Structural MRI biomarkers for preclinical and mild Alzheimer's disease

Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 30; no. 10; pp. 3238 - 3253
Main Authors Fennema-Notestine, Christine, Hagler Jr, Donald J., McEvoy, Linda K., Fleisher, Adam S., Wu, Elaine H., Karow, David S., Dale, Anders M.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2009
Wiley-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high‐throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region‐of‐interest (ROI) measures. The MCI cohort was subdivided into single‐ (SMCI) and multiple‐domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non‐AD pathology in MMCI also was suggested. Mesial temporal right‐dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high‐throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross‐sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.
AbstractList Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high-throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region-of-interest (ROI) measures. The MCI cohort was subdivided into single- (SMCI) and multiple-domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non-AD pathology in MMCI also was suggested. Mesial temporal right-dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high-throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross-sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD.
Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high-throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region-of-interest (ROI) measures. The MCI cohort was subdivided into single- (SMCI) and multiple-domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non-AD pathology in MMCI also was suggested. Mesial temporal right-dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high-throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross-sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD.Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high-throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region-of-interest (ROI) measures. The MCI cohort was subdivided into single- (SMCI) and multiple-domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non-AD pathology in MMCI also was suggested. Mesial temporal right-dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high-throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross-sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD.
Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high‐throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region‐of‐interest (ROI) measures. The MCI cohort was subdivided into single‐ (SMCI) and multiple‐domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non‐AD pathology in MMCI also was suggested. Mesial temporal right‐dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high‐throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross‐sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.
Author Karow, David S.
Wu, Elaine H.
McEvoy, Linda K.
Hagler Jr, Donald J.
Dale, Anders M.
Fleisher, Adam S.
Fennema-Notestine, Christine
AuthorAffiliation 2 Department of Radiology, University of California, San Diego, La Jolla, California
1 Department of Psychiatry, University of California, San Diego, La Jolla, California
3 Department of Neurosciences, University of California, San Diego, La Jolla, California
AuthorAffiliation_xml – name: 2 Department of Radiology, University of California, San Diego, La Jolla, California
– name: 1 Department of Psychiatry, University of California, San Diego, La Jolla, California
– name: 3 Department of Neurosciences, University of California, San Diego, La Jolla, California
Author_xml – sequence: 1
  givenname: Christine
  surname: Fennema-Notestine
  fullname: Fennema-Notestine, Christine
  email: fennema@ucsd.edu
  organization: Department of Psychiatry, University of California, San Diego, La Jolla, California
– sequence: 2
  givenname: Donald J.
  surname: Hagler Jr
  fullname: Hagler Jr, Donald J.
  organization: Department of Radiology, University of California, San Diego, La Jolla, California
– sequence: 3
  givenname: Linda K.
  surname: McEvoy
  fullname: McEvoy, Linda K.
  organization: Department of Radiology, University of California, San Diego, La Jolla, California
– sequence: 4
  givenname: Adam S.
  surname: Fleisher
  fullname: Fleisher, Adam S.
  organization: Department of Neurosciences, University of California, San Diego, La Jolla, California
– sequence: 5
  givenname: Elaine H.
  surname: Wu
  fullname: Wu, Elaine H.
  organization: Department of Radiology, University of California, San Diego, La Jolla, California
– sequence: 6
  givenname: David S.
  surname: Karow
  fullname: Karow, David S.
  organization: Department of Radiology, University of California, San Diego, La Jolla, California
– sequence: 7
  givenname: Anders M.
  surname: Dale
  fullname: Dale, Anders M.
  organization: Department of Radiology, University of California, San Diego, La Jolla, California
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21985475$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19277975$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAUhS1URF8s-AMoG1SxSOsbv-INUqnoQ0xbqS1iaTnODWPIY7AToPx6PJ3pCBCsbOl-59yje3bJVj_0SMgLoIdAaXE0r7rDgirOn5AdoFrlFDTbWv6lyDVXsE12Y_xMKYCg8Ixsgy6U0krskNPbMUxunIJts8ubi6zyQ2fDFwwxa4aQLQK61vfepbHt66zzbZ0dtz_n6DsMBzGrfUQbcZ88bWwb8fn63SMfTt_dnZzns-uzi5PjWe4EL3lua10w50BK5koqOKu0liBc3ZSVLGrN60pLR1EAWMEYYklBllSioE6xmrM98mblu5iqDmuH_ZiSm0XwKfW9Gaw3f056Pzefhm-m0MkTZDI4WBuE4euEcTSdjw7b1vY4TNEoxqkoCiYS-fL3VZsdj7dLwKs1YGO6TxNs73zccAXoUvAH7mjFuTDEGLAxzo929MMyoW8NULNs0aQWzUOLSfH6L8Vm-T_Ytft33-L9_0Fz_vbyUZGvFD6O-GOjSK0bqZgS5uPVmZlRuAN99d5Q9gsNC7m-
CitedBy_id crossref_primary_10_1016_j_pscychresns_2016_06_007
crossref_primary_10_1002_hbm_25159
crossref_primary_10_1016_j_neurobiolaging_2020_10_031
crossref_primary_10_3174_ajnr_A3307
crossref_primary_10_1016_j_ecoenv_2024_116876
crossref_primary_10_3174_ajnr_A1809
crossref_primary_10_3233_JAD_170338
crossref_primary_10_1080_01621459_2016_1194846
crossref_primary_10_1371_journal_pone_0025074
crossref_primary_10_1515_REVNEURO_2010_21_3_187
crossref_primary_10_3390_md16090313
crossref_primary_10_1007_s12035_011_8228_7
crossref_primary_10_1007_s11682_012_9171_6
crossref_primary_10_1212_WNL_0b013e31822b0004
crossref_primary_10_1002_hipo_22417
crossref_primary_10_1016_j_neurobiolaging_2010_10_019
crossref_primary_10_3389_fmed_2023_1094799
crossref_primary_10_1016_j_neurobiolaging_2017_04_025
crossref_primary_10_1007_s10742_019_00206_3
crossref_primary_10_1016_j_neurobiolaging_2010_04_025
crossref_primary_10_1186_1471_2105_16_S7_S8
crossref_primary_10_1007_s00429_014_0738_4
crossref_primary_10_1016_j_neurobiolaging_2011_02_012
crossref_primary_10_1016_j_psychres_2018_08_041
crossref_primary_10_1016_j_neurobiolaging_2010_04_029
crossref_primary_10_1089_neur_2022_0020
crossref_primary_10_1186_1471_2377_12_46
crossref_primary_10_1007_s12035_015_9669_1
crossref_primary_10_1089_brain_2020_0808
crossref_primary_10_1007_s11920_014_0490_8
crossref_primary_10_1002_hbm_22431
crossref_primary_10_1002_brb3_1142
crossref_primary_10_1016_j_jalz_2011_07_001
crossref_primary_10_1111_joim_12028
crossref_primary_10_1080_13803395_2012_702733
crossref_primary_10_3389_frdem_2023_1214940
crossref_primary_10_1523_JNEUROSCI_3252_09_2009
crossref_primary_10_1007_s00415_010_5872_1
crossref_primary_10_1016_j_nicl_2024_103624
crossref_primary_10_4236_health_2014_619310
crossref_primary_10_1016_j_ijge_2016_03_010
crossref_primary_10_1155_2013_198471
crossref_primary_10_3233_JAD_161201
crossref_primary_10_1016_j_neuroimage_2012_03_059
crossref_primary_10_1093_cercor_bhp279
crossref_primary_10_3233_JAD_231392
crossref_primary_10_3233_JAD_150164
crossref_primary_10_1002_hbm_25777
crossref_primary_10_1371_journal_pone_0130017
crossref_primary_10_1371_journal_pone_0188152
crossref_primary_10_1016_j_bbr_2014_12_033
crossref_primary_10_1017_S0954422418000185
crossref_primary_10_1016_j_ijrobp_2015_10_026
crossref_primary_10_1007_s00234_016_1740_8
crossref_primary_10_1016_j_neurad_2021_11_007
crossref_primary_10_1093_cercor_bhp192
crossref_primary_10_1016_j_arcmed_2012_08_015
crossref_primary_10_1017_S1355617713000660
crossref_primary_10_1016_j_neuroimage_2012_11_039
crossref_primary_10_1016_j_jalz_2014_11_001
crossref_primary_10_1016_j_jalz_2015_04_005
crossref_primary_10_1148_radiol_11101975
crossref_primary_10_3233_JAD_220535
crossref_primary_10_1088_2632_2153_ac7b69
crossref_primary_10_1016_j_neuroimage_2011_05_083
crossref_primary_10_3389_fnagi_2020_593648
crossref_primary_10_1148_radiol_10091402
crossref_primary_10_1523_JNEUROSCI_3785_09_2010
crossref_primary_10_1371_journal_pone_0210803
crossref_primary_10_1586_ern_10_162
crossref_primary_10_1016_j_media_2013_10_013
crossref_primary_10_3390_brainsci7040037
crossref_primary_10_1016_j_jalz_2012_10_002
crossref_primary_10_1002_hbm_22330
crossref_primary_10_3389_fneur_2020_00648
crossref_primary_10_3389_fnagi_2021_638731
crossref_primary_10_2217_thy_11_49
crossref_primary_10_2217_iim_12_27
crossref_primary_10_1148_radiol_10100307
crossref_primary_10_1007_s11682_015_9408_2
crossref_primary_10_1097_WNR_0000000000001314
crossref_primary_10_1007_s11682_012_9180_5
crossref_primary_10_1016_j_envint_2020_105546
crossref_primary_10_1016_j_jneuroling_2014_09_008
crossref_primary_10_1016_j_ejmp_2023_102577
crossref_primary_10_1016_j_neuroimage_2011_02_060
crossref_primary_10_3389_fnins_2015_00379
crossref_primary_10_1016_j_jneumeth_2020_108701
crossref_primary_10_1002_gps_2393
crossref_primary_10_1038_s41598_018_29295_9
crossref_primary_10_1016_j_compbiomed_2024_108622
crossref_primary_10_1038_s41386_019_0551_0
crossref_primary_10_1214_15_AOAS879
crossref_primary_10_1109_JBHI_2019_2932565
crossref_primary_10_1016_j_neurobiolaging_2010_03_015
crossref_primary_10_1016_j_neuroimage_2009_09_029
crossref_primary_10_1007_s00415_012_6778_x
crossref_primary_10_1118_1_4940399
crossref_primary_10_1523_JNEUROSCI_4437_12_2013
crossref_primary_10_3233_ADR_210314
crossref_primary_10_1038_s41582_018_0031_x
crossref_primary_10_1177_1073858410392586
crossref_primary_10_3389_fnagi_2018_00344
crossref_primary_10_3390_e22040465
crossref_primary_10_1118_1_4801913
crossref_primary_10_3233_JAD_150238
crossref_primary_10_1097_WAD_0b013e3181d1b814
crossref_primary_10_3233_JAD_170545
crossref_primary_10_3389_fneur_2020_566731
crossref_primary_10_1073_pnas_1301816110
crossref_primary_10_1016_j_nicl_2014_09_005
crossref_primary_10_1016_j_neuropsychologia_2009_12_024
crossref_primary_10_3389_fnagi_2022_1073909
crossref_primary_10_1016_j_neuroimage_2015_10_065
crossref_primary_10_1212_WNL_0b013e31820ce6a5
crossref_primary_10_3389_fnagi_2014_00306
crossref_primary_10_1002_hbm_21378
crossref_primary_10_1038_s41598_021_89797_x
crossref_primary_10_1016_j_neuroimage_2011_08_013
crossref_primary_10_1016_j_neuroscience_2010_11_025
crossref_primary_10_1152_jn_00277_2023
crossref_primary_10_1016_j_neuroimage_2010_07_016
crossref_primary_10_1371_journal_pone_0074062
crossref_primary_10_1016_j_artmed_2016_06_003
crossref_primary_10_1016_j_neuroimage_2012_03_083
crossref_primary_10_1145_2791295
crossref_primary_10_1016_j_media_2016_06_029
crossref_primary_10_1097_NPT_0b013e3182462ea6
crossref_primary_10_1016_j_cortex_2019_04_026
crossref_primary_10_1155_2020_8874119
crossref_primary_10_1093_cercor_bhs379
crossref_primary_10_1016_j_brainres_2017_10_025
crossref_primary_10_3389_fnbeh_2014_00089
crossref_primary_10_3389_fnagi_2018_00365
crossref_primary_10_3389_fnagi_2020_00202
crossref_primary_10_1016_j_jalz_2013_05_1763
crossref_primary_10_1177_1533317515587084
crossref_primary_10_1016_j_neurobiolaging_2013_04_006
crossref_primary_10_1016_j_ctro_2017_10_001
crossref_primary_10_1016_j_neuroimage_2012_01_084
crossref_primary_10_3389_fneur_2014_00076
crossref_primary_10_1002_gepi_21854
crossref_primary_10_1016_j_neuroimage_2012_01_122
crossref_primary_10_1007_s12021_015_9266_5
crossref_primary_10_1016_j_jalz_2013_05_1769
crossref_primary_10_1016_j_neubiorev_2011_06_009
crossref_primary_10_1016_j_nic_2011_11_008
crossref_primary_10_1371_journal_pone_0082450
crossref_primary_10_3233_JAD_150937
crossref_primary_10_1016_j_jalz_2011_09_172
crossref_primary_10_1016_j_bspc_2023_105773
crossref_primary_10_1016_j_neurobiolaging_2011_05_018
crossref_primary_10_1007_s11910_015_0562_0
crossref_primary_10_1038_npp_2011_264
crossref_primary_10_2174_1567205019666220905145756
crossref_primary_10_1016_j_neurobiolaging_2023_07_021
crossref_primary_10_1002_alz_12645
crossref_primary_10_3348_kjr_2021_0323
crossref_primary_10_1186_s13195_019_0526_8
crossref_primary_10_1212_WNL_0000000000207579
crossref_primary_10_1109_TCBB_2021_3106939
crossref_primary_10_3389_fnhum_2021_700627
Cites_doi 10.1016/S0140-6736(05)74869-8
10.1016/S0197-4580(97)00001-8
10.1016/S0896-6273(02)00569-X
10.1212/WNL.52.7.1397
10.1016/S1474-4422(07)70178-3
10.1212/WNL.45.2.391
10.1016/j.neuroimage.2004.06.018
10.1111/j.1365-2796.2004.01380.x
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1212/WNL.54.9.1760
10.1097/01.jnen.0000225312.11858.57
10.1016/j.nic.2005.09.008
10.1159/000084560
10.1212/WNL.49.3.786
10.1016/S0197-4580(03)00002-2
10.1093/brain/awl256
10.1001/archneur.63.1.38
10.1136/jnnp.71.4.441
10.1525/ae.2004.31.4.475
10.1016/j.neurobiolaging.2004.02.019
10.1016/S0197-4580(98)00007-4
10.1212/WNL.58.5.695
10.1111/j.1365-2796.2004.01388.x
10.1212/01.WNL.0000160089.43264.1A
10.1016/j.neuroimage.2004.04.026
10.1136/jnnp.2005.075341
10.1007/s00401-006-0127-z
10.1016/j.neuroimage.2006.01.021
10.1016/j.neuroimage.2008.07.013
10.1016/0022-3956(75)90026-6
10.1212/01.WNL.0000042480.86872.03
10.1097/00002093-200307000-00010
10.1073/pnas.200033797
10.1016/j.neuroimage.2004.07.016
10.1109/42.668698
10.1016/j.neuroimage.2004.07.006
10.3233/JAD-2005-8403
10.1212/01.wnl.0000180958.22678.91
10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I
10.1111/j.1365-2796.2004.01381.x
10.1093/cercor/bhj105
10.1212/01.wnl.0000280575.77437.a2
10.1162/jocn.1993.5.2.162
10.1212/WNL.58.8.1188
10.1016/j.jns.2004.11.012
10.1007/s12021-007-9003-9
10.1001/archneur.58.3.397
10.1212/01.WNL.0000110315.26026.EF
10.1016/j.neuroimage.2005.09.046
10.1016/j.neurobiolaging.2003.12.007
10.1001/archpsyc.63.1.57
10.1097/01.mnm.0000189783.39411.ef
10.1001/archneur.62.9.1393
10.1212/01.wnl.0000187889.17253.b1
10.1073/pnas.082107399
10.1006/nimg.1998.0396
10.1016/S1053-8119(03)00041-7
10.1017/S1355617704105080
10.1001/archneur.63.5.665
10.1016/j.neuroimage.2007.02.042
10.1007/BF00308809
10.1523/JNEUROSCI.23-03-00994.2003
10.1097/01.wad.0000191420.61260.a8
10.1016/S1474-4422(02)00002-9
10.1002/jmri.21049
10.1001/archneur.1993.00540090052010
10.1093/cercor/bhg087
10.1212/01.wnl.0000228244.10416.20
10.1196/annals.1379.017
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
– notice: 2009 INIST-CNRS
CorporateAuthor Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer's Disease Neuroimaging Initiative
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/hbm.20744
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Structural MRI Biomarkers for AD
EISSN 1097-0193
EndPage 3253
ExternalDocumentID PMC2951116
19277975
21985475
10_1002_hbm_20744
HBM20744
ark_67375_WNG_L01T19NK_0
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Alzheimer's Disease Neuroimaging Initiative (ADNI; NIH)
  funderid: U01 AG024904
– fundername: National Center for Research Resources, National Institutes of Health, USA [Morphometry Biomedical Informatics Research Network (BIRN, )] [http://www.nbirn.net]
  funderid: U24 RR021382
– fundername: NIA NIH HHS
  grantid: U19 AG010483
– fundername: NCRR NIH HHS
  grantid: U24 RR021382
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: National Center for Research Resources, National Institutes of Health, USA [Morphometry Biomedical Informatics Research Network (BIRN, )] [http://www.nbirn.net]
  grantid: U24 RR021382
– fundername: Alzheimer's Disease Neuroimaging Initiative (ADNI; NIH)
  grantid: U01 AG024904
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
IQODW
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c5484-ad923cc1663c80543b99615cdf8b62d94db96c0e511a533ee8016806e50c73d43
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:28:40 EDT 2025
Thu Jul 10 22:40:46 EDT 2025
Mon Jul 21 05:29:01 EDT 2025
Wed Apr 02 07:25:40 EDT 2025
Tue Jul 01 04:25:56 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Wed Jan 22 16:28:36 EST 2025
Wed Oct 30 09:52:43 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords brain imaging
Nervous system diseases
Radiodiagnosis
Alzheimer disease
MRI
Central nervous system
Asymptomatic
Nuclear magnetic resonance imaging
Cerebral disorder
Encephalon
Central nervous system disease
Degenerative disease
mild cognitive impairment
Morphometry
Alzheimer's disease
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5484-ad923cc1663c80543b99615cdf8b62d94db96c0e511a533ee8016806e50c73d43
Notes ArticleID:HBM20744
National Center for Research Resources, National Institutes of Health, USA [Morphometry Biomedical Informatics Research Network (BIRN, )] [http://www.nbirn.net] - No. U24 RR021382
istex:7769F80B485D98A2A20B4CBE4C341016270BE7A1
Alzheimer's Disease Neuroimaging Initiative (ADNI; NIH) - No. U01 AG024904
Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu\ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. Complete listing of ADNI investigators available at http://www.loni.ucla.edu/ADNI/Data/ADNI_Authorship_List.pdf.
ark:/67375/WNG-L01T19NK-0
http://www.loni.ucla.edu/ADNI/Data/ADNI_Authorship_List.pdf
Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. Complete listing of ADNI investigators available at
www.loni.ucla.edu\ADNI
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu\ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. Complete listing of ADNI investigators available at http://www.loni.ucla.edu/ADNI/Data/ADNI_Authorship_List.pdf.
OpenAccessLink http://doi.org/10.1002/hbm.20744
PMID 19277975
PQID 734052235
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2951116
proquest_miscellaneous_734052235
pubmed_primary_19277975
pascalfrancis_primary_21985475
crossref_citationtrail_10_1002_hbm_20744
crossref_primary_10_1002_hbm_20744
wiley_primary_10_1002_hbm_20744_HBM20744
istex_primary_ark_67375_WNG_L01T19NK_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2009
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: October 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Barnes J,Scahill RI,Schott JM,Frost C,Rossor MN,Fox NC ( 2005): Does Alzheimer's disease affect hippocampal asymmetry? Evidence from a cross-sectional and longitudinal volumetric MRI study. Dement Geriatr Cogn Disord 19: 338-344.
Seo SW,Im K,Lee JM,Kim YH,Kim ST,Kim SY,Yang DW,Kim SI,Cho YS,Na DL ( 2007): Cortical thickness in single- versus multiple-domain amnestic mild cognitive impairment. Neuroimage 36: 289-297.
Hua X,Leow AD,Parikshak N,Lee S,Chiang MC,Toga AW,Jack CRJr,Weiner MW,Thompson PM ( 2008): Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects Neuroimage 43: 458-469.
Fischl B,Sereno MI,Dale AM ( 1999a): Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system. Neuroimage 9: 195-207.
Cohen J ( 1977): Statistical Power Analysis for the Behavioral Sciences. New York: Academic Press.
Thompson PM,Hayashi KM,Dutton RA,Chiang MC,Leow AD,Sowell ER,De Zubicaray G,Becker JT,Lopez OL,Aizenstein HJ,Toga AW ( 2007): Tracking Alzheimer's disease. Ann N Y Acad Sci 1097: 183-214.
Dale AM,Sereno MI ( 1993): Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. J Cogn Neurosci 5: 162-176.
Winblad B,Palmer K,Kivipelto M,Jelic V,Fratiglioni L,Wahlund LO,Nordberg A,Backman L,Albert M,Almkvist O,Arai H,Basun H,Blennow K,de Leon M,DeCarli C,Erkinjuntti T,Giacobini E,Graff C,Hardy J,Jack C,Jorm A,Ritchie K,van Duijn C,Visser P,Petersen RC ( 2004): Mild cognitive impairment-beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256: 240-246.
Folstein MF,Folstein SE,McHugh PR ( 1975): "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189-198.
Karas GB,Burton EJ,Rombouts SA,van Schijndel RA,O'Brien JT,Scheltens P,McKeith IG,Williams D,Ballard C,Barkhof F ( 2003): A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. Neuroimage 18: 895-907.
Jack CRJr,Petersen RC,Xu YC,Waring SC,O'Brien PC,Tangalos EG,Smith GE,Ivnik RJ,Kokmen E ( 1997): Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology 49: 786-794.
Hirao K,Ohnishi T,Matsuda H,Nemoto K,Hirata Y,Yamashita F,Asada T,Iwamoto T ( 2006): Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single-photon emission computed tomography. Nucl Med Commun 27: 151-156.
den Heijer T,Geerlings MI,Hoebeek FE,Hofman A,Koudstaal PJ,Breteler MM ( 2006): Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiatry 63: 57-62.
Jicha GA,Petersen RC,Knopman DS,Boeve BF,Smith GE,Geda YE,Johnson KA,Cha R,Delucia MW,Braak H,Dickson DW,Parisi JE ( 2006): Argyrophilic grain disease in demented subjects presenting initially with amnestic mild cognitive impairment. J Neuropathol Exp Neurol 65: 602-609.
McKeith IG,Dickson DW,Lowe J,Emre M,O'Brien JT,Feldman H,Cummings J,Duda JE,Lippa C,Perry EK,Aarsland D,Arai H,Ballard CG,Boeve B,Burn DJ,Costa D,Del Ser T,Dubois B,Galasko D,Gauthier S,Goetz CG,Gomez-Tortosa E,Halliday G,Hansen LA,Hardy J,Iwatsubo T,Kalaria RN,Kaufer D,Kenny RA,Korczyn A,Kosaka K,Lee VM,Lees A,Litvan I,Londos E,Lopez OL,Minoshima S,Mizuno Y,Molina JA,Mukaetova-Ladinska EB,Pasquier F,Perry RH,Schulz JB,Trojanowski JQ,Yamada M ( 2005): Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium. Neurology 65: 1863-1872.
van de Pol LA,Hensel A,van der Flier WM,Visser PJ,Pijnenburg YA,Barkhof F,Gertz HJ,Scheltens P ( 2006): Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer's disease. J Neurol Neurosurg Psychiatry 77: 439-442.
Braak H,Braak E ( 1991): Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82: 239-259.
Markesbery WR,Schmitt FA,Kryscio RJ,Davis DG,Smith CD,Wekstein DR ( 2006): Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63: 38-46.
Bell-McGinty S,Lopez OL,Meltzer CC,Scanlon JM,Whyte EM,Dekosky ST,Becker JT ( 2005): Differential cortical atrophy in subgroups of mild cognitive impairment. Arch Neurol 62: 1393-1397.
de Leon MJ,DeSanti S,Zinkowski R,Mehta PD,Pratico D,Segal S,Clark C,Kerkman D,DeBernardis J,Li J,Lair L,Reisberg B,Tsui W,Rusinek H ( 2004): MRI and CSF studies in the early diagnosis of Alzheimer's disease. J Intern Med 256: 205-223.
Petersen RC ( 2004): Mild cognitive impairment as a diagnostic entity. J Intern Med 256: 183-194.
Ballmaier M,O'Brien JT,Burton EJ,Thompson PM,Rex DE,Narr KL,McKeith IG,DeLuca H,Toga AW ( 2004): Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: Diagnosis and gender effects. Neuroimage 23: 325-335.
Petersen RC,Parisi JE,Dickson DW,Johnson KA,Knopman DS,Boeve BF,Jicha GA,Ivnik RJ,Smith GE,Tangalos EG,Braak H,Kokmen E ( 2006): Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 63: 665-672.
Jovicich J,Czanner S,Greve D,Haley E,van der Kouwe A,Gollub R,Kennedy D,Schmitt F,Brown G,Macfall J,Fischl B,Dale A. ( 2006): Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. Neuroimage 30: 436-443.
Fischl B,Salat DH,Busa E,Albert M,Dieterich M,Haselgrove C,van der Kouwe A,Killiany R,Kennedy D,Klaveness S,Montillo A,Makris N,Rosen B,Dale AM ( 2002): Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33: 341-355.
Braak H,Alafuzoff I,Arzberger T,Kretzschmar H,Del Tredici K ( 2006): Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol (Berl) 112: 389-404.
Fischl B,van der Kouwe A,Destrieux C,Halgren E,Segonne F,Salat DH,Busa E,Seidman LJ,Goldstein J,Kennedy D,Caviness V,Makris N,Rosen B,Dale AM ( 2004b): Automatically parcellating the human cerebral cortex. Cereb Cortex 14: 11-22.
Fischl B,Dale AM ( 2000): Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97: 11050-11055.
Rosas HD,Liu AK,Hersch S,Glessner M,Ferrante RJ,Salat DH,van der Kouwe A,Jenkins BG,Dale AM,Fischl B ( 2002): Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology 58: 695-701.
Ballmaier M,Memo M ( 2005): Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease. Funct Neurol 20: 69.
Boccardi M,Sabattoli F,Laakso MP,Testa C,Rossi R,Beltramello A,Soininen H,Frisoni GB ( 2005): Frontotemporal dementia as a neural system disease. Neurobiol Aging 26: 37-44.
Jack CRJr,Shiung MM,Gunter JL,O'Brien PC,Weigand SD,Knopman DS,Boeve BF,Ivnik RJ,Smith GE,Cha RH,Tangalos EG,Petersen RC ( 2004): Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62: 591-600.
Juottonen K,Laakso MP,Partanen K,Soininen H ( 1999): Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. AJNR Am J Neuroradiol 20: 139-144.
Killiany RJ,Gomez-Isla T,Moss M,Kikinis R,Sandor T,Jolesz F,Tanzi R,Jones K,Hyman BT,Albert MS ( 2000): Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 47: 430-439.
Fennema-Notestine C,Gamst AC,Quinn BT,Pacheco J,Jernigan TL,Thal L,Buckner R,Killiany R,Blacker D,Dale AM,Fischl B,Dickerson B,Gollub RL ( 2007): Feasibility of multi-site clinical structural neuroimaging studies of aging using legacy data. Neuroinformatics 5: 235-245.
Thal LJ,Kantarci K,Reiman EM,Klunk WE,Weiner MW,Zetterberg H,Galasko D,Pratico D,Griffin S,Schenk D,Siemers E ( 2006): The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis Assoc Disord 20: 6-15.
Bobinski M,de Leon MJ,Convit A,De Santi S,Wegiel J,Tarshish CY,Saint Louis LA,Wisniewski HM ( 1999): MRI of entorhinal cortex in mild Alzheimer's disease. Lancet 353: 38-40.
Atiya M,Hyman BT,Albert MS,Killiany R ( 2003): Structural magnetic resonance imaging in established and prodromal Alzheimer disease: A review. Alzheimer Dis Assoc Disord 17: 177-195.
Smith AD ( 2002): Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci USA 99: 4135-4137.
Desikan RS,Segonne F,Fischl B,Quinn BT,Dickerson BC,Blacker D,Buckner RL,Dale AM,Maguire RP,Hyman BT,Albert MS,Killiany RJ ( 2006): An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31: 968-980.
Singh V,Chertkow H,Lerch JP,Evans AC,Dorr AE,Kabani NJ ( 2006): Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain 129(Part 11): 2885-2893.
Buckner RL,Head D,Parker J,Fotenos AF,Marcus D,Morris JC,Snyder AZ ( 2004): A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. Neuroimage 23: 724-738.
Xu Y,Jack CRJr,O'Brien PC,Kokmen E,Smith GE,Ivnik RJ,Boeve BF,Tangalos RG,Petersen RC ( 2000): Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54: 1760-1767.
Jack CRJr,Shiung MM,Weigand SD,O'Brien PC,Gunter JL,Boeve BF,Knopman DS,Smith GE,Ivnik RJ,Tangalos EG,Petersen RC ( 2005): Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65: 227-231.
Karas GB,Scheltens P,Rombouts SA,Visser PJ,van Schijndel RA,Fox NC,Barkhof F ( 2004): Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. Neuroimage 23: 708-716.
Killiany RJ,Hyman BT,Gomez-Isla T,M
2002; 58
2006; 30
2006; 31
2004; 62
2000; 47
2006; 77
2004; 25
2004; 23
2002; 99
2005; 62
1975; 12
2005; 20
2005; 64
1997; 49
2005; 65
2003; 17
2003; 18
2005; 26
2008; 70
2007; 36
1993; 5
1977
1998; 17
2006; 63
2007; 1097
1998; 19
2006; 20
2004; 256
2006; 67
1999a; 9
2006; 65
2006; 27
2000; 54
2008; 27
2000; 97
1997; 18
2007; 6
2007; 5
1999; 52
2006; 129
2001; 58
2001; 71
1999b; 8
2004a; 23
2006; 16
2002; 33
2002; 1
1991; 82
1999; 20
2005; 229/230
2006; 112
1999; 9
2004; 10
2005; 19
1993; 50
2005; 8
1995; 45
2003; 24
2008; 43
2004b; 14
1999; 353
2003; 60
2005; 15
2003; 23
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Juottonen K (e_1_2_7_45_1) 1999; 20
Ballmaier M (e_1_2_7_3_1) 2005; 20
Dale AM (e_1_2_7_16_1) 1999; 9
References_xml – reference: Pedraza O,Bowers D,Gilmore R ( 2004): Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. J Int Neuropsychol Soc 10: 664-678.
– reference: Boyle PA,Wilson RS,Aggarwal NT,Tang Y,Bennett DA ( 2006): Mild cognitive impairment: Risk of Alzheimer disease and rate of cognitive decline. Neurology 67: 441-445.
– reference: Fischl B,Dale AM ( 2000): Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97: 11050-11055.
– reference: Killiany RJ,Moss MB,Albert MS,Sandor T,Tieman J,Jolesz F ( 1993): Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease. Arch Neurol 50: 949-954.
– reference: DeToledo-Morrell L,Stoub TR,Bulgakova M,Wilson RS,Bennett DA,Leurgans S,Wuu J,Turner DA ( 2004): MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 25: 1197-1203.
– reference: Galasko D ( 2005): Biomarkers for Alzheimer's disease-clinical needs and application. J Alzheimers Dis 8: 339-346.
– reference: Thal LJ,Kantarci K,Reiman EM,Klunk WE,Weiner MW,Zetterberg H,Galasko D,Pratico D,Griffin S,Schenk D,Siemers E ( 2006): The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis Assoc Disord 20: 6-15.
– reference: Jack CRJr,Shiung MM,Weigand SD,O'Brien PC,Gunter JL,Boeve BF,Knopman DS,Smith GE,Ivnik RJ,Tangalos EG,Petersen RC ( 2005): Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65: 227-231.
– reference: Scheltens P,Fox N,Barkhof F,De Carli C ( 2002): Structural magnetic resonance imaging in the practical assessment of dementia: Beyond exclusion. Lancet Neurol 1: 13-21.
– reference: Fischl B,van der Kouwe A,Destrieux C,Halgren E,Segonne F,Salat DH,Busa E,Seidman LJ,Goldstein J,Kennedy D,Caviness V,Makris N,Rosen B,Dale AM ( 2004b): Automatically parcellating the human cerebral cortex. Cereb Cortex 14: 11-22.
– reference: Dale AM,Sereno MI ( 1993): Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. J Cogn Neurosci 5: 162-176.
– reference: Jicha GA,Petersen RC,Knopman DS,Boeve BF,Smith GE,Geda YE,Johnson KA,Cha R,Delucia MW,Braak H,Dickson DW,Parisi JE ( 2006): Argyrophilic grain disease in demented subjects presenting initially with amnestic mild cognitive impairment. J Neuropathol Exp Neurol 65: 602-609.
– reference: Jack CRJr,Petersen RC,Xu YC,Waring SC,O'Brien PC,Tangalos EG,Smith GE,Ivnik RJ,Kokmen E ( 1997): Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology 49: 786-794.
– reference: Convit A,De Leon MJ,Tarshish C,De Santi S,Tsui W,Rusinek H,George A ( 1997): Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol Aging 18: 131-138.
– reference: Fennema-Notestine C,Gamst AC,Quinn BT,Pacheco J,Jernigan TL,Thal L,Buckner R,Killiany R,Blacker D,Dale AM,Fischl B,Dickerson B,Gollub RL ( 2007): Feasibility of multi-site clinical structural neuroimaging studies of aging using legacy data. Neuroinformatics 5: 235-245.
– reference: Fischl B,Sereno MI,Dale AM ( 1999a): Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system. Neuroimage 9: 195-207.
– reference: Killiany RJ,Gomez-Isla T,Moss M,Kikinis R,Sandor T,Jolesz F,Tanzi R,Jones K,Hyman BT,Albert MS ( 2000): Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 47: 430-439.
– reference: Barnes J,Scahill RI,Schott JM,Frost C,Rossor MN,Fox NC ( 2005): Does Alzheimer's disease affect hippocampal asymmetry? Evidence from a cross-sectional and longitudinal volumetric MRI study. Dement Geriatr Cogn Disord 19: 338-344.
– reference: Braak H,Alafuzoff I,Arzberger T,Kretzschmar H,Del Tredici K ( 2006): Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol (Berl) 112: 389-404.
– reference: Smith AD ( 2002): Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci USA 99: 4135-4137.
– reference: Mueller SG,Weiner MW,Thal LJ,Petersen RC,Jack C,Jagust W,Trojanowski JQ,Toga AW,Beckett L ( 2005): The Alzheimer's disease neuroimaging initiative. Neuroimaging Clin N Am 15: 869-877,xi-xii.
– reference: Hirao K,Ohnishi T,Matsuda H,Nemoto K,Hirata Y,Yamashita F,Asada T,Iwamoto T ( 2006): Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single-photon emission computed tomography. Nucl Med Commun 27: 151-156.
– reference: Karas GB,Scheltens P,Rombouts SA,Visser PJ,van Schijndel RA,Fox NC,Barkhof F ( 2004): Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. Neuroimage 23: 708-716.
– reference: Seo SW,Im K,Lee JM,Kim YH,Kim ST,Kim SY,Yang DW,Kim SI,Cho YS,Na DL ( 2007): Cortical thickness in single- versus multiple-domain amnestic mild cognitive impairment. Neuroimage 36: 289-297.
– reference: Singh V,Chertkow H,Lerch JP,Evans AC,Dorr AE,Kabani NJ ( 2006): Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain 129(Part 11): 2885-2893.
– reference: van de Pol LA,Hensel A,van der Flier WM,Visser PJ,Pijnenburg YA,Barkhof F,Gertz HJ,Scheltens P ( 2006): Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer's disease. J Neurol Neurosurg Psychiatry 77: 439-442.
– reference: Juottonen K,Laakso MP,Insausti R,Lehtovirta M,Pitkanen A,Partanen K,Soininen H ( 1998): Volumes of the entorhinal and perirhinal cortices in Alzheimer's disease. Neurobiol Aging 19: 15-22.
– reference: Meyer JS,Quach M,Thornby J,Chowdhury M,Huang J ( 2005): MRI identifies MCI subtypes: Vascular versus neurodegenerative. J Neurol Sci 229/230: 121-129.
– reference: Dale AM,Fischl B,Sereno MI ( 1999): Cortical surface-based analysis. I. Segmentation and surface reconstruction Neuroimage 9: 179-194.
– reference: Thompson PM,Hayashi KM,Dutton RA,Chiang MC,Leow AD,Sowell ER,De Zubicaray G,Becker JT,Lopez OL,Aizenstein HJ,Toga AW ( 2007): Tracking Alzheimer's disease. Ann N Y Acad Sci 1097: 183-214.
– reference: den Heijer T,Geerlings MI,Hoebeek FE,Hofman A,Koudstaal PJ,Breteler MM ( 2006): Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiatry 63: 57-62.
– reference: Markesbery WR,Schmitt FA,Kryscio RJ,Davis DG,Smith CD,Wekstein DR ( 2006): Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63: 38-46.
– reference: Fischl B,Salat DH,Busa E,Albert M,Dieterich M,Haselgrove C,van der Kouwe A,Killiany R,Kennedy D,Klaveness S,Montillo A,Makris N,Rosen B,Dale AM ( 2002): Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33: 341-355.
– reference: Juottonen K,Laakso MP,Partanen K,Soininen H ( 1999): Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. AJNR Am J Neuroradiol 20: 139-144.
– reference: Jack CRJr,Bernstein MA,Fox NC,Thompson P,Alexander G,Harvey D,Borowski B,Britson PJ,Whitwell LJ,Ward C,Dale AM,Felmlee JP,Gunter JL,Hill DL,Killiany R,Schuff N,Fox-Bosetti S,Lin C,Studholme C,DeCarli CS,Krueger G,Ward HA,Metzger GJ,Scott KT,Mallozzi R,Blezek D,Levy J,Debbins JP,Fleisher AS,Albert M,Green R,Bartzokis G,Glover G,Mugler J,Weiner MW ( 2008): The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27: 685-691.
– reference: Ballmaier M,O'Brien JT,Burton EJ,Thompson PM,Rex DE,Narr KL,McKeith IG,DeLuca H,Toga AW ( 2004): Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: Diagnosis and gender effects. Neuroimage 23: 325-335.
– reference: de Leon MJ,DeSanti S,Zinkowski R,Mehta PD,Pratico D,Segal S,Clark C,Kerkman D,DeBernardis J,Li J,Lair L,Reisberg B,Tsui W,Rusinek H ( 2004): MRI and CSF studies in the early diagnosis of Alzheimer's disease. J Intern Med 256: 205-223.
– reference: Jack CRJr,Shiung MM,Gunter JL,O'Brien PC,Weigand SD,Knopman DS,Boeve BF,Ivnik RJ,Smith GE,Cha RH,Tangalos EG,Petersen RC ( 2004): Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62: 591-600.
– reference: Jones BF,Barnes J,Uylings HB,Fox NC,Frost C,Witter MP,Scheltens P ( 2006): Differential Regional Atrophy of the Cingulate Gyrus in Alzheimer Disease: A Volumetric MRI Study. Cereb Cortex 16: 1701-1708.
– reference: Stoub TR,Bulgakova M,Leurgans S,Bennett DA,Fleischman D,Turner DA,DeToledo-Morrell L ( 2005): MRI predictors of risk of incident Alzheimer disease: A longitudinal study. Neurology 64: 1520-1524.
– reference: Whitwell JL,Shiung MM,Przybelski SA,Weigand SD,Knopman DS,Boeve BF,Petersen RC,Jack CRJr ( 2008): MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 70: 512-520.
– reference: Bell-McGinty S,Lopez OL,Meltzer CC,Scanlon JM,Whyte EM,Dekosky ST,Becker JT ( 2005): Differential cortical atrophy in subgroups of mild cognitive impairment. Arch Neurol 62: 1393-1397.
– reference: Bobinski M,de Leon MJ,Convit A,De Santi S,Wegiel J,Tarshish CY,Saint Louis LA,Wisniewski HM ( 1999): MRI of entorhinal cortex in mild Alzheimer's disease. Lancet 353: 38-40.
– reference: Thompson PM,Hayashi KM,de Zubicaray G,Janke AL,Rose SE,Semple J,Herman D,Hong MS,Dittmer SS,Doddrell DM,Toga AW ( 2003): Dynamics of gray matter loss in Alzheimer's disease. J Neurosci 23: 994-1005.
– reference: Du AT,Schuff N,Amend D,Laakso MP,Hsu YY,Jagust WJ,Yaffe K,Kramer JH,Reed B,Norman D,Chui HC,Weiner MW ( 2001): Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease. J Neurol Neurosurg Psychiatry 71: 441-447.
– reference: Rosas HD,Liu AK,Hersch S,Glessner M,Ferrante RJ,Salat DH,van der Kouwe A,Jenkins BG,Dale AM,Fischl B ( 2002): Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology 58: 695-701.
– reference: McKeith IG,Dickson DW,Lowe J,Emre M,O'Brien JT,Feldman H,Cummings J,Duda JE,Lippa C,Perry EK,Aarsland D,Arai H,Ballard CG,Boeve B,Burn DJ,Costa D,Del Ser T,Dubois B,Galasko D,Gauthier S,Goetz CG,Gomez-Tortosa E,Halliday G,Hansen LA,Hardy J,Iwatsubo T,Kalaria RN,Kaufer D,Kenny RA,Korczyn A,Kosaka K,Lee VM,Lees A,Litvan I,Londos E,Lopez OL,Minoshima S,Mizuno Y,Molina JA,Mukaetova-Ladinska EB,Pasquier F,Perry RH,Schulz JB,Trojanowski JQ,Yamada M ( 2005): Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium. Neurology 65: 1863-1872.
– reference: Karas GB,Burton EJ,Rombouts SA,van Schijndel RA,O'Brien JT,Scheltens P,McKeith IG,Williams D,Ballard C,Barkhof F ( 2003): A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. Neuroimage 18: 895-907.
– reference: Petersen RC ( 2004): Mild cognitive impairment as a diagnostic entity. J Intern Med 256: 183-194.
– reference: Jack CRJr,Slomkowski M,Gracon S,Hoover TM,Felmlee JP,Stewart K,Xu Y,Shiung M,O'Brien PC,Cha R,Knopman D,Petersen RC ( 2003): MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 60: 253-260.
– reference: Cohen J ( 1977): Statistical Power Analysis for the Behavioral Sciences. New York: Academic Press.
– reference: Folstein MF,Folstein SE,McHugh PR ( 1975): "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189-198.
– reference: Morris JC,Storandt M,Miller JP,McKeel DW,Price JL,Rubin EH,Berg L ( 2001): Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58: 397-405.
– reference: Fischl B,Salat DH,van der Kouwe AJ,Makris N,Segonne F,Quinn BT,Dale AM ( 2004a): Sequence-independent segmentation of magnetic resonance images. Neuroimage 23( Suppl 1): S69-S84.
– reference: Jack CRJr,Petersen RC,Xu YC,O'Brien PC,Smith GE,Ivnik RJ,Boeve BF,Waring SC,Tangalos EG,Kokmen E ( 1999): Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52: 1397-1403.
– reference: Petersen RC,Parisi JE,Dickson DW,Johnson KA,Knopman DS,Boeve BF,Jicha GA,Ivnik RJ,Smith GE,Tangalos EG,Braak H,Kokmen E ( 2006): Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 63: 665-672.
– reference: Atiya M,Hyman BT,Albert MS,Killiany R ( 2003): Structural magnetic resonance imaging in established and prodromal Alzheimer disease: A review. Alzheimer Dis Assoc Disord 17: 177-195.
– reference: Soininen H,Partanen K,Pitkanen A,Hallikainen M,Hanninen T,Helisalmi S,Mannermaa A,Ryynanen M,Koivisto K,Riekkinen PSr ( 1995): Decreased hippocampal volume asymmetry on MRIs in nondemented elderly subjects carrying the apolipoprotein E epsilon 4 allele. Neurology 45: 391-392.
– reference: Ballmaier M,Memo M ( 2005): Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease. Funct Neurol 20: 69.
– reference: Dubois B,Feldman HH,Jacova C,Dekosky ST,Barberger-Gateau P,Cummings J,Delacourte A,Galasko D,Gauthier S,Jicha G,Meguro K,O'Brien J,Pasquier F,Robert P,Rossor M,Salloway S,Stern Y,Visser PJ,Scheltens P ( 2007): Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol 6: 734-746.
– reference: Winblad B,Palmer K,Kivipelto M,Jelic V,Fratiglioni L,Wahlund LO,Nordberg A,Backman L,Albert M,Almkvist O,Arai H,Basun H,Blennow K,de Leon M,DeCarli C,Erkinjuntti T,Giacobini E,Graff C,Hardy J,Jack C,Jorm A,Ritchie K,van Duijn C,Visser P,Petersen RC ( 2004): Mild cognitive impairment-beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256: 240-246.
– reference: Desikan RS,Segonne F,Fischl B,Quinn BT,Dickerson BC,Blacker D,Buckner RL,Dale AM,Maguire RP,Hyman BT,Albert MS,Killiany RJ ( 2006): An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31: 968-980.
– reference: Xu Y,Jack CRJr,O'Brien PC,Kokmen E,Smith GE,Ivnik RJ,Boeve BF,Tangalos RG,Petersen RC ( 2000): Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54: 1760-1767.
– reference: Boccardi M,Sabattoli F,Laakso MP,Testa C,Rossi R,Beltramello A,Soininen H,Frisoni GB ( 2005): Frontotemporal dementia as a neural system disease. Neurobiol Aging 26: 37-44.
– reference: Braak H,Braak E ( 1991): Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82: 239-259.
– reference: Killiany RJ,Hyman BT,Gomez-Isla T,Moss MB,Kikinis R,Jolesz F,Tanzi R,Jones K,Albert MS ( 2002): MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 58: 1188-1196.
– reference: Sled JG,Zijdenbos AP,Evans AC ( 1998): A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17: 87-97.
– reference: Fischl B,Sereno MI,Tootell RB,Dale AM ( 1999b): High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8: 272-284.
– reference: Buckner RL,Head D,Parker J,Fotenos AF,Marcus D,Morris JC,Snyder AZ ( 2004): A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. Neuroimage 23: 724-738.
– reference: Frank RA,Galasko D,Hampel H,Hardy J,de Leon MJ,Mehta PD,Rogers J,Siemers E,Trojanowski JQ ( 2003): Biological markers for therapeutic trials in Alzheimer's disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer's disease. Neurobiol Aging 24: 521-536.
– reference: Jovicich J,Czanner S,Greve D,Haley E,van der Kouwe A,Gollub R,Kennedy D,Schmitt F,Brown G,Macfall J,Fischl B,Dale A. ( 2006): Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. Neuroimage 30: 436-443.
– reference: Hua X,Leow AD,Parikshak N,Lee S,Chiang MC,Toga AW,Jack CRJr,Weiner MW,Thompson PM ( 2008): Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects Neuroimage 43: 458-469.
– volume: 1
  start-page: 13
  year: 2002
  end-page: 21
  article-title: Structural magnetic resonance imaging in the practical assessment of dementia: Beyond exclusion
  publication-title: Lancet Neurol
– volume: 23
  start-page: S69
  issue: Suppl 1
  year: 2004a
  end-page: S84
  article-title: Sequence‐independent segmentation of magnetic resonance images
  publication-title: Neuroimage
– volume: 99
  start-page: 4135
  year: 2002
  end-page: 4137
  article-title: Imaging the progression of Alzheimer pathology through the brain
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 1197
  year: 2004
  end-page: 1203
  article-title: MRI‐derived entorhinal volume is a good predictor of conversion from MCI to AD
  publication-title: Neurobiol Aging
– volume: 15
  start-page: 869
  year: 2005
  end-page: 877
  article-title: The Alzheimer's disease neuroimaging initiative
  publication-title: Neuroimaging Clin N Am
– volume: 256
  start-page: 205
  year: 2004
  end-page: 223
  article-title: MRI and CSF studies in the early diagnosis of Alzheimer's disease
  publication-title: J Intern Med
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 272
  year: 1999b
  end-page: 284
  article-title: High‐resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum Brain Mapp
– volume: 10
  start-page: 664
  year: 2004
  end-page: 678
  article-title: Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults
  publication-title: J Int Neuropsychol Soc
– volume: 112
  start-page: 389
  year: 2006
  end-page: 404
  article-title: Staging of Alzheimer disease‐associated neurofibrillary pathology using paraffin sections and immunocytochemistry
  publication-title: Acta Neuropathol (Berl)
– volume: 77
  start-page: 439
  year: 2006
  end-page: 442
  article-title: Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer's disease
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 63
  start-page: 57
  year: 2006
  end-page: 62
  article-title: Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people
  publication-title: Arch Gen Psychiatry
– volume: 20
  start-page: 6
  year: 2006
  end-page: 15
  article-title: The role of biomarkers in clinical trials for Alzheimer disease
  publication-title: Alzheimer Dis Assoc Disord
– volume: 65
  start-page: 602
  year: 2006
  end-page: 609
  article-title: Argyrophilic grain disease in demented subjects presenting initially with amnestic mild cognitive impairment
  publication-title: J Neuropathol Exp Neurol
– volume: 14
  start-page: 11
  year: 2004b
  end-page: 22
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb Cortex
– volume: 64
  start-page: 1520
  year: 2005
  end-page: 1524
  article-title: MRI predictors of risk of incident Alzheimer disease: A longitudinal study
  publication-title: Neurology
– volume: 67
  start-page: 441
  year: 2006
  end-page: 445
  article-title: Mild cognitive impairment: Risk of Alzheimer disease and rate of cognitive decline
  publication-title: Neurology
– volume: 18
  start-page: 131
  year: 1997
  end-page: 138
  article-title: Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease
  publication-title: Neurobiol Aging
– volume: 9
  start-page: 195
  year: 1999a
  end-page: 207
  article-title: Cortical surface‐based analysis. II. Inflation, flattening, and a surface‐based coordinate system
  publication-title: Neuroimage
– volume: 24
  start-page: 521
  year: 2003
  end-page: 536
  article-title: Biological markers for therapeutic trials in Alzheimer's disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer's disease
  publication-title: Neurobiol Aging
– volume: 5
  start-page: 162
  year: 1993
  end-page: 176
  article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach
  publication-title: J Cogn Neurosci
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J Magn Reson Imaging
– volume: 6
  start-page: 734
  year: 2007
  end-page: 746
  article-title: Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS‐ADRDA criteria
  publication-title: Lancet Neurol
– volume: 52
  start-page: 1397
  year: 1999
  end-page: 1403
  article-title: Prediction of AD with MRI‐based hippocampal volume in mild cognitive impairment
  publication-title: Neurology
– volume: 26
  start-page: 37
  year: 2005
  end-page: 44
  article-title: Frontotemporal dementia as a neural system disease
  publication-title: Neurobiol Aging
– volume: 229/230
  start-page: 121
  year: 2005
  end-page: 129
  article-title: MRI identifies MCI subtypes: Vascular versus neurodegenerative
  publication-title: J Neurol Sci
– volume: 58
  start-page: 695
  year: 2002
  end-page: 701
  article-title: Regional and progressive thinning of the cortical ribbon in Huntington's disease
  publication-title: Neurology
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  article-title: Cortical surface‐based analysis. I
  publication-title: Segmentation and surface reconstruction Neuroimage
– volume: 1097
  start-page: 183
  year: 2007
  end-page: 214
  article-title: Tracking Alzheimer's disease
  publication-title: Ann N Y Acad Sci
– volume: 5
  start-page: 235
  year: 2007
  end-page: 245
  article-title: Feasibility of multi‐site clinical structural neuroimaging studies of aging using legacy data
  publication-title: Neuroinformatics
– volume: 50
  start-page: 949
  year: 1993
  end-page: 954
  article-title: Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease
  publication-title: Arch Neurol
– volume: 65
  start-page: 227
  year: 2005
  end-page: 231
  article-title: Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI
  publication-title: Neurology
– volume: 63
  start-page: 665
  year: 2006
  end-page: 672
  article-title: Neuropathologic features of amnestic mild cognitive impairment
  publication-title: Arch Neurol
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  article-title: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 63
  start-page: 38
  year: 2006
  end-page: 46
  article-title: Neuropathologic substrate of mild cognitive impairment
  publication-title: Arch Neurol
– volume: 8
  start-page: 339
  year: 2005
  end-page: 346
  article-title: Biomarkers for Alzheimer's disease–clinical needs and application
  publication-title: J Alzheimers Dis
– volume: 18
  start-page: 895
  year: 2003
  end-page: 907
  article-title: A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel‐based morphometry
  publication-title: Neuroimage
– volume: 256
  start-page: 183
  year: 2004
  end-page: 194
  article-title: Mild cognitive impairment as a diagnostic entity
  publication-title: J Intern Med
– volume: 65
  start-page: 1863
  year: 2005
  end-page: 1872
  article-title: Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium
  publication-title: Neurology
– volume: 27
  start-page: 151
  year: 2006
  end-page: 156
  article-title: Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single‐photon emission computed tomography
  publication-title: Nucl Med Commun
– volume: 20
  start-page: 69
  year: 2005
  article-title: Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease
  publication-title: Funct Neurol
– volume: 17
  start-page: 177
  year: 2003
  end-page: 195
  article-title: Structural magnetic resonance imaging in established and prodromal Alzheimer disease: A review
  publication-title: Alzheimer Dis Assoc Disord
– volume: 43
  start-page: 458
  year: 2008
  end-page: 469
  article-title: Tensor‐based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects
  publication-title: Neuroimage
– volume: 36
  start-page: 289
  year: 2007
  end-page: 297
  article-title: Cortical thickness in single‐ versus multiple‐domain amnestic mild cognitive impairment
  publication-title: Neuroimage
– volume: 58
  start-page: 1188
  year: 2002
  end-page: 1196
  article-title: MRI measures of entorhinal cortex vs hippocampus in preclinical AD
  publication-title: Neurology
– volume: 353
  start-page: 38
  year: 1999
  end-page: 40
  article-title: MRI of entorhinal cortex in mild Alzheimer's disease
  publication-title: Lancet
– volume: 45
  start-page: 391
  year: 1995
  end-page: 392
  article-title: Decreased hippocampal volume asymmetry on MRIs in nondemented elderly subjects carrying the apolipoprotein E epsilon 4 allele
  publication-title: Neurology
– volume: 71
  start-page: 441
  year: 2001
  end-page: 447
  article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  article-title: Neuropathological stageing of Alzheimer‐related changes
  publication-title: Acta Neuropathol (Berl)
– year: 1977
– volume: 62
  start-page: 591
  year: 2004
  end-page: 600
  article-title: Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD
  publication-title: Neurology
– volume: 30
  start-page: 436
  year: 2006
  end-page: 443
  article-title: Reliability in multi‐site structural MRI studies: Effects of gradient non‐linearity correction on phantom and human data
  publication-title: Neuroimage
– volume: 60
  start-page: 253
  year: 2003
  end-page: 260
  article-title: MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD
  publication-title: Neurology
– volume: 256
  start-page: 240
  year: 2004
  end-page: 246
  article-title: Mild cognitive impairment—beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment
  publication-title: J Intern Med
– volume: 62
  start-page: 1393
  year: 2005
  end-page: 1397
  article-title: Differential cortical atrophy in subgroups of mild cognitive impairment
  publication-title: Arch Neurol
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  article-title: “Mini‐mental state”. A practical method for grading the cognitive state of patients for the clinician
  publication-title: J Psychiatr Res
– volume: 16
  start-page: 1701
  year: 2006
  end-page: 1708
  article-title: Differential Regional Atrophy of the Cingulate Gyrus in Alzheimer Disease: A Volumetric MRI Study
  publication-title: Cereb Cortex
– volume: 19
  start-page: 338
  year: 2005
  end-page: 344
  article-title: Does Alzheimer's disease affect hippocampal asymmetry? Evidence from a cross‐sectional and longitudinal volumetric MRI study
  publication-title: Dement Geriatr Cogn Disord
– volume: 23
  start-page: 724
  year: 2004
  end-page: 738
  article-title: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas‐based head size normalization: Reliability and validation against manual measurement of total intracranial volume
  publication-title: Neuroimage
– volume: 49
  start-page: 786
  year: 1997
  end-page: 794
  article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease
  publication-title: Neurology
– volume: 70
  start-page: 512
  year: 2008
  end-page: 520
  article-title: MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment
  publication-title: Neurology
– volume: 47
  start-page: 430
  year: 2000
  end-page: 439
  article-title: Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease
  publication-title: Ann Neurol
– volume: 23
  start-page: 994
  year: 2003
  end-page: 1005
  article-title: Dynamics of gray matter loss in Alzheimer's disease
  publication-title: J Neurosci
– volume: 54
  start-page: 1760
  year: 2000
  end-page: 1767
  article-title: Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD
  publication-title: Neurology
– volume: 19
  start-page: 15
  year: 1998
  end-page: 22
  article-title: Volumes of the entorhinal and perirhinal cortices in Alzheimer's disease
  publication-title: Neurobiol Aging
– volume: 23
  start-page: 325
  year: 2004
  end-page: 335
  article-title: Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: Diagnosis and gender effects
  publication-title: Neuroimage
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans Med Imaging
– volume: 58
  start-page: 397
  year: 2001
  end-page: 405
  article-title: Mild cognitive impairment represents early‐stage Alzheimer disease
  publication-title: Arch Neurol
– volume: 129
  start-page: 2885
  issue: Part 11
  year: 2006
  end-page: 2893
  article-title: Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease
  publication-title: Brain
– volume: 23
  start-page: 708
  year: 2004
  end-page: 716
  article-title: Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease
  publication-title: Neuroimage
– volume: 20
  start-page: 139
  year: 1999
  end-page: 144
  article-title: Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_7_7_1
  doi: 10.1016/S0140-6736(05)74869-8
– ident: e_1_2_7_14_1
  doi: 10.1016/S0197-4580(97)00001-8
– ident: e_1_2_7_27_1
  doi: 10.1016/S0896-6273(02)00569-X
– ident: e_1_2_7_36_1
  doi: 10.1212/WNL.52.7.1397
– ident: e_1_2_7_22_1
  doi: 10.1016/S1474-4422(07)70178-3
– ident: e_1_2_7_65_1
  doi: 10.1212/WNL.45.2.391
– ident: e_1_2_7_12_1
  doi: 10.1016/j.neuroimage.2004.06.018
– ident: e_1_2_7_72_1
  doi: 10.1111/j.1365-2796.2004.01380.x
– ident: e_1_2_7_26_1
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– ident: e_1_2_7_73_1
  doi: 10.1212/WNL.54.9.1760
– ident: e_1_2_7_41_1
  doi: 10.1097/01.jnen.0000225312.11858.57
– ident: e_1_2_7_55_1
  doi: 10.1016/j.nic.2005.09.008
– ident: e_1_2_7_5_1
  doi: 10.1159/000084560
– ident: e_1_2_7_35_1
  doi: 10.1212/WNL.49.3.786
– ident: e_1_2_7_31_1
  doi: 10.1016/S0197-4580(03)00002-2
– ident: e_1_2_7_62_1
  doi: 10.1093/brain/awl256
– ident: e_1_2_7_51_1
  doi: 10.1001/archneur.63.1.38
– ident: e_1_2_7_21_1
  doi: 10.1136/jnnp.71.4.441
– ident: e_1_2_7_13_1
  doi: 10.1525/ae.2004.31.4.475
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neurobiolaging.2004.02.019
– ident: e_1_2_7_44_1
  doi: 10.1016/S0197-4580(98)00007-4
– ident: e_1_2_7_59_1
  doi: 10.1212/WNL.58.5.695
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1365-2796.2004.01388.x
– ident: e_1_2_7_66_1
  doi: 10.1212/01.WNL.0000160089.43264.1A
– ident: e_1_2_7_4_1
  doi: 10.1016/j.neuroimage.2004.04.026
– ident: e_1_2_7_70_1
  doi: 10.1136/jnnp.2005.075341
– ident: e_1_2_7_11_1
  doi: 10.1007/s00401-006-0127-z
– volume: 9
  start-page: 179
  year: 1999
  ident: e_1_2_7_16_1
  article-title: Cortical surface‐based analysis. I
  publication-title: Segmentation and surface reconstruction Neuroimage
– ident: e_1_2_7_19_1
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_2_7_34_1
  doi: 10.1016/j.neuroimage.2008.07.013
– ident: e_1_2_7_30_1
  doi: 10.1016/0022-3956(75)90026-6
– ident: e_1_2_7_37_1
  doi: 10.1212/01.WNL.0000042480.86872.03
– ident: e_1_2_7_2_1
  doi: 10.1097/00002093-200307000-00010
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.200033797
– ident: e_1_2_7_28_1
  doi: 10.1016/j.neuroimage.2004.07.016
– ident: e_1_2_7_63_1
  doi: 10.1109/42.668698
– ident: e_1_2_7_47_1
  doi: 10.1016/j.neuroimage.2004.07.006
– ident: e_1_2_7_32_1
  doi: 10.3233/JAD-2005-8403
– ident: e_1_2_7_39_1
  doi: 10.1212/01.wnl.0000180958.22678.91
– ident: e_1_2_7_49_1
  doi: 10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1365-2796.2004.01381.x
– ident: e_1_2_7_42_1
  doi: 10.1093/cercor/bhj105
– ident: e_1_2_7_71_1
  doi: 10.1212/01.wnl.0000280575.77437.a2
– ident: e_1_2_7_15_1
  doi: 10.1162/jocn.1993.5.2.162
– ident: e_1_2_7_50_1
  doi: 10.1212/WNL.58.8.1188
– ident: e_1_2_7_53_1
  doi: 10.1016/j.jns.2004.11.012
– ident: e_1_2_7_23_1
  doi: 10.1007/s12021-007-9003-9
– ident: e_1_2_7_54_1
  doi: 10.1001/archneur.58.3.397
– ident: e_1_2_7_38_1
  doi: 10.1212/01.WNL.0000110315.26026.EF
– ident: e_1_2_7_43_1
  doi: 10.1016/j.neuroimage.2005.09.046
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neurobiolaging.2003.12.007
– ident: e_1_2_7_18_1
  doi: 10.1001/archpsyc.63.1.57
– ident: e_1_2_7_33_1
  doi: 10.1097/01.mnm.0000189783.39411.ef
– ident: e_1_2_7_6_1
  doi: 10.1001/archneur.62.9.1393
– ident: e_1_2_7_52_1
  doi: 10.1212/01.wnl.0000187889.17253.b1
– volume: 20
  start-page: 139
  year: 1999
  ident: e_1_2_7_45_1
  article-title: Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_7_64_1
  doi: 10.1073/pnas.082107399
– volume: 20
  start-page: 69
  year: 2005
  ident: e_1_2_7_3_1
  article-title: Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease
  publication-title: Funct Neurol
– ident: e_1_2_7_25_1
  doi: 10.1006/nimg.1998.0396
– ident: e_1_2_7_46_1
  doi: 10.1016/S1053-8119(03)00041-7
– ident: e_1_2_7_56_1
  doi: 10.1017/S1355617704105080
– ident: e_1_2_7_58_1
  doi: 10.1001/archneur.63.5.665
– ident: e_1_2_7_61_1
  doi: 10.1016/j.neuroimage.2007.02.042
– ident: e_1_2_7_10_1
  doi: 10.1007/BF00308809
– ident: e_1_2_7_68_1
  doi: 10.1523/JNEUROSCI.23-03-00994.2003
– ident: e_1_2_7_67_1
  doi: 10.1097/01.wad.0000191420.61260.a8
– ident: e_1_2_7_60_1
  doi: 10.1016/S1474-4422(02)00002-9
– ident: e_1_2_7_40_1
  doi: 10.1002/jmri.21049
– ident: e_1_2_7_48_1
  doi: 10.1001/archneur.1993.00540090052010
– ident: e_1_2_7_29_1
  doi: 10.1093/cercor/bhg087
– ident: e_1_2_7_9_1
  doi: 10.1212/01.wnl.0000228244.10416.20
– ident: e_1_2_7_69_1
  doi: 10.1196/annals.1379.017
SSID ssj0011501
Score 2.4058516
Snippet Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3238
SubjectTerms Aged
Aged, 80 and over
Alzheimer Disease - complications
Alzheimer Disease - pathology
Alzheimer's disease
Biological and medical sciences
brain imaging
Case-Control Studies
Cerebral Cortex - pathology
Cognition Disorders - etiology
Cognition Disorders - pathology
Cohort Studies
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Female
Functional Laterality
Humans
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - methods
Male
Medical sciences
Mental Status Schedule
Middle Aged
mild cognitive impairment
morphometry
MRI
Nervous system
Neurology
Neuropsychological Tests
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Title Structural MRI biomarkers for preclinical and mild Alzheimer's disease
URI https://api.istex.fr/ark:/67375/WNG-L01T19NK-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20744
https://www.ncbi.nlm.nih.gov/pubmed/19277975
https://www.proquest.com/docview/734052235
https://pubmed.ncbi.nlm.nih.gov/PMC2951116
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemISFegG3AusFkITR4yeYkjh2Lp25aKR_tw9jEHpAsx3bVijablk2C_fXcOR-jMCTEW6TcKfHlfPdz7vwzIa9UZoVyIo0c5LqIO-WjfGJYNOGxy2ThmQiHwYzGYnjKP5xlZyvkbbsXpuaH6H644cwI8RonuCmq_VvS0GmBG8klRy5Q7NVCQHTcUUch0AmLLUixkYII3LIKsWS_01zKRffQrN-xN9JUYJ5Jfa7FXcDzz_7JX3FtSEyDR-RrO6S6H-Xb3vVVsWdvfmN7_M8xPyYPG8BK-7WHrZEVX66TjX4Ji_XFD7pLQwtp-De_Tu6Pmkr9Bhl8DsS0SOpBR8fvKW7zx06gy4oCTKYXEGibPZnUlI4uZnNH-_ObqZ8t_OXrijaFoyfkdHB0cjiMmjMbIgtrHx4ZB4jR2hiAjM0BDqYFLKjizLpJXojEKe4KJSzzgPMMIE3vIUOKnAmfMStTx9OnZLU8L_0moV54hgqKGcedESqUHA0EIJumccJ65E379bRtCM3xXI25rqmYEw3m0sFcPfKyE72oWTzuEtoNLtBJgFWw7U1m-sv4nf7E4pNYjT9qePDOko90ChD984zLrEdo6zQaZiuWYEzpz68rLVMAyIDIQORZ7UO376MSKRUqyyXv6gSQCHz5TjmbBkLwBGByHAswSHCevw9RDw9G4WLr30W3yYNQQQsNjM_JKniPfwFA7KrYCTPuJyAtLNg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQJe-NiAlY9hITR4yeYkjhNLvJSP0rGmD6PT9oIsx3bVam02rZsE--s5Ox-jMCTEW6TeqfHl7PvZd_4dwGuRaC4MjwODsS5gRtggGysajFlokrSwlPtmMPmQ9w_Zl-PkeAXeNXdhKn6I9sDNzQy_XrsJ7g6kd69ZQyeFu0meMnYL1lxHb8ec__GgJY9yUMdvtzDIBgLX4IZXiEa7repSNFpzhv3uqiPVAg00rjpb3AQ9_6yg_BXZ-tDUuw_fmkFVFSknO5cXxY6--o3v8X9H_QDu1ZiVdCsnewgrtlyHjW6J-_X5D7JNfBWpP55fh9t5nazfgN5Xz03reD1IfrBH3E1_Vwx0viCIlMkZrrX1tUyiSkPm05kh3dnVxE7n9vzNgtS5o0dw2Ps0-tAP6rYNgcbtDwuUQdCodYhYRmeICOMC91Rhos04K3hkBDOF4JpahHoKwaa1GCR5RrlNqE5jw-LHsFqelnYTiOWWOgVBlWFGceGzjgrXIB3HYUQ78Lb5fFLXnOautcZMVmzMkURzSW-uDrxqRc8qIo-bhLa9D7QSaBVX-ZYm8mj4WQ5oOArFcF_iH28tOUmrgAEgS1iadIA0XiNxwrosjCrt6eVCpjFiZARlKPKkcqLr9xFRmgqnnC65VyvguMCXfymnE88JHiFSDkOOBvHe8_chyv773D88_XfRl3CnP8oHcrA33H8Gd31CzdczPodV9CT7AnHZRbHlp99P0egw9A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTZp4GbABKx_DQmjwks1JHDsWT4VROrZWaGzaHpCsxHbUijar1k2C_fWcnY9RGBLiLVLOSnw53_2cO_8O4JVMNJeGx4HBWBcwI22QFhkNChaaROSWct8MZjDk_RP26Sw5W4K3zVmYih-i_eHmVob3126Bz0yxe0MaOsrdQXLB2B1YYZxK17dh76jljnJIx--2MMYGEl1wQytEo9126EIwWnF6_e6KI7M56qeoGlvchjz_LKD8Fdj6yNS7B1-bOVUFKd92ri7zHX39G93jf076PqzViJV0KxN7AEu2XIeNbom79ekPsk18Dan_Ob8Oq4M6Vb8BvS-emdaxepDB0T5x5_xdKdDFnCBOJjP0tPWhTJKVhkzHE0O6k-uRHU_txes5qTNHD-Gk9-H4fT-omzYEGjc_LMgMQkatQ0QyOkU8GOe4owoTbYo055GRzOSSa2oR6GUINa3FEMlTym1CtYgNix_Bcnle2k0gllvqBkiaGWYyLn3OMUMPpOM4jGgH3jRfT-ma0dw11pioios5Uqgu5dXVgZet6Kyi8bhNaNubQCuBWnF1byJRp8OP6pCGx6EcHih88NaCjbQD0P2nCRNJB0hjNAqXq8vBZKU9v5orESNCRkiGIo8rG7p5HxkJId1gsWBdrYBjAl-8U45HnhE8QpwchhwV4o3n71NU_XcDf_Hk30VfwOrnvZ463B8ePIW7PpvmixmfwTIakn2OoOwy3_KL7ycbrC-j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+MRI+biomarkers+for+preclinical+and+mild+Alzheimer%27s+disease&rft.jtitle=Human+brain+mapping&rft.au=Fennema%E2%80%90Notestine%2C+Christine&rft.au=Hagler%2C+Donald+J.&rft.au=McEvoy%2C+Linda+K.&rft.au=Fleisher%2C+Adam+S.&rft.date=2009-10-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=30&rft.issue=10&rft.spage=3238&rft.epage=3253&rft_id=info:doi/10.1002%2Fhbm.20744&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_20744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon