Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently

Summary Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate‐mediated niche partitioning (i.e. distinct fundamental niches), or by competition for...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 30; no. 12; pp. 1967 - 1978
Main Authors Bödeker, Inga T. M., Lindahl, Björn D., Olson, Ake, Clemmensen, Karina E.
Format Journal Article
LanguageEnglish
Published London Wiley 01.12.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate‐mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways. Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities – fresh or partly decomposed litter or humus – were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454‐pyrosequencing and decomposition was analyzed. Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate‐dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root‐associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth‐related differences in decomposer activities during the first season. In conclusion, our results suggest that saprotrophic and root‐associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate‐dependent depth partitioning in soils of ectomycorrhiza‐dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs. A lay summary is available for this article. Lay Summary
AbstractList 1. Communities of litter saprotrophic and root-associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate-mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways. 2. Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities - fresh or partly decomposed litter or humus - were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454-pyrosequencing and decomposition was analyzed. 3. Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate-dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root-associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth-related differences in decomposer activities during the first season. 4. In conclusion, our results suggest that saprotrophic and root-associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate-dependent depth partitioning in soils of ectomycorrhiza-dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs. A lay summary is available for this article. Lay Summary
1. Communities of litter saprotrophic and root-associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate-mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways.2. Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities-fresh or partly decomposed litter or humus -were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454-pyrosequencing and decomposition was analyzed.3. Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate-dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root-associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth-related differences in decomposer activities during the first season.4. In conclusion, our results suggest that saprotrophic and root-associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate-dependent depth partitioning in soils of ectomycorrhiza-dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs.
Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate‐mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways. Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities – fresh or partly decomposed litter or humus – were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454‐pyrosequencing and decomposition was analyzed. Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate‐dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root‐associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth‐related differences in decomposer activities during the first season. In conclusion, our results suggest that saprotrophic and root‐associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate‐dependent depth partitioning in soils of ectomycorrhiza‐dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs. A lay summary is available for this article.
Summary Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate‐mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways. Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities – fresh or partly decomposed litter or humus – were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454‐pyrosequencing and decomposition was analyzed. Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate‐dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root‐associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth‐related differences in decomposer activities during the first season. In conclusion, our results suggest that saprotrophic and root‐associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate‐dependent depth partitioning in soils of ectomycorrhiza‐dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs. A lay summary is available for this article. Lay Summary
Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate‐mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways. Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities – fresh or partly decomposed litter or humus – were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454‐pyrosequencing and decomposition was analyzed. Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate‐dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root‐associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth‐related differences in decomposer activities during the first season. In conclusion, our results suggest that saprotrophic and root‐associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate‐dependent depth partitioning in soils of ectomycorrhiza‐dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs. A lay summary is available for this article.
Author Clemmensen, Karina E.
Bödeker, Inga T. M.
Olson, Ake
Lindahl, Björn D.
Author_xml – sequence: 1
  givenname: Inga T. M.
  surname: Bödeker
  fullname: Bödeker, Inga T. M.
– sequence: 2
  givenname: Björn D.
  surname: Lindahl
  fullname: Lindahl, Björn D.
– sequence: 3
  givenname: Ake
  surname: Olson
  fullname: Olson, Ake
– sequence: 4
  givenname: Karina E.
  surname: Clemmensen
  fullname: Clemmensen, Karina E.
BackLink https://res.slu.se/id/publ/79927$$DView record from Swedish Publication Index
BookMark eNqFkc9rFDEUx4NUcFs9exICXrxMO_k1SY6ytCpUvOg5ZDIvu1lmJ2uSYVn_ejNu20NBGgIPXj7fF973e4kupjgBQu9Je03quSGsEw3lTFwT2kn5Cq2eOhdo1dJON4p37A26zHnXtq0WlK7Q8fvJxZS24Y8dsZ0GnO0hxZLiYRsc9vO0qf3NHMYhYxf3ByiAfUy4bKGie8AxbexU0Tz3uSRbION-Lth6D67gARZRzKGEOOEh1G6CqYynt-i1t2OGdw_1Cv26u_25_trc__jybf35vnGCK9n0ivedsHSQbvB6oL3y3HdaEK5hoMBbThmToKntXT94yzquOTDCJet0fWJXqDnPzUc4zL05pLC36WSiDSaPc2_TUkwGI7WmsvKfznx14fcMuZh9yA7G0U4Q52xodY4TzUn7IkqU0FzKeiv68Rm6i3Oa6uKGMsmZVlKpSokz5VLMOYE3LhS7OFeNDaMhrVmSNkuuZsnV_Eu66m6e6R63_L_i4adjGOH0Em7ubtePug9n3S6XmJ50XAlFmeDsL8MixtA
CitedBy_id crossref_primary_10_1016_j_funeco_2024_101409
crossref_primary_10_1039_C7EN00784A
crossref_primary_10_1080_14888386_2018_1500307
crossref_primary_10_3389_ffgc_2023_791766
crossref_primary_10_1016_j_geoderma_2021_115662
crossref_primary_10_1111_1462_2920_15690
crossref_primary_10_1016_j_soilbio_2020_107966
crossref_primary_10_1002_ppp3_10193
crossref_primary_10_1007_s00248_020_01540_7
crossref_primary_10_3390_f15081378
crossref_primary_10_1128_AEM_02541_20
crossref_primary_10_1016_j_funeco_2023_101246
crossref_primary_10_3390_jof8080807
crossref_primary_10_3390_microorganisms12112136
crossref_primary_10_1016_j_jenvman_2023_118119
crossref_primary_10_1016_j_soilbio_2023_109186
crossref_primary_10_1111_nph_18954
crossref_primary_10_1002_ecy_2075
crossref_primary_10_1128_spectrum_04578_22
crossref_primary_10_3389_fpls_2021_682142
crossref_primary_10_1111_nph_17572
crossref_primary_10_1007_s00442_020_04838_y
crossref_primary_10_1111_nph_15035
crossref_primary_10_3389_fpls_2022_873204
crossref_primary_10_1007_s00248_024_02374_3
crossref_primary_10_1016_j_scitotenv_2022_153565
crossref_primary_10_1111_ele_12712
crossref_primary_10_1016_j_scitotenv_2022_161008
crossref_primary_10_1016_j_foreco_2020_117920
crossref_primary_10_3389_fmicb_2019_00656
crossref_primary_10_3390_biology10101051
crossref_primary_10_1016_j_pedobi_2023_150889
crossref_primary_10_1038_s41396_019_0436_6
crossref_primary_10_1111_nph_19471
crossref_primary_10_1016_j_foreco_2022_120658
crossref_primary_10_1128_AEM_02061_17
crossref_primary_10_1128_spectrum_01546_24
crossref_primary_10_3390_d14121122
crossref_primary_10_3389_fmicb_2021_634325
crossref_primary_10_1007_s11104_021_04950_9
crossref_primary_10_1111_nph_18307
crossref_primary_10_1111_nph_15679
crossref_primary_10_1111_1365_2435_13701
crossref_primary_10_1016_j_ecolind_2023_110574
crossref_primary_10_1038_ismej_2016_184
crossref_primary_10_3390_microorganisms9091943
crossref_primary_10_1016_j_foreco_2021_119182
crossref_primary_10_1111_ele_12801
crossref_primary_10_1111_nph_16598
crossref_primary_10_3389_fenvs_2024_1407291
crossref_primary_10_1111_1365_2745_13529
crossref_primary_10_3389_fmicb_2024_1379825
crossref_primary_10_1111_1365_2745_12833
crossref_primary_10_3389_fmicb_2022_948875
crossref_primary_10_1016_j_scitotenv_2020_139173
crossref_primary_10_1016_j_scitotenv_2020_143945
crossref_primary_10_1111_mec_14246
crossref_primary_10_1111_nph_15380
crossref_primary_10_1111_pce_14413
crossref_primary_10_1093_femsec_fiae092
crossref_primary_10_1016_j_soilbio_2019_107526
crossref_primary_10_1016_j_soilbio_2023_109288
crossref_primary_10_5194_bg_21_1037_2024
crossref_primary_10_1038_s41396_018_0181_2
crossref_primary_10_1007_s11104_017_3393_8
crossref_primary_10_1111_ejss_13303
crossref_primary_10_1111_nph_19748
crossref_primary_10_1093_femsec_fiab022
crossref_primary_10_1016_j_scitotenv_2024_172349
crossref_primary_10_1007_s11104_018_3877_1
crossref_primary_10_1007_s11557_018_1405_6
crossref_primary_10_1016_j_funeco_2024_101342
crossref_primary_10_3390_f14112226
crossref_primary_10_1007_s11104_020_04616_y
crossref_primary_10_1016_j_apsoil_2019_103393
crossref_primary_10_1016_j_ecolind_2017_09_021
crossref_primary_10_3390_microorganisms10101997
crossref_primary_10_1111_1365_2435_13832
crossref_primary_10_1016_j_scitotenv_2024_170741
crossref_primary_10_1111_nph_17155
crossref_primary_10_1111_nph_18521
crossref_primary_10_1016_j_funeco_2024_101359
crossref_primary_10_3390_microorganisms12091915
crossref_primary_10_29244_agrokreatif_9_2_206_224
crossref_primary_10_1007_s00248_022_01973_2
crossref_primary_10_1007_s10342_023_01591_8
crossref_primary_10_1016_j_soilbio_2020_107734
crossref_primary_10_1016_j_pedsph_2024_08_009
crossref_primary_10_1016_j_apsoil_2022_104508
crossref_primary_10_1016_j_micres_2023_127588
crossref_primary_10_1007_s10342_019_01176_4
crossref_primary_10_1007_s11104_019_04398_y
crossref_primary_10_1007_s42729_022_01078_2
crossref_primary_10_3389_fpls_2022_1069730
crossref_primary_10_1146_annurev_ecolsys_012021_114902
crossref_primary_10_1007_s11104_025_07259_z
crossref_primary_10_1094_MPMI_07_19_0198_R
crossref_primary_10_3390_f13122162
crossref_primary_10_1111_nph_16228
crossref_primary_10_1111_nph_14603
crossref_primary_10_1007_s10021_021_00712_x
crossref_primary_10_1111_nph_16749
crossref_primary_10_1111_nph_17661
crossref_primary_10_3389_fmicb_2020_562775
crossref_primary_10_3390_f14020372
crossref_primary_10_1111_ele_12862
crossref_primary_10_1111_nph_18353
crossref_primary_10_3390_biology11040531
crossref_primary_10_1111_nph_15884
crossref_primary_10_1007_s00374_020_01507_3
crossref_primary_10_1111_gcb_14722
crossref_primary_10_1016_j_gecco_2025_e03472
crossref_primary_10_1007_s10021_021_00655_3
crossref_primary_10_1016_j_soilbio_2018_12_014
crossref_primary_10_1093_femsec_fiy232
crossref_primary_10_3389_fmicb_2022_1033824
crossref_primary_10_1111_gcb_17030
crossref_primary_10_1002_ldr_3771
crossref_primary_10_1016_j_soilbio_2019_02_005
crossref_primary_10_1128_mSystems_00344_21
crossref_primary_10_3389_fpls_2019_00214
crossref_primary_10_1016_j_apsoil_2021_104064
crossref_primary_10_1111_gcb_17276
crossref_primary_10_1007_s42965_019_00038_9
crossref_primary_10_1016_j_apsoil_2024_105572
crossref_primary_10_3390_jof8101112
crossref_primary_10_1016_j_soilbio_2020_107919
crossref_primary_10_1016_j_jes_2023_10_021
crossref_primary_10_1007_s00253_023_12480_w
crossref_primary_10_1038_s41396_017_0027_3
crossref_primary_10_1007_s11104_022_05374_9
crossref_primary_10_1111_brv_13180
crossref_primary_10_3390_microorganisms8010001
crossref_primary_10_3389_fmicb_2022_967565
crossref_primary_10_1007_s11356_022_20317_8
crossref_primary_10_1007_s11104_023_06211_3
crossref_primary_10_3389_fmicb_2023_1160683
crossref_primary_10_1007_s00572_017_0806_8
crossref_primary_10_1016_j_geoderma_2020_114424
crossref_primary_10_1111_brv_12538
crossref_primary_10_7717_peerj_9750
crossref_primary_10_3389_fevo_2021_641732
crossref_primary_10_1007_s00248_020_01509_6
crossref_primary_10_1016_S1002_0160_19_60808_8
crossref_primary_10_3389_fpls_2022_926941
crossref_primary_10_1007_s11676_024_01751_5
crossref_primary_10_1007_s00253_024_13298_w
crossref_primary_10_1111_1365_2745_12918
crossref_primary_10_3389_ffgc_2020_00047
crossref_primary_10_1007_s10530_021_02649_7
crossref_primary_10_1016_j_apsoil_2023_105147
crossref_primary_10_1098_rspb_2022_0130
crossref_primary_10_3390_f10100824
crossref_primary_10_1093_femsec_fiz149
crossref_primary_10_3390_microorganisms8111828
crossref_primary_10_1111_nph_16390
crossref_primary_10_1007_s00248_019_01418_3
crossref_primary_10_1016_j_soilbio_2023_108952
crossref_primary_10_1016_j_foreco_2018_11_005
crossref_primary_10_1016_j_soilbio_2023_109244
crossref_primary_10_1016_j_soilbio_2018_07_008
crossref_primary_10_1007_s10533_021_00830_7
crossref_primary_10_1111_oik_08065
crossref_primary_10_12677_AEP_2022_126146
crossref_primary_10_3390_f15040603
crossref_primary_10_1016_j_soilbio_2024_109440
crossref_primary_10_3389_fmicb_2022_920618
crossref_primary_10_3390_jof9050509
crossref_primary_10_1093_femsec_fiz133
crossref_primary_10_1007_s10021_022_00788_z
crossref_primary_10_1016_j_envres_2024_120402
crossref_primary_10_1016_j_funeco_2020_100985
crossref_primary_10_1111_nph_16269
crossref_primary_10_1111_nph_15454
crossref_primary_10_3389_fmicb_2017_01281
crossref_primary_10_1007_s10533_023_01087_y
crossref_primary_10_3390_agronomy12102357
crossref_primary_10_1002_ldr_4671
crossref_primary_10_3390_microorganisms9102131
crossref_primary_10_1016_j_geoderma_2020_114646
crossref_primary_10_3390_f16010138
crossref_primary_10_3389_fmicb_2021_620309
crossref_primary_10_1016_j_scitotenv_2024_170259
crossref_primary_10_1016_j_ecoenv_2024_116583
crossref_primary_10_3389_ffgc_2019_00006
crossref_primary_10_1016_j_apsoil_2021_104095
crossref_primary_10_1016_j_funeco_2023_101251
Cites_doi 10.1890/09-2237.1
10.1007/978-3-642-75168-4
10.1007/BF00335839
10.1007/978-94-010-0694-1
10.1139/b82-199
10.1017/S0269915X04002046
10.1016/S0038-0717(99)00178-9
10.1111/j.1461-0248.2011.01611.x
10.1111/j.1574-6941.2012.01437.x
10.1038/ismej.2010.19
10.1093/treephys/21.2-3.71
10.1111/j.1469-8137.2004.01159.x
10.1111/j.1469-8137.2007.01984.x
10.1111/nph.12791
10.1890/12-1693.1
10.1038/nature10386
10.1111/j.1574-6941.2001.tb00880.x
10.1016/B978-0-12-372180-8.50042-1
10.1111/j.1469-8137.1995.tb01834.x
10.1111/nph.13201
10.1046/j.1469-8137.1999.00502.x
10.1016/j.marchem.2004.06.025
10.1111/j.1469-8137.2010.03399.x
10.1016/S0169-5347(00)89156-9
10.1371/journal.pone.0092897
10.1111/j.1365-2745.2010.01740.x
10.1111/j.1574-6941.2000.tb00683.x
10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2
10.2307/3761190
10.1111/nph.13648
10.1007/BF01972080
10.1038/377227a0
10.1046/j.1469-8137.2003.00732.x
10.1038/ng.3223
10.1111/j.1365-2435.2008.01402.x
10.1038/233133a0
10.1023/A:1006247623877
10.1016/S0038-0717(03)00155-X
10.1111/nph.13677
10.1046/j.1469-8137.2003.00704.x
10.1111/nph.13208
10.1016/S0038-0717(99)00205-9
10.1111/j.1469-8137.2008.02401.x
10.1038/nature12901
10.1111/j.1469-8137.2006.01936.x
10.1073/pnas.261555198
10.1007/s10533-006-9064-0
10.1038/ismej.2009.77
10.1126/science.1231923
10.1111/j.1469-8137.1996.tb01152.x
10.1111/j.1461-0248.2008.01219.x
10.1111/j.1469-8137.2005.01607.x
10.1111/mec.12481
10.1146/annurev.ecolsys.36.112904.151932
10.1007/s00442-003-1478-y
ContentType Journal Article
Copyright 2016 The Authors. © 2016 British Ecological Society
2016 The Authors. Functional Ecology © 2016 British Ecological Society
Functional Ecology © 2016 British Ecological Society
Copyright_xml – notice: 2016 The Authors. © 2016 British Ecological Society
– notice: 2016 The Authors. Functional Ecology © 2016 British Ecological Society
– notice: Functional Ecology © 2016 British Ecological Society
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
M7N
7S9
L.6
ADTPV
AOWAS
DOI 10.1111/1365-2435.12677
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Ecology Abstracts

AGRICOLA

Entomology Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1978
ExternalDocumentID oai_slubar_slu_se_79927
10_1111_1365_2435_12677
FEC12677
48582354
Genre article
GrantInformation_xml – fundername: FORMAS
– fundername: Swedish University of Agricultural Sciences
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
M7N
7S9
L.6
ADTPV
AOWAS
ID FETCH-LOGICAL-c5487-b84b65a2d7cdf9d2b8f4f695149ed2e4042337e92abcbdfa36494e31473692333
IEDL.DBID DR2
ISSN 0269-8463
1365-2435
IngestDate Thu Aug 21 06:25:46 EDT 2025
Fri Jul 11 18:34:12 EDT 2025
Fri Jul 11 12:43:22 EDT 2025
Sun Jul 13 03:52:31 EDT 2025
Tue Jul 01 01:15:45 EDT 2025
Thu Apr 24 22:55:13 EDT 2025
Wed Jan 22 17:11:59 EST 2025
Thu Jul 03 22:16:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5487-b84b65a2d7cdf9d2b8f4f695149ed2e4042337e92abcbdfa36494e31473692333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://besjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12677
PQID 2374398788
PQPubID 1066355
PageCount 12
ParticipantIDs swepub_primary_oai_slubar_slu_se_79927
proquest_miscellaneous_2000419410
proquest_miscellaneous_1859477477
proquest_journals_2374398788
crossref_citationtrail_10_1111_1365_2435_12677
crossref_primary_10_1111_1365_2435_12677
wiley_primary_10_1111_1365_2435_12677_FEC12677
jstor_primary_48582354
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2016
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2011; 478
2004; 164
2013; 22
2000; 48
1991; 11
2010; 187
2011; 99
1995; 377
2011; 14
2003; 158
2003; 157
1995; 130
2005; 25
2015; 47
1991; 47
1990
2007; 173
1982; 60
2008; 22
2014; 9
1999; 91
1996; 134
2010; 4
2004; 139
2014; 203
2006; 169
1975; 5
2001; 98
2012; 82
2016; 209
1995; 10
2003; 35
2008
2001; 26
2008; 11
1999; 144
2015; 205
1991
2014; 84
2001; 21
2014; 505
2004; 92
2004; 18
2013; 339
2006; 87
2000; 32
2000; 31
2007; 82
1971; 233
2001; 38
2009; 3
2008; 178
2010; 91
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
Gadgil R.L. (e_1_2_7_21_1) 1975; 5
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Smith S.E. (e_1_2_7_51_1) 2008
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 164
  start-page: 347
  year: 2004
  end-page: 355
  article-title: A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO in field studies
  publication-title: New Phytologist
– volume: 25
  start-page: 191
  year: 2005
  end-page: 218
  article-title: Biodiversity and litter decomposition interrestrial ecosystems
  publication-title: Annual Review of Ecology Evolution and Systematics
– volume: 22
  start-page: 5271
  year: 2013
  end-page: 5277
  article-title: Towards a unified paradigm for sequence‐based identification of fungi
  publication-title: Molecular Ecology
– volume: 21
  start-page: 71
  year: 2001
  end-page: 82
  article-title: Rates and quantities of carbon flux to ectomycorrhizal mycelium following C‐14 pulse labeling of seedlings: effects of litter patches and interaction with a wood‐decomposer fungus
  publication-title: Tree Physiology
– volume: 157
  start-page: 475
  year: 2003
  end-page: 492
  article-title: Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?
