Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently
Summary Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate‐mediated niche partitioning (i.e. distinct fundamental niches), or by competition for...
Saved in:
Published in | Functional ecology Vol. 30; no. 12; pp. 1967 - 1978 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.12.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate‐mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways.
Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities – fresh or partly decomposed litter or humus – were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454‐pyrosequencing and decomposition was analyzed.
Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate‐dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root‐associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth‐related differences in decomposer activities during the first season.
In conclusion, our results suggest that saprotrophic and root‐associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate‐dependent depth partitioning in soils of ectomycorrhiza‐dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs.
A lay summary is available for this article.
Lay Summary |
---|---|
AbstractList | 1. Communities of litter saprotrophic and root-associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate-mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways. 2. Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities - fresh or partly decomposed litter or humus - were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454-pyrosequencing and decomposition was analyzed. 3. Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate-dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root-associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth-related differences in decomposer activities during the first season. 4. In conclusion, our results suggest that saprotrophic and root-associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate-dependent depth partitioning in soils of ectomycorrhiza-dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs. A lay summary is available for this article. Lay Summary 1. Communities of litter saprotrophic and root-associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate-mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways.2. Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities-fresh or partly decomposed litter or humus -were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454-pyrosequencing and decomposition was analyzed.3. Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate-dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root-associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth-related differences in decomposer activities during the first season.4. In conclusion, our results suggest that saprotrophic and root-associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate-dependent depth partitioning in soils of ectomycorrhiza-dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs. Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate‐mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways. Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities – fresh or partly decomposed litter or humus – were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454‐pyrosequencing and decomposition was analyzed. Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate‐dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root‐associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth‐related differences in decomposer activities during the first season. In conclusion, our results suggest that saprotrophic and root‐associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate‐dependent depth partitioning in soils of ectomycorrhiza‐dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs. A lay summary is available for this article. Summary Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate‐mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways. Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities – fresh or partly decomposed litter or humus – were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454‐pyrosequencing and decomposition was analyzed. Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate‐dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root‐associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth‐related differences in decomposer activities during the first season. In conclusion, our results suggest that saprotrophic and root‐associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate‐dependent depth partitioning in soils of ectomycorrhiza‐dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs. A lay summary is available for this article. Lay Summary Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth partitioning is maintained exclusively by substrate‐mediated niche partitioning (i.e. distinct fundamental niches), or by competition for space and resources (i.e. distinct realized niches). Improved understanding of the mechanisms driving spatial partitioning of these fungal guilds is critical, as they modulate carbon and nutrient cycling in different ways. Under field settings, we tested the effects of substrate quality and the local fungal species pool at various depths in determining the potential of saprotrophic and mycorrhizal fungi to colonize and exploit organic matter. Natural substrates of three qualities – fresh or partly decomposed litter or humus – were incubated in the corresponding organic layers of a boreal forest soil profile in a fully factorial design. After one and two growing seasons, fungal community composition in the substrates was determined by 454‐pyrosequencing and decomposition was analyzed. Fungal community development during the course of the experiment was determined to similar degrees by vertical location of the substrates (24% of explained variation) and by substrate quality (20%), indicating that interference competition is a strong additional driver of the substrate‐dependent depth partitioning of fungal guilds in the system. During the first growing season, litter substrates decomposed slower when colonized by root‐associated communities than when colonized by communities of litter saprotrophs, whereas humus was only slightly decomposed by both fungal guilds. During the second season, certain basidiomycetes from both guilds were particularly efficient in localizing and exploiting their native organic substrates although displaced in the vertical profile. This validates that fungal community composition, rather than microclimatic factors, were responsible for observed depth‐related differences in decomposer activities during the first season. In conclusion, our results suggest that saprotrophic and root‐associated fungal guilds have overlapping fundamental niches with respect to colonization of substrates of different qualities, and that their substrate‐dependent depth partitioning in soils of ectomycorrhiza‐dominated ecosystems is reinforced by interference competition. Through competitive interactions, mycorrhizal fungi can thus indirectly regulate litter decomposition rates by restraining activities of more efficient litter saprotrophs. A lay summary is available for this article. |
Author | Clemmensen, Karina E. Bödeker, Inga T. M. Olson, Ake Lindahl, Björn D. |
Author_xml | – sequence: 1 givenname: Inga T. M. surname: Bödeker fullname: Bödeker, Inga T. M. – sequence: 2 givenname: Björn D. surname: Lindahl fullname: Lindahl, Björn D. – sequence: 3 givenname: Ake surname: Olson fullname: Olson, Ake – sequence: 4 givenname: Karina E. surname: Clemmensen fullname: Clemmensen, Karina E. |
BackLink | https://res.slu.se/id/publ/79927$$DView record from Swedish Publication Index |
BookMark | eNqFkc9rFDEUx4NUcFs9exICXrxMO_k1SY6ytCpUvOg5ZDIvu1lmJ2uSYVn_ejNu20NBGgIPXj7fF973e4kupjgBQu9Je03quSGsEw3lTFwT2kn5Cq2eOhdo1dJON4p37A26zHnXtq0WlK7Q8fvJxZS24Y8dsZ0GnO0hxZLiYRsc9vO0qf3NHMYhYxf3ByiAfUy4bKGie8AxbexU0Tz3uSRbION-Lth6D67gARZRzKGEOOEh1G6CqYynt-i1t2OGdw_1Cv26u_25_trc__jybf35vnGCK9n0ivedsHSQbvB6oL3y3HdaEK5hoMBbThmToKntXT94yzquOTDCJet0fWJXqDnPzUc4zL05pLC36WSiDSaPc2_TUkwGI7WmsvKfznx14fcMuZh9yA7G0U4Q52xodY4TzUn7IkqU0FzKeiv68Rm6i3Oa6uKGMsmZVlKpSokz5VLMOYE3LhS7OFeNDaMhrVmSNkuuZsnV_Eu66m6e6R63_L_i4adjGOH0Em7ubtePug9n3S6XmJ50XAlFmeDsL8MixtA |
CitedBy_id | crossref_primary_10_1016_j_funeco_2024_101409 crossref_primary_10_1039_C7EN00784A crossref_primary_10_1080_14888386_2018_1500307 crossref_primary_10_3389_ffgc_2023_791766 crossref_primary_10_1016_j_geoderma_2021_115662 crossref_primary_10_1111_1462_2920_15690 crossref_primary_10_1016_j_soilbio_2020_107966 crossref_primary_10_1002_ppp3_10193 crossref_primary_10_1007_s00248_020_01540_7 crossref_primary_10_3390_f15081378 crossref_primary_10_1128_AEM_02541_20 crossref_primary_10_1016_j_funeco_2023_101246 crossref_primary_10_3390_jof8080807 crossref_primary_10_3390_microorganisms12112136 crossref_primary_10_1016_j_jenvman_2023_118119 crossref_primary_10_1016_j_soilbio_2023_109186 crossref_primary_10_1111_nph_18954 crossref_primary_10_1002_ecy_2075 crossref_primary_10_1128_spectrum_04578_22 crossref_primary_10_3389_fpls_2021_682142 crossref_primary_10_1111_nph_17572 crossref_primary_10_1007_s00442_020_04838_y crossref_primary_10_1111_nph_15035 crossref_primary_10_3389_fpls_2022_873204 crossref_primary_10_1007_s00248_024_02374_3 crossref_primary_10_1016_j_scitotenv_2022_153565 crossref_primary_10_1111_ele_12712 crossref_primary_10_1016_j_scitotenv_2022_161008 crossref_primary_10_1016_j_foreco_2020_117920 crossref_primary_10_3389_fmicb_2019_00656 crossref_primary_10_3390_biology10101051 crossref_primary_10_1016_j_pedobi_2023_150889 crossref_primary_10_1038_s41396_019_0436_6 crossref_primary_10_1111_nph_19471 crossref_primary_10_1016_j_foreco_2022_120658 crossref_primary_10_1128_AEM_02061_17 crossref_primary_10_1128_spectrum_01546_24 crossref_primary_10_3390_d14121122 crossref_primary_10_3389_fmicb_2021_634325 crossref_primary_10_1007_s11104_021_04950_9 crossref_primary_10_1111_nph_18307 crossref_primary_10_1111_nph_15679 crossref_primary_10_1111_1365_2435_13701 crossref_primary_10_1016_j_ecolind_2023_110574 crossref_primary_10_1038_ismej_2016_184 crossref_primary_10_3390_microorganisms9091943 crossref_primary_10_1016_j_foreco_2021_119182 crossref_primary_10_1111_ele_12801 crossref_primary_10_1111_nph_16598 crossref_primary_10_3389_fenvs_2024_1407291 crossref_primary_10_1111_1365_2745_13529 crossref_primary_10_3389_fmicb_2024_1379825 crossref_primary_10_1111_1365_2745_12833 crossref_primary_10_3389_fmicb_2022_948875 crossref_primary_10_1016_j_scitotenv_2020_139173 crossref_primary_10_1016_j_scitotenv_2020_143945 crossref_primary_10_1111_mec_14246 crossref_primary_10_1111_nph_15380 crossref_primary_10_1111_pce_14413 crossref_primary_10_1093_femsec_fiae092 crossref_primary_10_1016_j_soilbio_2019_107526 crossref_primary_10_1016_j_soilbio_2023_109288 crossref_primary_10_5194_bg_21_1037_2024 crossref_primary_10_1038_s41396_018_0181_2 crossref_primary_10_1007_s11104_017_3393_8 crossref_primary_10_1111_ejss_13303 crossref_primary_10_1111_nph_19748 crossref_primary_10_1093_femsec_fiab022 crossref_primary_10_1016_j_scitotenv_2024_172349 crossref_primary_10_1007_s11104_018_3877_1 crossref_primary_10_1007_s11557_018_1405_6 crossref_primary_10_1016_j_funeco_2024_101342 crossref_primary_10_3390_f14112226 crossref_primary_10_1007_s11104_020_04616_y crossref_primary_10_1016_j_apsoil_2019_103393 crossref_primary_10_1016_j_ecolind_2017_09_021 crossref_primary_10_3390_microorganisms10101997 crossref_primary_10_1111_1365_2435_13832 crossref_primary_10_1016_j_scitotenv_2024_170741 crossref_primary_10_1111_nph_17155 crossref_primary_10_1111_nph_18521 crossref_primary_10_1016_j_funeco_2024_101359 crossref_primary_10_3390_microorganisms12091915 crossref_primary_10_29244_agrokreatif_9_2_206_224 crossref_primary_10_1007_s00248_022_01973_2 crossref_primary_10_1007_s10342_023_01591_8 crossref_primary_10_1016_j_soilbio_2020_107734 crossref_primary_10_1016_j_pedsph_2024_08_009 crossref_primary_10_1016_j_apsoil_2022_104508 crossref_primary_10_1016_j_micres_2023_127588 crossref_primary_10_1007_s10342_019_01176_4 crossref_primary_10_1007_s11104_019_04398_y crossref_primary_10_1007_s42729_022_01078_2 crossref_primary_10_3389_fpls_2022_1069730 crossref_primary_10_1146_annurev_ecolsys_012021_114902 crossref_primary_10_1007_s11104_025_07259_z crossref_primary_10_1094_MPMI_07_19_0198_R crossref_primary_10_3390_f13122162 crossref_primary_10_1111_nph_16228 crossref_primary_10_1111_nph_14603 crossref_primary_10_1007_s10021_021_00712_x crossref_primary_10_1111_nph_16749 crossref_primary_10_1111_nph_17661 crossref_primary_10_3389_fmicb_2020_562775 crossref_primary_10_3390_f14020372 crossref_primary_10_1111_ele_12862 crossref_primary_10_1111_nph_18353 crossref_primary_10_3390_biology11040531 crossref_primary_10_1111_nph_15884 crossref_primary_10_1007_s00374_020_01507_3 crossref_primary_10_1111_gcb_14722 crossref_primary_10_1016_j_gecco_2025_e03472 crossref_primary_10_1007_s10021_021_00655_3 crossref_primary_10_1016_j_soilbio_2018_12_014 crossref_primary_10_1093_femsec_fiy232 crossref_primary_10_3389_fmicb_2022_1033824 crossref_primary_10_1111_gcb_17030 crossref_primary_10_1002_ldr_3771 crossref_primary_10_1016_j_soilbio_2019_02_005 crossref_primary_10_1128_mSystems_00344_21 crossref_primary_10_3389_fpls_2019_00214 crossref_primary_10_1016_j_apsoil_2021_104064 crossref_primary_10_1111_gcb_17276 crossref_primary_10_1007_s42965_019_00038_9 crossref_primary_10_1016_j_apsoil_2024_105572 crossref_primary_10_3390_jof8101112 crossref_primary_10_1016_j_soilbio_2020_107919 crossref_primary_10_1016_j_jes_2023_10_021 crossref_primary_10_1007_s00253_023_12480_w crossref_primary_10_1038_s41396_017_0027_3 crossref_primary_10_1007_s11104_022_05374_9 crossref_primary_10_1111_brv_13180 crossref_primary_10_3390_microorganisms8010001 crossref_primary_10_3389_fmicb_2022_967565 crossref_primary_10_1007_s11356_022_20317_8 crossref_primary_10_1007_s11104_023_06211_3 crossref_primary_10_3389_fmicb_2023_1160683 crossref_primary_10_1007_s00572_017_0806_8 crossref_primary_10_1016_j_geoderma_2020_114424 crossref_primary_10_1111_brv_12538 crossref_primary_10_7717_peerj_9750 crossref_primary_10_3389_fevo_2021_641732 crossref_primary_10_1007_s00248_020_01509_6 crossref_primary_10_1016_S1002_0160_19_60808_8 crossref_primary_10_3389_fpls_2022_926941 crossref_primary_10_1007_s11676_024_01751_5 crossref_primary_10_1007_s00253_024_13298_w crossref_primary_10_1111_1365_2745_12918 crossref_primary_10_3389_ffgc_2020_00047 crossref_primary_10_1007_s10530_021_02649_7 crossref_primary_10_1016_j_apsoil_2023_105147 crossref_primary_10_1098_rspb_2022_0130 crossref_primary_10_3390_f10100824 crossref_primary_10_1093_femsec_fiz149 crossref_primary_10_3390_microorganisms8111828 crossref_primary_10_1111_nph_16390 crossref_primary_10_1007_s00248_019_01418_3 crossref_primary_10_1016_j_soilbio_2023_108952 crossref_primary_10_1016_j_foreco_2018_11_005 crossref_primary_10_1016_j_soilbio_2023_109244 crossref_primary_10_1016_j_soilbio_2018_07_008 crossref_primary_10_1007_s10533_021_00830_7 crossref_primary_10_1111_oik_08065 crossref_primary_10_12677_AEP_2022_126146 crossref_primary_10_3390_f15040603 crossref_primary_10_1016_j_soilbio_2024_109440 crossref_primary_10_3389_fmicb_2022_920618 crossref_primary_10_3390_jof9050509 crossref_primary_10_1093_femsec_fiz133 crossref_primary_10_1007_s10021_022_00788_z crossref_primary_10_1016_j_envres_2024_120402 crossref_primary_10_1016_j_funeco_2020_100985 crossref_primary_10_1111_nph_16269 crossref_primary_10_1111_nph_15454 crossref_primary_10_3389_fmicb_2017_01281 crossref_primary_10_1007_s10533_023_01087_y crossref_primary_10_3390_agronomy12102357 crossref_primary_10_1002_ldr_4671 crossref_primary_10_3390_microorganisms9102131 crossref_primary_10_1016_j_geoderma_2020_114646 crossref_primary_10_3390_f16010138 crossref_primary_10_3389_fmicb_2021_620309 crossref_primary_10_1016_j_scitotenv_2024_170259 crossref_primary_10_1016_j_ecoenv_2024_116583 crossref_primary_10_3389_ffgc_2019_00006 crossref_primary_10_1016_j_apsoil_2021_104095 crossref_primary_10_1016_j_funeco_2023_101251 |
Cites_doi | 10.1890/09-2237.1 10.1007/978-3-642-75168-4 10.1007/BF00335839 10.1007/978-94-010-0694-1 10.1139/b82-199 10.1017/S0269915X04002046 10.1016/S0038-0717(99)00178-9 10.1111/j.1461-0248.2011.01611.x 10.1111/j.1574-6941.2012.01437.x 10.1038/ismej.2010.19 10.1093/treephys/21.2-3.71 10.1111/j.1469-8137.2004.01159.x 10.1111/j.1469-8137.2007.01984.x 10.1111/nph.12791 10.1890/12-1693.1 10.1038/nature10386 10.1111/j.1574-6941.2001.tb00880.x 10.1016/B978-0-12-372180-8.50042-1 10.1111/j.1469-8137.1995.tb01834.x 10.1111/nph.13201 10.1046/j.1469-8137.1999.00502.x 10.1016/j.marchem.2004.06.025 10.1111/j.1469-8137.2010.03399.x 10.1016/S0169-5347(00)89156-9 10.1371/journal.pone.0092897 10.1111/j.1365-2745.2010.01740.x 10.1111/j.1574-6941.2000.tb00683.x 10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2 10.2307/3761190 10.1111/nph.13648 10.1007/BF01972080 10.1038/377227a0 10.1046/j.1469-8137.2003.00732.x 10.1038/ng.3223 10.1111/j.1365-2435.2008.01402.x 10.1038/233133a0 10.1023/A:1006247623877 10.1016/S0038-0717(03)00155-X 10.1111/nph.13677 10.1046/j.1469-8137.2003.00704.x 10.1111/nph.13208 10.1016/S0038-0717(99)00205-9 10.1111/j.1469-8137.2008.02401.x 10.1038/nature12901 10.1111/j.1469-8137.2006.01936.x 10.1073/pnas.261555198 10.1007/s10533-006-9064-0 10.1038/ismej.2009.77 10.1126/science.1231923 10.1111/j.1469-8137.1996.tb01152.x 10.1111/j.1461-0248.2008.01219.x 10.1111/j.1469-8137.2005.01607.x 10.1111/mec.12481 10.1146/annurev.ecolsys.36.112904.151932 10.1007/s00442-003-1478-y |
ContentType | Journal Article |
Copyright | 2016 The Authors. © 2016 British Ecological Society 2016 The Authors. Functional Ecology © 2016 British Ecological Society Functional Ecology © 2016 British Ecological Society |
Copyright_xml | – notice: 2016 The Authors. © 2016 British Ecological Society – notice: 2016 The Authors. Functional Ecology © 2016 British Ecological Society – notice: Functional Ecology © 2016 British Ecological Society |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 M7N 7S9 L.6 ADTPV AOWAS |
DOI | 10.1111/1365-2435.12677 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts AGRICOLA Entomology Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1978 |
ExternalDocumentID | oai_slubar_slu_se_79927 10_1111_1365_2435_12677 FEC12677 48582354 |
Genre | article |
GrantInformation_xml | – fundername: FORMAS – fundername: Swedish University of Agricultural Sciences |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 M7N 7S9 L.6 ADTPV AOWAS |
ID | FETCH-LOGICAL-c5487-b84b65a2d7cdf9d2b8f4f695149ed2e4042337e92abcbdfa36494e31473692333 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 1365-2435 |
IngestDate | Thu Aug 21 06:25:46 EDT 2025 Fri Jul 11 18:34:12 EDT 2025 Fri Jul 11 12:43:22 EDT 2025 Sun Jul 13 03:52:31 EDT 2025 Tue Jul 01 01:15:45 EDT 2025 Thu Apr 24 22:55:13 EDT 2025 Wed Jan 22 17:11:59 EST 2025 Thu Jul 03 22:16:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5487-b84b65a2d7cdf9d2b8f4f695149ed2e4042337e92abcbdfa36494e31473692333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://besjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12677 |
PQID | 2374398788 |
PQPubID | 1066355 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_79927 proquest_miscellaneous_2000419410 proquest_miscellaneous_1859477477 proquest_journals_2374398788 crossref_citationtrail_10_1111_1365_2435_12677 crossref_primary_10_1111_1365_2435_12677 wiley_primary_10_1111_1365_2435_12677_FEC12677 jstor_primary_48582354 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2016 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2016 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2011; 478 2004; 164 2013; 22 2000; 48 1991; 11 2010; 187 2011; 99 1995; 377 2011; 14 2003; 158 2003; 157 1995; 130 2005; 25 2015; 47 1991; 47 1990 2007; 173 1982; 60 2008; 22 2014; 9 1999; 91 1996; 134 2010; 4 2004; 139 2014; 203 2006; 169 1975; 5 2001; 98 2012; 82 2016; 209 1995; 10 2003; 35 2008 2001; 26 2008; 11 1999; 144 2015; 205 1991 2014; 84 2001; 21 2014; 505 2004; 92 2004; 18 2013; 339 2006; 87 2000; 32 2000; 31 2007; 82 1971; 233 2001; 38 2009; 3 2008; 178 2010; 91 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 Gadgil R.L. (e_1_2_7_21_1) 1975; 5 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 Smith S.E. (e_1_2_7_51_1) 2008 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 164 start-page: 347 year: 2004 end-page: 355 article-title: A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO in field studies publication-title: New Phytologist – volume: 25 start-page: 191 year: 2005 end-page: 218 article-title: Biodiversity and litter decomposition interrestrial ecosystems publication-title: Annual Review of Ecology Evolution and Systematics – volume: 22 start-page: 5271 year: 2013 end-page: 5277 article-title: Towards a unified paradigm for sequence‐based identification of fungi publication-title: Molecular Ecology – volume: 21 start-page: 71 year: 2001 end-page: 82 article-title: Rates and quantities of carbon flux to ectomycorrhizal mycelium following C‐14 pulse labeling of seedlings: effects of litter patches and interaction with a wood‐decomposer fungus publication-title: Tree Physiology – volume: 157 start-page: 475 year: 2003 end-page: 492 article-title: Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? publication-title: New Phytologist – volume: 205 start-page: 1443 year: 2015 end-page: 1447 article-title: Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs publication-title: New Phytologist – volume: 478 start-page: 49 year: 2011 end-page: 56 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 32 start-page: 689 year: 2000 end-page: 698 article-title: Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no‐tillage agroecosystem publication-title: Soil Biology & Biochemistry – volume: 178 start-page: 230 year: 2008 end-page: 233 article-title: Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum publication-title: New Phytologist – volume: 3 start-page: 1387 year: 2009 end-page: 1395 article-title: ClassII peroxidase‐encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi publication-title: Isme Journal – volume: 233 start-page: 133 year: 1971 article-title: Mycorrhiza and litter decomposition publication-title: Nature – volume: 173 start-page: 447 year: 2007 end-page: 449 article-title: Evidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition publication-title: New Phytologist – volume: 87 start-page: 2288 year: 2006 end-page: 2297 article-title: Tree species effects on decomposition and forest floor dynamics in a common garden publication-title: Ecology – volume: 339 start-page: 1615 year: 2013 end-page: 1618 article-title: Roots and associated fungi drive long‐term carbon sequestration in boreal forest publication-title: Science – volume: 169 start-page: 579 year: 2006 end-page: 588 article-title: Do ectomycorrhizas alter leaf‐litter decomposition in monodominant tropical forests of Guyana? publication-title: New Phytologist – volume: 60 start-page: 1561 year: 1982 end-page: 1568 article-title: Accumulation and release of plant nutrients in decomposing scots pine needle litter – long‐term decomposition in a scots pine forest publication-title: Canadian Journal of Botany – volume: 11 start-page: 75 year: 1991 end-page: 78 article-title: Influence of ectomycorrhizal mat soils on lignin and cellulose degradation publication-title: Biology and Fertility of Soils – volume: 5 start-page: 35 year: 1975 end-page: 41 article-title: Suppression of litter decomposition by mycorrhizal roots of publication-title: New Zealand Journal of Forestry Science – volume: 38 start-page: 43 year: 2001 end-page: 52 article-title: Effects of resource availability on mycelial interactions and P‐32 transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms publication-title: Fems Microbiology Ecology – volume: 9 start-page: e92897 year: 2014 article-title: Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter publication-title: PLoS One – volume: 134 start-page: 123 year: 1996 end-page: 132 article-title: Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter‐decomposing basidiomycetes publication-title: New Phytologist – volume: 92 start-page: 167 year: 2004 end-page: 195 article-title: Stabilization of N‐compounds in soil and organic‐matter‐rich sediments – what is the difference? publication-title: Marine Chemistry – volume: 18 start-page: 79 year: 2004 end-page: 88 article-title: Fungal translocation – creating and responding to environmental heterogeneity publication-title: The Mycologist – volume: 139 start-page: 98 year: 2004 end-page: 107 article-title: Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi publication-title: Oecologia – volume: 205 start-page: 1525 year: 2015 end-page: 1536 article-title: Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boresl forests publication-title: New Phytologist – volume: 99 start-page: 186 year: 2011 end-page: 193 article-title: Dynamics and pathways of autotrophic and heterotrophic soil CO efflux revealed by forest girdling publication-title: Journal of Ecology – volume: 91 start-page: 13 year: 1999 end-page: 32 article-title: Saprotrophic cord‐forming fungi: meeting the challenge of heterogeneous environments publication-title: Mycologia – volume: 158 start-page: 401 year: 2003 end-page: 407 article-title: Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation publication-title: New Phytologist – year: 2008 – volume: 22 start-page: 955 year: 2008 end-page: 963 article-title: Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change publication-title: Functional Ecology – volume: 130 start-page: 401 year: 1995 end-page: 409 article-title: The structure and function of the vegetative mycelium of ectomycorrhizal plants V. Foraging behaviour and translocation of nutrients from exploited litter publication-title: New Phytologist – volume: 47 start-page: 410 year: 2015 end-page: 415 article-title: Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists publication-title: Nature Genetics – volume: 98 start-page: 14784 year: 2001 end-page: 14789 article-title: A large carbon sink in the woody biomass of Northern forests publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 82 start-page: 217 year: 2007 end-page: 227 article-title: Are Swedish forest soils sinks or sources for CO – model analyses based on forest inventory data publication-title: Biogeochemistry – volume: 10 start-page: 402 year: 1995 end-page: 407 article-title: The advantage of being evergreen publication-title: Trends in Ecology & Evolution – volume: 173 start-page: 611 year: 2007 end-page: 620 article-title: Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest publication-title: New Phytologist – volume: 35 start-page: 1001 year: 2003 end-page: 1004 article-title: Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil‐litter interface publication-title: Soil Biology & Biochemistry – volume: 209 start-page: 1174 year: 2016 end-page: 1183 article-title: Competitive avoidance not edaphic specialization drives vertical niche partitioning among sister species of ectomycorrhizal fungi publication-title: New Phytologist – start-page: 315 year: 1990 end-page: 322 – volume: 187 start-page: 895 year: 2010 end-page: 910 article-title: Ectomycorrhizal fungi and interspecific competition: species interactions, community structure, coexistence mechanisms, and future research directions publication-title: New Phytologist – volume: 47 start-page: 376 year: 1991 end-page: 391 article-title: Mycorrhizas in ecosystems publication-title: Experimenta – volume: 11 start-page: 1065 year: 2008 end-page: 1071 article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide publication-title: Ecology Letters – volume: 31 start-page: 185 year: 2000 end-page: 194 article-title: Interspecific combative interactions between wood‐decaying basidiomycetes publication-title: Fems Microbiology Ecology – volume: 203 start-page: 245 year: 2014 end-page: 256 article-title: Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems publication-title: New Phytologist – volume: 14 start-page: 493 year: 2011 end-page: 502 article-title: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐based assessment publication-title: Ecology Letters – volume: 4 start-page: 872 year: 2010 end-page: 881 article-title: Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi publication-title: ISME Journal – volume: 91 start-page: 3631 year: 2010 end-page: 3640 article-title: Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands publication-title: Ecology – volume: 84 start-page: 3 year: 2014 end-page: 20 article-title: A first comprehensive census of fungi in soil reveals both hyperdiversity and fine‐scale niche partitioning publication-title: Ecological Monographs – volume: 209 start-page: 1382 year: 2016 end-page: 1394 article-title: Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? publication-title: The New phytologist – volume: 377 start-page: 227 year: 1995 end-page: 229 article-title: Polyphenol control of nitrogen release from pine litter publication-title: Nature – volume: 32 start-page: 489 year: 2000 end-page: 496 article-title: Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity publication-title: Soil Biology & Biochemistry – volume: 48 start-page: 7 year: 2000 end-page: 20 article-title: Soil respiration and the global carbon cycle publication-title: Biogeochemistry – volume: 144 start-page: 183 year: 1999 end-page: 193 article-title: Translocation of P‐32 between interacting mycelia of a wood‐decomposing fungus and ectomycorrhizal fungi in microcosm systems publication-title: New Phytologist – volume: 82 start-page: 666 year: 2012 end-page: 677 article-title: New primers to amplify the fungal ITS2 region – evaluation by 454‐sequencing of artificial and natural communities publication-title: Fems Microbiology Ecology – volume: 505 start-page: 543 year: 2014 end-page: 545 article-title: Mycorrhiza‐mediated competition between plants and decomposers drives soil carbon storage publication-title: Nature – year: 1991 – volume: 26 year: 2001 – ident: e_1_2_7_45_1 doi: 10.1890/09-2237.1 – ident: e_1_2_7_55_1 doi: 10.1007/978-3-642-75168-4 – ident: e_1_2_7_16_1 doi: 10.1007/BF00335839 – ident: e_1_2_7_26_1 doi: 10.1007/978-94-010-0694-1 – ident: e_1_2_7_52_1 doi: 10.1139/b82-199 – ident: e_1_2_7_35_1 doi: 10.1017/S0269915X04002046 – ident: e_1_2_7_14_1 doi: 10.1016/S0038-0717(99)00178-9 – ident: e_1_2_7_44_1 doi: 10.1111/j.1461-0248.2011.01611.x – ident: e_1_2_7_25_1 doi: 10.1111/j.1574-6941.2012.01437.x – ident: e_1_2_7_34_1 doi: 10.1038/ismej.2010.19 – ident: e_1_2_7_33_1 doi: 10.1093/treephys/21.2-3.71 – ident: e_1_2_7_57_1 doi: 10.1111/j.1469-8137.2004.01159.x – ident: e_1_2_7_23_1 doi: 10.1111/j.1469-8137.2007.01984.x – ident: e_1_2_7_10_1 doi: 10.1111/nph.12791 – ident: e_1_2_7_56_1 doi: 10.1890/12-1693.1 – ident: e_1_2_7_49_1 doi: 10.1038/nature10386 – ident: e_1_2_7_36_1 doi: 10.1111/j.1574-6941.2001.tb00880.x – ident: e_1_2_7_58_1 doi: 10.1016/B978-0-12-372180-8.50042-1 – ident: e_1_2_7_5_1 doi: 10.1111/j.1469-8137.1995.tb01834.x – ident: e_1_2_7_37_1 doi: 10.1111/nph.13201 – ident: e_1_2_7_38_1 doi: 10.1046/j.1469-8137.1999.00502.x – volume: 5 start-page: 35 year: 1975 ident: e_1_2_7_21_1 article-title: Suppression of litter decomposition by mycorrhizal roots of Pinus radiata publication-title: New Zealand Journal of Forestry Science – ident: e_1_2_7_28_1 doi: 10.1016/j.marchem.2004.06.025 – ident: e_1_2_7_27_1 doi: 10.1111/j.1469-8137.2010.03399.x – ident: e_1_2_7_2_1 doi: 10.1016/S0169-5347(00)89156-9 – ident: e_1_2_7_6_1 doi: 10.1371/journal.pone.0092897 – ident: e_1_2_7_53_1 doi: 10.1111/j.1365-2745.2010.01740.x – ident: e_1_2_7_8_1 doi: 10.1111/j.1574-6941.2000.tb00683.x – ident: e_1_2_7_24_1 doi: 10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2 – ident: e_1_2_7_7_1 doi: 10.2307/3761190 – ident: e_1_2_7_17_1 doi: 10.1111/nph.13648 – ident: e_1_2_7_46_1 doi: 10.1007/BF01972080 – ident: e_1_2_7_43_1 doi: 10.1038/377227a0 – ident: e_1_2_7_30_1 doi: 10.1046/j.1469-8137.2003.00732.x – ident: e_1_2_7_29_1 doi: 10.1038/ng.3223 – ident: e_1_2_7_54_1 doi: 10.1111/j.1365-2435.2008.01402.x – ident: e_1_2_7_20_1 doi: 10.1038/233133a0 – ident: e_1_2_7_48_1 doi: 10.1023/A:1006247623877 – ident: e_1_2_7_18_1 doi: 10.1016/S0038-0717(03)00155-X – ident: e_1_2_7_41_1 doi: 10.1111/nph.13677 – ident: e_1_2_7_47_1 doi: 10.1046/j.1469-8137.2003.00704.x – ident: e_1_2_7_12_1 doi: 10.1111/nph.13208 – ident: e_1_2_7_19_1 doi: 10.1016/S0038-0717(99)00205-9 – ident: e_1_2_7_31_1 doi: 10.1111/j.1469-8137.2008.02401.x – ident: e_1_2_7_4_1 doi: 10.1038/nature12901 – ident: e_1_2_7_39_1 doi: 10.1111/j.1469-8137.2006.01936.x – ident: e_1_2_7_42_1 doi: 10.1073/pnas.261555198 – ident: e_1_2_7_3_1 doi: 10.1007/s10533-006-9064-0 – ident: e_1_2_7_9_1 doi: 10.1038/ismej.2009.77 – ident: e_1_2_7_11_1 doi: 10.1126/science.1231923 – ident: e_1_2_7_13_1 doi: 10.1111/j.1469-8137.1996.tb01152.x – volume-title: Mycorrhizal Symbiosis year: 2008 ident: e_1_2_7_51_1 – ident: e_1_2_7_15_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_7_40_1 doi: 10.1111/j.1469-8137.2005.01607.x – ident: e_1_2_7_32_1 doi: 10.1111/mec.12481 – ident: e_1_2_7_22_1 doi: 10.1146/annurev.ecolsys.36.112904.151932 – ident: e_1_2_7_50_1 doi: 10.1007/s00442-003-1478-y |
SSID | ssj0009522 |
Score | 2.5782323 |
Snippet | Summary
Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this... Communities of litter saprotrophic and root‐associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth... 1. Communities of litter saprotrophic and root-associated fungi are vertically separated within boreal forest soil profiles. It is unclear whether this depth... |
SourceID | swepub proquest crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1967 |
SubjectTerms | antagonistic interaction Basidiomycetes Basidiomycota biogeochemical cycles Boreal forests carbon Carbon cycle Colonization Community composition Community development Community ecology community structure Competition Composition Decomposing organic matter Decomposition Ecology ecosystems ectomycorrhizal fungi Ectomycorrhizas Ekologi Factorial design Forest soils fungal communities Fungi growing season Guilds Humus Interference Litter litterbag experiment meta‐barcoding Microbiology microclimate Mikrobiologi moulds mycorrhizal fungi next generation sequencing Niche overlap Niches Nutrient cycles nutrient mobilization Organic matter Partitioning Resource partitioning saprotrophic fungi saprotrophs Soil profiles Soil properties Soils substrate quality Substrates Taiga |
Title | Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently |
URI | https://www.jstor.org/stable/48582354 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12677 https://www.proquest.com/docview/2374398788 https://www.proquest.com/docview/1859477477 https://www.proquest.com/docview/2000419410 https://res.slu.se/id/publ/79927 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlUOil76XbpkWFUnrxEkuyLB1D2CUU0kNpoDejl5vQrTesbMrm12fGst1sIJTSk4Wt8UOe0XyyZ74h5IO3ofDC5ZmUdciE9nWmTM2yWjrtnAMEUGPu8NkXeXouPn8vxmhCzIVJ_BDTBze0jH6-RgM3Nt4y8hSfBd5-kTNZYj457kFY9JXdot1N_xGY1Bl4Wj6Q-2Aszx35Pb-UQhP3QWciEt3HsL0TWj0hdrz9FHvyc9G1duGu7zA7_tfzPSWPB4hKj5NOPSMPQvOcPExFK3fQWrqhNVv-yZIDgWGaiC_I77MdLGq3F5fXsNs0nkaDfBDbzdXFpaPgSsEt0R9YkDtSl4A7BfBMAYxC11-BplpTjkaY1nr63Eht11LTB59QH1BoiDajY4mXdr17Sc5Xy28np9lQ4SFzuFLKrBJWFob50vlae2ZVLWoJoE_o4FkQGLTDy6CZsc762nAptAg8FyWXgEw5n5GDZtOEV4QKb3VZCCdVkKLOtRW5UaUxkh8ZuEQ-J4vx_VZuoD_HKhzralwG4YBXOOBVP-Bz8mkSuErMH_d3nfUKM_UTqlCMF2JODkcNqoa5IVaM4yJQlUrNyfvpMFg1_qoxTdh0sQIUpQUgczz3fX0wyUrkWuRHc_Ixaed0A0gaHtedNVvcVDFUpdYMTpZU7m8PVK2WJ33j9b8KvCGPAFLKFPBzSA7abRfeAmxr7bveMm8AGbU4RA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgCMEL3xWBAUZCiJdUi-049iOaWhVY94A2aW-Wv7JNlHRqEqHur-ccJ6WdNCHEU6zEdmLnzve75Pw7hD4443PHbJZyXvqUSVemQpckLbmV1lpAAGXYOzw_5rNT9vUsP9vaCxP5ITYf3IJmdOt1UPDwQXpLy2OAFpj7cUZ4UdxF90Je786t-k62iHfjnwTCZQq2lvb0PiGa50YHO5YpBifuws5IJbqLYjszNH2M7DCAGH3yY9w2Zmyvb3A7_t8In6BHPUrFn6NYPUV3fPUM3Y95K9dQmti-NJr82SgHDfqVon6Ofs3X4NeuLi6v4bSuHK51oIRYLa8uLi0GawqWCZ-HnNw1thG7Y8DPGPAoVP3pcUw3ZXENK1vHoFtj0zZYd_En2PnQqA84w0OWl2axfoFOp5OTw1naJ3lIbXCWUiOY4bkmrrCulI4YUbKSA-5j0jviWYjboYWXRBtrXKkpZ5J5mrGCcgCnlI7QXrWs_EuEmTOyyJnlwnNWZtKwTItCa04PNNwiS9B4eMHK9gzoIRHHQg2eUJhwFSZcdROeoE-bBleR_OP2qqNOYjb1mMgFoTlL0P4gQqpfHmpFaPADRSFEgt5vLoNih781uvLLtlYApCQDcB76vq1O2GfFMsmygwR9jOK5eYDAG14vWqNX4aBqrwopCXQWZe5vA1LTyWFXePWvDd6hB7OT-ZE6-nL87TV6CAiTx_iffbTXrFr_BlBcY952avobi2k8Xw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgCMQL94qOAUZCiJdUjeM49iPaWo3LJoSYxJvl6zZR0qpJNHW_nuM4CeukCSGeYqW267jn-HxuPn8HobdWu9xSkyaMeZdQYX3ClSeJZ0YYYwAB-HB2-OiYHZ7QTz_ynk0YzsJEfYjhD7fgGe16HRx8Zf0VJ4_8LIj2k5SworiN7lA25cGwD76RK7q78UUCYSKBUJt16j6BzHOtg63AFLmJ26gzKolug9g2Cs0fIt2PP5JPfk6aWk_M5TVpx_96wEfoQYdR8YdoVI_RLVc-QXdj1soNlGamK41mf47JQYNunaieooujDexq12fnl3BblRZXKghCrJers3ODIZZCXMKnISN3hU1E7hjQMwY0ClV_ORyTTRlcwbrW6udWWDc1Vi37BFsXGnV0M9zneKkXm2foZD77vn-YdCkeEhO2SonmVLNcEVsY64UlmnvqGaA-KpwljgbWTlY4QZQ22nqVMSqoy1JaZAygaZaN0E65LN1zhKnVosipYdwx6lOhaap4oRTLpgq-Ih2jSf_7StPpn4c0HAvZ74PChMsw4bKd8DF6PzRYRemPm6uOWoMZ6lGec5LldIz2eguS3eJQSZKFXSAvOB-jN8PH4NbhXY0q3bKpJMAoQQGah75vqhNOWdFU0HQ6Ru-idQ4DCKrh1aLRah0usnKyEIJAZ9Hk_vZAcj7bbwu7_9rgNbr39WAuv3w8_vwC3Qd4ySL5Zw_t1OvGvQQIV-tXrZP-BrwkOxc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mycorrhizal+and+saprotrophic+fungal+guilds+compete+for+the+same+organic+substrates+but+affect+decomposition+differently&rft.jtitle=Functional+ecology&rft.au=B%C3%B6deker%2C+Inga+T+M&rft.au=Lindahl%2C+Bj%C3%B6rn+D&rft.au=Olson%2C+%C3%85ke&rft.au=Clemmensen%2C+Karina+E&rft.date=2016-12-01&rft.issn=0269-8463&rft.volume=30&rft.issue=12+p.1967-1978&rft.spage=1967&rft.epage=1978&rft_id=info:doi/10.1111%2F1365-2435.12677&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |