Beyond the single index: Investigating ecological mechanisms underpinning ecosystem multifunctionality with network analysis

Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index‐based appr...

Full description

Saved in:
Bibliographic Details
Published inEcology and evolution Vol. 11; no. 18; pp. 12401 - 12412
Main Authors Siwicka, Ewa, Gladstone‐Gallagher, Rebecca, Hewitt, Judi E., Thrush, Simon F.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.09.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2045-7758
2045-7758
DOI10.1002/ece3.7987

Cover

Abstract Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index‐based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep‐dwelling worms, hard‐bodied surface dwellers, and tube‐forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real‐world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision‐making will support the assessment of multiple ecosystem services and social‐ecological values. Our manuscript presents the method, multivariate network analysis, that allows studying complex mechanistic ecological underpinnings of ecosystem multifunctionality at the ecosystem scale, overcoming information loss generated by commonly used indices such as species richness.
AbstractList Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index‐based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep‐dwelling worms, hard‐bodied surface dwellers, and tube‐forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real‐world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision‐making will support the assessment of multiple ecosystem services and social‐ecological values.
Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index-based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep-dwelling worms, hard-bodied surface dwellers, and tube-forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real-world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision-making will support the assessment of multiple ecosystem services and social-ecological values.Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index-based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep-dwelling worms, hard-bodied surface dwellers, and tube-forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real-world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision-making will support the assessment of multiple ecosystem services and social-ecological values.
Abstract Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index‐based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep‐dwelling worms, hard‐bodied surface dwellers, and tube‐forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real‐world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision‐making will support the assessment of multiple ecosystem services and social‐ecological values.
Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index‐based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep‐dwelling worms, hard‐bodied surface dwellers, and tube‐forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real‐world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision‐making will support the assessment of multiple ecosystem services and social‐ecological values.
Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index‐based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep‐dwelling worms, hard‐bodied surface dwellers, and tube‐forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real‐world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision‐making will support the assessment of multiple ecosystem services and social‐ecological values. Our manuscript presents the method, multivariate network analysis, that allows studying complex mechanistic ecological underpinnings of ecosystem multifunctionality at the ecosystem scale, overcoming information loss generated by commonly used indices such as species richness.
Author Siwicka, Ewa
Thrush, Simon F.
Hewitt, Judi E.
Gladstone‐Gallagher, Rebecca
AuthorAffiliation 3 National Institute of Water and Atmospheric Research (NIWA) Hamilton New Zealand
4 Department of Statistics University of Auckland Auckland New Zealand
1 Institute of Marine Science University of Auckland Auckland New Zealand
2 Tvärminne Zoological Station University of Helsinki Hanko Finland
AuthorAffiliation_xml – name: 4 Department of Statistics University of Auckland Auckland New Zealand
– name: 1 Institute of Marine Science University of Auckland Auckland New Zealand
– name: 2 Tvärminne Zoological Station University of Helsinki Hanko Finland
– name: 3 National Institute of Water and Atmospheric Research (NIWA) Hamilton New Zealand
Author_xml – sequence: 1
  givenname: Ewa
  orcidid: 0000-0002-1109-698X
  surname: Siwicka
  fullname: Siwicka, Ewa
  email: e.siwicka@auckland.ac.nz
  organization: University of Auckland
– sequence: 2
  givenname: Rebecca
  orcidid: 0000-0002-1745-2084
  surname: Gladstone‐Gallagher
  fullname: Gladstone‐Gallagher, Rebecca
  organization: University of Helsinki
– sequence: 3
  givenname: Judi E.
  surname: Hewitt
  fullname: Hewitt, Judi E.
  organization: University of Auckland
– sequence: 4
  givenname: Simon F.
  surname: Thrush
  fullname: Thrush, Simon F.