  publication-title: New Phytologist
– volume: 205
  start-page: 1443
  year: 2015
  end-page: 1447
  article-title: Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs
  publication-title: New Phytologist
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 32
  start-page: 689
  year: 2000
  end-page: 698
  article-title: Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no‐tillage agroecosystem
  publication-title: Soil Biology & Biochemistry
– volume: 178
  start-page: 230
  year: 2008
  end-page: 233
  article-title: Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum
  publication-title: New Phytologist
– volume: 3
  start-page: 1387
  year: 2009
  end-page: 1395
  article-title: ClassII peroxidase‐encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi
  publication-title: Isme Journal
– volume: 233
  start-page: 133
  year: 1971
  article-title: Mycorrhiza and litter decomposition
  publication-title: Nature
– volume: 173
  start-page: 447
  year: 2007
  end-page: 449
  article-title: Evidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition
  publication-title: New Phytologist
– volume: 87
  start-page: 2288
  year: 2006
  end-page: 2297
  article-title: Tree species effects on decomposition and forest floor dynamics in a common garden
  publication-title: Ecology
– volume: 339
  start-page: 1615
  year: 2013
  end-page: 1618
  article-title: Roots and associated fungi drive long‐term carbon sequestration in boreal forest
  publication-title: Science
– volume: 169
  start-page: 579
  year: 2006
  end-page: 588
  article-title: Do ectomycorrhizas alter leaf‐litter decomposition in monodominant tropical forests of Guyana?
  publication-title: New Phytologist
– volume: 60
  start-page: 1561
  year: 1982
  end-page: 1568
  article-title: Accumulation and release of plant nutrients in decomposing scots pine needle litter – long‐term decomposition in a scots pine forest
  publication-title: Canadian Journal of Botany
– volume: 11
  start-page: 75
  year: 1991
  end-page: 78
  article-title: Influence of ectomycorrhizal mat soils on lignin and cellulose degradation
  publication-title: Biology and Fertility of Soils
– volume: 5
  start-page: 35
  year: 1975
  end-page: 41
  article-title: Suppression of litter decomposition by mycorrhizal roots of
  publication-title: New Zealand Journal of Forestry Science
– volume: 38
  start-page: 43
  year: 2001
  end-page: 52
  article-title: Effects of resource availability on mycelial interactions and P‐32 transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms
  publication-title: Fems Microbiology Ecology
– volume: 9
  start-page: e92897
  year: 2014
  article-title: Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter
  publication-title: PLoS One
– volume: 134
  start-page: 123
  year: 1996
  end-page: 132
  article-title: Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter‐decomposing basidiomycetes
  publication-title: New Phytologist
– volume: 92
  start-page: 167
  year: 2004
  end-page: 195
  article-title: Stabilization of N‐compounds in soil and organic‐matter‐rich sediments – what is the difference?
  publication-title: Marine Chemistry
– volume: 18
  start-page: 79
  year: 2004
  end-page: 88
  article-title: Fungal translocation – creating and responding to environmental heterogeneity
  publication-title: The Mycologist
– volume: 139
  start-page: 98
  year: 2004
  end-page: 107
  article-title: Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi
  publication-title: Oecologia
– volume: 205
  start-page: 1525
  year: 2015
  end-page: 1536
  article-title: Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boresl forests
  publication-title: New Phytologist
– volume: 99
  start-page: 186
  year: 2011
  end-page: 193
  article-title: Dynamics and pathways of autotrophic and heterotrophic soil CO efflux revealed by forest girdling
  publication-title: Journal of Ecology
– volume: 91
  start-page: 13
  year: 1999
  end-page: 32
  article-title: Saprotrophic cord‐forming fungi: meeting the challenge of heterogeneous environments
  publication-title: Mycologia
– volume: 158
  start-page: 401
  year: 2003
  end-page: 407
  article-title: Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation
  publication-title: New Phytologist
– year: 2008
– volume: 22
  start-page: 955
  year: 2008
  end-page: 963
  article-title: Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change
  publication-title: Functional Ecology
– volume: 130
  start-page: 401
  year: 1995
  end-page: 409
  article-title: The structure and function of the vegetative mycelium of ectomycorrhizal plants V. Foraging behaviour and translocation of nutrients from exploited litter
  publication-title: New Phytologist
– volume: 47
  start-page: 410
  year: 2015
  end-page: 415
  article-title: Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists
  publication-title: Nature Genetics
– volume: 98
  start-page: 14784
  year: 2001
  end-page: 14789
  article-title: A large carbon sink in the woody biomass of Northern forests
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 82
  start-page: 217
  year: 2007
  end-page: 227
  article-title: Are Swedish forest soils sinks or sources for CO – model analyses based on forest inventory data
  publication-title: Biogeochemistry
– volume: 10
  start-page: 402
  year: 1995
  end-page: 407
  article-title: The advantage of being evergreen
  publication-title: Trends in Ecology & Evolution
– volume: 173
  start-page: 611
  year: 2007
  end-page: 620
  article-title: Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest
  publication-title: New Phytologist
– volume: 35
  start-page: 1001
  year: 2003
  end-page: 1004
  article-title: Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil‐litter interface
  publication-title: Soil Biology & Biochemistry
– volume: 209
  start-page: 1174
  year: 2016
  end-page: 1183
  article-title: Competitive avoidance not edaphic specialization drives vertical niche partitioning among sister species of ectomycorrhizal fungi
  publication-title: New Phytologist
– start-page: 315
  year: 1990
  end-page: 322
– volume: 187
  start-page: 895
  year: 2010
  end-page: 910
  article-title: Ectomycorrhizal fungi and interspecific competition: species interactions, community structure, coexistence mechanisms, and future research directions
  publication-title: New Phytologist
– volume: 47
  start-page: 376
  year: 1991
  end-page: 391
  article-title: Mycorrhizas in ecosystems
  publication-title: Experimenta
– volume: 11
  start-page: 1065
  year: 2008
  end-page: 1071
  article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  publication-title: Ecology Letters
– volume: 31
  start-page: 185
  year: 2000
  end-page: 194
  article-title: Interspecific combative interactions between wood‐decaying basidiomycetes
  publication-title: Fems Microbiology Ecology
– volume: 203
  start-page: 245
  year: 2014
  end-page: 256
  article-title: Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems
  publication-title: New Phytologist
– volume: 14
  start-page: 493
  year: 2011
  end-page: 502
  article-title: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐based assessment
  publication-title: Ecology Letters
– volume: 4
  start-page: 872
  year: 2010
  end-page: 881
  article-title: Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi
  publication-title: ISME Journal
– volume: 91
  start-page: 3631
  year: 2010
  end-page: 3640
  article-title: Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands
  publication-title: Ecology
– volume: 84
  start-page: 3
  year: 2014
  end-page: 20
  article-title: A first comprehensive census of fungi in soil reveals both hyperdiversity and fine‐scale niche partitioning
  publication-title: Ecological Monographs
– volume: 209
  start-page: 1382
  year: 2016
  end-page: 1394
  article-title: Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils?
  publication-title: The New phytologist
– volume: 377
  start-page: 227
  year: 1995
  end-page: 229
  article-title: Polyphenol control of nitrogen release from pine litter
  publication-title: Nature
– volume: 32
  start-page: 489
  year: 2000
  end-page: 496
  article-title: Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity
  publication-title: Soil Biology & Biochemistry
– volume: 48
  start-page: 7
  year: 2000
  end-page: 20
  article-title: Soil respiration and the global carbon cycle
  publication-title: Biogeochemistry
– volume: 144
  start-page: 183
  year: 1999
  end-page: 193
  article-title: Translocation of P‐32 between interacting mycelia of a wood‐decomposing fungus and ectomycorrhizal fungi in microcosm systems
  publication-title: New Phytologist
– volume: 82
  start-page: 666
  year: 2012
  end-page: 677
  article-title: New primers to amplify the fungal ITS2 region – evaluation by 454‐sequencing of artificial and natural communities
  publication-title: Fems Microbiology Ecology
– volume: 505
  start-page: 543
  year: 2014
  end-page: 545
  article-title: Mycorrhiza‐mediated competition between plants and decomposers drives soil carbon storage
  publication-title: Nature
– year: 1991
– volume: 26
  year: 2001
– ident: e_1_2_7_45_1
  doi: 10.1890/09-2237.1
– ident: e_1_2_7_55_1
  doi: 10.1007/978-3-642-75168-4
– ident: e_1_2_7_16_1
  doi: 10.1007/BF00335839
– ident: e_1_2_7_26_1
  doi: 10.1007/978-94-010-0694-1
– ident: e_1_2_7_52_1
  doi: 10.1139/b82-199
– ident: e_1_2_7_35_1
  doi: 10.1017/S0269915X04002046
– ident: e_1_2_7_14_1
  doi: 10.1016/S0038-0717(99)00178-9
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1461-0248.2011.01611.x
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1574-6941.2012.01437.x
– ident: e_1_2_7_34_1
  doi: 10.1038/ismej.2010.19
– ident: e_1_2_7_33_1
  doi: 10.1093/treephys/21.2-3.71
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1469-8137.2004.01159.x
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1469-8137.2007.01984.x
– ident: e_1_2_7_10_1
  doi: 10.1111/nph.12791
– ident: e_1_2_7_56_1
  doi: 10.1890/12-1693.1
– ident: e_1_2_7_49_1
  doi: 10.1038/nature10386
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1574-6941.2001.tb00880.x
– ident: e_1_2_7_58_1
  doi: 10.1016/B978-0-12-372180-8.50042-1
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1469-8137.1995.tb01834.x
– ident: e_1_2_7_37_1
  doi: 10.1111/nph.13201
– ident: e_1_2_7_38_1
  doi: 10.1046/j.1469-8137.1999.00502.x
– volume: 5
  start-page: 35
  year: 1975
  ident: e_1_2_7_21_1
  article-title: Suppression of litter decomposition by mycorrhizal roots of Pinus radiata
  publication-title: New Zealand Journal of Forestry Science
– ident: e_1_2_7_28_1
  doi: 10.1016/j.marchem.2004.06.025
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1469-8137.2010.03399.x
– ident: e_1_2_7_2_1
  doi: 10.1016/S0169-5347(00)89156-9
– ident: e_1_2_7_6_1
  doi: 10.1371/journal.pone.0092897
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1365-2745.2010.01740.x
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1574-6941.2000.tb00683.x
– ident: e_1_2_7_24_1
  doi: 10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2
– ident: e_1_2_7_7_1
  doi: 10.2307/3761190
– ident: e_1_2_7_17_1
  doi: 10.1111/nph.13648
– ident: e_1_2_7_46_1
  doi: 10.1007/BF01972080
– ident: e_1_2_7_43_1
  doi: 10.1038/377227a0
– ident: e_1_2_7_30_1
  doi: 10.1046/j.1469-8137.2003.00732.x
– ident: e_1_2_7_29_1
  doi: 10.1038/ng.3223
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1365-2435.2008.01402.x
– ident: e_1_2_7_20_1
  doi: 10.1038/233133a0
– ident: e_1_2_7_48_1
  doi: 10.1023/A:1006247623877
– ident: e_1_2_7_18_1
  doi: 10.1016/S0038-0717(03)00155-X
– ident: e_1_2_7_41_1
  doi: 10.1111/nph.13677
– ident: e_1_2_7_47_1
  doi: 10.1046/j.1469-8137.2003.00704.x
– ident: e_1_2_7_12_1
  doi: 10.1111/nph.13208
– ident: e_1_2_7_19_1
  doi: 10.1016/S0038-0717(99)00205-9
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1469-8137.2008.02401.x
– ident: e_1_2_7_4_1
  doi: 10.1038/nature12901
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1469-8137.2006.01936.x
– ident: e_1_2_7_42_1
  doi: 10.1073/pnas.261555198
– ident: e_1_2_7_3_1
  doi: 10.1007/s10533-006-9064-0
– ident: e_1_2_7_9_1
  doi: 10.1038/ismej.2009.77
– ident: e_1_2_7_11_1
  doi: 10.1126/science.1231923
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1469-8137.1996.tb01152.x
– volume-title: Mycorrhizal Symbiosis
  year: 2008
  ident: e_1_2_7_51_1
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1469-8137.2005.01607.x
– ident: e_1_2_7_32_1
  doi: 10.1111/mec.12481
– ident: e_1_2_7_22_1
  doi: 10.1146/annurev.ecolsys.36.112904.151932
– ident: e_1_2_7_50_1
  doi: 10.1007/s00442-003-1478-y
SSID ssj0009522
Score 2.5782323
Snippet Summary Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this...
Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth...
1. Communities of litter saprotrophic and root-associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth...
SourceID swepub
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1967
SubjectTerms antagonistic interaction
Basidiomycetes
Basidiomycota
biogeochemical cycles
Boreal forests
carbon
Carbon cycle
Colonization
Community composition
Community development
Community ecology
community structure
Competition
Composition
Decomposing organic matter
Decomposition
Ecology
ecosystems
ectomycorrhizal fungi
Ectomycorrhizas
Ekologi
Factorial design
Forest soils
fungal communities
Fungi
growing season
Guilds
Humus
Interference
Litter
litterbag experiment
meta‐barcoding
Microbiology
microclimate
Mikrobiologi
moulds
mycorrhizal fungi
next generation sequencing
Niche overlap
Niches
Nutrient cycles
nutrient mobilization
Organic matter
Partitioning
Resource partitioning
saprotrophic fungi
saprotrophs
Soil profiles
Soil properties
Soils
substrate quality
Substrates
Taiga
Title Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently
URI https://www.jstor.org/stable/48582354
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12677
https://www.proquest.com/docview/2374398788
https://www.proquest.com/docview/1859477477
https://www.proquest.com/docview/2000419410
https://res.slu.se/id/publ/79927
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlUOil76XbpkWFUnrxEkuyLB1D2CUU0kNpoDejl5vQrTesbMrm12fGst1sIJTSk4Wt8UOe0XyyZ74h5IO3ofDC5ZmUdciE9nWmTM2yWjrtnAMEUGPu8NkXeXouPn8vxmhCzIVJ_BDTBze0jH6-RgM3Nt4y8hSfBd5-kTNZYj457kFY9JXdot1N_xGY1Bl4Wj6Q-2Aszx35Pb-UQhP3QWciEt3HsL0TWj0hdrz9FHvyc9G1duGu7zA7_tfzPSWPB4hKj5NOPSMPQvOcPExFK3fQWrqhNVv-yZIDgWGaiC_I77MdLGq3F5fXsNs0nkaDfBDbzdXFpaPgSsEt0R9YkDtSl4A7BfBMAYxC11-BplpTjkaY1nr63Eht11LTB59QH1BoiDajY4mXdr17Sc5Xy28np9lQ4SFzuFLKrBJWFob50vlae2ZVLWoJoE_o4FkQGLTDy6CZsc762nAptAg8FyWXgEw5n5GDZtOEV4QKb3VZCCdVkKLOtRW5UaUxkh8ZuEQ-J4vx_VZuoD_HKhzralwG4YBXOOBVP-Bz8mkSuErMH_d3nfUKM_UTqlCMF2JODkcNqoa5IVaM4yJQlUrNyfvpMFg1_qoxTdh0sQIUpQUgczz3fX0wyUrkWuRHc_Ixaed0A0gaHtedNVvcVDFUpdYMTpZU7m8PVK2WJ33j9b8KvCGPAFLKFPBzSA7abRfeAmxr7bveMm8AGbU4RA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgCMEL3xWBAUZCiJdUi-049iOaWhVY94A2aW-Wv7JNlHRqEqHur-ccJ6WdNCHEU6zEdmLnzve75Pw7hD4443PHbJZyXvqUSVemQpckLbmV1lpAAGXYOzw_5rNT9vUsP9vaCxP5ITYf3IJmdOt1UPDwQXpLy2OAFpj7cUZ4UdxF90Je786t-k62iHfjnwTCZQq2lvb0PiGa50YHO5YpBifuws5IJbqLYjszNH2M7DCAGH3yY9w2Zmyvb3A7_t8In6BHPUrFn6NYPUV3fPUM3Y95K9dQmti-NJr82SgHDfqVon6Ofs3X4NeuLi6v4bSuHK51oIRYLa8uLi0GawqWCZ-HnNw1thG7Y8DPGPAoVP3pcUw3ZXENK1vHoFtj0zZYd_En2PnQqA84w0OWl2axfoFOp5OTw1naJ3lIbXCWUiOY4bkmrrCulI4YUbKSA-5j0jviWYjboYWXRBtrXKkpZ5J5mrGCcgCnlI7QXrWs_EuEmTOyyJnlwnNWZtKwTItCa04PNNwiS9B4eMHK9gzoIRHHQg2eUJhwFSZcdROeoE-bBleR_OP2qqNOYjb1mMgFoTlL0P4gQqpfHmpFaPADRSFEgt5vLoNih781uvLLtlYApCQDcB76vq1O2GfFMsmygwR9jOK5eYDAG14vWqNX4aBqrwopCXQWZe5vA1LTyWFXePWvDd6hB7OT-ZE6-nL87TV6CAiTx_iffbTXrFr_BlBcY952avobi2k8Xw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgCMQL94qOAUZCiJdUjeM49iPaWo3LJoSYxJvl6zZR0qpJNHW_nuM4CeukCSGeYqW267jn-HxuPn8HobdWu9xSkyaMeZdQYX3ClSeJZ0YYYwAB-HB2-OiYHZ7QTz_ynk0YzsJEfYjhD7fgGe16HRx8Zf0VJ4_8LIj2k5SworiN7lA25cGwD76RK7q78UUCYSKBUJt16j6BzHOtg63AFLmJ26gzKolug9g2Cs0fIt2PP5JPfk6aWk_M5TVpx_96wEfoQYdR8YdoVI_RLVc-QXdj1soNlGamK41mf47JQYNunaieooujDexq12fnl3BblRZXKghCrJers3ODIZZCXMKnISN3hU1E7hjQMwY0ClV_ORyTTRlcwbrW6udWWDc1Vi37BFsXGnV0M9zneKkXm2foZD77vn-YdCkeEhO2SonmVLNcEVsY64UlmnvqGaA-KpwljgbWTlY4QZQ22nqVMSqoy1JaZAygaZaN0E65LN1zhKnVosipYdwx6lOhaap4oRTLpgq-Ih2jSf_7StPpn4c0HAvZ74PChMsw4bKd8DF6PzRYRemPm6uOWoMZ6lGec5LldIz2eguS3eJQSZKFXSAvOB-jN8PH4NbhXY0q3bKpJMAoQQGah75vqhNOWdFU0HQ6Ru-idQ4DCKrh1aLRah0usnKyEIJAZ9Hk_vZAcj7bbwu7_9rgNbr39WAuv3w8_vwC3Qd4ySL5Zw_t1OvGvQQIV-tXrZP-BrwkOxc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mycorrhizal+and+saprotrophic+fungal+guilds+compete+for+the+same+organic+substrates+but+affect+decomposition+differently&rft.jtitle=Functional+ecology&rft.au=B%C3%B6deker%2C+Inga+T+M&rft.au=Lindahl%2C+Bj%C3%B6rn+D&rft.au=Olson%2C+%C3%85ke&rft.au=Clemmensen%2C+Karina+E&rft.date=2016-12-01&rft.issn=0269-8463&rft.volume=30&rft.issue=12+p.1967-1978&rft.spage=1967&rft.epage=1978&rft_id=info:doi/10.1111%2F1365-2435.12677&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon