft.issn=0027-8424&rft.volume=84&rft.issue=19&rft.spage=6919&rft.epage=6923&rft_id=info:doi/10.1073%2Fpnas.84.19.6919&rft.externalDBID=n%2Fa&rft.externalDocID=7392621 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F84%2F19.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F84%2F19.cover.gif |