  organization: University of Auckland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34594508$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9vFCEUgCemxtbag_-AIfGih21hBgbGg4luVt2kiRc9E4Z5s8vKQAWm6yT-8bI_atpGuQCP7328wHtenDjvoCheEnxJMC6vQEN1yRvBnxRnJaZsxjkTJ_fWp8VFjBucR41Livmz4rSirKEMi7Pi90eYvOtQWgOKxq0sIOM6-PUOLd0txGRWKuUwAu2tXxmtLBpAr5UzcYhozGi4Mc4dkTjFBAMaRptMPzqdjHfKmjShrUlr5CBtffiBVA5O0cQXxdNe2QgXx_m8-P5p8W3-ZXb99fNy_uF6phkVfEbajgAjXY95iXvdiVooqCkp64qBINA0vVKi7FTe1p1qG9ELpWuu65apquyr82J58HZebeRNMIMKk_TKyH3Ah5VUIRltQfJWNLQiuOE9oS3Pslp3tCoV5oQ1DGfX-4PrZmwH6DS4FJR9IH144sxarvytFLQuCadZ8OYoCP7nmJ9YDiZqsFY58GOUJeOC1yJfldHXj9CNH0N-vD3FBCaMkUy9ul_R31LuPjkDVwdABx9jgF5qk9Tub3KBxkqC5a6T5K6T5K6TcsbbRxl30n-xR_vWWJj-D8rFfFHtM_4AAbbatg
CitedBy_id crossref_primary_10_1002_ece3_9001
crossref_primary_10_1002_eap_3069
crossref_primary_10_34133_ehs_0115
crossref_primary_10_1038_s41467_024_53001_1
crossref_primary_10_3389_fpls_2025_1436439
crossref_primary_10_1111_1440_1703_12417
crossref_primary_10_1007_s10021_022_00775_4
crossref_primary_10_1111_rec_13979
Cites_doi 10.1007/s12237‐021‐00912‐7
10.1016/j.tree.2016.10.011
10.1111/2041‐210X.12894
10.1098/rspb.2016.2861
10.1890/09‐0464.1
10.1093/acprof:oso/9780199206650.001.0001
10.1016/j.marpolbul.2016.06.096
10.1609/icwsm.v3i1.13937
10.1016/j.jembe.2008.07.016
10.1016/j.ecolind.2020.106415
10.1007/s12237‐020‐00728‐x
10.1111/1365‐2664.12765
10.1890/1540-9295(2004)002[0299:MWESIT]2.0.CO;2
10.1046/j.1523‐1739.1992.610018.x
10.1073/pnas.2016210117
10.1038/nature05947
10.1111/j.1365‐2664.2011.02048.x
10.1890/04‐0922
10.1029/2020JG005766
10.1038/s41559‐017‐0461‐7
10.1890/03‐0226
10.1890/12‐1716.1
10.1073/pnas.1421203112
10.1088/1742‐5468/2008/10/P10008
10.18637/jss.v069.c02
10.1002/lno.11337
10.1016/j.tree.2009.03.018
10.1111/ecog.01892
10.1017/S0376892902000061
10.1371/journal.pone.0017476
10.1111/ele.12504
10.1111/1365‐2664.13304
10.1038/ncomms7936
10.1016/j.tree.2015.12.003
10.3389/fenvs.2019.00122
10.1016/j.tree.2020.01.004
10.1111/2041‐210X.12143
10.1021/ac00095a009
10.1016/j.tree.2014.05.002
10.1111/j.1365‐2427.1994.tb01742.x
10.1098/rspb.2015.1348
10.1016/j.ecocom.2020.100877
10.1038/nature11148
10.1038/s41559‐017‐0132
10.1371/journal.pone.0027065
10.1038/s41598‐019‐43475‐1
10.1002/eap.2010
10.1890/10‐1510.1
10.1073/pnas.1815727116
10.1088/1748-9326/ab5ccb
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd.
2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd.
– notice: 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7SN
7SS
7ST
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1002/ece3.7987
DatabaseName Wiley - open access journals
CrossRef
PubMed
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed
Agricultural Science Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
DocumentTitleAlternate SIWICKA et al
EISSN 2045-7758
EndPage 12412
ExternalDocumentID oai_doaj_org_article_7b89431097f14b7ab96cd432a0715950
PMC8462174
34594508
10_1002_ece3_7987
ECE37987
Genre article
Journal Article
GeographicLocations New Zealand
GeographicLocations_xml – name: New Zealand
GrantInformation_xml – fundername: Sustainable Seas National Challenge
  funderid: Co1x1515: 2.1.3
– fundername: Sustainable Seas National Challenge
  grantid: Co1x1515: 2.1.3
GroupedDBID 0R~
1OC
24P
53G
5VS
7X2
8-0
8-1
8FE
8FH
AAFWJ
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACGFO
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AFRAH
AIAGR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ATCPS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
D-8
D-9
DIK
EBS
ECGQY
EJD
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEP
ITC
KQ8
LK8
M0K
M48
M7P
M~E
OK1
PIMPY
PROAC
RNS
ROL
RPM
SUPJJ
WIN
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
PQGLB
3V.
7SN
7SS
7ST
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5487-1bd1e51df0720fcd868ae6412635e81e99faa82da35e6dab98f8ac67c6b5a32f3
IEDL.DBID M48
ISSN 2045-7758
IngestDate Wed Aug 27 01:32:17 EDT 2025
Thu Aug 21 17:56:12 EDT 2025
Fri Sep 05 09:47:05 EDT 2025
Wed Aug 13 04:52:50 EDT 2025
Mon Jul 21 05:56:32 EDT 2025
Thu Apr 24 23:00:30 EDT 2025
Tue Jul 01 03:04:33 EDT 2025
Wed Jan 22 16:56:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords species richness
network analysis
coastal ecology
ecosystem complexity
ecosystem multifunctionality
Language English
License Attribution
2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5487-1bd1e51df0720fcd868ae6412635e81e99faa82da35e6dab98f8ac67c6b5a32f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1109-698X
0000-0002-1745-2084
OpenAccessLink https://doaj.org/article/7b89431097f14b7ab96cd432a0715950
PMID 34594508
PQID 2575801551
PQPubID 2034651
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_7b89431097f14b7ab96cd432a0715950
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8462174
proquest_miscellaneous_2578768503
proquest_journals_2575801551
pubmed_primary_34594508
crossref_citationtrail_10_1002_ece3_7987
crossref_primary_10_1002_ece3_7987
wiley_primary_10_1002_ece3_7987_ECE37987
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
– name: Hoboken
PublicationTitle Ecology and evolution
PublicationTitleAlternate Ecol Evol
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 1
2012; 486
2019; 56
2019; 14
2016; 31
1994; 66
2014; 29
2004; 2
2020; 125
2008; 2008
1992; 6
2018; 9
2014; 5
2018; 2
1965; 9
2017; 32
2013; 94
2019; 116
2016; 111
2005; 75
2017; 284
2020; 44
2020; 43
1994; 31
2019; 7
2015; 282
2004; 85
2019; 9
2009; 24
2007; 448
2015; 6
2015; 18
2019; 30
2010
2011; 81
2009
2020; 39
1997
2020; 35
2008; 366
2014; 111
2010; 80
2011; 6
2002; 29
2021
2017; 54
2020; 115
2019
2020; 117
2009; 8
2015
2011; 48
2020; 65
2013
2016; 69
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
Thrush S. F. (e_1_2_11_53_1) 2013
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_35_1
e_1_2_11_52_1
Day P. (e_1_2_11_14_1) 1965; 9
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Arar E. J. (e_1_2_11_2_1) 1997
IPBES (e_1_2_11_31_1) 2019
Clarke K. (e_1_2_11_12_1) 2015
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Cole J. (e_1_2_11_13_1) 2009
References_xml – year: 2009
– volume: 1
  year: 2017
  article-title: Functional trait diversity maximizes ecosystem multifunctionality
  publication-title: Nature Ecology and Evolution
– volume: 39
  start-page: 1139
  year: 2020
  end-page: 1150
  article-title: A network approach for inferring species associations from co‐occurrence data
  publication-title: Ecography
– volume: 54
  start-page: 509
  year: 2017
  end-page: 517
  article-title: Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system
  publication-title: Journal of Applied Ecology
– volume: 69
  start-page: 1
  year: 2016
  end-page: 17
  article-title: cooccur: Probabilistic species co‐occurrence analysis in R
  publication-title: Journal of Statistical Software
– volume: 85
  start-page: 847
  year: 2004
  end-page: 857
  article-title: How do different measures of functional diversity perform?
  publication-title: Ecology
– volume: 115
  start-page: 106415
  year: 2020
  article-title: Functional trait diversity is a stronger predictor of multifunctionality than dominance: Evidence from an Afromontane forest in South Africa
  publication-title: Ecological Indicators
– volume: 5
  start-page: 111
  year: 2014
  end-page: 124
  article-title: Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions
  publication-title: Methods in Ecology and Evolution
– start-page: 1
  year: 2021
  end-page: 17
  article-title: Ecogeochemistry and denitrification in non‐eutrophic coastal sediments
  publication-title: Estuaries and Coasts
– volume: 24
  start-page: 505
  year: 2009
  end-page: 514
  article-title: Emerging horizons in biodiversity and ecosystem functioning research
  publication-title: Trends in Ecology and Evolution
– volume: 117
  start-page: 28140
  year: 2020
  end-page: 28149
  article-title: Land‐use intensity alters networks between biodiversity, ecosystem functions, and services
  publication-title: Proceedings of the National Academy of Sciences
– volume: 31
  start-page: 295
  year: 1994
  end-page: 309
  article-title: A fuzzy coding approach for the analysis of long‐term ecological data
  publication-title: Freshwater Biology
– volume: 30
  year: 2019
  article-title: Linking changes in species–trait relationships and ecosystem function using a network analysis of traits
  publication-title: Ecological Applications
– volume: 43
  start-page: 1394
  year: 2020
  end-page: 1405
  article-title: Denitrification and the role of macrofauna across estuarine gradients in nutrient and sediment loading
  publication-title: Estuaries and Coasts
– volume: 32
  start-page: 118
  year: 2017
  end-page: 130
  article-title: Operationalizing network theory for ecosystem service assessments
  publication-title: Trends in Ecology and Evolution
– volume: 29
  start-page: 398
  year: 2014
  end-page: 405
  article-title: Real world biodiversity–ecosystem functioning: A seafloor perspective
  publication-title: Trends in Ecology and Evolution
– volume: 7
  start-page: 122
  year: 2019
  article-title: Unpacking the black box: Demystifying ecological models through interactive workshops and hands‐on learning
  publication-title: Frontiers in Environmental Science
– volume: 6
  start-page: 6936
  year: 2015
  article-title: Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats
  publication-title: Nature Communications
– volume: 66
  start-page: 4166
  year: 1994
  article-title: Membrane inlet mass spectrometer for rapid high‐precision determination of N2, O2, and Ar in environmental water samples
  publication-title: Analytical Chemistry
– year: 1997
– volume: 111
  issue: 51
  year: 2014
  article-title: Reply to Byrnes et al: Aggregation can obscure understanding of ecosystem multifunctionality
  publication-title: Proceedings of the National Academy of Sciences
– volume: 6
  start-page: 18
  year: 1992
  end-page: 23
  article-title: Biodiversity and ecological redundancy
  publication-title: Conservation Biology
– volume: 486
  start-page: 59
  year: 2012
  end-page: 67
  article-title: Biodiversity loss and its impact on humanity
  publication-title: Nature
– volume: 2008
  start-page: 10008
  year: 2008
  article-title: Fast unfolding of communities in large networks
  publication-title: Journal of Statistical Mechanics
– volume: 284
  start-page: 20162861
  year: 2017
  article-title: Changes in the location of biodiversity–ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– year: 2019
– volume: 35
  start-page: 454
  year: 2020
  end-page: 466
  article-title: The role of evolution in shaping ecological networks
  publication-title: Trends in Ecology and Evolution
– volume: 2
  start-page: 427
  year: 2018
  end-page: 436
  article-title: Redefining ecosystem multifunctionality
  publication-title: Nature Ecology and Evolution
– year: 2015
– volume: 111
  start-page: 287
  year: 2016
  end-page: 294
  article-title: In situ soft sediment nutrient enrichment: A unified approach to eutrophication field experiments
  publication-title: Marine Pollution Bulletin
– volume: 75
  start-page: 3
  year: 2005
  end-page: 35
  article-title: Effects of biodiversity on ecosystem functioning: A consensus of current knowledge
  publication-title: Ecological Monographs
– volume: 44
  start-page: 100877
  year: 2020
  article-title: Advancing approaches for understanding the nature‐people link
  publication-title: Ecological Complexity
– volume: 2
  start-page: 299
  year: 2004
  end-page: 306
  article-title: Muddy waters: Elevating sediment input to coastal and estuarine habitats
  publication-title: Frontiers in Ecology and the Environment
– volume: 94
  start-page: 2275
  year: 2013
  end-page: 2287
  article-title: The role of recurrent disturbances for ecosystem multifunctionality
  publication-title: Ecology
– volume: 80
  start-page: 67
  year: 2010
  end-page: 87
  article-title: On the specification of structural equation models for ecological systems
  publication-title: Ecological Monographs
– year: 2010
– volume: 31
  start-page: 105
  year: 2016
  end-page: 115
  article-title: Networking our way to better ecosystem service provision
  publication-title: Trends in Ecology and Evolution
– volume: 48
  start-page: 1079
  year: 2011
  end-page: 1087
  article-title: Beyond species: Functional diversity and the maintenance of ecological processes and services
  publication-title: Journal of Applied Ecology
– volume: 9
  start-page: 545
  year: 1965
  end-page: 567
  article-title: Particle fractionation and particle‐size analysis
  publication-title: Methods of Soil Analysis
– volume: 56
  start-page: 665
  year: 2019
  end-page: 676
  article-title: Identifying native plants for coordinated habitat management of arthropod pollinators, herbivores and natural enemies
  publication-title: Journal of Applied Ecology
– volume: 9
  start-page: 245
  year: 2018
  end-page: 253
  article-title: Rapid organic matter assay of organic matter degradation across depth gradients within marine sediments
  publication-title: Methods in Ecology and Evolution
– volume: 8
  start-page: 361
  year: 2009
  end-page: 362
  article-title: Gephi: An open source software for exploring and manipulating networks
  publication-title: International AAAI Conference on Weblogs and Social Media
– volume: 282
  start-page: 20151348
  year: 2015
  article-title: The quest for a mechanistic understanding of biodiversity–ecosystem services relationships
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 366
  start-page: 116
  year: 2008
  end-page: 122
  article-title: Habitat variation, species diversity and ecological functioning in a marine system
  publication-title: Journal of Experimental Marine Biology and Ecology
– volume: 125
  year: 2020
  article-title: Recovering from bias: A call for further study of underrepresented tropical and low‐nutrient estuaries
  publication-title: Journal of Geophysical Research Biogeosciences
– volume: 6
  year: 2011
  article-title: Sedimentary environment influences the effect of an infaunal suspension feeding bivalve on estuarine ecosystem function
  publication-title: PLoS One
– volume: 14
  start-page: 124083
  issue: 12
  year: 2019
  article-title: Measuring ecosystem multifunctionality across scales
  publication-title: Environmental Research Letters
– volume: 6
  year: 2011
  article-title: Functional structure of biological communities predicts ecosystem multifunctionality
  publication-title: PLoS One
– volume: 81
  start-page: 169
  year: 2011
  end-page: 193
  article-title: The value of estuarine and coastal ecosystem services
  publication-title: Ecological Monographs
– volume: 65
  start-page: 683
  year: 2020
  end-page: 693
  article-title: The role of large macrofauna in mediating sediment erodibility across sedimentary habitats
  publication-title: Limnology and Oceanography
– volume: 29
  start-page: 78
  year: 2002
  end-page: 107
  article-title: Environmental threats and environmental future of estuaries
  publication-title: Environmental Conservation
– volume: 116
  start-page: 8419
  year: 2019
  end-page: 8424
  article-title: Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality
  publication-title: Proceedings of the National Academy of Sciences
– volume: 448
  start-page: 188
  year: 2007
  end-page: 190
  article-title: Biodiversity and ecosystem multifunctionality
  publication-title: Nature
– volume: 18
  start-page: 1242
  year: 2015
  end-page: 1251
  article-title: Testing the effects of diversity on ecosystem multifunctionality using a multivariate model
  publication-title: Ecology Letters
– volume: 9
  start-page: 6979
  year: 2019
  article-title: Functional diversity drives ecosystem multifunctionality in a natural secondary forest
  publication-title: Scientific Reports
– year: 2013
– volume-title: The many uses and values of estuarine ecosystems. Ecosystem services in New Zealand – Conditions and trends
  year: 2013
  ident: e_1_2_11_53_1
– ident: e_1_2_11_55_1
  doi: 10.1007/s12237‐021‐00912‐7
– ident: e_1_2_11_15_1
  doi: 10.1016/j.tree.2016.10.011
– ident: e_1_2_11_43_1
  doi: 10.1111/2041‐210X.12894
– ident: e_1_2_11_52_1
  doi: 10.1098/rspb.2016.2861
– ident: e_1_2_11_21_1
  doi: 10.1890/09‐0464.1
– ident: e_1_2_11_42_1
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– ident: e_1_2_11_17_1
  doi: 10.1016/j.marpolbul.2016.06.096
– ident: e_1_2_11_4_1
  doi: 10.1609/icwsm.v3i1.13937
– ident: e_1_2_11_26_1
  doi: 10.1016/j.jembe.2008.07.016
– ident: e_1_2_11_39_1
  doi: 10.1016/j.ecolind.2020.106415
– ident: e_1_2_11_44_1
  doi: 10.1007/s12237‐020‐00728‐x
– ident: e_1_2_11_20_1
  doi: 10.1111/1365‐2664.12765
– ident: e_1_2_11_51_1
  doi: 10.1890/1540-9295(2004)002[0299:MWESIT]2.0.CO;2
– ident: e_1_2_11_57_1
  doi: 10.1046/j.1523‐1739.1992.610018.x
– ident: e_1_2_11_19_1
  doi: 10.1073/pnas.2016210117
– volume-title: In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence (Method 445.0)
  year: 1997
  ident: e_1_2_11_2_1
– ident: e_1_2_11_24_1
  doi: 10.1038/nature05947
– ident: e_1_2_11_9_1
  doi: 10.1111/j.1365‐2664.2011.02048.x
– ident: e_1_2_11_29_1
  doi: 10.1890/04‐0922
– ident: e_1_2_11_54_1
  doi: 10.1029/2020JG005766
– ident: e_1_2_11_38_1
  doi: 10.1038/s41559‐017‐0461‐7
– ident: e_1_2_11_45_1
  doi: 10.1890/03‐0226
– ident: e_1_2_11_56_1
  doi: 10.1890/12‐1716.1
– volume: 9
  start-page: 545
  year: 1965
  ident: e_1_2_11_14_1
  article-title: Particle fractionation and particle‐size analysis
  publication-title: Methods of Soil Analysis
– ident: e_1_2_11_7_1
  doi: 10.1073/pnas.1421203112
– ident: e_1_2_11_5_1
  doi: 10.1088/1742‐5468/2008/10/P10008
– ident: e_1_2_11_22_1
  doi: 10.18637/jss.v069.c02
– ident: e_1_2_11_27_1
  doi: 10.1002/lno.11337
– ident: e_1_2_11_46_1
  doi: 10.1016/j.tree.2009.03.018
– ident: e_1_2_11_40_1
  doi: 10.1111/ecog.01892
– ident: e_1_2_11_34_1
  doi: 10.1017/S0376892902000061
– ident: e_1_2_11_41_1
  doi: 10.1371/journal.pone.0017476
– ident: e_1_2_11_16_1
  doi: 10.1111/ele.12504
– ident: e_1_2_11_37_1
  doi: 10.1111/1365‐2664.13304
– ident: e_1_2_11_36_1
  doi: 10.1038/ncomms7936
– ident: e_1_2_11_6_1
  doi: 10.1016/j.tree.2015.12.003
– ident: e_1_2_11_25_1
  doi: 10.3389/fenvs.2019.00122
– ident: e_1_2_11_47_1
  doi: 10.1016/j.tree.2020.01.004
– ident: e_1_2_11_8_1
  doi: 10.1111/2041‐210X.12143
– ident: e_1_2_11_33_1
  doi: 10.1021/ac00095a009
– volume-title: PRIMER v7: user manual/tutorial
  year: 2015
  ident: e_1_2_11_12_1
– ident: e_1_2_11_50_1
  doi: 10.1016/j.tree.2014.05.002
– ident: e_1_2_11_11_1
  doi: 10.1111/j.1365‐2427.1994.tb01742.x
– ident: e_1_2_11_18_1
  doi: 10.1098/rspb.2015.1348
– ident: e_1_2_11_48_1
  doi: 10.1016/j.ecocom.2020.100877
– ident: e_1_2_11_10_1
  doi: 10.1038/nature11148
– ident: e_1_2_11_23_1
  doi: 10.1038/s41559‐017‐0132
– ident: e_1_2_11_32_1
  doi: 10.1371/journal.pone.0027065
– ident: e_1_2_11_30_1
  doi: 10.1038/s41598‐019‐43475‐1
– ident: e_1_2_11_49_1
  doi: 10.1002/eap.2010
– volume-title: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services
  year: 2019
  ident: e_1_2_11_31_1
– ident: e_1_2_11_3_1
  doi: 10.1890/10‐1510.1
– ident: e_1_2_11_35_1
  doi: 10.1073/pnas.1815727116
– ident: e_1_2_11_28_1
  doi: 10.1088/1748-9326/ab5ccb
– volume-title: Whangateau catchment and harbour study. Summary and discussion
  year: 2009
  ident: e_1_2_11_13_1
SSID ssj0000602407
Score 2.2998366
Snippet Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest...
Abstract Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12401
SubjectTerms Ammonium
Biodegradation
Biodiversity
Biodiversity loss
Clusters
coastal ecology
Complexity
Decision making
Denitrification
Ecological function
Ecology
ecosystem complexity
ecosystem multifunctionality
Ecosystem services
Ecosystems
Efflux
Embedding
Environmental changes
Environmental conditions
Feeders
Functional groups
Marine ecosystems
Moisture content
Mud
Multivariate analysis
Network analysis
Organic matter
Original Research
Oxygen consumption
Oxygen production
Sediments
Species
species richness
Suspension feeders
Water content
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDehBbmIA5dQJ3b84AbVVlUPnKjUm-XHGFZq06rbHpD64_HY2VVWFHEhpzzm4MyMPd_Y48-EfHAQDIOQe1o2bk5QpG9dH3SrhhS5j0ExKFW-3-TxqTg5G85mR31hTVilB66KO1AeGcJxnTR1wivnjQxR8N7l2DiYmq0zw2bJVB2DkbtLramEWH8AAfgnZbB0bhaACk__feDyzxrJOXYtwefoCXk8oUb6pbb2KXkA4zPycFEYp389J3d1HwrNYI5i7n8OtLAgfqYzGo3xB4WwHuroBeCW3-XqYkVxG9n11bKcXYQildyZllJDDHt1tjCjdYqTtnSshePUTXQmL8jp0eL74XE7HavQBkxP2s7HDoYuJqZ6lkLUUjuQokNaGtAdGJOc0310-VHGrHCdtAtSBekHx_vEX5Kd8XKE14QKlYwEUC54KSAKz5TpUsxXl3hkrCEf17q2YeIcx6Mvzm1lS-4tmsWiWRryfiN6VYk27hP6igbbCCA3dnmRPcZOHmP_5TEN2Vub204ddmXzyDXogh8bsr_5nLsarp-4ES5vi0yOHXpgvCGvqndsWsLFYEQGuw1RW36z1dTtL-PyZ6HzzggQ88Ksq-Jhf_97uzhccLx58z_UsEse9VifU-rl9sjOzfUtvM0A68a_K33pN5STJtw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagFRIXxJuFggziwGWp92V7uSBabVVxqBCiUm8rP8YlUrsJSXtA4scz4_WGRBRySrJzsHdmPJ_H428Ye2vAtQIcehoqFzco0uamdDpXTfCV9U4JiFW-J_L4tP581pylhNsqlVVOa2JcqP3cUY58H02r0THAf1z8yKlrFJ2uphYat9kuLsEa7Xz3oDv58nWdZRGSOLzURCkkyn1wUL1XLZXQbQSiyNd_E8j8u1ZyE8PGIHR0n91L6JF_GtX9gN2C4SG700Xm6Z-P2K_xPgpHUMcpB3ABPLIhfuAbdBrDOQc3LXn8Eujq72x1ueJ0nWy5mMUeRiQykjzzWHJI4W_MGiJq55S85cNYQM5NojV5zE6Pum-Hx3lqr5A72qbkhfUFNIUPQpUiOK-lNiDrguhpQBfQtsEYXXqDP6U3ttVBGyeVk7YxVRmqJ2xnmA_wjPFahVYCKOOsrMHXVqi2CB4_Rai8EBl7N73r3iXucWqBcdGPrMllT2rpSS0Ze7MWXYyEGzcJHZDC1gLEkR3_mC_P--RyvbLELU8n7KGorcIJSOfrqjSIqpq2wUHtTeruk-Ou-j9mlrHX68focnSOYgaYX0cZjCG6EVXGno7WsR5JVTdtjaA3Y2rLbraGuv1kmH2PtN6IBGl_iO8qWti_Z993h11FX57_fwYv2N2SKnBiRdwe27laXsNLhFBX9lXyk99emSEc
  priority: 102
  providerName: ProQuest
– databaseName: Wiley - open access journals
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKERIXxJtAQQZx4BLqJH4FTlBtVXFAHKjUW-THuKzUZqvd9oDEj2fGedAVRSKnPCaS7fHYn8cznxl76yC0AgJaGioXFyjal64OtjQqxcbHYATkKN-v-uhYfjlRJzvs45QLM_BDzA43sow8XpOBO7_Z_0MaCgGa9waXzLfYbUqtpXMbavltdrAITfRdlC5NjOuIIpWdmIVEvT__vTUfZdr-m7Dm3yGT16FsnosO77N7I4jknwatP2A70D9kdxaZgPrnI_ZrSEvhiO04uQLOgGdSxA_8GqtGf8ohTCMfPwfKAF5uzjecssrWF8t8lBGJDFzPPEce0iw4OA8RvHPy4fJ-iCPnbmQ3ecyODxffD47K8ZSFMtBqpax8rEBVMQlTixSi1daBlhWx1ICtoG2Tc7aODh91dL61ybqgTdBeuaZOzRO22696eMa4NKnVAMYFryVE6YVpqxTxqlIThSjYu6mtuzBSkNNJGGfdQJ5cd6SWjtRSsDez6MXAu3GT0GdS2CxAVNn5xWp92o2W1xlPFPO00Z4q6Q1WQIcom9ohuFKtwkLtTeruRvvddDiQKZvhZMFez5_R8mg7xfWwusoyOJVYJZqCPR16x1ySRqpWIvYtmNnqN1tF3f7SL39kdm8EhLRMxLbKPezfte8WB4uGbp7_v-gLdremoJwcJLfHdi_XV_ASUdWlf5Wt5zciASGj
  priority: 102
  providerName: Wiley-Blackwell
Title Beyond the single index: Investigating ecological mechanisms underpinning ecosystem multifunctionality with network analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.7987
https://www.ncbi.nlm.nih.gov/pubmed/34594508
https://www.proquest.com/docview/2575801551
https://www.proquest.com/docview/2578768503
https://pubmed.ncbi.nlm.nih.gov/PMC8462174
https://doaj.org/article/7b89431097f14b7ab96cd432a0715950
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEF_6QPCL-Da2Hqv4wS-peewrgogtKUWwFPGg38I-24Nrrt610IJ_vDOb5LjDE8ynPCaw2dnZ-c1m9jeEvNfeVpm3YGmgXAhQhEl1YVUqeXClcVZmPmb5noqTMft2zs-3yFBjs-_AxcbQDutJjefTg7tf91_A4D_3BKIfvfXlgYTgeZvsgkMSGIN971F-NyEjkRdunEbudcCTXA0cQ6tvr3mmSOC_CXX-nTy5CmqjVzp-TB71cJJ-7fT_hGz59il5UEcq6vtn5He3QYUCyqO4KDD1NNIjfqIr_BrtBfV2mAPplce9wJPF1YLi_rL59SQWNUKRjvWZxhxE9IfdMiLAeIqrubTtMsqp7nlOnpPxcf3z6CTt6y2kFuOWNDcu9zx3IZNFFqxTQmkvWI58NV7lvqqC1qpwGi6F06ZSQWkrpBWG67II5Quy085a_4pQJkMlvJfaGsG8YyaTVR4cHHkoXZYl5MPQ143tycixJsa06WiUiwbV0qBaEvJuKXrdMXBsEjpEhS0FkDQ73pjNL5reBhtpkGwef7mHnBkJHyCsY2WhAWbxikOj9gd1N8NAbGBK4yoCy4S8XT4GG8QfK7r1s9soA05F8axMyMtudCxbUjJeMUDBCZFr42atqetP2sll5PkGaIgBI_RVHGH__vqmPqpLPHn9P321Rx4WmJgTE-X2yc7N_Na_AWR1Y0Zku2BnI7J7WJ-e_RjF9YlRtKU_fGoovg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbxMxDLdGJwQvE9_cGBAQSLwcu8_kDgkhNm7q2KgQ2qS9hVySG5W2a2k3oUn8TfyN2LkPWjF4W5_aO6tKYjt2HPtngBfK6jywGjUNmYsHFF76KtKZL9LKxKXRIrAuy3fEh4fJx6P0aAV-dbUwlFbZ7YluozYTTTHyTRStNHMG_t30u09do-h2tWuh0YjFnr34gUe2-dvdD8jfl1G0UxxsD_22q4CvyTv3w9KENg1NFYgoqLTJeKYsT0JCZbFZaPO8UiqLjMKf3Kgyz6pMaS40L1MVR1WM_3sNVhOqaB3A6lYx-vylj-oEnDDDRAdhFESbVtv4tcgpZW_B8Ln-AJc5tX_nZi76zM7o7dyCtdZbZe8b8boNK7a-A9cLh3R9cRd-NvUvDJ1IRjGHE8sc-uIbtgDfUR8zq7stlp1aKjUez0_njMrXZtOx65lEJA2oNHMpjmRumyglnhIYBYtZ3SSsM9XCqNyDwytZ-PswqCe1fQgsEVXOrRVKlzyxJikDkYeVwU9YxSYIPHjVrbXULdY5tdw4kQ1KcySJLZLY4sHznnTaAHxcRrRFDOsJCJPbPZjMjmWr4lKUhGVPN_pVmJQCJ8C1SeJIoReHsoKD2ujYLduNYi7_iLUHz_rXqOJ0b6NqOzl3NGizsjSIPXjQSEc_kjhJ8wSdbA_EktwsDXX5TT3-5mDE0fOk8yiulZOwf89eFttFTF_W_z-Dp3BjePBpX-7vjvYewc2Isn9cNt4GDM5m5_Yxum9n5ZNWZxh8vWo1_Q3b0F7t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC7iBsUX8XY0aisKvow7Z_eMIGKSWRIjSxADeZv09BEXktl1N0EC_jJ_nVU9h7sYfcs8zVEM3V1VXdXV1V8BvJJG5YFRqGnIXFyg8MqXkcp8kVodV1qJwLgs3zHfOUg-HaaHa_CrOwtDaZXdnOgmaj1VFCMfomilmTPwQ9umRexvjz7MvvtUQYp2WrtyGo2I7JmLH7h8W7zf3UZev46iUfF1a8dvKwz4ijx1P6x0aNJQ20BEgVU645k0PAkJocVkoclzK2UWaYmPXMsqz2wmFReKV6mMIxvjf6_BusA-JgNY3yzG-1_6CE_ACT9MdHBGQTQ0ysRvRU7pe0tG0NUKuMzB_TtPc9l_dgZwdBtutZ4r-9iI2h1YM_VduF441OuLe_CzOQvD0KFkFH84McwhMb5jS1Ae9TEzqptu2amhY8eTxemC0VG2-Wzi6icRSQMwzVy6I5neJmKJKwZGgWNWN8nrTLaQKvfh4EoG_gEM6mltHgFLhM25MUKqiidGJ1Ug8tBqvEIb6yDw4E031qVqcc-p_MZJ2SA2RyWxpSS2ePCyJ501YB-XEW0Sw3oCwud2L6bz47JV91JUhGtPu_s2TCqBHeBKJ3Ek0aNL8xQbtdGxu2wnjUX5R8Q9eNF_RnWnPRxZm-m5o0H7laVB7MHDRjr6lsRJmifocHsgVuRmpamrX-rJNwcpjl4orU1xrJyE_bv3ZbFVxHTz-P89eA43UD3Lz7vjvSdwM6JEIJeYtwGDs_m5eYqe3Fn1rFUZBkdXraW_Ab4mYxk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+single+index%3A+Investigating+ecological+mechanisms+underpinning+ecosystem+multifunctionality+with+network+analysis&rft.jtitle=Ecology+and+evolution&rft.au=Siwicka%2C+Ewa&rft.au=Gladstone%E2%80%90Gallagher%2C+Rebecca&rft.au=Hewitt%2C+Judi+E.&rft.au=Thrush%2C+Simon+F.&rft.date=2021-09-01&rft.issn=2045-7758&rft.eissn=2045-7758&rft.volume=11&rft.issue=18&rft.spage=12401&rft.epage=12412&rft_id=info:doi/10.1002%2Fece3.7987&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ece3_7987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon