Familial Defective Apolipoprotein B-100: Low Density Lipoproteins with Abnormal Receptor Binding

Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 84; no. 19; pp. 6919 - 6923
Main Authors Innerarity, Thomas L., Weisgraber, Karl H., Arnold, Kay S., Mahley, Robert W., Krauss, Ronald M., Vega, Gloria L., Grundy, Scott M.
Format Journal Article
LanguageEnglish
Published Washington, DC National Academy of Sciences of the United States of America 01.10.1987
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity (≈ 9.3 μ g of G.R. LDL per ml were required to displace 50% of 125I-labeled normal LDL, vs. ≈ 3.0 μ g of normal LDL per ml). Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, wherease a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated with an abnormal lipid composition or structure of the LDL: the chemical and physical properties of the particles were normal, and partial delipidation of the LDL did not alter receptor binding activity. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients.
AbstractList Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity (approximately equal to 9.3 micrograms of G.R. LDL per ml were required to displace 50% of 125I-labeled normal LDL, vs. approximately equal to 3.0 micrograms of normal LDL per ml). Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, whereas a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated with an abnormal lipid composition or structure of the LDL: the chemical and physical properties of the particles were normal, and partial delipidation of the LDL did not alter receptor binding activity. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients.
Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity (approximately equal to 9.3 micrograms of G.R. LDL per ml were required to displace 50% of 125I-labeled normal LDL, vs. approximately equal to 3.0 micrograms of normal LDL per ml). Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, whereas a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated with an abnormal lipid composition or structure of the LDL: the chemical and physical properties of the particles were normal, and partial delipidation of the LDL did not alter receptor binding activity. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients.Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity (approximately equal to 9.3 micrograms of G.R. LDL per ml were required to displace 50% of 125I-labeled normal LDL, vs. approximately equal to 3.0 micrograms of normal LDL per ml). Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, whereas a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated with an abnormal lipid composition or structure of the LDL: the chemical and physical properties of the particles were normal, and partial delipidation of the LDL did not alter receptor binding activity. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients.
Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity (≈ 9.3 μ g of G.R. LDL per ml were required to displace 50% of 125I-labeled normal LDL, vs. ≈ 3.0 μ g of normal LDL per ml). Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, wherease a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated with an abnormal lipid composition or structure of the LDL: the chemical and physical properties of the particles were normal, and partial delipidation of the LDL did not alter receptor binding activity. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients.
Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. Affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. The studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients.
Author Vega, Gloria L.
Weisgraber, Karl H.
Arnold, Kay S.
Grundy, Scott M.
Innerarity, Thomas L.
Mahley, Robert W.
Krauss, Ronald M.
AuthorAffiliation Gladstone Foundation Laboratories for Cardiovascular Disease, University of California, San Francisco 94140-0608
AuthorAffiliation_xml – name: Gladstone Foundation Laboratories for Cardiovascular Disease, University of California, San Francisco 94140-0608
Author_xml – sequence: 1
  givenname: Thomas L.
  surname: Innerarity
  fullname: Innerarity, Thomas L.
– sequence: 2
  givenname: Karl H.
  surname: Weisgraber
  fullname: Weisgraber, Karl H.
– sequence: 3
  givenname: Kay S.
  surname: Arnold
  fullname: Arnold, Kay S.
– sequence: 4
  givenname: Robert W.
  surname: Mahley
  fullname: Mahley, Robert W.
– sequence: 5
  givenname: Ronald M.
  surname: Krauss
  fullname: Krauss, Ronald M.
– sequence: 6
  givenname: Gloria L.
  surname: Vega
  fullname: Vega, Gloria L.
– sequence: 7
  givenname: Scott M.
  surname: Grundy
  fullname: Grundy, Scott M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7392621$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/3477815$$D View this record in MEDLINE/PubMed
BookMark eNqFksFrFDEUxoNU6rZ6FgRlDlJPs00myUwieNhWq8KCIHqOmUymTckk0yTb2v--GXbaVUE9vcP3-x7fe3wHYM95pwF4juASwQYfj07GJSNLxJc1R_wRWCDIUVkTDvfAAsKqKRmpyBNwEOMlhJBTBvfBPiZNwxBdgB9ncjDWSFu8171WyVzrYjV6a0Y_Bp-0ccVJiSB8W6z9TWZcNOm2WO_kWNyYdFGsWufDkNd81UqPyYfixLjOuPOn4HEvbdTP5nkIvp99-Hb6qVx_-fj5dLUuFSUslYRjTalueqQZ7KuOMNpgJlnXIow7SmFb5eyqRzVnrWoUl23bUdJ2CuMeQY0Pwbvt3nHTDrpT2qUgrRiDGWS4FV4a8bvizIU499ei4vlvdfYfzf7grzY6JjGYqLS10mm_iYIhSBpawf-CiDDeMEwz-PLXRA9R5t9n_fWsy6ik7YN0ysQHrMG8qiuUMbrFVPAxBt0LZZJMxk9nGCsQFFMTxNQEwYhAXExNyL7jP3z3m__ueDMHmoR7egeIfmNt0j9TJl_9k8zAiy1wGXMXdqfDmlf4Dj_y2JQ
CODEN PNASA6
CitedBy_id crossref_primary_10_3389_fgene_2021_809256
crossref_primary_10_2217_clp_15_33
crossref_primary_10_4049_jimmunol_1003557
crossref_primary_10_1006_mcpr_2000_0318
crossref_primary_10_1111_j_1365_2362_1994_tb02057_x
crossref_primary_10_1016_S0021_9150_98_00198_1
crossref_primary_10_1373_clinchem_2011_173963
crossref_primary_10_1016_j_jacl_2016_04_007
crossref_primary_10_1016_S0025_7125_16_30175_4
crossref_primary_10_1161_01_ATV_17_2_348
crossref_primary_10_1016_S0140_6736_12_60771_5
crossref_primary_10_1093_clinchem_43_6_916
crossref_primary_10_1248_yakushi_24_00177_5
crossref_primary_10_1007_BF00215683
crossref_primary_10_1016_S0022_2275_20_43168_2
crossref_primary_10_1161_01_ATV_20_4_1089
crossref_primary_10_1016_j_ecl_2015_09_009
crossref_primary_10_1016_j_atherosclerosis_2017_12_028
crossref_primary_10_1016_j_cca_2006_05_007
crossref_primary_10_1016_S0021_9150_02_00190_9
crossref_primary_10_1016_j_jacc_2005_02_056
crossref_primary_10_1016_j_atherosclerosis_2017_03_007
crossref_primary_10_5551_jat_62807
crossref_primary_10_1038_srep18184
crossref_primary_10_1161_CIRCGENETICS_111_962456
crossref_primary_10_1590_1678_4685_gmb_2017_0195
crossref_primary_10_1136_jmg_30_4_273
crossref_primary_10_1016_S0021_9258_18_35646_1
crossref_primary_10_1161_CIRCGENETICS_116_001572
crossref_primary_10_3389_fphys_2019_00280
crossref_primary_10_1177_000456329603300508
crossref_primary_10_1002_hlca_202200169
crossref_primary_10_1016_j_arteri_2013_07_005
crossref_primary_10_1517_14712598_2014_902929
crossref_primary_10_1038_nrcardio_2011_6
crossref_primary_10_1038_sj_ejhg_5200720
crossref_primary_10_2217_clp_13_74
crossref_primary_10_1161_01_RES_0000064174_69165_66
crossref_primary_10_1016_j_atherosclerosis_2006_08_055
crossref_primary_10_1016_S0021_9258_19_38766_6
crossref_primary_10_2217_clp_13_79
crossref_primary_10_1016_S0531_5131_03_00134_1
crossref_primary_10_1038_s44161_023_00375_y
crossref_primary_10_1161_01_CIR_91_6_1847
crossref_primary_10_1194_jlr_R500010_JLR200
crossref_primary_10_1097_00029330_200805010_00002
crossref_primary_10_1016_S0022_2275_20_42269_2
crossref_primary_10_4158_EP_2_1_37
crossref_primary_10_1016_j_jacl_2017_09_001
crossref_primary_10_1016_S0021_9150_99_00470_0
crossref_primary_10_1046_j_1365_2796_1999_00518_x
crossref_primary_10_1016_j_jacl_2014_01_001
crossref_primary_10_1016_S0022_2275_20_37419_8
crossref_primary_10_1074_jbc_270_18_10828
crossref_primary_10_1006_mcpr_2001_0378
crossref_primary_10_1002_ejlt_200800196
crossref_primary_10_1016_j_atherosclerosis_2018_11_040
crossref_primary_10_1016_j_jacl_2017_02_004
crossref_primary_10_1016_j_cca_2015_10_033
crossref_primary_10_1016_S0022_2275_20_39700_5
crossref_primary_10_1016_S0022_2275_20_41098_3
crossref_primary_10_1016_S0021_9150_97_00159_7
crossref_primary_10_1016_S0022_2275_20_37290_4
crossref_primary_10_1002_14651858_CD011748_pub2
crossref_primary_10_1016_S0188_4409_02_00452_6
crossref_primary_10_1002_14651858_CD011748_pub3
crossref_primary_10_1016_S0021_9150_00_00648_1
crossref_primary_10_1146_annurev_biochem_74_082803_133354
crossref_primary_10_1093_clinchem_45_7_1094
crossref_primary_10_1016_j_arteri_2011_04_001
crossref_primary_10_1016_j_atherosclerosis_2009_01_004
crossref_primary_10_1016_j_pepo_2013_09_001
crossref_primary_10_1016_S0021_9150_02_00249_6
crossref_primary_10_3390_nu10121842
crossref_primary_10_1007_s11883_021_00926_3
crossref_primary_10_1016_S0022_2275_20_38250_X
crossref_primary_10_1016_S1957_2557_10_70162_0
crossref_primary_10_1016_j_cca_2006_10_005
crossref_primary_10_1016_S0022_2275_20_36962_5
crossref_primary_10_1016_j_jacl_2022_01_007
crossref_primary_10_1016_S0214_9168_04_78955_X
crossref_primary_10_1194_jlr_M900273_JLR200
crossref_primary_10_1007_s11886_015_0629_1
crossref_primary_10_1002_humu_21258
crossref_primary_10_1177_0004563219864379
crossref_primary_10_1292_jvms_62_1297
crossref_primary_10_1161_circ_106_25_3373
crossref_primary_10_1002_humu_1380040308
crossref_primary_10_1016_S0022_2275_20_40088_4
crossref_primary_10_1016_S0009_8981_00_00367_3
crossref_primary_10_1016_S0031_3955_16_37021_3
crossref_primary_10_1016_S0021_9258_18_49900_0
crossref_primary_10_1016_j_ando_2007_02_002
crossref_primary_10_1016_j_atherosclerosis_2014_11_015
crossref_primary_10_1161_CIRCULATIONAHA_112_144055
crossref_primary_10_1089_met_2015_1503
crossref_primary_10_1586_14779072_6_3_369
crossref_primary_10_1373_clinchem_2008_118356
crossref_primary_10_1016_S0022_2275_20_42758_0
crossref_primary_10_1086_302370
crossref_primary_10_3389_fgene_2017_00189
crossref_primary_10_1016_j_jhep_2016_02_025
crossref_primary_10_1016_S0022_2275_20_41410_5
crossref_primary_10_1016_S0021_9150_99_00481_5
crossref_primary_10_1006_geno_1997_4898
crossref_primary_10_1111_j_1749_6632_2002_tb04312_x
crossref_primary_10_1161_01_ATV_16_4_517
crossref_primary_10_1161_01_ATV_20_7_1796
crossref_primary_10_1093_hmg_ddt573
crossref_primary_10_1080_21678707_2016_1189323
crossref_primary_10_1016_j_jacl_2013_01_005
crossref_primary_10_1194_jlr_P023994
crossref_primary_10_1586_14779072_1_1_107
crossref_primary_10_1007_BF00207370
crossref_primary_10_1051_jbio_2016006
crossref_primary_10_1111_j_1469_1809_1994_tb00724_x
crossref_primary_10_1089_gte_2008_0060
crossref_primary_10_1016_j_ccl_2015_02_006
crossref_primary_10_1177_1474651412466272
crossref_primary_10_1371_journal_pone_0024838
crossref_primary_10_1517_14796678_1_1_17
crossref_primary_10_1016_j_atherosclerosis_2003_12_021
crossref_primary_10_1016_j_ejim_2011_01_003
crossref_primary_10_1016_0021_9150_90_90161_B
crossref_primary_10_1016_j_cca_2008_02_019
crossref_primary_10_1016_S0022_2275_20_42834_2
crossref_primary_10_1016_S0022_2275_20_38429_7
crossref_primary_10_1007_s11883_023_01154_7
crossref_primary_10_1007_s40265_015_0466_y
crossref_primary_10_1007_s11033_006_9041_7
crossref_primary_10_1161_ATVBAHA_113_302426
crossref_primary_10_1210_clinem_dgac572
crossref_primary_10_3389_fgene_2022_849008
crossref_primary_10_1016_j_ymgme_2017_11_008
crossref_primary_10_1097_MD_0000000000014247
crossref_primary_10_1007_s11883_023_01094_2
crossref_primary_10_1016_S0022_2275_20_42751_8
crossref_primary_10_1111_j_1365_2362_1995_tb01989_x
crossref_primary_10_1371_journal_pone_0225780
crossref_primary_10_1111_j_1399_0004_2007_00915_x
crossref_primary_10_1016_S0021_9150_96_05990_4
crossref_primary_10_1016_S0021_9258_19_40266_4
crossref_primary_10_1007_BF00422946
crossref_primary_10_1258_acb_2010_010087
crossref_primary_10_33549_physiolres_933599
crossref_primary_10_1016_S0021_9258_17_42379_9
crossref_primary_10_1016_S0140_6736_88_90930_0
crossref_primary_10_1124_pr_116_012989
crossref_primary_10_1161_CIRCULATIONAHA_116_021765
crossref_primary_10_1016_j_atherosclerosis_2016_07_925
crossref_primary_10_1097_MOL_0000000000000868
crossref_primary_10_1186_1471_2350_11_115
crossref_primary_10_1074_jbc_M008890200
crossref_primary_10_1161_01_ATV_17_5_826
crossref_primary_10_1093_clinchem_46_2_224
crossref_primary_10_1111_j_1749_6632_1990_tb42274_x
crossref_primary_10_1016_S0009_8981_01_00681_7
crossref_primary_10_1002_humu_20882
crossref_primary_10_1016_S0022_2275_20_35728_X
crossref_primary_10_1038_s44161_022_00085_x
crossref_primary_10_1111_j_1365_2796_1992_tb00606_x
crossref_primary_10_1016_S0022_2275_20_42605_7
crossref_primary_10_1097_MOL_0000000000000177
crossref_primary_10_1016_j_ymgme_2010_11_006
crossref_primary_10_1517_13543776_2010_518615
crossref_primary_10_1111_j_1365_2362_1991_tb01386_x
crossref_primary_10_1007_s11883_014_0439_8
crossref_primary_10_1016_S0022_2275_20_41997_2
crossref_primary_10_1016_0140_6736_92_90875_4
crossref_primary_10_1161_01_ATV_15_10_1719
crossref_primary_10_1016_j_jacl_2016_03_043
crossref_primary_10_1016_0140_6736_91_90920_K
crossref_primary_10_1016_j_atherosclerosis_2021_06_001
crossref_primary_10_1016_j_atherosclerosis_2022_08_014
crossref_primary_10_1016_j_jacl_2016_09_009
crossref_primary_10_1111_j_1365_2362_2006_01735_x
crossref_primary_10_3390_ijms23084281
crossref_primary_10_3390_ijms24087635
crossref_primary_10_1517_14728222_2011_547480
crossref_primary_10_1016_S0022_2275_20_37702_6
crossref_primary_10_1016_j_jacl_2019_01_004
crossref_primary_10_1007_s00018_018_2859_z
crossref_primary_10_1016_S0021_9258_18_43815_X
crossref_primary_10_1089_cmb_2017_0018
crossref_primary_10_1016_j_jacl_2016_09_003
crossref_primary_10_1016_j_antiviral_2014_01_007
crossref_primary_10_1016_j_atherosclerosis_2019_08_004
crossref_primary_10_1073_pnas_0508677102
crossref_primary_10_1097_MOL_0000000000000156
crossref_primary_10_1097_MOL_0000000000000398
crossref_primary_10_1007_BF01644767
crossref_primary_10_1186_1755_8794_7_17
crossref_primary_10_1373_clinchem_2004_038026
crossref_primary_10_1016_j_atherosclerosis_2016_03_017
crossref_primary_10_1161_01_ATV_20_10_e63
crossref_primary_10_1038_s42003_018_0015_9
crossref_primary_10_1007_s10528_013_9609_6
crossref_primary_10_1093_eurheartj_ehs010
crossref_primary_10_1097_MOL_0000000000000281
crossref_primary_10_1186_s12944_020_01266_y
crossref_primary_10_1016_S0021_9258_19_37612_4
crossref_primary_10_1093_eurheartj_ehac660
crossref_primary_10_1080_14779072_2018_1497975
crossref_primary_10_3390_biomedicines9111728
crossref_primary_10_1016_j_rccar_2016_05_002
crossref_primary_10_1258_acb_2007_007077
crossref_primary_10_1007_s11886_018_1079_3
crossref_primary_10_1097_00029330_200710010_00010
crossref_primary_10_1186_1743_7075_8_23
crossref_primary_10_1016_S0002_9149_98_00849_2
crossref_primary_10_4103_jrms_JRMS_970_19
crossref_primary_10_1056_NEJM199805283382203
crossref_primary_10_1093_eurheartj_eht015
crossref_primary_10_1161_CIRCULATIONAHA_106_661751
crossref_primary_10_1016_S0889_8529_18_30323_2
crossref_primary_10_1586_erc_13_7
crossref_primary_10_1161_CIRCULATIONAHA_107_708388
crossref_primary_10_1161_ATVBAHA_111_224139
crossref_primary_10_1111_j_1399_0004_1990_tb03514_x
crossref_primary_10_1016_j_patbio_2008_09_015
crossref_primary_10_1093_clinchem_44_8_1659
crossref_primary_10_1016_j_gene_2023_147738
crossref_primary_10_1016_S0140_6736_14_61399_4
crossref_primary_10_1016_S1388_1981_99_00083_9
crossref_primary_10_1016_j_cca_2010_02_008
crossref_primary_10_1016_S0021_9150_96_06007_8
crossref_primary_10_1016_S0022_2275_20_41171_X
crossref_primary_10_1038_s41598_019_48402_y
crossref_primary_10_1253_jjcsc_3_1_5
crossref_primary_10_1007_BF00145346
crossref_primary_10_1016_S0022_2275_20_41629_3
crossref_primary_10_1016_S0889_8529_05_70024_4
crossref_primary_10_1007_s40272_013_0060_2
crossref_primary_10_1016_j_jacadv_2024_101297
crossref_primary_10_1016_S0022_2275_20_40763_1
crossref_primary_10_1038_ncpcardio0836
crossref_primary_10_1016_S0021_9150_99_00469_4
crossref_primary_10_1016_S0021_9150_01_00439_7
crossref_primary_10_1016_S0022_2275_20_32452_4
crossref_primary_10_1016_S0022_2275_20_37178_9
crossref_primary_10_1016_j_atherosclerosis_2019_02_003
crossref_primary_10_1016_S0021_9150_99_00166_5
crossref_primary_10_1016_S0140_6736_89_91659_0
crossref_primary_10_1016_S0022_2275_20_39866_7
crossref_primary_10_1080_14740338_2024_2389989
crossref_primary_10_2147_VHRM_S266249
crossref_primary_10_2217_clp_10_9
crossref_primary_10_5551_jat_34405
crossref_primary_10_1097_CRD_0000000000000014
crossref_primary_10_1111_jmp_12642
crossref_primary_10_1002_humu_20105
crossref_primary_10_1111_j_1365_2796_1992_tb01253_x
crossref_primary_10_1038_s41598_018_20281_9
crossref_primary_10_1016_j_jacl_2013_03_005
crossref_primary_10_1016_j_atherosclerosis_2012_04_006
crossref_primary_10_1161_ATVBAHA_119_313470
crossref_primary_10_1016_j_jlr_2021_100062
crossref_primary_10_1155_2012_658526
crossref_primary_10_1016_j_metabol_2006_12_011
crossref_primary_10_1016_j_atherosclerosis_2021_05_007
crossref_primary_10_1111_joim_13577
crossref_primary_10_17816_MAJ630505
crossref_primary_10_3389_fmmed_2023_1140997
crossref_primary_10_2174_1874192401711010066
crossref_primary_10_1016_S0022_2275_20_41985_6
crossref_primary_10_1016_j_atherosclerosis_2008_07_011
crossref_primary_10_1111_j_1399_0004_1991_tb03073_x
crossref_primary_10_1016_j_jacl_2014_11_008
crossref_primary_10_1016_S0025_7125_16_30643_5
ContentType Journal Article
Copyright 1988 INIST-CNRS
Copyright_xml – notice: 1988 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
M7Z
P64
RC3
7X8
5PM
DOI 10.1073/pnas.84.19.6919
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE


Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 6923
ExternalDocumentID PMC299196
3477815
7392621
10_1073_pnas_84_19_6919
84_19_6919
30692
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Case Reports
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL18
– fundername: NHLBI NIH HHS
  grantid: HL36701
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
ZCA
ZCG
~02
~KM
-
02
08R
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AFDAS
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
OHM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
692
6TJ
79B
AAYJJ
AAYXX
ACKIV
AFHIN
AFQQW
BKOMP
CITATION
NHB
TAE
YBH
YKV
YSK
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
8FD
FR3
M7Z
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c548t-493e55e7f1e80f2d485738a8db133d550b2095cf1698bc7c9abbd54bdc33f10e3
ISSN 0027-8424
IngestDate Thu Aug 21 14:08:38 EDT 2025
Thu Jul 10 17:42:56 EDT 2025
Fri Jul 11 00:30:59 EDT 2025
Wed Feb 19 02:33:23 EST 2025
Mon Jul 21 09:14:42 EDT 2025
Tue Jul 01 03:58:48 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Wed Nov 11 00:29:28 EST 2020
Thu May 30 08:52:15 EDT 2019
Thu May 29 08:43:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Human
Family study
Molecular interaction
Clearance
Apolipoproteins
Metabolism
Cholesterol
Membrane receptor
Hypercholesterolemia
Atherosclerosis
β-Lipoprotein
Ratio
Defectivity
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c548t-493e55e7f1e80f2d485738a8db133d550b2095cf1698bc7c9abbd54bdc33f10e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Case Study-2
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/299196
PMID 3477815
PQID 14897835
PQPubID 23462
PageCount 5
ParticipantIDs pascalfrancis_primary_7392621
proquest_miscellaneous_81047520
pnas_primary_84_19_6919
pubmed_primary_3477815
crossref_citationtrail_10_1073_pnas_84_19_6919
proquest_miscellaneous_14897835
jstor_primary_30692
pubmedcentral_primary_oai_pubmedcentral_nih_gov_299196
pnas_primary_84_19_6919_fulltext
crossref_primary_10_1073_pnas_84_19_6919
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1987-10-01
PublicationDateYYYYMMDD 1987-10-01
PublicationDate_xml – month: 10
  year: 1987
  text: 1987-10-01
  day: 01
PublicationDecade 1980
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 1987
Publisher National Academy of Sciences of the United States of America
National Acad Sciences
Publisher_xml – name: National Academy of Sciences of the United States of America
– name: National Acad Sciences
SSID ssj0009580
Score 1.7763623
Snippet Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6919
SubjectTerms Analytical, structural and metabolic biochemistry
Apolipoprotein B-100
Apolipoproteins B - blood
Apolipoproteins B - genetics
Apolipoproteins B - metabolism
Biological and medical sciences
Brothers
Cells, Cultured
Cholesterols
Family members
Fibroblasts
Fibroblasts - metabolism
Fundamental and applied biological sciences. Psychology
Heterozygotes
Humans
Hypercholesterolemia
Hyperlipoproteinemia Type II - blood
Hyperlipoproteinemia Type II - genetics
Infant
Kinetics
Lipids
Lipoproteins
Lipoproteins, LDL - blood
Lipoproteins, myelin
Male
man
Proteins
Receptors
Receptors, LDL - metabolism
Sons
Title Familial Defective Apolipoprotein B-100: Low Density Lipoproteins with Abnormal Receptor Binding
URI https://www.jstor.org/stable/30692
http://www.pnas.org/content/84/19/6919.abstract
https://www.ncbi.nlm.nih.gov/pubmed/3477815
https://www.proquest.com/docview/14897835
https://www.proquest.com/docview/81047520
https://pubmed.ncbi.nlm.nih.gov/PMC299196
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5F5cIF0ULBQGEOHIoiGy9je8wthUICKFQhFeVkPPaMiFQ5FUmFxN_kD_Fm8xISsVyseLbYfp_fMn4LQk-LovQrwalb8Th1iUgCt-BEuEFQ-ZSJAFigyvY5Tcbn5O1FfDEY_Ox4LV2vmVf-2BpX8j9UhTagq4yS_QfKNotCA_wG-sIRKAzHv6Kxqloht7wrLjTjGhay6sLVUqVfWNTDE2CAvrT6L5ffYVStPDA6A2xwG6ul7ipz_Es3F-nBuagbqWZ017NG1q2sZ8HUbiWO2sAUwy1WQ3d4Nm3LHE-m0kduNpl_VhDxhs2u86fTycc3s9GJ9sl457XxEqPZ9MP7V6a13TwfjUGrVtjwtH-g3raQGxuNA9y6m_V7-_WZe-hp3Uox1x-xuvw8BBlLdBS25ee65JzFbdbhzklmTrk51aHOv0kRYHuy9HFdrDxKvCDz2ondfN0bcrTxbkwjmYQRTPIbIdguoZIW3UzQVMdFmUu3-abS6PnGP_ZUJe0tK113ixW8vUKXXZEpeWHSNvNo08u3ozbNb6Nbxt7BIw3efTTg9QHatzTAxybt-bM76ItFM27QjPtoxgrNLzBgGRss4y6WscQytljGFsvYYPkuOn99On85dk39D7cEO3rtkiziccxTEXDqi7AiNE4jWtCKBVFUgWnNQniapQiSjLIyLbOCsSomrCqjSAQ-jw7RXr2s-X2ERVEVsFIpJQ4RJGEgh8qwYhkhFJYhDvLso85Lkxxf1mi5zJWTRhrl8jHnlORBlkvaOOi4mXCl88LsHnqgaNeMAys9Cx101KNk02vQ46B7ah3b3F0P7-jJhXEYc9ATi4ccxIX8BljUfHm9Akufqs3e3SOoTN4Sh76DDjV-2usmaUoDmJr0gNX0y0z1_Z568VVlrAedFyT9gz_c8kN0s-UUj9De-ts1PwKVf80eq1foF8NPA_Q
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Familial+defective+apolipoprotein+B-100%3A+low+density+lipoproteins+with+abnormal+receptor+binding&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=INNERARITY%2C+T.+L&rft.au=WEISGRABER%2C+K.+H&rft.au=ARNOLD%2C+K.+S&rft.au=MAHLEY%2C+R.+W&rft.date=1987-10-01&rft.pub=National+Academy+of+Sciences+of+the+United+States+of+America&rft.issn=0027-8424&rft.volume=84&rft.issue=19&rft.spage=6919&rft.epage=6923&rft_id=info:doi/10.1073%2Fpnas.84.19.6919&rft.externalDBID=n%2Fa&rft.externalDocID=7392621
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F84%2F19.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F84%2F19.cover.gif