Structural MRI biomarkers for preclinical and mild Alzheimer's disease
Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with...
Saved in:
Published in | Human brain mapping Vol. 30; no. 10; pp. 3238 - 3253 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.10.2009
Wiley-Liss |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high‐throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region‐of‐interest (ROI) measures. The MCI cohort was subdivided into single‐ (SMCI) and multiple‐domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non‐AD pathology in MMCI also was suggested. Mesial temporal right‐dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high‐throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross‐sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc. |
---|---|
AbstractList | Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high-throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region-of-interest (ROI) measures. The MCI cohort was subdivided into single- (SMCI) and multiple-domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non-AD pathology in MMCI also was suggested. Mesial temporal right-dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high-throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross-sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD. Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high-throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region-of-interest (ROI) measures. The MCI cohort was subdivided into single- (SMCI) and multiple-domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non-AD pathology in MMCI also was suggested. Mesial temporal right-dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high-throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross-sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD.Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high-throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region-of-interest (ROI) measures. The MCI cohort was subdivided into single- (SMCI) and multiple-domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non-AD pathology in MMCI also was suggested. Mesial temporal right-dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high-throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross-sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD. Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high‐throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region‐of‐interest (ROI) measures. The MCI cohort was subdivided into single‐ (SMCI) and multiple‐domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non‐AD pathology in MMCI also was suggested. Mesial temporal right‐dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high‐throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross‐sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc. |
Author | Karow, David S. Wu, Elaine H. McEvoy, Linda K. Hagler Jr, Donald J. Dale, Anders M. Fleisher, Adam S. Fennema-Notestine, Christine |
AuthorAffiliation | 2 Department of Radiology, University of California, San Diego, La Jolla, California 1 Department of Psychiatry, University of California, San Diego, La Jolla, California 3 Department of Neurosciences, University of California, San Diego, La Jolla, California |
AuthorAffiliation_xml | – name: 2 Department of Radiology, University of California, San Diego, La Jolla, California – name: 1 Department of Psychiatry, University of California, San Diego, La Jolla, California – name: 3 Department of Neurosciences, University of California, San Diego, La Jolla, California |
Author_xml | – sequence: 1 givenname: Christine surname: Fennema-Notestine fullname: Fennema-Notestine, Christine email: fennema@ucsd.edu organization: Department of Psychiatry, University of California, San Diego, La Jolla, California – sequence: 2 givenname: Donald J. surname: Hagler Jr fullname: Hagler Jr, Donald J. organization: Department of Radiology, University of California, San Diego, La Jolla, California – sequence: 3 givenname: Linda K. surname: McEvoy fullname: McEvoy, Linda K. organization: Department of Radiology, University of California, San Diego, La Jolla, California – sequence: 4 givenname: Adam S. surname: Fleisher fullname: Fleisher, Adam S. organization: Department of Neurosciences, University of California, San Diego, La Jolla, California – sequence: 5 givenname: Elaine H. surname: Wu fullname: Wu, Elaine H. organization: Department of Radiology, University of California, San Diego, La Jolla, California – sequence: 6 givenname: David S. surname: Karow fullname: Karow, David S. organization: Department of Radiology, University of California, San Diego, La Jolla, California – sequence: 7 givenname: Anders M. surname: Dale fullname: Dale, Anders M. organization: Department of Radiology, University of California, San Diego, La Jolla, California |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21985475$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19277975$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv1DAUhS1URF8s-AMoG1SxSOsbv-INUqnoQ0xbqS1iaTnODWPIY7AToPx6PJ3pCBCsbOl-59yje3bJVj_0SMgLoIdAaXE0r7rDgirOn5AdoFrlFDTbWv6lyDVXsE12Y_xMKYCg8Ixsgy6U0krskNPbMUxunIJts8ubi6zyQ2fDFwwxa4aQLQK61vfepbHt66zzbZ0dtz_n6DsMBzGrfUQbcZ88bWwb8fn63SMfTt_dnZzns-uzi5PjWe4EL3lua10w50BK5koqOKu0liBc3ZSVLGrN60pLR1EAWMEYYklBllSioE6xmrM98mblu5iqDmuH_ZiSm0XwKfW9Gaw3f056Pzefhm-m0MkTZDI4WBuE4euEcTSdjw7b1vY4TNEoxqkoCiYS-fL3VZsdj7dLwKs1YGO6TxNs73zccAXoUvAH7mjFuTDEGLAxzo929MMyoW8NULNs0aQWzUOLSfH6L8Vm-T_Ytft33-L9_0Fz_vbyUZGvFD6O-GOjSK0bqZgS5uPVmZlRuAN99d5Q9gsNC7m- |
CitedBy_id | crossref_primary_10_1016_j_pscychresns_2016_06_007 crossref_primary_10_1002_hbm_25159 crossref_primary_10_1016_j_neurobiolaging_2020_10_031 crossref_primary_10_3174_ajnr_A3307 crossref_primary_10_1016_j_ecoenv_2024_116876 crossref_primary_10_3174_ajnr_A1809 crossref_primary_10_3233_JAD_170338 crossref_primary_10_1080_01621459_2016_1194846 crossref_primary_10_1371_journal_pone_0025074 crossref_primary_10_1515_REVNEURO_2010_21_3_187 crossref_primary_10_3390_md16090313 crossref_primary_10_1007_s12035_011_8228_7 crossref_primary_10_1007_s11682_012_9171_6 crossref_primary_10_1212_WNL_0b013e31822b0004 crossref_primary_10_1002_hipo_22417 crossref_primary_10_1016_j_neurobiolaging_2010_10_019 crossref_primary_10_3389_fmed_2023_1094799 crossref_primary_10_1016_j_neurobiolaging_2017_04_025 crossref_primary_10_1007_s10742_019_00206_3 crossref_primary_10_1016_j_neurobiolaging_2010_04_025 crossref_primary_10_1186_1471_2105_16_S7_S8 crossref_primary_10_1007_s00429_014_0738_4 crossref_primary_10_1016_j_neurobiolaging_2011_02_012 crossref_primary_10_1016_j_psychres_2018_08_041 crossref_primary_10_1016_j_neurobiolaging_2010_04_029 crossref_primary_10_1089_neur_2022_0020 crossref_primary_10_1186_1471_2377_12_46 crossref_primary_10_1007_s12035_015_9669_1 crossref_primary_10_1089_brain_2020_0808 crossref_primary_10_1007_s11920_014_0490_8 crossref_primary_10_1002_hbm_22431 crossref_primary_10_1002_brb3_1142 crossref_primary_10_1016_j_jalz_2011_07_001 crossref_primary_10_1111_joim_12028 crossref_primary_10_1080_13803395_2012_702733 crossref_primary_10_3389_frdem_2023_1214940 crossref_primary_10_1523_JNEUROSCI_3252_09_2009 crossref_primary_10_1007_s00415_010_5872_1 crossref_primary_10_1016_j_nicl_2024_103624 crossref_primary_10_4236_health_2014_619310 crossref_primary_10_1016_j_ijge_2016_03_010 crossref_primary_10_1155_2013_198471 crossref_primary_10_3233_JAD_161201 crossref_primary_10_1016_j_neuroimage_2012_03_059 crossref_primary_10_1093_cercor_bhp279 crossref_primary_10_3233_JAD_231392 crossref_primary_10_3233_JAD_150164 crossref_primary_10_1002_hbm_25777 crossref_primary_10_1371_journal_pone_0130017 crossref_primary_10_1371_journal_pone_0188152 crossref_primary_10_1016_j_bbr_2014_12_033 crossref_primary_10_1017_S0954422418000185 crossref_primary_10_1016_j_ijrobp_2015_10_026 crossref_primary_10_1007_s00234_016_1740_8 crossref_primary_10_1016_j_neurad_2021_11_007 crossref_primary_10_1093_cercor_bhp192 crossref_primary_10_1016_j_arcmed_2012_08_015 crossref_primary_10_1017_S1355617713000660 crossref_primary_10_1016_j_neuroimage_2012_11_039 crossref_primary_10_1016_j_jalz_2014_11_001 crossref_primary_10_1016_j_jalz_2015_04_005 crossref_primary_10_1148_radiol_11101975 crossref_primary_10_3233_JAD_220535 crossref_primary_10_1088_2632_2153_ac7b69 crossref_primary_10_1016_j_neuroimage_2011_05_083 crossref_primary_10_3389_fnagi_2020_593648 crossref_primary_10_1148_radiol_10091402 crossref_primary_10_1523_JNEUROSCI_3785_09_2010 crossref_primary_10_1371_journal_pone_0210803 crossref_primary_10_1586_ern_10_162 crossref_primary_10_1016_j_media_2013_10_013 crossref_primary_10_3390_brainsci7040037 crossref_primary_10_1016_j_jalz_2012_10_002 crossref_primary_10_1002_hbm_22330 crossref_primary_10_3389_fneur_2020_00648 crossref_primary_10_3389_fnagi_2021_638731 crossref_primary_10_2217_thy_11_49 crossref_primary_10_2217_iim_12_27 crossref_primary_10_1148_radiol_10100307 crossref_primary_10_1007_s11682_015_9408_2 crossref_primary_10_1097_WNR_0000000000001314 crossref_primary_10_1007_s11682_012_9180_5 crossref_primary_10_1016_j_envint_2020_105546 crossref_primary_10_1016_j_jneuroling_2014_09_008 crossref_primary_10_1016_j_ejmp_2023_102577 crossref_primary_10_1016_j_neuroimage_2011_02_060 crossref_primary_10_3389_fnins_2015_00379 crossref_primary_10_1016_j_jneumeth_2020_108701 crossref_primary_10_1002_gps_2393 crossref_primary_10_1038_s41598_018_29295_9 crossref_primary_10_1016_j_compbiomed_2024_108622 crossref_primary_10_1038_s41386_019_0551_0 crossref_primary_10_1214_15_AOAS879 crossref_primary_10_1109_JBHI_2019_2932565 crossref_primary_10_1016_j_neurobiolaging_2010_03_015 crossref_primary_10_1016_j_neuroimage_2009_09_029 crossref_primary_10_1007_s00415_012_6778_x crossref_primary_10_1118_1_4940399 crossref_primary_10_1523_JNEUROSCI_4437_12_2013 crossref_primary_10_3233_ADR_210314 crossref_primary_10_1038_s41582_018_0031_x crossref_primary_10_1177_1073858410392586 crossref_primary_10_3389_fnagi_2018_00344 crossref_primary_10_3390_e22040465 crossref_primary_10_1118_1_4801913 crossref_primary_10_3233_JAD_150238 crossref_primary_10_1097_WAD_0b013e3181d1b814 crossref_primary_10_3233_JAD_170545 crossref_primary_10_3389_fneur_2020_566731 crossref_primary_10_1073_pnas_1301816110 crossref_primary_10_1016_j_nicl_2014_09_005 crossref_primary_10_1016_j_neuropsychologia_2009_12_024 crossref_primary_10_3389_fnagi_2022_1073909 crossref_primary_10_1016_j_neuroimage_2015_10_065 crossref_primary_10_1212_WNL_0b013e31820ce6a5 crossref_primary_10_3389_fnagi_2014_00306 crossref_primary_10_1002_hbm_21378 crossref_primary_10_1038_s41598_021_89797_x crossref_primary_10_1016_j_neuroimage_2011_08_013 crossref_primary_10_1016_j_neuroscience_2010_11_025 crossref_primary_10_1152_jn_00277_2023 crossref_primary_10_1016_j_neuroimage_2010_07_016 crossref_primary_10_1371_journal_pone_0074062 crossref_primary_10_1016_j_artmed_2016_06_003 crossref_primary_10_1016_j_neuroimage_2012_03_083 crossref_primary_10_1145_2791295 crossref_primary_10_1016_j_media_2016_06_029 crossref_primary_10_1097_NPT_0b013e3182462ea6 crossref_primary_10_1016_j_cortex_2019_04_026 crossref_primary_10_1155_2020_8874119 crossref_primary_10_1093_cercor_bhs379 crossref_primary_10_1016_j_brainres_2017_10_025 crossref_primary_10_3389_fnbeh_2014_00089 crossref_primary_10_3389_fnagi_2018_00365 crossref_primary_10_3389_fnagi_2020_00202 crossref_primary_10_1016_j_jalz_2013_05_1763 crossref_primary_10_1177_1533317515587084 crossref_primary_10_1016_j_neurobiolaging_2013_04_006 crossref_primary_10_1016_j_ctro_2017_10_001 crossref_primary_10_1016_j_neuroimage_2012_01_084 crossref_primary_10_3389_fneur_2014_00076 crossref_primary_10_1002_gepi_21854 crossref_primary_10_1016_j_neuroimage_2012_01_122 crossref_primary_10_1007_s12021_015_9266_5 crossref_primary_10_1016_j_jalz_2013_05_1769 crossref_primary_10_1016_j_neubiorev_2011_06_009 crossref_primary_10_1016_j_nic_2011_11_008 crossref_primary_10_1371_journal_pone_0082450 crossref_primary_10_3233_JAD_150937 crossref_primary_10_1016_j_jalz_2011_09_172 crossref_primary_10_1016_j_bspc_2023_105773 crossref_primary_10_1016_j_neurobiolaging_2011_05_018 crossref_primary_10_1007_s11910_015_0562_0 crossref_primary_10_1038_npp_2011_264 crossref_primary_10_2174_1567205019666220905145756 crossref_primary_10_1016_j_neurobiolaging_2023_07_021 crossref_primary_10_1002_alz_12645 crossref_primary_10_3348_kjr_2021_0323 crossref_primary_10_1186_s13195_019_0526_8 crossref_primary_10_1212_WNL_0000000000207579 crossref_primary_10_1109_TCBB_2021_3106939 crossref_primary_10_3389_fnhum_2021_700627 |
Cites_doi | 10.1016/S0140-6736(05)74869-8 10.1016/S0197-4580(97)00001-8 10.1016/S0896-6273(02)00569-X 10.1212/WNL.52.7.1397 10.1016/S1474-4422(07)70178-3 10.1212/WNL.45.2.391 10.1016/j.neuroimage.2004.06.018 10.1111/j.1365-2796.2004.01380.x 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1212/WNL.54.9.1760 10.1097/01.jnen.0000225312.11858.57 10.1016/j.nic.2005.09.008 10.1159/000084560 10.1212/WNL.49.3.786 10.1016/S0197-4580(03)00002-2 10.1093/brain/awl256 10.1001/archneur.63.1.38 10.1136/jnnp.71.4.441 10.1525/ae.2004.31.4.475 10.1016/j.neurobiolaging.2004.02.019 10.1016/S0197-4580(98)00007-4 10.1212/WNL.58.5.695 10.1111/j.1365-2796.2004.01388.x 10.1212/01.WNL.0000160089.43264.1A 10.1016/j.neuroimage.2004.04.026 10.1136/jnnp.2005.075341 10.1007/s00401-006-0127-z 10.1016/j.neuroimage.2006.01.021 10.1016/j.neuroimage.2008.07.013 10.1016/0022-3956(75)90026-6 10.1212/01.WNL.0000042480.86872.03 10.1097/00002093-200307000-00010 10.1073/pnas.200033797 10.1016/j.neuroimage.2004.07.016 10.1109/42.668698 10.1016/j.neuroimage.2004.07.006 10.3233/JAD-2005-8403 10.1212/01.wnl.0000180958.22678.91 10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I 10.1111/j.1365-2796.2004.01381.x 10.1093/cercor/bhj105 10.1212/01.wnl.0000280575.77437.a2 10.1162/jocn.1993.5.2.162 10.1212/WNL.58.8.1188 10.1016/j.jns.2004.11.012 10.1007/s12021-007-9003-9 10.1001/archneur.58.3.397 10.1212/01.WNL.0000110315.26026.EF 10.1016/j.neuroimage.2005.09.046 10.1016/j.neurobiolaging.2003.12.007 10.1001/archpsyc.63.1.57 10.1097/01.mnm.0000189783.39411.ef 10.1001/archneur.62.9.1393 10.1212/01.wnl.0000187889.17253.b1 10.1073/pnas.082107399 10.1006/nimg.1998.0396 10.1016/S1053-8119(03)00041-7 10.1017/S1355617704105080 10.1001/archneur.63.5.665 10.1016/j.neuroimage.2007.02.042 10.1007/BF00308809 10.1523/JNEUROSCI.23-03-00994.2003 10.1097/01.wad.0000191420.61260.a8 10.1016/S1474-4422(02)00002-9 10.1002/jmri.21049 10.1001/archneur.1993.00540090052010 10.1093/cercor/bhg087 10.1212/01.wnl.0000228244.10416.20 10.1196/annals.1379.017 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley‐Liss, Inc. 2009 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. – notice: 2009 INIST-CNRS |
CorporateAuthor | Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/hbm.20744 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Structural MRI Biomarkers for AD |
EISSN | 1097-0193 |
EndPage | 3253 |
ExternalDocumentID | PMC2951116 19277975 21985475 10_1002_hbm_20744 HBM20744 ark_67375_WNG_L01T19NK_0 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Alzheimer's Disease Neuroimaging Initiative (ADNI; NIH) funderid: U01 AG024904 – fundername: National Center for Research Resources, National Institutes of Health, USA [Morphometry Biomedical Informatics Research Network (BIRN, )] [http://www.nbirn.net] funderid: U24 RR021382 – fundername: NIA NIH HHS grantid: U19 AG010483 – fundername: NCRR NIH HHS grantid: U24 RR021382 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: National Center for Research Resources, National Institutes of Health, USA [Morphometry Biomedical Informatics Research Network (BIRN, )] [http://www.nbirn.net] grantid: U24 RR021382 – fundername: Alzheimer's Disease Neuroimaging Initiative (ADNI; NIH) grantid: U01 AG024904 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT IQODW AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c5484-ad923cc1663c80543b99615cdf8b62d94db96c0e511a533ee8016806e50c73d43 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:28:40 EDT 2025 Thu Jul 10 22:40:46 EDT 2025 Mon Jul 21 05:29:01 EDT 2025 Wed Apr 02 07:25:40 EDT 2025 Tue Jul 01 04:25:56 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Wed Jan 22 16:28:36 EST 2025 Wed Oct 30 09:52:43 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | brain imaging Nervous system diseases Radiodiagnosis Alzheimer disease MRI Central nervous system Asymptomatic Nuclear magnetic resonance imaging Cerebral disorder Encephalon Central nervous system disease Degenerative disease mild cognitive impairment Morphometry Alzheimer's disease |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5484-ad923cc1663c80543b99615cdf8b62d94db96c0e511a533ee8016806e50c73d43 |
Notes | ArticleID:HBM20744 National Center for Research Resources, National Institutes of Health, USA [Morphometry Biomedical Informatics Research Network (BIRN, )] [http://www.nbirn.net] - No. U24 RR021382 istex:7769F80B485D98A2A20B4CBE4C341016270BE7A1 Alzheimer's Disease Neuroimaging Initiative (ADNI; NIH) - No. U01 AG024904 Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu\ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. Complete listing of ADNI investigators available at http://www.loni.ucla.edu/ADNI/Data/ADNI_Authorship_List.pdf. ark:/67375/WNG-L01T19NK-0 http://www.loni.ucla.edu/ADNI/Data/ADNI_Authorship_List.pdf Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. Complete listing of ADNI investigators available at www.loni.ucla.edu\ADNI . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu\ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. Complete listing of ADNI investigators available at http://www.loni.ucla.edu/ADNI/Data/ADNI_Authorship_List.pdf. |
OpenAccessLink | http://doi.org/10.1002/hbm.20744 |
PMID | 19277975 |
PQID | 734052235 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2951116 proquest_miscellaneous_734052235 pubmed_primary_19277975 pascalfrancis_primary_21985475 crossref_citationtrail_10_1002_hbm_20744 crossref_primary_10_1002_hbm_20744 wiley_primary_10_1002_hbm_20744_HBM20744 istex_primary_ark_67375_WNG_L01T19NK_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2009 |
PublicationDateYYYYMMDD | 2009-10-01 |
PublicationDate_xml | – month: 10 year: 2009 text: October 2009 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2009 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Barnes J,Scahill RI,Schott JM,Frost C,Rossor MN,Fox NC ( 2005): Does Alzheimer's disease affect hippocampal asymmetry? Evidence from a cross-sectional and longitudinal volumetric MRI study. Dement Geriatr Cogn Disord 19: 338-344. Seo SW,Im K,Lee JM,Kim YH,Kim ST,Kim SY,Yang DW,Kim SI,Cho YS,Na DL ( 2007): Cortical thickness in single- versus multiple-domain amnestic mild cognitive impairment. Neuroimage 36: 289-297. Hua X,Leow AD,Parikshak N,Lee S,Chiang MC,Toga AW,Jack CRJr,Weiner MW,Thompson PM ( 2008): Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects Neuroimage 43: 458-469. Fischl B,Sereno MI,Dale AM ( 1999a): Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system. Neuroimage 9: 195-207. Cohen J ( 1977): Statistical Power Analysis for the Behavioral Sciences. New York: Academic Press. Thompson PM,Hayashi KM,Dutton RA,Chiang MC,Leow AD,Sowell ER,De Zubicaray G,Becker JT,Lopez OL,Aizenstein HJ,Toga AW ( 2007): Tracking Alzheimer's disease. Ann N Y Acad Sci 1097: 183-214. Dale AM,Sereno MI ( 1993): Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. J Cogn Neurosci 5: 162-176. Winblad B,Palmer K,Kivipelto M,Jelic V,Fratiglioni L,Wahlund LO,Nordberg A,Backman L,Albert M,Almkvist O,Arai H,Basun H,Blennow K,de Leon M,DeCarli C,Erkinjuntti T,Giacobini E,Graff C,Hardy J,Jack C,Jorm A,Ritchie K,van Duijn C,Visser P,Petersen RC ( 2004): Mild cognitive impairment-beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256: 240-246. Folstein MF,Folstein SE,McHugh PR ( 1975): "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189-198. Karas GB,Burton EJ,Rombouts SA,van Schijndel RA,O'Brien JT,Scheltens P,McKeith IG,Williams D,Ballard C,Barkhof F ( 2003): A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. Neuroimage 18: 895-907. Jack CRJr,Petersen RC,Xu YC,Waring SC,O'Brien PC,Tangalos EG,Smith GE,Ivnik RJ,Kokmen E ( 1997): Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology 49: 786-794. Hirao K,Ohnishi T,Matsuda H,Nemoto K,Hirata Y,Yamashita F,Asada T,Iwamoto T ( 2006): Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single-photon emission computed tomography. Nucl Med Commun 27: 151-156. den Heijer T,Geerlings MI,Hoebeek FE,Hofman A,Koudstaal PJ,Breteler MM ( 2006): Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiatry 63: 57-62. Jicha GA,Petersen RC,Knopman DS,Boeve BF,Smith GE,Geda YE,Johnson KA,Cha R,Delucia MW,Braak H,Dickson DW,Parisi JE ( 2006): Argyrophilic grain disease in demented subjects presenting initially with amnestic mild cognitive impairment. J Neuropathol Exp Neurol 65: 602-609. McKeith IG,Dickson DW,Lowe J,Emre M,O'Brien JT,Feldman H,Cummings J,Duda JE,Lippa C,Perry EK,Aarsland D,Arai H,Ballard CG,Boeve B,Burn DJ,Costa D,Del Ser T,Dubois B,Galasko D,Gauthier S,Goetz CG,Gomez-Tortosa E,Halliday G,Hansen LA,Hardy J,Iwatsubo T,Kalaria RN,Kaufer D,Kenny RA,Korczyn A,Kosaka K,Lee VM,Lees A,Litvan I,Londos E,Lopez OL,Minoshima S,Mizuno Y,Molina JA,Mukaetova-Ladinska EB,Pasquier F,Perry RH,Schulz JB,Trojanowski JQ,Yamada M ( 2005): Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium. Neurology 65: 1863-1872. van de Pol LA,Hensel A,van der Flier WM,Visser PJ,Pijnenburg YA,Barkhof F,Gertz HJ,Scheltens P ( 2006): Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer's disease. J Neurol Neurosurg Psychiatry 77: 439-442. Braak H,Braak E ( 1991): Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82: 239-259. Markesbery WR,Schmitt FA,Kryscio RJ,Davis DG,Smith CD,Wekstein DR ( 2006): Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63: 38-46. Bell-McGinty S,Lopez OL,Meltzer CC,Scanlon JM,Whyte EM,Dekosky ST,Becker JT ( 2005): Differential cortical atrophy in subgroups of mild cognitive impairment. Arch Neurol 62: 1393-1397. de Leon MJ,DeSanti S,Zinkowski R,Mehta PD,Pratico D,Segal S,Clark C,Kerkman D,DeBernardis J,Li J,Lair L,Reisberg B,Tsui W,Rusinek H ( 2004): MRI and CSF studies in the early diagnosis of Alzheimer's disease. J Intern Med 256: 205-223. Petersen RC ( 2004): Mild cognitive impairment as a diagnostic entity. J Intern Med 256: 183-194. Ballmaier M,O'Brien JT,Burton EJ,Thompson PM,Rex DE,Narr KL,McKeith IG,DeLuca H,Toga AW ( 2004): Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: Diagnosis and gender effects. Neuroimage 23: 325-335. Petersen RC,Parisi JE,Dickson DW,Johnson KA,Knopman DS,Boeve BF,Jicha GA,Ivnik RJ,Smith GE,Tangalos EG,Braak H,Kokmen E ( 2006): Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 63: 665-672. Jovicich J,Czanner S,Greve D,Haley E,van der Kouwe A,Gollub R,Kennedy D,Schmitt F,Brown G,Macfall J,Fischl B,Dale A. ( 2006): Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. Neuroimage 30: 436-443. Fischl B,Salat DH,Busa E,Albert M,Dieterich M,Haselgrove C,van der Kouwe A,Killiany R,Kennedy D,Klaveness S,Montillo A,Makris N,Rosen B,Dale AM ( 2002): Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33: 341-355. Braak H,Alafuzoff I,Arzberger T,Kretzschmar H,Del Tredici K ( 2006): Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol (Berl) 112: 389-404. Fischl B,van der Kouwe A,Destrieux C,Halgren E,Segonne F,Salat DH,Busa E,Seidman LJ,Goldstein J,Kennedy D,Caviness V,Makris N,Rosen B,Dale AM ( 2004b): Automatically parcellating the human cerebral cortex. Cereb Cortex 14: 11-22. Fischl B,Dale AM ( 2000): Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97: 11050-11055. Rosas HD,Liu AK,Hersch S,Glessner M,Ferrante RJ,Salat DH,van der Kouwe A,Jenkins BG,Dale AM,Fischl B ( 2002): Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology 58: 695-701. Ballmaier M,Memo M ( 2005): Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease. Funct Neurol 20: 69. Boccardi M,Sabattoli F,Laakso MP,Testa C,Rossi R,Beltramello A,Soininen H,Frisoni GB ( 2005): Frontotemporal dementia as a neural system disease. Neurobiol Aging 26: 37-44. Jack CRJr,Shiung MM,Gunter JL,O'Brien PC,Weigand SD,Knopman DS,Boeve BF,Ivnik RJ,Smith GE,Cha RH,Tangalos EG,Petersen RC ( 2004): Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62: 591-600. Juottonen K,Laakso MP,Partanen K,Soininen H ( 1999): Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. AJNR Am J Neuroradiol 20: 139-144. Killiany RJ,Gomez-Isla T,Moss M,Kikinis R,Sandor T,Jolesz F,Tanzi R,Jones K,Hyman BT,Albert MS ( 2000): Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 47: 430-439. Fennema-Notestine C,Gamst AC,Quinn BT,Pacheco J,Jernigan TL,Thal L,Buckner R,Killiany R,Blacker D,Dale AM,Fischl B,Dickerson B,Gollub RL ( 2007): Feasibility of multi-site clinical structural neuroimaging studies of aging using legacy data. Neuroinformatics 5: 235-245. Thal LJ,Kantarci K,Reiman EM,Klunk WE,Weiner MW,Zetterberg H,Galasko D,Pratico D,Griffin S,Schenk D,Siemers E ( 2006): The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis Assoc Disord 20: 6-15. Bobinski M,de Leon MJ,Convit A,De Santi S,Wegiel J,Tarshish CY,Saint Louis LA,Wisniewski HM ( 1999): MRI of entorhinal cortex in mild Alzheimer's disease. Lancet 353: 38-40. Atiya M,Hyman BT,Albert MS,Killiany R ( 2003): Structural magnetic resonance imaging in established and prodromal Alzheimer disease: A review. Alzheimer Dis Assoc Disord 17: 177-195. Smith AD ( 2002): Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci USA 99: 4135-4137. Desikan RS,Segonne F,Fischl B,Quinn BT,Dickerson BC,Blacker D,Buckner RL,Dale AM,Maguire RP,Hyman BT,Albert MS,Killiany RJ ( 2006): An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31: 968-980. Singh V,Chertkow H,Lerch JP,Evans AC,Dorr AE,Kabani NJ ( 2006): Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain 129(Part 11): 2885-2893. Buckner RL,Head D,Parker J,Fotenos AF,Marcus D,Morris JC,Snyder AZ ( 2004): A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. Neuroimage 23: 724-738. Xu Y,Jack CRJr,O'Brien PC,Kokmen E,Smith GE,Ivnik RJ,Boeve BF,Tangalos RG,Petersen RC ( 2000): Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54: 1760-1767. Jack CRJr,Shiung MM,Weigand SD,O'Brien PC,Gunter JL,Boeve BF,Knopman DS,Smith GE,Ivnik RJ,Tangalos EG,Petersen RC ( 2005): Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65: 227-231. Karas GB,Scheltens P,Rombouts SA,Visser PJ,van Schijndel RA,Fox NC,Barkhof F ( 2004): Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. Neuroimage 23: 708-716. Killiany RJ,Hyman BT,Gomez-Isla T,M 2002; 58 2006; 30 2006; 31 2004; 62 2000; 47 2006; 77 2004; 25 2004; 23 2002; 99 2005; 62 1975; 12 2005; 20 2005; 64 1997; 49 2005; 65 2003; 17 2003; 18 2005; 26 2008; 70 2007; 36 1993; 5 1977 1998; 17 2006; 63 2007; 1097 1998; 19 2006; 20 2004; 256 2006; 67 1999a; 9 2006; 65 2006; 27 2000; 54 2008; 27 2000; 97 1997; 18 2007; 6 2007; 5 1999; 52 2006; 129 2001; 58 2001; 71 1999b; 8 2004a; 23 2006; 16 2002; 33 2002; 1 1991; 82 1999; 20 2005; 229/230 2006; 112 1999; 9 2004; 10 2005; 19 1993; 50 2005; 8 1995; 45 2003; 24 2008; 43 2004b; 14 1999; 353 2003; 60 2005; 15 2003; 23 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Juottonen K (e_1_2_7_45_1) 1999; 20 Ballmaier M (e_1_2_7_3_1) 2005; 20 Dale AM (e_1_2_7_16_1) 1999; 9 |
References_xml | – reference: Pedraza O,Bowers D,Gilmore R ( 2004): Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. J Int Neuropsychol Soc 10: 664-678. – reference: Boyle PA,Wilson RS,Aggarwal NT,Tang Y,Bennett DA ( 2006): Mild cognitive impairment: Risk of Alzheimer disease and rate of cognitive decline. Neurology 67: 441-445. – reference: Fischl B,Dale AM ( 2000): Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97: 11050-11055. – reference: Killiany RJ,Moss MB,Albert MS,Sandor T,Tieman J,Jolesz F ( 1993): Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease. Arch Neurol 50: 949-954. – reference: DeToledo-Morrell L,Stoub TR,Bulgakova M,Wilson RS,Bennett DA,Leurgans S,Wuu J,Turner DA ( 2004): MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 25: 1197-1203. – reference: Galasko D ( 2005): Biomarkers for Alzheimer's disease-clinical needs and application. J Alzheimers Dis 8: 339-346. – reference: Thal LJ,Kantarci K,Reiman EM,Klunk WE,Weiner MW,Zetterberg H,Galasko D,Pratico D,Griffin S,Schenk D,Siemers E ( 2006): The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis Assoc Disord 20: 6-15. – reference: Jack CRJr,Shiung MM,Weigand SD,O'Brien PC,Gunter JL,Boeve BF,Knopman DS,Smith GE,Ivnik RJ,Tangalos EG,Petersen RC ( 2005): Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65: 227-231. – reference: Scheltens P,Fox N,Barkhof F,De Carli C ( 2002): Structural magnetic resonance imaging in the practical assessment of dementia: Beyond exclusion. Lancet Neurol 1: 13-21. – reference: Fischl B,van der Kouwe A,Destrieux C,Halgren E,Segonne F,Salat DH,Busa E,Seidman LJ,Goldstein J,Kennedy D,Caviness V,Makris N,Rosen B,Dale AM ( 2004b): Automatically parcellating the human cerebral cortex. Cereb Cortex 14: 11-22. – reference: Dale AM,Sereno MI ( 1993): Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. J Cogn Neurosci 5: 162-176. – reference: Jicha GA,Petersen RC,Knopman DS,Boeve BF,Smith GE,Geda YE,Johnson KA,Cha R,Delucia MW,Braak H,Dickson DW,Parisi JE ( 2006): Argyrophilic grain disease in demented subjects presenting initially with amnestic mild cognitive impairment. J Neuropathol Exp Neurol 65: 602-609. – reference: Jack CRJr,Petersen RC,Xu YC,Waring SC,O'Brien PC,Tangalos EG,Smith GE,Ivnik RJ,Kokmen E ( 1997): Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology 49: 786-794. – reference: Convit A,De Leon MJ,Tarshish C,De Santi S,Tsui W,Rusinek H,George A ( 1997): Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol Aging 18: 131-138. – reference: Fennema-Notestine C,Gamst AC,Quinn BT,Pacheco J,Jernigan TL,Thal L,Buckner R,Killiany R,Blacker D,Dale AM,Fischl B,Dickerson B,Gollub RL ( 2007): Feasibility of multi-site clinical structural neuroimaging studies of aging using legacy data. Neuroinformatics 5: 235-245. – reference: Fischl B,Sereno MI,Dale AM ( 1999a): Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system. Neuroimage 9: 195-207. – reference: Killiany RJ,Gomez-Isla T,Moss M,Kikinis R,Sandor T,Jolesz F,Tanzi R,Jones K,Hyman BT,Albert MS ( 2000): Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol 47: 430-439. – reference: Barnes J,Scahill RI,Schott JM,Frost C,Rossor MN,Fox NC ( 2005): Does Alzheimer's disease affect hippocampal asymmetry? Evidence from a cross-sectional and longitudinal volumetric MRI study. Dement Geriatr Cogn Disord 19: 338-344. – reference: Braak H,Alafuzoff I,Arzberger T,Kretzschmar H,Del Tredici K ( 2006): Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol (Berl) 112: 389-404. – reference: Smith AD ( 2002): Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci USA 99: 4135-4137. – reference: Mueller SG,Weiner MW,Thal LJ,Petersen RC,Jack C,Jagust W,Trojanowski JQ,Toga AW,Beckett L ( 2005): The Alzheimer's disease neuroimaging initiative. Neuroimaging Clin N Am 15: 869-877,xi-xii. – reference: Hirao K,Ohnishi T,Matsuda H,Nemoto K,Hirata Y,Yamashita F,Asada T,Iwamoto T ( 2006): Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single-photon emission computed tomography. Nucl Med Commun 27: 151-156. – reference: Karas GB,Scheltens P,Rombouts SA,Visser PJ,van Schijndel RA,Fox NC,Barkhof F ( 2004): Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. Neuroimage 23: 708-716. – reference: Seo SW,Im K,Lee JM,Kim YH,Kim ST,Kim SY,Yang DW,Kim SI,Cho YS,Na DL ( 2007): Cortical thickness in single- versus multiple-domain amnestic mild cognitive impairment. Neuroimage 36: 289-297. – reference: Singh V,Chertkow H,Lerch JP,Evans AC,Dorr AE,Kabani NJ ( 2006): Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain 129(Part 11): 2885-2893. – reference: van de Pol LA,Hensel A,van der Flier WM,Visser PJ,Pijnenburg YA,Barkhof F,Gertz HJ,Scheltens P ( 2006): Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer's disease. J Neurol Neurosurg Psychiatry 77: 439-442. – reference: Juottonen K,Laakso MP,Insausti R,Lehtovirta M,Pitkanen A,Partanen K,Soininen H ( 1998): Volumes of the entorhinal and perirhinal cortices in Alzheimer's disease. Neurobiol Aging 19: 15-22. – reference: Meyer JS,Quach M,Thornby J,Chowdhury M,Huang J ( 2005): MRI identifies MCI subtypes: Vascular versus neurodegenerative. J Neurol Sci 229/230: 121-129. – reference: Dale AM,Fischl B,Sereno MI ( 1999): Cortical surface-based analysis. I. Segmentation and surface reconstruction Neuroimage 9: 179-194. – reference: Thompson PM,Hayashi KM,Dutton RA,Chiang MC,Leow AD,Sowell ER,De Zubicaray G,Becker JT,Lopez OL,Aizenstein HJ,Toga AW ( 2007): Tracking Alzheimer's disease. Ann N Y Acad Sci 1097: 183-214. – reference: den Heijer T,Geerlings MI,Hoebeek FE,Hofman A,Koudstaal PJ,Breteler MM ( 2006): Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiatry 63: 57-62. – reference: Markesbery WR,Schmitt FA,Kryscio RJ,Davis DG,Smith CD,Wekstein DR ( 2006): Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63: 38-46. – reference: Fischl B,Salat DH,Busa E,Albert M,Dieterich M,Haselgrove C,van der Kouwe A,Killiany R,Kennedy D,Klaveness S,Montillo A,Makris N,Rosen B,Dale AM ( 2002): Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33: 341-355. – reference: Juottonen K,Laakso MP,Partanen K,Soininen H ( 1999): Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. AJNR Am J Neuroradiol 20: 139-144. – reference: Jack CRJr,Bernstein MA,Fox NC,Thompson P,Alexander G,Harvey D,Borowski B,Britson PJ,Whitwell LJ,Ward C,Dale AM,Felmlee JP,Gunter JL,Hill DL,Killiany R,Schuff N,Fox-Bosetti S,Lin C,Studholme C,DeCarli CS,Krueger G,Ward HA,Metzger GJ,Scott KT,Mallozzi R,Blezek D,Levy J,Debbins JP,Fleisher AS,Albert M,Green R,Bartzokis G,Glover G,Mugler J,Weiner MW ( 2008): The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27: 685-691. – reference: Ballmaier M,O'Brien JT,Burton EJ,Thompson PM,Rex DE,Narr KL,McKeith IG,DeLuca H,Toga AW ( 2004): Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: Diagnosis and gender effects. Neuroimage 23: 325-335. – reference: de Leon MJ,DeSanti S,Zinkowski R,Mehta PD,Pratico D,Segal S,Clark C,Kerkman D,DeBernardis J,Li J,Lair L,Reisberg B,Tsui W,Rusinek H ( 2004): MRI and CSF studies in the early diagnosis of Alzheimer's disease. J Intern Med 256: 205-223. – reference: Jack CRJr,Shiung MM,Gunter JL,O'Brien PC,Weigand SD,Knopman DS,Boeve BF,Ivnik RJ,Smith GE,Cha RH,Tangalos EG,Petersen RC ( 2004): Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62: 591-600. – reference: Jones BF,Barnes J,Uylings HB,Fox NC,Frost C,Witter MP,Scheltens P ( 2006): Differential Regional Atrophy of the Cingulate Gyrus in Alzheimer Disease: A Volumetric MRI Study. Cereb Cortex 16: 1701-1708. – reference: Stoub TR,Bulgakova M,Leurgans S,Bennett DA,Fleischman D,Turner DA,DeToledo-Morrell L ( 2005): MRI predictors of risk of incident Alzheimer disease: A longitudinal study. Neurology 64: 1520-1524. – reference: Whitwell JL,Shiung MM,Przybelski SA,Weigand SD,Knopman DS,Boeve BF,Petersen RC,Jack CRJr ( 2008): MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 70: 512-520. – reference: Bell-McGinty S,Lopez OL,Meltzer CC,Scanlon JM,Whyte EM,Dekosky ST,Becker JT ( 2005): Differential cortical atrophy in subgroups of mild cognitive impairment. Arch Neurol 62: 1393-1397. – reference: Bobinski M,de Leon MJ,Convit A,De Santi S,Wegiel J,Tarshish CY,Saint Louis LA,Wisniewski HM ( 1999): MRI of entorhinal cortex in mild Alzheimer's disease. Lancet 353: 38-40. – reference: Thompson PM,Hayashi KM,de Zubicaray G,Janke AL,Rose SE,Semple J,Herman D,Hong MS,Dittmer SS,Doddrell DM,Toga AW ( 2003): Dynamics of gray matter loss in Alzheimer's disease. J Neurosci 23: 994-1005. – reference: Du AT,Schuff N,Amend D,Laakso MP,Hsu YY,Jagust WJ,Yaffe K,Kramer JH,Reed B,Norman D,Chui HC,Weiner MW ( 2001): Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease. J Neurol Neurosurg Psychiatry 71: 441-447. – reference: Rosas HD,Liu AK,Hersch S,Glessner M,Ferrante RJ,Salat DH,van der Kouwe A,Jenkins BG,Dale AM,Fischl B ( 2002): Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology 58: 695-701. – reference: McKeith IG,Dickson DW,Lowe J,Emre M,O'Brien JT,Feldman H,Cummings J,Duda JE,Lippa C,Perry EK,Aarsland D,Arai H,Ballard CG,Boeve B,Burn DJ,Costa D,Del Ser T,Dubois B,Galasko D,Gauthier S,Goetz CG,Gomez-Tortosa E,Halliday G,Hansen LA,Hardy J,Iwatsubo T,Kalaria RN,Kaufer D,Kenny RA,Korczyn A,Kosaka K,Lee VM,Lees A,Litvan I,Londos E,Lopez OL,Minoshima S,Mizuno Y,Molina JA,Mukaetova-Ladinska EB,Pasquier F,Perry RH,Schulz JB,Trojanowski JQ,Yamada M ( 2005): Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium. Neurology 65: 1863-1872. – reference: Karas GB,Burton EJ,Rombouts SA,van Schijndel RA,O'Brien JT,Scheltens P,McKeith IG,Williams D,Ballard C,Barkhof F ( 2003): A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. Neuroimage 18: 895-907. – reference: Petersen RC ( 2004): Mild cognitive impairment as a diagnostic entity. J Intern Med 256: 183-194. – reference: Jack CRJr,Slomkowski M,Gracon S,Hoover TM,Felmlee JP,Stewart K,Xu Y,Shiung M,O'Brien PC,Cha R,Knopman D,Petersen RC ( 2003): MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 60: 253-260. – reference: Cohen J ( 1977): Statistical Power Analysis for the Behavioral Sciences. New York: Academic Press. – reference: Folstein MF,Folstein SE,McHugh PR ( 1975): "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189-198. – reference: Morris JC,Storandt M,Miller JP,McKeel DW,Price JL,Rubin EH,Berg L ( 2001): Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58: 397-405. – reference: Fischl B,Salat DH,van der Kouwe AJ,Makris N,Segonne F,Quinn BT,Dale AM ( 2004a): Sequence-independent segmentation of magnetic resonance images. Neuroimage 23( Suppl 1): S69-S84. – reference: Jack CRJr,Petersen RC,Xu YC,O'Brien PC,Smith GE,Ivnik RJ,Boeve BF,Waring SC,Tangalos EG,Kokmen E ( 1999): Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52: 1397-1403. – reference: Petersen RC,Parisi JE,Dickson DW,Johnson KA,Knopman DS,Boeve BF,Jicha GA,Ivnik RJ,Smith GE,Tangalos EG,Braak H,Kokmen E ( 2006): Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 63: 665-672. – reference: Atiya M,Hyman BT,Albert MS,Killiany R ( 2003): Structural magnetic resonance imaging in established and prodromal Alzheimer disease: A review. Alzheimer Dis Assoc Disord 17: 177-195. – reference: Soininen H,Partanen K,Pitkanen A,Hallikainen M,Hanninen T,Helisalmi S,Mannermaa A,Ryynanen M,Koivisto K,Riekkinen PSr ( 1995): Decreased hippocampal volume asymmetry on MRIs in nondemented elderly subjects carrying the apolipoprotein E epsilon 4 allele. Neurology 45: 391-392. – reference: Ballmaier M,Memo M ( 2005): Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease. Funct Neurol 20: 69. – reference: Dubois B,Feldman HH,Jacova C,Dekosky ST,Barberger-Gateau P,Cummings J,Delacourte A,Galasko D,Gauthier S,Jicha G,Meguro K,O'Brien J,Pasquier F,Robert P,Rossor M,Salloway S,Stern Y,Visser PJ,Scheltens P ( 2007): Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol 6: 734-746. – reference: Winblad B,Palmer K,Kivipelto M,Jelic V,Fratiglioni L,Wahlund LO,Nordberg A,Backman L,Albert M,Almkvist O,Arai H,Basun H,Blennow K,de Leon M,DeCarli C,Erkinjuntti T,Giacobini E,Graff C,Hardy J,Jack C,Jorm A,Ritchie K,van Duijn C,Visser P,Petersen RC ( 2004): Mild cognitive impairment-beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256: 240-246. – reference: Desikan RS,Segonne F,Fischl B,Quinn BT,Dickerson BC,Blacker D,Buckner RL,Dale AM,Maguire RP,Hyman BT,Albert MS,Killiany RJ ( 2006): An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31: 968-980. – reference: Xu Y,Jack CRJr,O'Brien PC,Kokmen E,Smith GE,Ivnik RJ,Boeve BF,Tangalos RG,Petersen RC ( 2000): Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54: 1760-1767. – reference: Boccardi M,Sabattoli F,Laakso MP,Testa C,Rossi R,Beltramello A,Soininen H,Frisoni GB ( 2005): Frontotemporal dementia as a neural system disease. Neurobiol Aging 26: 37-44. – reference: Braak H,Braak E ( 1991): Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82: 239-259. – reference: Killiany RJ,Hyman BT,Gomez-Isla T,Moss MB,Kikinis R,Jolesz F,Tanzi R,Jones K,Albert MS ( 2002): MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 58: 1188-1196. – reference: Sled JG,Zijdenbos AP,Evans AC ( 1998): A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17: 87-97. – reference: Fischl B,Sereno MI,Tootell RB,Dale AM ( 1999b): High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8: 272-284. – reference: Buckner RL,Head D,Parker J,Fotenos AF,Marcus D,Morris JC,Snyder AZ ( 2004): A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. Neuroimage 23: 724-738. – reference: Frank RA,Galasko D,Hampel H,Hardy J,de Leon MJ,Mehta PD,Rogers J,Siemers E,Trojanowski JQ ( 2003): Biological markers for therapeutic trials in Alzheimer's disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer's disease. Neurobiol Aging 24: 521-536. – reference: Jovicich J,Czanner S,Greve D,Haley E,van der Kouwe A,Gollub R,Kennedy D,Schmitt F,Brown G,Macfall J,Fischl B,Dale A. ( 2006): Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. Neuroimage 30: 436-443. – reference: Hua X,Leow AD,Parikshak N,Lee S,Chiang MC,Toga AW,Jack CRJr,Weiner MW,Thompson PM ( 2008): Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects Neuroimage 43: 458-469. – volume: 1 start-page: 13 year: 2002 end-page: 21 article-title: Structural magnetic resonance imaging in the practical assessment of dementia: Beyond exclusion publication-title: Lancet Neurol – volume: 23 start-page: S69 issue: Suppl 1 year: 2004a end-page: S84 article-title: Sequence‐independent segmentation of magnetic resonance images publication-title: Neuroimage – volume: 99 start-page: 4135 year: 2002 end-page: 4137 article-title: Imaging the progression of Alzheimer pathology through the brain publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 1197 year: 2004 end-page: 1203 article-title: MRI‐derived entorhinal volume is a good predictor of conversion from MCI to AD publication-title: Neurobiol Aging – volume: 15 start-page: 869 year: 2005 end-page: 877 article-title: The Alzheimer's disease neuroimaging initiative publication-title: Neuroimaging Clin N Am – volume: 256 start-page: 205 year: 2004 end-page: 223 article-title: MRI and CSF studies in the early diagnosis of Alzheimer's disease publication-title: J Intern Med – volume: 97 start-page: 11050 year: 2000 end-page: 11055 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 272 year: 1999b end-page: 284 article-title: High‐resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum Brain Mapp – volume: 10 start-page: 664 year: 2004 end-page: 678 article-title: Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults publication-title: J Int Neuropsychol Soc – volume: 112 start-page: 389 year: 2006 end-page: 404 article-title: Staging of Alzheimer disease‐associated neurofibrillary pathology using paraffin sections and immunocytochemistry publication-title: Acta Neuropathol (Berl) – volume: 77 start-page: 439 year: 2006 end-page: 442 article-title: Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer's disease publication-title: J Neurol Neurosurg Psychiatry – volume: 63 start-page: 57 year: 2006 end-page: 62 article-title: Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people publication-title: Arch Gen Psychiatry – volume: 20 start-page: 6 year: 2006 end-page: 15 article-title: The role of biomarkers in clinical trials for Alzheimer disease publication-title: Alzheimer Dis Assoc Disord – volume: 65 start-page: 602 year: 2006 end-page: 609 article-title: Argyrophilic grain disease in demented subjects presenting initially with amnestic mild cognitive impairment publication-title: J Neuropathol Exp Neurol – volume: 14 start-page: 11 year: 2004b end-page: 22 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb Cortex – volume: 64 start-page: 1520 year: 2005 end-page: 1524 article-title: MRI predictors of risk of incident Alzheimer disease: A longitudinal study publication-title: Neurology – volume: 67 start-page: 441 year: 2006 end-page: 445 article-title: Mild cognitive impairment: Risk of Alzheimer disease and rate of cognitive decline publication-title: Neurology – volume: 18 start-page: 131 year: 1997 end-page: 138 article-title: Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease publication-title: Neurobiol Aging – volume: 9 start-page: 195 year: 1999a end-page: 207 article-title: Cortical surface‐based analysis. II. Inflation, flattening, and a surface‐based coordinate system publication-title: Neuroimage – volume: 24 start-page: 521 year: 2003 end-page: 536 article-title: Biological markers for therapeutic trials in Alzheimer's disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer's disease publication-title: Neurobiol Aging – volume: 5 start-page: 162 year: 1993 end-page: 176 article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach publication-title: J Cogn Neurosci – volume: 27 start-page: 685 year: 2008 end-page: 691 article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods publication-title: J Magn Reson Imaging – volume: 6 start-page: 734 year: 2007 end-page: 746 article-title: Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS‐ADRDA criteria publication-title: Lancet Neurol – volume: 52 start-page: 1397 year: 1999 end-page: 1403 article-title: Prediction of AD with MRI‐based hippocampal volume in mild cognitive impairment publication-title: Neurology – volume: 26 start-page: 37 year: 2005 end-page: 44 article-title: Frontotemporal dementia as a neural system disease publication-title: Neurobiol Aging – volume: 229/230 start-page: 121 year: 2005 end-page: 129 article-title: MRI identifies MCI subtypes: Vascular versus neurodegenerative publication-title: J Neurol Sci – volume: 58 start-page: 695 year: 2002 end-page: 701 article-title: Regional and progressive thinning of the cortical ribbon in Huntington's disease publication-title: Neurology – volume: 9 start-page: 179 year: 1999 end-page: 194 article-title: Cortical surface‐based analysis. I publication-title: Segmentation and surface reconstruction Neuroimage – volume: 1097 start-page: 183 year: 2007 end-page: 214 article-title: Tracking Alzheimer's disease publication-title: Ann N Y Acad Sci – volume: 5 start-page: 235 year: 2007 end-page: 245 article-title: Feasibility of multi‐site clinical structural neuroimaging studies of aging using legacy data publication-title: Neuroinformatics – volume: 50 start-page: 949 year: 1993 end-page: 954 article-title: Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease publication-title: Arch Neurol – volume: 65 start-page: 227 year: 2005 end-page: 231 article-title: Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI publication-title: Neurology – volume: 63 start-page: 665 year: 2006 end-page: 672 article-title: Neuropathologic features of amnestic mild cognitive impairment publication-title: Arch Neurol – volume: 33 start-page: 341 year: 2002 end-page: 355 article-title: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 63 start-page: 38 year: 2006 end-page: 46 article-title: Neuropathologic substrate of mild cognitive impairment publication-title: Arch Neurol – volume: 8 start-page: 339 year: 2005 end-page: 346 article-title: Biomarkers for Alzheimer's disease–clinical needs and application publication-title: J Alzheimers Dis – volume: 18 start-page: 895 year: 2003 end-page: 907 article-title: A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel‐based morphometry publication-title: Neuroimage – volume: 256 start-page: 183 year: 2004 end-page: 194 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J Intern Med – volume: 65 start-page: 1863 year: 2005 end-page: 1872 article-title: Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium publication-title: Neurology – volume: 27 start-page: 151 year: 2006 end-page: 156 article-title: Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single‐photon emission computed tomography publication-title: Nucl Med Commun – volume: 20 start-page: 69 year: 2005 article-title: Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease publication-title: Funct Neurol – volume: 17 start-page: 177 year: 2003 end-page: 195 article-title: Structural magnetic resonance imaging in established and prodromal Alzheimer disease: A review publication-title: Alzheimer Dis Assoc Disord – volume: 43 start-page: 458 year: 2008 end-page: 469 article-title: Tensor‐based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects publication-title: Neuroimage – volume: 36 start-page: 289 year: 2007 end-page: 297 article-title: Cortical thickness in single‐ versus multiple‐domain amnestic mild cognitive impairment publication-title: Neuroimage – volume: 58 start-page: 1188 year: 2002 end-page: 1196 article-title: MRI measures of entorhinal cortex vs hippocampus in preclinical AD publication-title: Neurology – volume: 353 start-page: 38 year: 1999 end-page: 40 article-title: MRI of entorhinal cortex in mild Alzheimer's disease publication-title: Lancet – volume: 45 start-page: 391 year: 1995 end-page: 392 article-title: Decreased hippocampal volume asymmetry on MRIs in nondemented elderly subjects carrying the apolipoprotein E epsilon 4 allele publication-title: Neurology – volume: 71 start-page: 441 year: 2001 end-page: 447 article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease publication-title: J Neurol Neurosurg Psychiatry – volume: 82 start-page: 239 year: 1991 end-page: 259 article-title: Neuropathological stageing of Alzheimer‐related changes publication-title: Acta Neuropathol (Berl) – year: 1977 – volume: 62 start-page: 591 year: 2004 end-page: 600 article-title: Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD publication-title: Neurology – volume: 30 start-page: 436 year: 2006 end-page: 443 article-title: Reliability in multi‐site structural MRI studies: Effects of gradient non‐linearity correction on phantom and human data publication-title: Neuroimage – volume: 60 start-page: 253 year: 2003 end-page: 260 article-title: MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD publication-title: Neurology – volume: 256 start-page: 240 year: 2004 end-page: 246 article-title: Mild cognitive impairment—beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment publication-title: J Intern Med – volume: 62 start-page: 1393 year: 2005 end-page: 1397 article-title: Differential cortical atrophy in subgroups of mild cognitive impairment publication-title: Arch Neurol – volume: 12 start-page: 189 year: 1975 end-page: 198 article-title: “Mini‐mental state”. A practical method for grading the cognitive state of patients for the clinician publication-title: J Psychiatr Res – volume: 16 start-page: 1701 year: 2006 end-page: 1708 article-title: Differential Regional Atrophy of the Cingulate Gyrus in Alzheimer Disease: A Volumetric MRI Study publication-title: Cereb Cortex – volume: 19 start-page: 338 year: 2005 end-page: 344 article-title: Does Alzheimer's disease affect hippocampal asymmetry? Evidence from a cross‐sectional and longitudinal volumetric MRI study publication-title: Dement Geriatr Cogn Disord – volume: 23 start-page: 724 year: 2004 end-page: 738 article-title: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas‐based head size normalization: Reliability and validation against manual measurement of total intracranial volume publication-title: Neuroimage – volume: 49 start-page: 786 year: 1997 end-page: 794 article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease publication-title: Neurology – volume: 70 start-page: 512 year: 2008 end-page: 520 article-title: MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment publication-title: Neurology – volume: 47 start-page: 430 year: 2000 end-page: 439 article-title: Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease publication-title: Ann Neurol – volume: 23 start-page: 994 year: 2003 end-page: 1005 article-title: Dynamics of gray matter loss in Alzheimer's disease publication-title: J Neurosci – volume: 54 start-page: 1760 year: 2000 end-page: 1767 article-title: Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD publication-title: Neurology – volume: 19 start-page: 15 year: 1998 end-page: 22 article-title: Volumes of the entorhinal and perirhinal cortices in Alzheimer's disease publication-title: Neurobiol Aging – volume: 23 start-page: 325 year: 2004 end-page: 335 article-title: Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: Diagnosis and gender effects publication-title: Neuroimage – volume: 31 start-page: 968 year: 2006 end-page: 980 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – volume: 17 start-page: 87 year: 1998 end-page: 97 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging – volume: 58 start-page: 397 year: 2001 end-page: 405 article-title: Mild cognitive impairment represents early‐stage Alzheimer disease publication-title: Arch Neurol – volume: 129 start-page: 2885 issue: Part 11 year: 2006 end-page: 2893 article-title: Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease publication-title: Brain – volume: 23 start-page: 708 year: 2004 end-page: 716 article-title: Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease publication-title: Neuroimage – volume: 20 start-page: 139 year: 1999 end-page: 144 article-title: Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease publication-title: AJNR Am J Neuroradiol – ident: e_1_2_7_7_1 doi: 10.1016/S0140-6736(05)74869-8 – ident: e_1_2_7_14_1 doi: 10.1016/S0197-4580(97)00001-8 – ident: e_1_2_7_27_1 doi: 10.1016/S0896-6273(02)00569-X – ident: e_1_2_7_36_1 doi: 10.1212/WNL.52.7.1397 – ident: e_1_2_7_22_1 doi: 10.1016/S1474-4422(07)70178-3 – ident: e_1_2_7_65_1 doi: 10.1212/WNL.45.2.391 – ident: e_1_2_7_12_1 doi: 10.1016/j.neuroimage.2004.06.018 – ident: e_1_2_7_72_1 doi: 10.1111/j.1365-2796.2004.01380.x – ident: e_1_2_7_26_1 doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – ident: e_1_2_7_73_1 doi: 10.1212/WNL.54.9.1760 – ident: e_1_2_7_41_1 doi: 10.1097/01.jnen.0000225312.11858.57 – ident: e_1_2_7_55_1 doi: 10.1016/j.nic.2005.09.008 – ident: e_1_2_7_5_1 doi: 10.1159/000084560 – ident: e_1_2_7_35_1 doi: 10.1212/WNL.49.3.786 – ident: e_1_2_7_31_1 doi: 10.1016/S0197-4580(03)00002-2 – ident: e_1_2_7_62_1 doi: 10.1093/brain/awl256 – ident: e_1_2_7_51_1 doi: 10.1001/archneur.63.1.38 – ident: e_1_2_7_21_1 doi: 10.1136/jnnp.71.4.441 – ident: e_1_2_7_13_1 doi: 10.1525/ae.2004.31.4.475 – ident: e_1_2_7_8_1 doi: 10.1016/j.neurobiolaging.2004.02.019 – ident: e_1_2_7_44_1 doi: 10.1016/S0197-4580(98)00007-4 – ident: e_1_2_7_59_1 doi: 10.1212/WNL.58.5.695 – ident: e_1_2_7_57_1 doi: 10.1111/j.1365-2796.2004.01388.x – ident: e_1_2_7_66_1 doi: 10.1212/01.WNL.0000160089.43264.1A – ident: e_1_2_7_4_1 doi: 10.1016/j.neuroimage.2004.04.026 – ident: e_1_2_7_70_1 doi: 10.1136/jnnp.2005.075341 – ident: e_1_2_7_11_1 doi: 10.1007/s00401-006-0127-z – volume: 9 start-page: 179 year: 1999 ident: e_1_2_7_16_1 article-title: Cortical surface‐based analysis. I publication-title: Segmentation and surface reconstruction Neuroimage – ident: e_1_2_7_19_1 doi: 10.1016/j.neuroimage.2006.01.021 – ident: e_1_2_7_34_1 doi: 10.1016/j.neuroimage.2008.07.013 – ident: e_1_2_7_30_1 doi: 10.1016/0022-3956(75)90026-6 – ident: e_1_2_7_37_1 doi: 10.1212/01.WNL.0000042480.86872.03 – ident: e_1_2_7_2_1 doi: 10.1097/00002093-200307000-00010 – ident: e_1_2_7_24_1 doi: 10.1073/pnas.200033797 – ident: e_1_2_7_28_1 doi: 10.1016/j.neuroimage.2004.07.016 – ident: e_1_2_7_63_1 doi: 10.1109/42.668698 – ident: e_1_2_7_47_1 doi: 10.1016/j.neuroimage.2004.07.006 – ident: e_1_2_7_32_1 doi: 10.3233/JAD-2005-8403 – ident: e_1_2_7_39_1 doi: 10.1212/01.wnl.0000180958.22678.91 – ident: e_1_2_7_49_1 doi: 10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I – ident: e_1_2_7_17_1 doi: 10.1111/j.1365-2796.2004.01381.x – ident: e_1_2_7_42_1 doi: 10.1093/cercor/bhj105 – ident: e_1_2_7_71_1 doi: 10.1212/01.wnl.0000280575.77437.a2 – ident: e_1_2_7_15_1 doi: 10.1162/jocn.1993.5.2.162 – ident: e_1_2_7_50_1 doi: 10.1212/WNL.58.8.1188 – ident: e_1_2_7_53_1 doi: 10.1016/j.jns.2004.11.012 – ident: e_1_2_7_23_1 doi: 10.1007/s12021-007-9003-9 – ident: e_1_2_7_54_1 doi: 10.1001/archneur.58.3.397 – ident: e_1_2_7_38_1 doi: 10.1212/01.WNL.0000110315.26026.EF – ident: e_1_2_7_43_1 doi: 10.1016/j.neuroimage.2005.09.046 – ident: e_1_2_7_20_1 doi: 10.1016/j.neurobiolaging.2003.12.007 – ident: e_1_2_7_18_1 doi: 10.1001/archpsyc.63.1.57 – ident: e_1_2_7_33_1 doi: 10.1097/01.mnm.0000189783.39411.ef – ident: e_1_2_7_6_1 doi: 10.1001/archneur.62.9.1393 – ident: e_1_2_7_52_1 doi: 10.1212/01.wnl.0000187889.17253.b1 – volume: 20 start-page: 139 year: 1999 ident: e_1_2_7_45_1 article-title: Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease publication-title: AJNR Am J Neuroradiol – ident: e_1_2_7_64_1 doi: 10.1073/pnas.082107399 – volume: 20 start-page: 69 year: 2005 ident: e_1_2_7_3_1 article-title: Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease publication-title: Funct Neurol – ident: e_1_2_7_25_1 doi: 10.1006/nimg.1998.0396 – ident: e_1_2_7_46_1 doi: 10.1016/S1053-8119(03)00041-7 – ident: e_1_2_7_56_1 doi: 10.1017/S1355617704105080 – ident: e_1_2_7_58_1 doi: 10.1001/archneur.63.5.665 – ident: e_1_2_7_61_1 doi: 10.1016/j.neuroimage.2007.02.042 – ident: e_1_2_7_10_1 doi: 10.1007/BF00308809 – ident: e_1_2_7_68_1 doi: 10.1523/JNEUROSCI.23-03-00994.2003 – ident: e_1_2_7_67_1 doi: 10.1097/01.wad.0000191420.61260.a8 – ident: e_1_2_7_60_1 doi: 10.1016/S1474-4422(02)00002-9 – ident: e_1_2_7_40_1 doi: 10.1002/jmri.21049 – ident: e_1_2_7_48_1 doi: 10.1001/archneur.1993.00540090052010 – ident: e_1_2_7_29_1 doi: 10.1093/cercor/bhg087 – ident: e_1_2_7_9_1 doi: 10.1212/01.wnl.0000228244.10416.20 – ident: e_1_2_7_69_1 doi: 10.1196/annals.1379.017 |
SSID | ssj0011501 |
Score | 2.4058516 |
Snippet | Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3238 |
SubjectTerms | Aged Aged, 80 and over Alzheimer Disease - complications Alzheimer Disease - pathology Alzheimer's disease Biological and medical sciences brain imaging Case-Control Studies Cerebral Cortex - pathology Cognition Disorders - etiology Cognition Disorders - pathology Cohort Studies Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Female Functional Laterality Humans Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - methods Male Medical sciences Mental Status Schedule Middle Aged mild cognitive impairment morphometry MRI Nervous system Neurology Neuropsychological Tests Radiodiagnosis. Nmr imagery. Nmr spectrometry |
Title | Structural MRI biomarkers for preclinical and mild Alzheimer's disease |
URI | https://api.istex.fr/ark:/67375/WNG-L01T19NK-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20744 https://www.ncbi.nlm.nih.gov/pubmed/19277975 https://www.proquest.com/docview/734052235 https://pubmed.ncbi.nlm.nih.gov/PMC2951116 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemISFegG3AusFkITR4yeYkjh2Lp25aKR_tw9jEHpAsx3bVijablk2C_fXcOR-jMCTEW6TcKfHlfPdz7vwzIa9UZoVyIo0c5LqIO-WjfGJYNOGxy2ThmQiHwYzGYnjKP5xlZyvkbbsXpuaH6H644cwI8RonuCmq_VvS0GmBG8klRy5Q7NVCQHTcUUch0AmLLUixkYII3LIKsWS_01zKRffQrN-xN9JUYJ5Jfa7FXcDzz_7JX3FtSEyDR-RrO6S6H-Xb3vVVsWdvfmN7_M8xPyYPG8BK-7WHrZEVX66TjX4Ji_XFD7pLQwtp-De_Tu6Pmkr9Bhl8DsS0SOpBR8fvKW7zx06gy4oCTKYXEGibPZnUlI4uZnNH-_ObqZ8t_OXrijaFoyfkdHB0cjiMmjMbIgtrHx4ZB4jR2hiAjM0BDqYFLKjizLpJXojEKe4KJSzzgPMMIE3vIUOKnAmfMStTx9OnZLU8L_0moV54hgqKGcedESqUHA0EIJumccJ65E379bRtCM3xXI25rqmYEw3m0sFcPfKyE72oWTzuEtoNLtBJgFWw7U1m-sv4nf7E4pNYjT9qePDOko90ChD984zLrEdo6zQaZiuWYEzpz68rLVMAyIDIQORZ7UO376MSKRUqyyXv6gSQCHz5TjmbBkLwBGByHAswSHCevw9RDw9G4WLr30W3yYNQQQsNjM_JKniPfwFA7KrYCTPuJyAtLNg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQJe-NiAlY9hITR4yeYkjhNLvJSP0rGmD6PT9oIsx3bVam02rZsE--s5Ox-jMCTEW6TeqfHl7PvZd_4dwGuRaC4MjwODsS5gRtggGysajFlokrSwlPtmMPmQ9w_Zl-PkeAXeNXdhKn6I9sDNzQy_XrsJ7g6kd69ZQyeFu0meMnYL1lxHb8ec__GgJY9yUMdvtzDIBgLX4IZXiEa7repSNFpzhv3uqiPVAg00rjpb3AQ9_6yg_BXZ-tDUuw_fmkFVFSknO5cXxY6--o3v8X9H_QDu1ZiVdCsnewgrtlyHjW6J-_X5D7JNfBWpP55fh9t5nazfgN5Xz03reD1IfrBH3E1_Vwx0viCIlMkZrrX1tUyiSkPm05kh3dnVxE7n9vzNgtS5o0dw2Ps0-tAP6rYNgcbtDwuUQdCodYhYRmeICOMC91Rhos04K3hkBDOF4JpahHoKwaa1GCR5RrlNqE5jw-LHsFqelnYTiOWWOgVBlWFGceGzjgrXIB3HYUQ78Lb5fFLXnOautcZMVmzMkURzSW-uDrxqRc8qIo-bhLa9D7QSaBVX-ZYm8mj4WQ5oOArFcF_iH28tOUmrgAEgS1iadIA0XiNxwrosjCrt6eVCpjFiZARlKPKkcqLr9xFRmgqnnC65VyvguMCXfymnE88JHiFSDkOOBvHe8_chyv773D88_XfRl3CnP8oHcrA33H8Gd31CzdczPodV9CT7AnHZRbHlp99P0egw9A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTZp4GbABKx_DQmjwks1JHDsWT4VROrZWaGzaHpCsxHbUijar1k2C_fWcnY9RGBLiLVLOSnw53_2cO_8O4JVMNJeGx4HBWBcwI22QFhkNChaaROSWct8MZjDk_RP26Sw5W4K3zVmYih-i_eHmVob3126Bz0yxe0MaOsrdQXLB2B1YYZxK17dh76jljnJIx--2MMYGEl1wQytEo9126EIwWnF6_e6KI7M56qeoGlvchjz_LKD8Fdj6yNS7B1-bOVUFKd92ri7zHX39G93jf076PqzViJV0KxN7AEu2XIeNbom79ekPsk18Dan_Ob8Oq4M6Vb8BvS-emdaxepDB0T5x5_xdKdDFnCBOJjP0tPWhTJKVhkzHE0O6k-uRHU_txes5qTNHD-Gk9-H4fT-omzYEGjc_LMgMQkatQ0QyOkU8GOe4owoTbYo055GRzOSSa2oR6GUINa3FEMlTym1CtYgNix_Bcnle2k0gllvqBkiaGWYyLn3OMUMPpOM4jGgH3jRfT-ma0dw11pioios5Uqgu5dXVgZet6Kyi8bhNaNubQCuBWnF1byJRp8OP6pCGx6EcHih88NaCjbQD0P2nCRNJB0hjNAqXq8vBZKU9v5orESNCRkiGIo8rG7p5HxkJId1gsWBdrYBjAl-8U45HnhE8QpwchhwV4o3n71NU_XcDf_Hk30VfwOrnvZ463B8ePIW7PpvmixmfwTIakn2OoOwy3_KL7ycbrC-j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+MRI+biomarkers+for+preclinical+and+mild+Alzheimer%27s+disease&rft.jtitle=Human+brain+mapping&rft.au=Fennema%E2%80%90Notestine%2C+Christine&rft.au=Hagler%2C+Donald+J.&rft.au=McEvoy%2C+Linda+K.&rft.au=Fleisher%2C+Adam+S.&rft.date=2009-10-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=30&rft.issue=10&rft.spage=3238&rft.epage=3253&rft_id=info:doi/10.1002%2Fhbm.20744&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_20744 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |