pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan

•Six chitosans with molecular weights ranging from 3.3 to 300kDa were prepared.•Combined effects of chitosan MW, temperature, pH on bacterial growth were studied.•The pH effects on water solubility and zeta potential of chitosans were examined.•Positive correlation between chitosan ZP and antibacter...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 134; pp. 74 - 81
Main Authors Chang, Shun-Hsien, Lin, Hong-Ting Victor, Wu, Guan-James, Tsai, Guo Jane
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 10.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Six chitosans with molecular weights ranging from 3.3 to 300kDa were prepared.•Combined effects of chitosan MW, temperature, pH on bacterial growth were studied.•The pH effects on water solubility and zeta potential of chitosans were examined.•Positive correlation between chitosan ZP and antibacterial activity was obtained. Six chitosans with molecular weights (MWs) of 300, 156, 72.1, 29.2, 7.1, and 3.3kDa were prepared by cellulase degradation of chitosan (300kDa) and ultrafiltration techniques. We examined the correlation between activity against Escherichia coli and Staphylococcus aureus and chitosan MW, and provided the underlying explanation. In acidic pH conditions, the chitosan activity increased with increasing MW, irrespective of the temperature and bacteria tested. However, at neutral pH, chitosan activity increased as the MW decreased, and little activity was observed for chitosans with MW >29.2kDa. At pH 5.0 and 6.0, chitosans exhibited good water solubility and zeta potential (ZP) decreased with the MW, whereas the solubility and ZP of the chitosans decreased with increasing MW at pH 7.0. Particularly, low solubility and negative ZP values were determined for chitosans with MW >29.2kDa, which may explain the loss of their antibacterial activity at pH 7.0.
AbstractList Six chitosans with molecular weights (MWs) of 300, 156, 72.1, 29.2, 7.1, and 3.3 kDa were prepared by cellulase degradation of chitosan (300 kDa) and ultrafiltration techniques. We examined the correlation between activity against Escherichia coli and Staphylococcus aureus and chitosan MW, and provided the underlying explanation. In acidic pH conditions, the chitosan activity increased with increasing MW, irrespective of the temperature and bacteria tested. However, at neutral pH, chitosan activity increased as the MW decreased, and little activity was observed for chitosans with MW >29.2 kDa. At pH 5.0 and 6.0, chitosans exhibited good water solubility and zeta potential (ZP) decreased with the MW, whereas the solubility and ZP of the chitosans decreased with increasing MW at pH 7.0. Particularly, low solubility and negative ZP values were determined for chitosans with MW >29.2 kDa, which may explain the loss of their antibacterial activity at pH 7.0.
Six chitosans with molecular weights (MWs) of 300, 156, 72.1, 29.2, 7.1, and 3.3 kDa were prepared by cellulase degradation of chitosan (300 kDa) and ultrafiltration techniques. We examined the correlation between activity against Escherichia coli and Staphylococcus aureus and chitosan MW, and provided the underlying explanation. In acidic pH conditions, the chitosan activity increased with increasing MW, irrespective of the temperature and bacteria tested. However, at neutral pH, chitosan activity increased as the MW decreased, and little activity was observed for chitosans with MW >29.2 kDa. At pH 5.0 and 6.0, chitosans exhibited good water solubility and zeta potential (ZP) decreased with the MW, whereas the solubility and ZP of the chitosans decreased with increasing MW at pH 7.0. Particularly, low solubility and negative ZP values were determined for chitosans with MW >29.2 kDa, which may explain the loss of their antibacterial activity at pH 7.0.Six chitosans with molecular weights (MWs) of 300, 156, 72.1, 29.2, 7.1, and 3.3 kDa were prepared by cellulase degradation of chitosan (300 kDa) and ultrafiltration techniques. We examined the correlation between activity against Escherichia coli and Staphylococcus aureus and chitosan MW, and provided the underlying explanation. In acidic pH conditions, the chitosan activity increased with increasing MW, irrespective of the temperature and bacteria tested. However, at neutral pH, chitosan activity increased as the MW decreased, and little activity was observed for chitosans with MW >29.2 kDa. At pH 5.0 and 6.0, chitosans exhibited good water solubility and zeta potential (ZP) decreased with the MW, whereas the solubility and ZP of the chitosans decreased with increasing MW at pH 7.0. Particularly, low solubility and negative ZP values were determined for chitosans with MW >29.2 kDa, which may explain the loss of their antibacterial activity at pH 7.0.
•Six chitosans with molecular weights ranging from 3.3 to 300kDa were prepared.•Combined effects of chitosan MW, temperature, pH on bacterial growth were studied.•The pH effects on water solubility and zeta potential of chitosans were examined.•Positive correlation between chitosan ZP and antibacterial activity was obtained. Six chitosans with molecular weights (MWs) of 300, 156, 72.1, 29.2, 7.1, and 3.3kDa were prepared by cellulase degradation of chitosan (300kDa) and ultrafiltration techniques. We examined the correlation between activity against Escherichia coli and Staphylococcus aureus and chitosan MW, and provided the underlying explanation. In acidic pH conditions, the chitosan activity increased with increasing MW, irrespective of the temperature and bacteria tested. However, at neutral pH, chitosan activity increased as the MW decreased, and little activity was observed for chitosans with MW >29.2kDa. At pH 5.0 and 6.0, chitosans exhibited good water solubility and zeta potential (ZP) decreased with the MW, whereas the solubility and ZP of the chitosans decreased with increasing MW at pH 7.0. Particularly, low solubility and negative ZP values were determined for chitosans with MW >29.2kDa, which may explain the loss of their antibacterial activity at pH 7.0.
Six chitosans with molecular weights (MWs) of 300, 156, 72.1, 29.2, 7.1, and 3.3kDa were prepared by cellulase degradation of chitosan (300kDa) and ultrafiltration techniques. We examined the correlation between activity against Escherichia coli and Staphylococcus aureus and chitosan MW, and provided the underlying explanation. In acidic pH conditions, the chitosan activity increased with increasing MW, irrespective of the temperature and bacteria tested. However, at neutral pH, chitosan activity increased as the MW decreased, and little activity was observed for chitosans with MW >29.2kDa. At pH 5.0 and 6.0, chitosans exhibited good water solubility and zeta potential (ZP) decreased with the MW, whereas the solubility and ZP of the chitosans decreased with increasing MW at pH 7.0. Particularly, low solubility and negative ZP values were determined for chitosans with MW >29.2kDa, which may explain the loss of their antibacterial activity at pH 7.0.
Author Tsai, Guo Jane
Wu, Guan-James
Chang, Shun-Hsien
Lin, Hong-Ting Victor
Author_xml – sequence: 1
  givenname: Shun-Hsien
  orcidid: 0000-0002-4044-9860
  surname: Chang
  fullname: Chang, Shun-Hsien
  organization: Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, ROC
– sequence: 2
  givenname: Hong-Ting Victor
  surname: Lin
  fullname: Lin, Hong-Ting Victor
  organization: Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, ROC
– sequence: 3
  givenname: Guan-James
  surname: Wu
  fullname: Wu, Guan-James
  organization: Department of Food Science, National Penghu University of Science and Technology, Penghu, Taiwan, ROC
– sequence: 4
  givenname: Guo Jane
  orcidid: 0000-0002-5605-5495
  surname: Tsai
  fullname: Tsai, Guo Jane
  email: b0090@mail.ntou.edu.tw
  organization: Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, ROC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26428102$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rGzEQxUVISZw0H6FFxx6yrv7tSqaHEkLaFAK9tGehlWYTGXm1lbQJ7qevHDuXXiwGJIbfGzHvXaDTMY6A0AdKlpTQ7vN6aU3qpxiWjNB2SWQtdoIWVMlVQ7kQp2hBqBCN6qg8Rxc5r0k9HSVn6Jx1gilK2AJtp3t8NwxgS8ZxxDmGuffBl-01_gvF4CkWGIs34Rqb0WEbU4Jgiq9sD-UFYKz94ntjC6SK4frwz1X_im9iADsHk_AL-MenguOA7ZMvMZvxPXo3mJDh6nBfot_f7n7d3jcPP7__uL15aGwrVGlYR9Tg6kLMKsLB8JYbtxo4E6RVjipDOnBqWBHDWAuCOG5lDyAls8QMyvFL9Gk_d0rxzwy56I3PFkIwI8Q5a1Zd4VJ1ih9FqaRqRZTo2op-PKBzvwGnp-Q3Jm31m7MV-LIHbIo5Jxi09eXVuJKMD5oSvctRr_UhR73LURNZa6du_1O_fXBM93Wvg-ros4eks_UwWnA-1Yy1i_7IhH-t_Lup
CitedBy_id crossref_primary_10_1007_s10570_019_02287_2
crossref_primary_10_1016_j_foodchem_2022_132088
crossref_primary_10_1016_j_foodhyd_2018_03_010
crossref_primary_10_1016_j_carbpol_2023_121191
crossref_primary_10_1111_jph_12603
crossref_primary_10_1039_C6RA27102B
crossref_primary_10_1016_j_carbpol_2019_01_089
crossref_primary_10_1016_j_foodcont_2023_109669
crossref_primary_10_1007_s10924_022_02458_6
crossref_primary_10_3390_polym15132804
crossref_primary_10_1016_j_carbpol_2017_11_019
crossref_primary_10_3390_polym13050696
crossref_primary_10_1016_j_ijbiomac_2024_136965
crossref_primary_10_1038_s41598_021_84791_9
crossref_primary_10_1021_acs_langmuir_1c01930
crossref_primary_10_1111_ijfs_13897
crossref_primary_10_1016_j_ijbiomac_2023_124334
crossref_primary_10_1016_j_ijbiomac_2023_125565
crossref_primary_10_1016_j_carbpol_2021_117918
crossref_primary_10_1016_j_foodhyd_2021_107397
crossref_primary_10_3390_polym13152466
crossref_primary_10_1016_j_tifs_2020_08_016
crossref_primary_10_1016_j_carbpol_2022_120256
crossref_primary_10_1016_j_cej_2021_133154
crossref_primary_10_1016_j_ejpb_2024_114575
crossref_primary_10_1080_10837450_2020_1720237
crossref_primary_10_1016_j_onano_2025_100234
crossref_primary_10_1016_j_carbpol_2020_116685
crossref_primary_10_1016_j_jece_2024_113208
crossref_primary_10_1016_j_lfs_2020_118640
crossref_primary_10_1016_j_molliq_2023_121350
crossref_primary_10_1016_j_molliq_2023_121476
crossref_primary_10_1016_j_foodhyd_2019_05_040
crossref_primary_10_1021_acs_energyfuels_4c04471
crossref_primary_10_1016_j_biomaterials_2023_122346
crossref_primary_10_1016_j_carbpol_2017_11_034
crossref_primary_10_1016_j_ijbiomac_2016_01_022
crossref_primary_10_3390_plants14040610
crossref_primary_10_1021_acsnano_1c06983
crossref_primary_10_3390_nano8020088
crossref_primary_10_1016_j_msec_2019_109830
crossref_primary_10_3390_polym12020273
crossref_primary_10_1016_j_ajps_2022_04_001
crossref_primary_10_3390_ma13184149
crossref_primary_10_1016_j_foodchem_2020_128802
crossref_primary_10_1039_C8RA02144A
crossref_primary_10_1016_j_foodhyd_2017_10_031
crossref_primary_10_1021_acs_biomac_4c01333
crossref_primary_10_1007_s12247_022_09627_z
crossref_primary_10_1021_acsami_9b17605
crossref_primary_10_1002_fft2_326
crossref_primary_10_1016_j_carbpol_2017_11_047
crossref_primary_10_1016_j_colsurfb_2018_09_077
crossref_primary_10_3390_pharmaceutics15061763
crossref_primary_10_1111_1750_3841_15902
crossref_primary_10_1007_s42452_024_05923_0
crossref_primary_10_1016_j_carbpol_2017_06_026
crossref_primary_10_1016_j_jece_2024_112773
crossref_primary_10_3390_ijms20071743
crossref_primary_10_1016_j_mineng_2022_107777
crossref_primary_10_3390_ma11101973
crossref_primary_10_1021_acs_energyfuels_0c03396
crossref_primary_10_1016_j_carbpol_2015_12_017
crossref_primary_10_1021_acs_biomac_9b01665
crossref_primary_10_1080_15440478_2023_2229515
crossref_primary_10_1016_j_supflu_2017_05_014
crossref_primary_10_1016_j_ejps_2024_106919
crossref_primary_10_1016_j_pmatsci_2025_101460
crossref_primary_10_1016_j_jiec_2018_01_001
crossref_primary_10_1016_j_carbpol_2023_121318
crossref_primary_10_1016_j_carpta_2023_100349
crossref_primary_10_1016_j_fm_2016_11_019
crossref_primary_10_1007_s10904_023_02690_0
crossref_primary_10_3390_molecules27185953
crossref_primary_10_5812_jjnpp_101013
crossref_primary_10_3109_03639045_2016_1141931
crossref_primary_10_1134_S0003683816050100
crossref_primary_10_3390_molecules26123551
crossref_primary_10_1016_j_ijbiomac_2018_05_102
crossref_primary_10_1016_j_ifset_2018_07_002
crossref_primary_10_1016_j_cis_2024_103383
crossref_primary_10_1016_j_carbpol_2016_04_025
crossref_primary_10_1016_j_cej_2023_143159
crossref_primary_10_1016_j_mtsust_2024_100671
crossref_primary_10_1021_acsapm_3c00979
crossref_primary_10_1016_j_colsurfa_2021_127324
crossref_primary_10_1016_j_foodhyd_2018_11_062
crossref_primary_10_1021_acs_jafc_3c02608
crossref_primary_10_1016_j_msec_2017_05_047
crossref_primary_10_1016_j_carbpol_2024_121821
crossref_primary_10_3390_molecules25204795
crossref_primary_10_1007_s00253_018_9417_3
crossref_primary_10_1007_s11947_024_03517_7
crossref_primary_10_1007_s10068_023_01386_y
crossref_primary_10_1016_j_carbpol_2022_120058
crossref_primary_10_1016_j_ijbiomac_2024_132670
crossref_primary_10_1021_acsfoodscitech_4c00428
crossref_primary_10_3390_nano15020126
crossref_primary_10_1016_j_ijbiomac_2021_11_002
crossref_primary_10_1007_s10570_018_1881_5
crossref_primary_10_3390_molecules28041833
crossref_primary_10_1016_j_ijbiomac_2023_123796
crossref_primary_10_1016_j_carbpol_2022_119877
crossref_primary_10_1021_acsami_0c14313
crossref_primary_10_1016_j_ijbiomac_2019_03_153
crossref_primary_10_1155_2016_9159761
crossref_primary_10_1007_s12257_024_00124_3
crossref_primary_10_1016_j_jhazmat_2020_122494
crossref_primary_10_3233_STJ_180001
crossref_primary_10_1002_jbm_b_35006
crossref_primary_10_1111_ger_12672
crossref_primary_10_1016_j_colsurfa_2017_04_076
crossref_primary_10_1016_j_porgcoat_2019_105409
crossref_primary_10_1007_s00289_019_03007_3
crossref_primary_10_1111_jace_15555
crossref_primary_10_1016_j_carbpol_2024_122388
crossref_primary_10_1016_j_ijbiomac_2020_04_011
crossref_primary_10_1002_advs_202003155
crossref_primary_10_1016_j_ijbiomac_2021_11_210
crossref_primary_10_1002_app_47773
crossref_primary_10_1016_j_carbpol_2021_118352
crossref_primary_10_1016_j_ijbiomac_2020_09_042
crossref_primary_10_1002_pi_5252
crossref_primary_10_1002_admi_202300501
crossref_primary_10_1016_j_carbpol_2022_120391
crossref_primary_10_1016_j_eurpolymj_2018_09_038
crossref_primary_10_1016_j_tifs_2020_01_029
crossref_primary_10_1016_j_biopha_2019_109183
crossref_primary_10_1016_j_matt_2023_08_014
crossref_primary_10_1016_j_foodhyd_2024_110469
crossref_primary_10_1080_10408398_2023_2205937
crossref_primary_10_1016_j_jfoodeng_2023_111682
crossref_primary_10_1002_app_49384
crossref_primary_10_1021_acs_biomac_7b00039
crossref_primary_10_1016_j_etap_2018_05_017
crossref_primary_10_1016_j_foodchem_2020_128168
crossref_primary_10_1016_j_jpba_2019_05_032
crossref_primary_10_3389_fmicb_2016_01580
crossref_primary_10_1016_j_cej_2024_151824
crossref_primary_10_1016_j_idairyj_2023_105716
crossref_primary_10_1016_j_archoralbio_2020_104921
crossref_primary_10_1007_s00107_023_01974_z
crossref_primary_10_1007_s13726_016_0480_2
crossref_primary_10_1016_j_fbio_2020_100854
crossref_primary_10_1016_j_microc_2023_108864
crossref_primary_10_1088_1755_1315_278_1_012052
crossref_primary_10_1016_j_ijbiomac_2023_123763
crossref_primary_10_1002_ps_6564
crossref_primary_10_1016_j_heliyon_2022_e11168
crossref_primary_10_3390_app13053360
crossref_primary_10_1186_s42834_024_00236_8
crossref_primary_10_1002_mnfr_201800646
crossref_primary_10_1016_j_jcis_2023_05_056
crossref_primary_10_1016_j_ijbiomac_2024_130214
crossref_primary_10_1039_D4FB00263F
crossref_primary_10_1016_j_colsurfb_2016_03_045
crossref_primary_10_1016_j_jobab_2021_01_002
crossref_primary_10_1002_star_202000234
crossref_primary_10_1021_acs_joc_0c01597
crossref_primary_10_1016_j_carbpol_2024_122159
crossref_primary_10_1039_D0GC00901F
crossref_primary_10_1016_j_jcis_2021_06_091
crossref_primary_10_1016_j_carbpol_2019_02_046
crossref_primary_10_1080_09168451_2020_1723402
crossref_primary_10_1016_j_bioadv_2024_214023
crossref_primary_10_1016_j_ijbiomac_2021_11_045
crossref_primary_10_3390_md18110542
crossref_primary_10_1016_j_colsurfb_2020_111295
crossref_primary_10_1021_acsami_7b17375
crossref_primary_10_1080_07388551_2020_1713719
crossref_primary_10_3390_ijms21145016
crossref_primary_10_3389_fbioe_2021_735090
crossref_primary_10_1002_adma_202203325
crossref_primary_10_3390_polym11040719
crossref_primary_10_21967_jbb_v4i1_189
crossref_primary_10_3390_molecules27144517
crossref_primary_10_3390_ma14133655
crossref_primary_10_1111_ijfs_16423
crossref_primary_10_1016_j_micromeso_2018_06_035
crossref_primary_10_1111_jfpp_17148
crossref_primary_10_1016_j_carbpol_2019_115744
crossref_primary_10_1016_j_jmst_2020_09_004
crossref_primary_10_1021_acssuschemeng_4c01260
crossref_primary_10_1016_j_ijbiomac_2023_124278
crossref_primary_10_1016_j_ijbiomac_2023_123182
crossref_primary_10_1007_s00289_023_04993_1
crossref_primary_10_1016_j_carbpol_2022_120196
crossref_primary_10_1016_j_ijbiomac_2023_125986
crossref_primary_10_1016_j_carbpol_2024_122612
crossref_primary_10_1016_j_foodhyd_2018_05_010
crossref_primary_10_1016_j_carbpol_2017_06_090
crossref_primary_10_1021_acs_langmuir_4c00984
crossref_primary_10_1016_j_carbpol_2022_120510
crossref_primary_10_1016_j_jwpe_2023_104244
crossref_primary_10_1088_2053_1591_acbe2a
crossref_primary_10_3390_md18020070
crossref_primary_10_37503_jbb_2021_9_57
crossref_primary_10_1016_j_carbpol_2019_01_030
crossref_primary_10_1039_C9GC00304E
crossref_primary_10_1016_j_ijbiomac_2023_123854
crossref_primary_10_1002_app_50729
crossref_primary_10_3390_pharmaceutics11050209
crossref_primary_10_1016_j_memsci_2019_117319
crossref_primary_10_1016_j_rechem_2025_102056
crossref_primary_10_1111_1750_3841_13688
crossref_primary_10_1021_acsabm_4c00996
crossref_primary_10_3390_recycling8050074
crossref_primary_10_1016_j_ijbiomac_2019_10_009
crossref_primary_10_36320_ajb_v14_i2_11710
crossref_primary_10_1134_S0026261718050168
crossref_primary_10_1016_j_carbpol_2020_116110
crossref_primary_10_3390_biomimetics9070425
crossref_primary_10_1016_j_carbpol_2020_116474
crossref_primary_10_1016_j_carbpol_2023_120988
crossref_primary_10_1016_j_chemosphere_2022_135468
crossref_primary_10_1038_s41427_023_00478_9
crossref_primary_10_1080_17425247_2016_1182492
crossref_primary_10_1016_j_ijbiomac_2018_10_123
crossref_primary_10_1149_1945_7111_ace2ee
crossref_primary_10_3389_fchem_2023_1327426
crossref_primary_10_1016_j_ijbiomac_2020_05_246
crossref_primary_10_3390_ma17112724
crossref_primary_10_1016_j_carbpol_2020_116925
crossref_primary_10_3390_polym16020167
crossref_primary_10_1007_s41348_019_00248_2
crossref_primary_10_1016_j_carbpol_2018_10_012
crossref_primary_10_1016_j_foodhyd_2024_110763
crossref_primary_10_3390_polym13193256
crossref_primary_10_1016_j_carres_2024_109277
crossref_primary_10_1016_j_carbpol_2018_01_038
crossref_primary_10_1016_j_indcrop_2018_12_093
crossref_primary_10_1016_j_carbpol_2017_02_001
crossref_primary_10_1007_s43207_024_00408_7
crossref_primary_10_1016_j_ijbiomac_2022_06_028
crossref_primary_10_1080_10942912_2017_1397693
crossref_primary_10_3390_pharmaceutics11080418
crossref_primary_10_1038_srep22478
crossref_primary_10_1016_j_lwt_2016_11_022
crossref_primary_10_1007_s10856_016_5719_0
crossref_primary_10_1016_j_ijbiomac_2023_123395
crossref_primary_10_1016_j_fbio_2019_100426
crossref_primary_10_1016_j_desal_2024_118443
crossref_primary_10_1007_s12649_020_01244_6
crossref_primary_10_1016_j_ijbiomac_2023_125778
crossref_primary_10_1016_j_procbio_2023_08_011
crossref_primary_10_1016_j_carbpol_2020_117590
crossref_primary_10_1016_j_scp_2022_100713
crossref_primary_10_1016_j_ijbiomac_2019_10_222
crossref_primary_10_1016_j_carbpol_2019_02_030
crossref_primary_10_1016_j_carbpol_2020_116932
crossref_primary_10_1021_acs_molpharmaceut_2c00087
crossref_primary_10_3390_life14040435
crossref_primary_10_1088_1757_899X_206_1_012077
crossref_primary_10_1016_j_ijbiomac_2023_125665
crossref_primary_10_1007_s11164_018_3341_0
crossref_primary_10_1016_j_eurpolymj_2025_113882
crossref_primary_10_1016_j_carbpol_2024_123184
crossref_primary_10_1002_slct_202203609
crossref_primary_10_1016_j_ijbiomac_2024_131047
crossref_primary_10_1134_S0006297920140084
crossref_primary_10_1007_s10439_025_03684_4
crossref_primary_10_1016_j_ijbiomac_2022_06_059
crossref_primary_10_3390_pharmaceutics13101639
crossref_primary_10_1016_j_ijbiomac_2019_02_066
crossref_primary_10_1016_j_carbpol_2022_120438
crossref_primary_10_1016_j_ijbiomac_2019_02_068
crossref_primary_10_1016_j_carbpol_2018_09_011
crossref_primary_10_1016_j_carbpol_2021_119035
crossref_primary_10_1039_D1RA06069D
crossref_primary_10_3390_molecules26030594
Cites_doi 10.1016/j.foodcont.2006.06.008
10.1002/masy.19971200103
10.1016/S0168-1605(99)00006-9
10.4315/0362-028X-69.9.2168
10.5539/jfr.v3n2p71
10.1016/j.ijpharm.2007.11.052
10.1016/j.carbpol.2007.06.015
10.1002/jsfa.3432
10.1021/bm2012295
10.1016/j.carbpol.2005.10.021
10.1016/0142-9612(89)90066-5
10.1016/j.bej.2008.02.009
10.1016/S0144-8617(99)00084-3
10.1590/S0101-20612010000200041
10.1016/S0168-1605(01)00717-6
10.1016/j.foodhyd.2011.08.011
10.1016/j.carbpol.2005.09.023
10.1046/j.1444-2906.2002.00404.x
10.1016/j.foodcont.2013.04.042
10.1016/j.ijfoodmicro.2006.07.018
10.4315/0362-028X-72.8.1735
10.1111/j.1745-4522.2002.tb00208.x
10.1016/0144-8617(95)00010-5
10.1016/j.carbpol.2005.10.028
10.1016/j.foodchem.2014.03.019
10.4315/0362-028X-67.2.396
10.4315/0362-028X-62.3.239
10.1002/jsfa.4531
10.1111/j.1365-2621.2002.tb10314.x
10.1016/j.ijfoodmicro.2009.03.004
10.1016/S0003-2670(01)84631-6
10.1021/jf011693l
10.1016/j.foodchem.2009.02.002
10.1016/j.fm.2008.06.009
10.1016/j.meatsci.2006.10.026
10.1002/jbm.a.32040
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.carbpol.2015.07.072
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-1344
EndPage 81
ExternalDocumentID 26428102
10_1016_j_carbpol_2015_07_072
S0144861715007018
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M24
M2Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
Y6R
~G-
~KM
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HMS
HVGLF
HZ~
R2-
SCB
SEW
SMS
SOC
SSH
WUQ
XPP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c548t-2608fd1342c803ea353ad9f324058d18a06ed8f90a225e40d3c7bee772c0af8d3
IEDL.DBID .~1
ISSN 0144-8617
1879-1344
IngestDate Mon Jul 21 11:30:30 EDT 2025
Sun Aug 24 03:28:15 EDT 2025
Mon Jul 21 06:03:35 EDT 2025
Tue Jul 01 04:14:52 EDT 2025
Thu Apr 24 23:11:03 EDT 2025
Fri Feb 23 02:23:21 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Antibacterial activity
Chitosan
Zeta potential
Molecular weight
Solubility
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c548t-2608fd1342c803ea353ad9f324058d18a06ed8f90a225e40d3c7bee772c0af8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5605-5495
0000-0002-4044-9860
OpenAccessLink https://repositorio.unal.edu.co/handle/unal/81703
PMID 26428102
PQID 1718908465
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000378683
proquest_miscellaneous_1718908465
pubmed_primary_26428102
crossref_citationtrail_10_1016_j_carbpol_2015_07_072
crossref_primary_10_1016_j_carbpol_2015_07_072
elsevier_sciencedirect_doi_10_1016_j_carbpol_2015_07_072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-10
PublicationDateYYYYMMDD 2015-12-10
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Carbohydrate polymers
PublicationTitleAlternate Carbohydr Polym
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Chen, Park, Liu, Liu, Meng (bib0090) 2006; 64
Ganan, Carrascosa, Martinez-Rodriguez (bib0045) 2009; 72
Moradi, Tajik, Rohani, Oromiehie (bib0095) 2011; 91
Sekiguchi, Miura, Kaneko, Nishimura, Nishi, Iwase (bib0130) 1994
Tsai, Zhang, Shieh (bib0180) 2004; 67
No, Park, Lee, Hwang, Meyers (bib0100) 2002; 67
Tikhonov, Stepnova, Babak, Yamskov, Palma-Guerrero, Jansson (bib0150) 2006; 64
Yang, Li, Chou (bib0190) 2007; 113
Lin, Lin, Chen (bib0085) 2009; 116
Garcia, Diaz, Puerta, Beldarrain, Gonzalez, Gonzalez (bib0050) 2010; 30
Tsai, Bai, Chen (bib0185) 2008; 71
Anthonsen, Smidsrød (bib0005) 1995; 26
Krajewska, Wydro, Janczyk (bib0075) 2011; 12
No, Park, Lee, Meyers (bib0105) 2002; 74
Campaniello, Bevilacqua, Sinigaglia, Corbo (bib0010) 2008; 25
Qin, Li, Xiao, Liu, Zhu, Du (bib0110) 2006; 63
Jeon, Kamil, Shahidi (bib0065) 2002; 50
Hirano, Tsuchida, Nagao (bib0060) 1989; 10
Tsai, Su, Chen, Pan (bib0170) 2002; 68
Takahashia, Imai, Suzuki, Sawai (bib0145) 2008; 40
Tsai, Su (bib0165) 1999; 62
Roller, Covill (bib0115) 1999; 47
Chaiyakosa, Charernjiratragul, Umsakul, Vuddhakul (bib0025) 2007; 18
Siripatrawan, Noipha (bib0140) 2012; 27
Tsai, Tsai, Lee, Zhong (bib0175) 2006; 69
Saïed, Aïder (bib0120) 2014; 3
Cao, Xue, Liu (bib0015) 2009; 131
Jeon, Kim (bib0070) 2000; 41
Chung, Su, Chen, Jia, Wang, Wu (bib0035) 2004; 25
Toei, Kohara (bib0155) 1976; 83
Lin, Chen, Peng (bib0080) 2008; 89
Sadeghi, Dorkoosh, Avadi, Saadat, Rafiee-Tehrani, Junginger (bib0125) 2008; 355
Tokura, Ueno, Miyazaki, Nishi (bib0160) 1997; 120
Georgantelis, Ambrosiadis, Katikou, Blekas, Georgakis (bib0055) 2007; 76
Cao, Sun (bib0020) 2009; 89A
Chantarasataporn, Tepkasikul, Kingcha, Yoksan, Pichyangkura, Visessanguan (bib0030) 2014; 159
Cruz-Romero, Murphy, Morris, Cummins, Kerry (bib0040) 2013; 34
Shahidi, Kamil, Jeon, Kim (bib0135) 2002; 9
Cao (10.1016/j.carbpol.2015.07.072_bib0020) 2009; 89A
Tsai (10.1016/j.carbpol.2015.07.072_bib0175) 2006; 69
Garcia (10.1016/j.carbpol.2015.07.072_bib0050) 2010; 30
Krajewska (10.1016/j.carbpol.2015.07.072_bib0075) 2011; 12
Georgantelis (10.1016/j.carbpol.2015.07.072_bib0055) 2007; 76
Tokura (10.1016/j.carbpol.2015.07.072_bib0160) 1997; 120
No (10.1016/j.carbpol.2015.07.072_bib0100) 2002; 67
Sadeghi (10.1016/j.carbpol.2015.07.072_bib0125) 2008; 355
Tsai (10.1016/j.carbpol.2015.07.072_bib0180) 2004; 67
Shahidi (10.1016/j.carbpol.2015.07.072_bib0135) 2002; 9
Tikhonov (10.1016/j.carbpol.2015.07.072_bib0150) 2006; 64
Lin (10.1016/j.carbpol.2015.07.072_bib0085) 2009; 116
Yang (10.1016/j.carbpol.2015.07.072_bib0190) 2007; 113
Jeon (10.1016/j.carbpol.2015.07.072_bib0065) 2002; 50
Moradi (10.1016/j.carbpol.2015.07.072_bib0095) 2011; 91
Anthonsen (10.1016/j.carbpol.2015.07.072_bib0005) 1995; 26
Tsai (10.1016/j.carbpol.2015.07.072_bib0170) 2002; 68
Ganan (10.1016/j.carbpol.2015.07.072_bib0045) 2009; 72
No (10.1016/j.carbpol.2015.07.072_bib0105) 2002; 74
Jeon (10.1016/j.carbpol.2015.07.072_bib0070) 2000; 41
Tsai (10.1016/j.carbpol.2015.07.072_bib0185) 2008; 71
Chaiyakosa (10.1016/j.carbpol.2015.07.072_bib0025) 2007; 18
Chung (10.1016/j.carbpol.2015.07.072_bib0035) 2004; 25
Qin (10.1016/j.carbpol.2015.07.072_bib0110) 2006; 63
Siripatrawan (10.1016/j.carbpol.2015.07.072_bib0140) 2012; 27
Lin (10.1016/j.carbpol.2015.07.072_bib0080) 2008; 89
Saïed (10.1016/j.carbpol.2015.07.072_bib0120) 2014; 3
Tsai (10.1016/j.carbpol.2015.07.072_bib0165) 1999; 62
Cao (10.1016/j.carbpol.2015.07.072_bib0015) 2009; 131
Liu (10.1016/j.carbpol.2015.07.072_bib0090) 2006; 64
Sekiguchi (10.1016/j.carbpol.2015.07.072_bib0130) 1994
Toei (10.1016/j.carbpol.2015.07.072_bib0155) 1976; 83
Chantarasataporn (10.1016/j.carbpol.2015.07.072_bib0030) 2014; 159
Roller (10.1016/j.carbpol.2015.07.072_bib0115) 1999; 47
Campaniello (10.1016/j.carbpol.2015.07.072_bib0010) 2008; 25
Cruz-Romero (10.1016/j.carbpol.2015.07.072_bib0040) 2013; 34
Takahashia (10.1016/j.carbpol.2015.07.072_bib0145) 2008; 40
Hirano (10.1016/j.carbpol.2015.07.072_bib0060) 1989; 10
References_xml – volume: 26
  start-page: 303
  year: 1995
  end-page: 305
  ident: bib0005
  article-title: Hydrogen ion titration of chitosans with varying degrees of
  publication-title: Carbohydrate Polymers
– volume: 34
  start-page: 393
  year: 2013
  end-page: 397
  ident: bib0040
  article-title: Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications
  publication-title: Food Control
– volume: 120
  start-page: 1
  year: 1997
  end-page: 9
  ident: bib0160
  article-title: Molecular weight dependent antimicrobial activity by chitosan
  publication-title: Macromolecular Symposia
– volume: 41
  start-page: 133
  year: 2000
  end-page: 141
  ident: bib0070
  article-title: Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity
  publication-title: Carbohydrate Polymers
– volume: 71
  start-page: 448
  year: 2008
  end-page: 457
  ident: bib0185
  article-title: Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle
  publication-title: Carbohydrate Polymers
– volume: 12
  start-page: 4144
  year: 2011
  end-page: 4152
  ident: bib0075
  article-title: Probing the modes of antibacterial activity of chitosan. Effects of pH and molecular weight on chitosan interactions with membrane lipids in langmuir films
  publication-title: Biomacromolecules
– volume: 68
  start-page: 170
  year: 2002
  end-page: 177
  ident: bib0170
  article-title: Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation
  publication-title: Fisheries Science
– volume: 63
  start-page: 367
  year: 2006
  end-page: 374
  ident: bib0110
  article-title: Water-solubility of chitosan and its antimicrobial activity
  publication-title: Carbohydrate Polymers
– volume: 40
  start-page: 485
  year: 2008
  end-page: 491
  ident: bib0145
  article-title: Growth inhibitory effect on bacteria of chitosan membranes regulated with deacetylation degree
  publication-title: Biochemical Engineering Journal
– volume: 116
  start-page: 47
  year: 2009
  end-page: 53
  ident: bib0085
  article-title: Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: characterisation and antibacterial activity
  publication-title: Food Chemistry
– volume: 10
  start-page: 574
  year: 1989
  end-page: 576
  ident: bib0060
  article-title: -Acetylation in chitosan and the rate of its enzymic hydrolysis
  publication-title: Biomaterials
– volume: 355
  start-page: 299
  year: 2008
  end-page: 306
  ident: bib0125
  article-title: Preparation, characterization and antibacterial activities of chitosan,
  publication-title: International Journal of Pharmaceutics
– volume: 67
  start-page: 1511
  year: 2002
  end-page: 1514
  ident: bib0100
  article-title: Antibacterial activities of chitosans and chitosan oligomers with different molecular weights on spoilage bacteria isolated from tofu
  publication-title: Journal of Food Science
– volume: 89A
  start-page: 960
  year: 2009
  end-page: 967
  ident: bib0020
  article-title: Chitosan-based rechargeable long-term antimicrobial and biofilm-controlling systems
  publication-title: Journal of Biomedical Materials Research Part A
– volume: 27
  start-page: 102
  year: 2012
  end-page: 108
  ident: bib0140
  article-title: Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages
  publication-title: Food Hydrocolloids
– volume: 30
  start-page: 560
  year: 2010
  end-page: 564
  ident: bib0050
  article-title: Influence of chitosan addition on quality properties of vacuum-packaged pork sausages
  publication-title: Ciencia E Tecnologia De Alimentos
– volume: 89
  start-page: 238
  year: 2008
  end-page: 244
  ident: bib0080
  article-title: Preparation of antibacterial chito-oligosaccharide by altering the degree of deacetylation of β-chitosan in a
  publication-title: Journal of the Science of Food and Agriculture
– volume: 9
  start-page: 57
  year: 2002
  end-page: 64
  ident: bib0135
  article-title: Antioxidant role of chitosan in a cooked cod (
  publication-title: Journal of Food Lipids
– volume: 76
  start-page: 172
  year: 2007
  end-page: 181
  ident: bib0055
  article-title: Effect of rosemary extract, chitosan and alpha-tocopherol on microbiological parameters and lipid oxidation of fresh pork sausages stored at 4 degrees C
  publication-title: Meat Science
– volume: 83
  start-page: 59
  year: 1976
  end-page: 65
  ident: bib0155
  article-title: A conductomeric method for colloid titrations
  publication-title: Analytica Chimica Acta
– volume: 74
  start-page: 65
  year: 2002
  end-page: 72
  ident: bib0105
  article-title: Antibacterial activity of chitosans and chitosan oligomers with different molecular weights
  publication-title: International Journal of Food Microbiology
– volume: 67
  start-page: 396
  year: 2004
  end-page: 398
  ident: bib0180
  article-title: Antimicrobial activity of a low-molecular-weight chitosan obtained from cellulase digestion of chitosan
  publication-title: Journal of Food Protection
– volume: 25
  start-page: 992
  year: 2008
  end-page: 1000
  ident: bib0010
  article-title: Chitosan: antimicrobial activity and potential applications for preserving minimally processed strawberries
  publication-title: Food Microbiology
– volume: 64
  start-page: 60
  year: 2006
  end-page: 65
  ident: bib0090
  article-title: Effect of MW and concentration of chitosan on antibacterial activity of
  publication-title: Carbohydrate Polymers
– volume: 72
  start-page: 1735
  year: 2009
  end-page: 1738
  ident: bib0045
  article-title: Antimicrobial activity of chitosan against
  publication-title: Journal of Food Protection
– volume: 91
  start-page: 2850
  year: 2011
  end-page: 2857
  ident: bib0095
  article-title: Effectiveness of
  publication-title: Journal of the Science of Food and Agriculture
– volume: 131
  start-page: 272
  year: 2009
  end-page: 276
  ident: bib0015
  article-title: Changes in microbial flora of Pacific oysters (
  publication-title: International Journal of Food Microbiology
– volume: 64
  start-page: 66
  year: 2006
  end-page: 72
  ident: bib0150
  article-title: Bactericidal and antifungal activities of a low molecular weight chitosan and its
  publication-title: Carbohydrate Polymers
– volume: 50
  start-page: 5167
  year: 2002
  end-page: 5178
  ident: bib0065
  article-title: Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 69
  start-page: 2168
  year: 2006
  end-page: 2175
  ident: bib0175
  article-title: Effects of chitosan and a low-molecular-weight chitosan on
  publication-title: Journal of Food Protection
– volume: 18
  start-page: 1031
  year: 2007
  end-page: 1035
  ident: bib0025
  article-title: Comparing the efficiency of chitosan with chlorine for reducing
  publication-title: Food Control
– volume: 47
  start-page: 67
  year: 1999
  end-page: 77
  ident: bib0115
  article-title: The antifungal properties of chitosan in laboratory media and apple juice
  publication-title: International Journal of Food Microbiology
– start-page: 71
  year: 1994
  end-page: 76
  ident: bib0130
  article-title: Molecular weight dependency of antimicrobial activity by chitosan oligomers
  publication-title: Food hydrocolloids: structure, properties and functions
– volume: 159
  start-page: 463
  year: 2014
  end-page: 470
  ident: bib0030
  article-title: Water-based oligochitosan and nanowhisker chitosan as potential food preservatives for shelf-life extension of minced pork
  publication-title: Food Chemistry
– volume: 3
  start-page: 71
  year: 2014
  end-page: 81
  ident: bib0120
  article-title: Zeta potential and turbidimetry analyzes for the evaluation of chitosan/phytic acid complex formation
  publication-title: Journal of Food Research
– volume: 25
  start-page: 932
  year: 2004
  end-page: 936
  ident: bib0035
  article-title: Relationship between antibacterial activity of chitosan and surface characteristics of cell wall
  publication-title: Acta Pharmacologica Sinica
– volume: 62
  start-page: 239
  year: 1999
  end-page: 243
  ident: bib0165
  article-title: Antibacterial activity of shrimp chitosan against
  publication-title: Journal of Food Protection
– volume: 113
  start-page: 258
  year: 2007
  end-page: 262
  ident: bib0190
  article-title: Cell age, suspending medium and metal ion influence the susceptibility of
  publication-title: International Journal of Food Microbiology
– volume: 18
  start-page: 1031
  issue: 9
  year: 2007
  ident: 10.1016/j.carbpol.2015.07.072_bib0025
  article-title: Comparing the efficiency of chitosan with chlorine for reducing Vibrio parahaemolyticus in shrimp
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2006.06.008
– volume: 120
  start-page: 1
  year: 1997
  ident: 10.1016/j.carbpol.2015.07.072_bib0160
  article-title: Molecular weight dependent antimicrobial activity by chitosan
  publication-title: Macromolecular Symposia
  doi: 10.1002/masy.19971200103
– volume: 47
  start-page: 67
  issue: 1–2
  year: 1999
  ident: 10.1016/j.carbpol.2015.07.072_bib0115
  article-title: The antifungal properties of chitosan in laboratory media and apple juice
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/S0168-1605(99)00006-9
– volume: 69
  start-page: 2168
  issue: 9
  year: 2006
  ident: 10.1016/j.carbpol.2015.07.072_bib0175
  article-title: Effects of chitosan and a low-molecular-weight chitosan on Bacillus cereus and application in the preservation of cooked rice
  publication-title: Journal of Food Protection
  doi: 10.4315/0362-028X-69.9.2168
– volume: 3
  start-page: 71
  issue: 2
  year: 2014
  ident: 10.1016/j.carbpol.2015.07.072_bib0120
  article-title: Zeta potential and turbidimetry analyzes for the evaluation of chitosan/phytic acid complex formation
  publication-title: Journal of Food Research
  doi: 10.5539/jfr.v3n2p71
– volume: 355
  start-page: 299
  issue: 1–2
  year: 2008
  ident: 10.1016/j.carbpol.2015.07.072_bib0125
  article-title: Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods
  publication-title: International Journal of Pharmaceutics
  doi: 10.1016/j.ijpharm.2007.11.052
– volume: 71
  start-page: 448
  issue: 3
  year: 2008
  ident: 10.1016/j.carbpol.2015.07.072_bib0185
  article-title: Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2007.06.015
– volume: 89
  start-page: 238
  issue: 2
  year: 2008
  ident: 10.1016/j.carbpol.2015.07.072_bib0080
  article-title: Preparation of antibacterial chito-oligosaccharide by altering the degree of deacetylation of β-chitosan in a Trichoderma harzianum chitinase-hydrolysing process
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.3432
– volume: 12
  start-page: 4144
  issue: 11
  year: 2011
  ident: 10.1016/j.carbpol.2015.07.072_bib0075
  article-title: Probing the modes of antibacterial activity of chitosan. Effects of pH and molecular weight on chitosan interactions with membrane lipids in langmuir films
  publication-title: Biomacromolecules
  doi: 10.1021/bm2012295
– volume: 64
  start-page: 66
  issue: 1
  year: 2006
  ident: 10.1016/j.carbpol.2015.07.072_bib0150
  article-title: Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl) succinoyl/-derivatives
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2005.10.021
– volume: 10
  start-page: 574
  issue: 8
  year: 1989
  ident: 10.1016/j.carbpol.2015.07.072_bib0060
  article-title: N-Acetylation in chitosan and the rate of its enzymic hydrolysis
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(89)90066-5
– volume: 40
  start-page: 485
  issue: 3
  year: 2008
  ident: 10.1016/j.carbpol.2015.07.072_bib0145
  article-title: Growth inhibitory effect on bacteria of chitosan membranes regulated with deacetylation degree
  publication-title: Biochemical Engineering Journal
  doi: 10.1016/j.bej.2008.02.009
– volume: 41
  start-page: 133
  issue: 2
  year: 2000
  ident: 10.1016/j.carbpol.2015.07.072_bib0070
  article-title: Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity
  publication-title: Carbohydrate Polymers
  doi: 10.1016/S0144-8617(99)00084-3
– volume: 30
  start-page: 560
  issue: 2
  year: 2010
  ident: 10.1016/j.carbpol.2015.07.072_bib0050
  article-title: Influence of chitosan addition on quality properties of vacuum-packaged pork sausages
  publication-title: Ciencia E Tecnologia De Alimentos
  doi: 10.1590/S0101-20612010000200041
– volume: 74
  start-page: 65
  issue: 1–2
  year: 2002
  ident: 10.1016/j.carbpol.2015.07.072_bib0105
  article-title: Antibacterial activity of chitosans and chitosan oligomers with different molecular weights
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/S0168-1605(01)00717-6
– volume: 27
  start-page: 102
  issue: 1
  year: 2012
  ident: 10.1016/j.carbpol.2015.07.072_bib0140
  article-title: Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2011.08.011
– volume: 25
  start-page: 932
  issue: 7
  year: 2004
  ident: 10.1016/j.carbpol.2015.07.072_bib0035
  article-title: Relationship between antibacterial activity of chitosan and surface characteristics of cell wall
  publication-title: Acta Pharmacologica Sinica
– volume: 63
  start-page: 367
  issue: 3
  year: 2006
  ident: 10.1016/j.carbpol.2015.07.072_bib0110
  article-title: Water-solubility of chitosan and its antimicrobial activity
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2005.09.023
– volume: 68
  start-page: 170
  issue: 1
  year: 2002
  ident: 10.1016/j.carbpol.2015.07.072_bib0170
  article-title: Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation
  publication-title: Fisheries Science
  doi: 10.1046/j.1444-2906.2002.00404.x
– volume: 34
  start-page: 393
  issue: 2
  year: 2013
  ident: 10.1016/j.carbpol.2015.07.072_bib0040
  article-title: Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2013.04.042
– volume: 113
  start-page: 258
  issue: 3
  year: 2007
  ident: 10.1016/j.carbpol.2015.07.072_bib0190
  article-title: Cell age, suspending medium and metal ion influence the susceptibility of Escherichia coli O157: H7 to water-soluble maltose chitosan derivative
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2006.07.018
– volume: 72
  start-page: 1735
  issue: 8
  year: 2009
  ident: 10.1016/j.carbpol.2015.07.072_bib0045
  article-title: Antimicrobial activity of chitosan against Campylobacter spp. and other microorganisms and its mechanism of action
  publication-title: Journal of Food Protection
  doi: 10.4315/0362-028X-72.8.1735
– volume: 9
  start-page: 57
  issue: 1
  year: 2002
  ident: 10.1016/j.carbpol.2015.07.072_bib0135
  article-title: Antioxidant role of chitosan in a cooked cod (Gadus morhua) model system
  publication-title: Journal of Food Lipids
  doi: 10.1111/j.1745-4522.2002.tb00208.x
– volume: 26
  start-page: 303
  issue: 4
  year: 1995
  ident: 10.1016/j.carbpol.2015.07.072_bib0005
  article-title: Hydrogen ion titration of chitosans with varying degrees of N-acetylation by monitoring induced 1H NMR chemical shifts
  publication-title: Carbohydrate Polymers
  doi: 10.1016/0144-8617(95)00010-5
– volume: 64
  start-page: 60
  issue: 1
  year: 2006
  ident: 10.1016/j.carbpol.2015.07.072_bib0090
  article-title: Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2005.10.028
– volume: 159
  start-page: 463
  year: 2014
  ident: 10.1016/j.carbpol.2015.07.072_bib0030
  article-title: Water-based oligochitosan and nanowhisker chitosan as potential food preservatives for shelf-life extension of minced pork
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2014.03.019
– volume: 67
  start-page: 396
  issue: 2
  year: 2004
  ident: 10.1016/j.carbpol.2015.07.072_bib0180
  article-title: Antimicrobial activity of a low-molecular-weight chitosan obtained from cellulase digestion of chitosan
  publication-title: Journal of Food Protection
  doi: 10.4315/0362-028X-67.2.396
– start-page: 71
  year: 1994
  ident: 10.1016/j.carbpol.2015.07.072_bib0130
  article-title: Molecular weight dependency of antimicrobial activity by chitosan oligomers
– volume: 62
  start-page: 239
  issue: 3
  year: 1999
  ident: 10.1016/j.carbpol.2015.07.072_bib0165
  article-title: Antibacterial activity of shrimp chitosan against Escherichia coli
  publication-title: Journal of Food Protection
  doi: 10.4315/0362-028X-62.3.239
– volume: 91
  start-page: 2850
  issue: 15
  year: 2011
  ident: 10.1016/j.carbpol.2015.07.072_bib0095
  article-title: Effectiveness of Zataria multiflora Boiss essential oil and grape seed extract impregnated chitosan film on ready-to-eat mortadella-type sausages during refrigerated storage
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.4531
– volume: 67
  start-page: 1511
  issue: 4
  year: 2002
  ident: 10.1016/j.carbpol.2015.07.072_bib0100
  article-title: Antibacterial activities of chitosans and chitosan oligomers with different molecular weights on spoilage bacteria isolated from tofu
  publication-title: Journal of Food Science
  doi: 10.1111/j.1365-2621.2002.tb10314.x
– volume: 131
  start-page: 272
  issue: 2–3
  year: 2009
  ident: 10.1016/j.carbpol.2015.07.072_bib0015
  article-title: Changes in microbial flora of Pacific oysters (Crassostrea gigas) during refrigerated storage and its shelf-life extension by chitosan
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2009.03.004
– volume: 83
  start-page: 59
  year: 1976
  ident: 10.1016/j.carbpol.2015.07.072_bib0155
  article-title: A conductomeric method for colloid titrations
  publication-title: Analytica Chimica Acta
  doi: 10.1016/S0003-2670(01)84631-6
– volume: 50
  start-page: 5167
  issue: 18
  year: 2002
  ident: 10.1016/j.carbpol.2015.07.072_bib0065
  article-title: Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf011693l
– volume: 116
  start-page: 47
  issue: 1
  year: 2009
  ident: 10.1016/j.carbpol.2015.07.072_bib0085
  article-title: Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: characterisation and antibacterial activity
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2009.02.002
– volume: 25
  start-page: 992
  issue: 8
  year: 2008
  ident: 10.1016/j.carbpol.2015.07.072_bib0010
  article-title: Chitosan: antimicrobial activity and potential applications for preserving minimally processed strawberries
  publication-title: Food Microbiology
  doi: 10.1016/j.fm.2008.06.009
– volume: 76
  start-page: 172
  issue: 1
  year: 2007
  ident: 10.1016/j.carbpol.2015.07.072_bib0055
  article-title: Effect of rosemary extract, chitosan and alpha-tocopherol on microbiological parameters and lipid oxidation of fresh pork sausages stored at 4 degrees C
  publication-title: Meat Science
  doi: 10.1016/j.meatsci.2006.10.026
– volume: 89A
  start-page: 960
  issue: 4
  year: 2009
  ident: 10.1016/j.carbpol.2015.07.072_bib0020
  article-title: Chitosan-based rechargeable long-term antimicrobial and biofilm-controlling systems
  publication-title: Journal of Biomedical Materials Research Part A
  doi: 10.1002/jbm.a.32040
SSID ssj0000610
Score 2.596228
Snippet •Six chitosans with molecular weights ranging from 3.3 to 300kDa were prepared.•Combined effects of chitosan MW, temperature, pH on bacterial growth were...
Six chitosans with molecular weights (MWs) of 300, 156, 72.1, 29.2, 7.1, and 3.3 kDa were prepared by cellulase degradation of chitosan (300 kDa) and...
Six chitosans with molecular weights (MWs) of 300, 156, 72.1, 29.2, 7.1, and 3.3kDa were prepared by cellulase degradation of chitosan (300kDa) and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 74
SubjectTerms Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antibacterial activity
antibacterial properties
bacteria
Chitosan
Chitosan - analogs & derivatives
Chitosan - pharmacology
endo-1,4-beta-glucanase
Escherichia coli
Escherichia coli - drug effects
Escherichia coli Infections - prevention & control
Food Microbiology - methods
Humans
Hydrogen-Ion Concentration
Microbial Sensitivity Tests
Molecular Weight
Solubility
Staphylococcal Infections - prevention & control
Staphylococcus aureus
Staphylococcus aureus - drug effects
Static Electricity
temperature
ultrafiltration
water solubility
Zeta potential
Title pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan
URI https://dx.doi.org/10.1016/j.carbpol.2015.07.072
https://www.ncbi.nlm.nih.gov/pubmed/26428102
https://www.proquest.com/docview/1718908465
https://www.proquest.com/docview/2000378683
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS-UwEA7iHvQirj-f7koEj9aXJmmbHuWx8nZFTwreQpKm8ETb4quIHvzbnUlbdQ8PQeilZUJD5uvMpJn5hpAjgERieZ5GypQsQn72yDhuI2xz69Ii8yKQPV9cptNr-e8muVkik6EWBtMqe9vf2fRgrfsn4341x81sNsa0JKnAAUNIA7iNseBXygxRfvIaf7LGgZEAhSOU_qjiGd_CFvDBNjWeQMRJ4PDM-CL_tCj-DH7obJ2s9QEkPe3m-JMs-WqDrEyGvm2b5LmZ0o6TeE7riiK2QgLs8zF98a2hTd1ihpC5O6amKqjD9hxdQhztk7bgeTuzHY0zvApLH7DDRBC_H9rp0qfwU5XWJcWjiHpuqi1yffbnajKN-gYLkYONShvBXkaVRSwkd4oJb0QiTJGXyNGXqCJWhqW-UGXODHz1XrJCuMx6DwG5Y6ZUhdgmy1Vd-V1CneOwiHmZOh9Lk9nc5jLmxgpu08xm-YjIYVm169nHsQnGnR7SzG51rw2N2tAsg4uPyMn7sKaj3_hqgBp0pv_DkQYX8dXQw0HHGlSGByem8vXjXAPGVM4gUksWy_BA5aNSJUZkpwPI-4w5bvIgktv7_uT2ySreYSJNzH6R5fbh0f-GcKi1BwHvB-TH6d_z6eUbJfQLHA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReqCXqg-g21LqShwJ69h5OEe0Am1b4AQSN8t2HGkRTSI2qKIHfjszTgLtYYWElJMzVizPeGYcj78PYA9NIrWiyCJlKh4RPntknLAR0dy6rMy9DGDPp2fZ_CL5eZlersFsvAtDZZWD7-99evDWQ8t0mM1pu1hMqSwpURiAMaVBu43VK3id4PIlGoOD-_gfdxwgCUg6IvGnazzTK9wD3ti2oSOIOA0gnrlYFaBWJaAhEB2_g7dDBskO-0G-hzVff4CN2Ujc9hHu2jnrQYmXrKkZGVeogL3bZ399Z1jbdFQiZK73malL5oifo6-IY0PVFrZ3C9vjOOOn6O4DUUwE8d8jny77E_6qsqZidBbRLE29CRfHR-ezeTQwLEQOdypdhJsZVZWxTIRTXHojU2nKoiKQvlSVsTI886WqCm5w2fuEl9Ll1nvMyB03lSrlFqzXTe0_AXNO4CQWVeZ8nJjcFrZIYmGsFDbLbV5MIBmnVbsBfpxYMK71WGd2pQdtaNKG5jk-YgIHj93aHn_juQ5q1Jn-z5A0xojnun4fdaxRZXRyYmrf3C41GpkqOKZq6WoZEbB8VKbkBLZ7A3kcsaBdHqZyn18-uG-wMT8_PdEnP85-fYE39IaqamK-A-vdza3_irlRZ3eD7T8AIhMMqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pH+Effects+on+solubility%2C+zeta+potential%2C+and+correlation+between+antibacterial+activity+and+molecular+weight+of+chitosan&rft.jtitle=Carbohydrate+polymers&rft.au=Chang%2C+Shun-Hsien&rft.au=Lin%2C+Hong-Ting+Victor&rft.au=Wu%2C+Guan-James&rft.au=Tsai%2C+Guo+Jane&rft.date=2015-12-10&rft.issn=1879-1344&rft.eissn=1879-1344&rft.volume=134&rft.spage=74&rft_id=info:doi/10.1016%2Fj.carbpol.2015.07.072&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon