Removal of Tetracycline Antibiotics from Dairy Farm Wastewater by Electrocoagulation Using Iron Electrodes

Veterinary antibiotic residues in wastewater discharged from livestock facilities have become an environmental issue. In this study, the removal of veterinary antibiotics by electrocoagulation was investigated for dairy farm wastewater treatment. Three tetracycline antibiotics (TCs) and cefazolin (C...

Full description

Saved in:
Bibliographic Details
Published inJournal of Water and Environment Technology Vol. 18; no. 3; pp. 157 - 165
Main Authors Toyoda, Kiyohiko, Ihara, Ikko, Takeda, Noriaki, Yoshida, Gen, Umetsu, Kazutaka, Kitazono, Yumika
Format Journal Article
LanguageEnglish
Published Tokyo Japan Society on Water Environment 2020
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1348-2165
1348-2165
DOI10.2965/jwet.19-124

Cover

Abstract Veterinary antibiotic residues in wastewater discharged from livestock facilities have become an environmental issue. In this study, the removal of veterinary antibiotics by electrocoagulation was investigated for dairy farm wastewater treatment. Three tetracycline antibiotics (TCs) and cefazolin (CEZ), a cephalosporin antibiotic, in synthetic wastewater were electrochemically coagulated using iron electrodes under a constant current. The removal rates of the TCs were higher than 80% after electrocoagulation and gravity settlement. The specific properties of TCs enable them to coordinate to metal ions. In contrast, the electrocoagulation showed a lower removal rate of 2.5% for CEZ which lacks of interaction with metal ions. The results indicated that higher removal of TCs was achieved by this iron–tetracycline interaction. The removal rates of oxytetracycline (OTC) in dairy farm wastewater were increased with increasing electric charge and reached more than 88% at different temperatures. The isothermal data obtained from OTC in the synthetic wastewater showed that the Langmuir model was a better fitting model than the Freundlich model, thus, indicating the applicability of monolayer coverage. The results showed that electrocoagulation is an effective method for the removal of antibiotics that are able to coordinate with the metal ion.
AbstractList Veterinary antibiotic residues in wastewater discharged from livestock facilities have become an environmental issue. In this study, the removal of veterinary antibiotics by electrocoagulation was investigated for dairy farm wastewater treatment. Three tetracycline antibiotics (TCs) and cefazolin (CEZ), a cephalosporin antibiotic, in synthetic wastewater were electrochemically coagulated using iron electrodes under a constant current. The removal rates of the TCs were higher than 80% after electrocoagulation and gravity settlement. The specific properties of TCs enable them to coordinate to metal ions. In contrast, the electrocoagulation showed a lower removal rate of 2.5% for CEZ which lacks of interaction with metal ions. The results indicated that higher removal of TCs was achieved by this iron–tetracycline interaction. The removal rates of oxytetracycline (OTC) in dairy farm wastewater were increased with increasing electric charge and reached more than 88% at different temperatures. The isothermal data obtained from OTC in the synthetic wastewater showed that the Langmuir model was a better fitting model than the Freundlich model, thus, indicating the applicability of monolayer coverage. The results showed that electrocoagulation is an effective method for the removal of antibiotics that are able to coordinate with the metal ion.
Author Toyoda, Kiyohiko
Kitazono, Yumika
Yoshida, Gen
Takeda, Noriaki
Ihara, Ikko
Umetsu, Kazutaka
Author_xml – sequence: 1
  fullname: Toyoda, Kiyohiko
  organization: Graduate School of Agricultural Science, Kobe University, Kobe, Japan
– sequence: 1
  fullname: Ihara, Ikko
  organization: Graduate School of Agricultural Science, Kobe University, Kobe, Japan
– sequence: 1
  fullname: Takeda, Noriaki
  organization: Graduate School of Agricultural Science, Kobe University, Kobe, Japan
– sequence: 1
  fullname: Yoshida, Gen
  organization: Graduate School of Agricultural Science, Kobe University, Kobe, Japan
– sequence: 1
  fullname: Umetsu, Kazutaka
  organization: Department of Animal Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, Japan
– sequence: 1
  fullname: Kitazono, Yumika
  organization: Graduate School of Agricultural Science, Kobe University, Kobe, Japan
BookMark eNptkU1r3DAQhk1IoUnaU_-AoMfixLK-rOOSJs1CoFASehRjebSR8VqppG3Yf19tnIRSetEMmmdeZuY9rY7nMGNVfaLNeauluBifMJ9TXdOWH1UnlPGubqkUx3_l76vTlMamEaqR8qQaf-A2_IaJBEfuMEewezv5Gclqzr73IXubiIthS76Cj3tyDXFLfkLK-AQZI-n35GpCm2OwATa7CbIPM7lPft6QdSzpS3XA9KF652BK-PElnlX311d3lzf17fdv68vVbW0F73jNnHI4DABONYoxVJRJ2riu7610iipOkVtLba9KQKBCDL12PWfCCmhZx86q9aI7BBjNY_RbiHsTwJvnjxA3BmLZa0IjW65Vy5VCbLhC2lPeAnLNgGtOLRStz4vWYwy_dpiyGcMuzmV803KquRSy04WiC2VjSCmiM9bn50uUg_rJ0MYc7DEHewzVpthTer780_M66f_p1UKPKcMG39jXRRa2M-zwLD1vNfsA0eDM_gB9BqzG
CitedBy_id crossref_primary_10_1155_2022_9629145
crossref_primary_10_1016_j_cherd_2021_10_012
crossref_primary_10_1007_s40726_021_00192_6
Cites_doi 10.1016/j.jhazmat.2007.04.055
10.1016/S0020-1693(00)90781-3
10.1016/j.cej.2011.05.041
10.1016/j.jhazmat.2009.01.081
10.1016/S0043-1354(96)00297-7
10.1021/es100834s
10.1016/j.chemosphere.2008.11.086
10.3168/jds.2010-3379
10.2965/jswe.27.685
10.1016/j.desal.2007.01.243
10.1016/j.jphotochem.2006.04.007
10.1016/j.bej.2018.02.012
10.1016/j.chemosphere.2006.08.024
10.1002/jssc.200700170
10.1016/S0011-9164(02)00941-4
10.1007/s11270-010-0412-2
10.2965/jwet.2015.325
10.1016/j.chemosphere.2006.03.014
10.1016/j.jhazmat.2005.03.004
10.1016/j.chemosphere.2010.08.032
10.1016/j.seppur.2007.01.031
10.1007/s11270-017-3388-3
10.1016/j.cej.2013.02.024
10.1016/j.jhazmat.2004.03.021
10.1016/j.chemosphere.2011.12.062
10.1016/j.jhazmat.2006.04.009
10.2965/jwet.17-046
10.1016/j.jhazmat.2008.08.045
10.1016/S0021-9673(02)01446-2
10.1016/j.agwat.2014.12.003
10.2166/wrd.2015.070
10.1007/BF01045296
10.1016/j.jhazmat.2009.06.119
10.1016/j.chemosphere.2010.11.067
10.1016/j.apcatb.2007.02.017
10.1021/es048603o
10.1016/j.chemosphere.2011.01.038
10.1007/BF01212382
10.1038/177433a0
ContentType Journal Article
Copyright 2020 Japan Society on Water Environment
2020. This work is published under https://creativecommons.org/licenses/by/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 Japan Society on Water Environment
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOA
DOI 10.2965/jwet.19-124
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1348-2165
EndPage 165
ExternalDocumentID oai_doaj_org_article_624972477ee047e1b142ae493a4941ca
10_2965_jwet_19_124
article_jwet_18_3_18_19_124_article_char_en
GroupedDBID 29L
2WC
5GY
ACIWK
ADDVE
AFRAH
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
E3Z
GROUPED_DOAJ
HH5
JSF
JSH
KQ8
M~E
OK1
OVT
RJT
RNS
RZJ
TKC
TR2
XSB
ZBA
AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c5484-3f7feddaaf70733e713610f8bbc6f71741e4cc1cb74ccea155db9fb435c5a2383
IEDL.DBID DOA
ISSN 1348-2165
IngestDate Wed Aug 27 01:23:29 EDT 2025
Mon Jun 30 08:14:58 EDT 2025
Thu Apr 24 23:04:42 EDT 2025
Tue Jul 01 01:56:46 EDT 2025
Wed Sep 03 06:26:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0/deed.ja
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5484-3f7feddaaf70733e713610f8bbc6f71741e4cc1cb74ccea155db9fb435c5a2383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/624972477ee047e1b142ae493a4941ca
PQID 2419465689
PQPubID 1976400
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_624972477ee047e1b142ae493a4941ca
proquest_journals_2419465689
crossref_citationtrail_10_2965_jwet_19_124
crossref_primary_10_2965_jwet_19_124
jstage_primary_article_jwet_18_3_18_19_124_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Water and Environment Technology
PublicationTitleAlternate J. of Wat. & Envir. Tech.
PublicationYear 2020
Publisher Japan Society on Water Environment
Japan Science and Technology Agency
Publisher_xml – name: Japan Society on Water Environment
– name: Japan Science and Technology Agency
References [9] Lange F, Cornelissen S, Kubac D, Sein MM, von Sonntag J, Hannich CB, Golloch A, Heipieper HJ, Möder M, von Sonntag C: Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin. Chemosphere, 65(1), 17–23, 2006. PMID:16631229, doi:10.1016/j.chemosphere.2006.03.014
[20] Kim TH, Park C, Shin EB, Kim S: Decolorization of disperse and reactive dyes by continuous electrocoagulation process. Desalination, 150(2), 165–175, 2002. doi:10.1016/S0011-9164(02)00941-4
[5] Kümmerer K: Antibiotics in the aquatic environment – A review – Part I. Chemosphere, 75(4), 417–434, 2009. PMID:19185900, doi:10.1016/j.chemosphere.2008.11.086
[14] Villegas-Guzman P, Oppenheimer-Barrot S, Silva-Agredo J, Torres-Palma RA: Comparative evaluation of photo-chemical AOPs for ciprofoxacin degradation: elimination in natural waters and analysis of ph effect, primary degradation by-products, and the relationship with the antibiotic activity. Water Air Soil Pollut., 228(6), 209–224, 2017. doi:10.1007/s11270-017-3388-3
[15] Dirany A, Sirés I, Oturan N, Oturan MA: Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 81(5), 594–602, 2010. PMID:20833409, doi:10.1016/j.chemosphere.2010.08.032
[12] Wang C, Jian JJ: Degradation and detoxicity of tetracycline by an enhanced sonolysis. J. Water Environ. Technol., 13(4), 325–334, 2015. doi:10.2965/jwet.2015.325
[22] Husein MM, Al-As’ad A: Effect of coagulant and flocculant addition scheme on the treatment of dairy farm wastewater. J. Water Reuse Desalin., 5(3), 271–281, 2015. doi:10.2166/wrd.2015.070
[31] Christodoulou EA, Samanidou VF, Papadoyannis IN: Development and validation of an HPLC confirmatory method for residue analysis of ten quinolones in tissues of various food-producing animals, according to the European Union Decision 2002/657/EC. J. Sep. Sci., 30(16), 2676–2686, 2007. PMID:17763524, doi:10.1002/jssc.200700170
[8] Andreozzi R, Canterino M, Marotta R, Paxeus N: Antibiotic removal from wastewaters: The ozonation of amoxicillin. J. Hazard. Mater., 122(3), 243–250, 2005. PMID:15967280, doi:10.1016/j.jhazmat.2005.03.004
[37] Huang L, Sun Y, Wang W, Yue Q, Yang T: Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC). Chem. Eng. J., 171(3), 1446–1453, 2011. doi:10.1016/j.cej.2011.05.041
[27] Zhang H, Huang CH: Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 66(8), 1502–1512, 2007. PMID:17083963, doi:10.1016/j.chemosphere.2006.08.024
[29] Cagnardi P, Villa R, Gallo M, Locatelli C, Carli S, Moroni P, Zonca A: Cefoperazone sodium preparation behavior after intramammary administration in healthy and infected cows. J. Dairy Sci., 93(9), 4105–4110, 2010. PMID:20723685, doi:10.3168/jds.2010-3379
[21] Duan J, Geng C, Li X, Duan Z, Yang L: The treatment performance and nutrient removal of a garden land infiltration system receiving dairy farm wastewater. Agric. Water Manage., 150(1), 103–110, 2015. doi:10.1016/j.agwat.2014.12.003
[26] Chou WL, Huang YH: Electrochemical removal of indium ions from aqueous solution using iron electrodes. J. Hazard. Mater., 172(1), 46–53, 2009. PMID:19625124, doi:10.1016/j.jhazmat.2009.06.119
[19] Tezcan Ün Ü, Koparal AS, Bakir Öğütveren Ü: Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes. J. Hazard. Mater., 164(2–3), 580–586, 2009. PMID:18819748, doi:10.1016/j.jhazmat.2008.08.045
[16] Tsai CT, Lin ST, Shue YC, Su PL: Electrolysis of soluble organic matter in leachate from landfills. Water Res., 31(12), 3073–3081, 1997. doi:10.1016/S0043-1354(96)00297-7
[3] Watanabe N, Bergamaschi BA, Loftin KA, Meyer MT, Harter T: Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environ. Sci. Technol., 44(17), 6591–6600, 2010. PMID:20698525, doi:10.1021/es100834s
[36] Brion M, Berthon G, Fourtillan JB: Metal ion tetracyclines interactions in biological fluids. Potentiometric study of calcium complexes with tetracycline, oxytetracycline, doxycycline and minocycline and simulation of their distributions under physiological conditions. Inorg. Chim. Acta, 55, 47–56, 1981. doi:10.1016/S0020-1693(00)90781-3
[39] Moreno-Casillas HA, Cocke DL, Gomes JAG, Morkovsky P, Parga JR, Peterson E: Electrocoagulation mechanism for COD removal. Separ. Purif. Tech., 56(2), 204–211, 2007. doi:10.1016/j.seppur.2007.01.031
[10] Reyes C, Fernández J, Freer J, Mondaca MA, Zaror C, Malato S, Mansilla HD: Degradation and inactivation of tetracycline by TiO2 photocatalysis. J. Photochem. Photobiol. Chem., 184(1–2), 141–146, 2006. doi:10.1016/j.jphotochem.2006.04.007
[2] Matsui Y, Ozu T, Inoue T, Matsushita T: Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms. Desalination, 226(1-3), 215–221, 2008. doi:10.1016/j.desal.2007.01.243
[38] Kong W, Li C, Dolhi JM, Li S, He J, Qiao M: Characteristics of oxytetracycline sorption and potential bioavailability in soils with various physical–chemical properties. Chemosphere, 87(5), 542–548, 2012. PMID:22245075, doi:10.1016/j.chemosphere.2011.12.062
[11] Abellán MN, Bayarri B, Giménez J, Costa J: Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B, 74(3–4), 233–241, 2007. doi:10.1016/j.apcatb.2007.02.017
[13] González O, Sans C, Esplugas S: Sulfamethoxazole abatement by photo-Fenton. J. Hazard. Mater., 146(3), 459–464, 2007. PMID:17540504, doi:10.1016/j.jhazmat.2007.04.055
[23] Shams DF, Singhal N, Elefsiniotis P: Effect of feed characteristics and operational conditions on treatment of dairy farm wastewater in a coupled anoxic-upflow and aerobic system. Biochem. Eng. J., 133(15), 186–195, 2018. doi:10.1016/j.bej.2018.02.012
[7] Sharma VK, Liu F, Tolan S, Sohn M, Kim H, Oturan MA: Oxidation of β-lactam antibiotics by ferrate(VI). Chem. Eng. J., 221, 446–451, 2013. doi:10.1016/j.cej.2013.02.024
[35] Pallier V, Feuillade-Cathalifaud G, Serpaud B: Influence of organic matter on arsenic removal by continuous flow electrocoagulation treatment of weakly mineralized waters. Chemosphere, 83(1), 21–28, 2011. PMID:21324507, doi:10.1016/j.chemosphere.2011.01.038
[1] Seino A, Furusho S, Masunaga S: Occurrence of pharmaceuticals used in human and veterinary medicine in aquatic environments in Japan. J. Jpn. Soc. Water Environ. 27(11), 685–691, 2004. [in Japanese with English abstract] doi:10.2965/jswe.27.685
[6] Sulfikar RH, Honda R, Noguchi M, Yamamoto-Ikemoto R, Watanabe T: Effect of sedimentation and aeration on antibiotic resistance induction in the activated sludge process. J. Water Environ. Technol., 16(2), 94–105, 2018. doi:10.2965/jwet.17-046
[30] Cinquina AL, Longo F, Anastasi G, Giannetti L, Cozzani R: Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle. J. Chromatogr. A, 987(1–2), 227–233, 2003. PMID:12613816, doi:10.1016/S0021-9673(02)01446-2
[17] Daneshvar N, Ashassi Sorkhabi H, Kasiri MB: Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. J. Hazard. Mater., 112(1–2), 55–62, 2004. PMID:15225930, doi:10.1016/j.jhazmat.2004.03.021
[25] Hassan SSM, Amer MM, Ahmed SA: Composition and stability constants of iron- and copper-oxytetracycline chelates. Mikrochim. Acta, 84(3–4), 165–175, 1984. doi:10.1007/BF01212382
[4] Kim KR, Owens G, Kwon SI, So KH, Lee DB, Ok YS: Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut., 214(1–4), 163–174, 2011. doi:10.1007/s11270-010-0412-2
[28] Balasubramanian N, Kojima T, Basha CA, Srinivasakannan C: Removal of arsenic from aqueous solution using electrocoagulation. J. Hazard. Mater., 167(1-3), 966–969, 2009. PMID:19231076, doi:10.1016/j.jhazmat.2009.01.081
[33] Ghandour MA, Azab HA, Hassan A, Ali AM: Potentiometric studies on the complexes of tetracycline (TC) and oxytetracyclin (OTC) with some metal ions. Monatshefte für Chemie / Chemical Monthly, 123(1–2), 51–58, 1992. doi:10.1007/BF01045296
[32] Albert A, Rees CW: Avidity of the tetracyclines for the cations of metals. Nature, 177(4505), 433–434, 1956. PMID:13309332, doi:10.1038/177433a0
[34] Gu C, Karthikeyan KG: Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol., 39(8), 2660–2667, 2005. PMID:15884363, doi:10.1021/es048603o
[18] Şengil İA, özacar M: Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes. J. Hazard. Mater., 137(2), 1197–1205, 2006. PMID:16846691, doi:10.1016/j.jhazmat.2006.04.009
[24] Wei R, Ge F, Huang S, Chen M, Wang R: Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82(10), 1408–1414, 2011. PMID:21159362, doi:10.1016/j.chemosphere.2010.11.067
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: [32] Albert A, Rees CW: Avidity of the tetracyclines for the cations of metals. Nature, 177(4505), 433–434, 1956. PMID:13309332, doi:10.1038/177433a0
– reference: [36] Brion M, Berthon G, Fourtillan JB: Metal ion tetracyclines interactions in biological fluids. Potentiometric study of calcium complexes with tetracycline, oxytetracycline, doxycycline and minocycline and simulation of their distributions under physiological conditions. Inorg. Chim. Acta, 55, 47–56, 1981. doi:10.1016/S0020-1693(00)90781-3
– reference: [2] Matsui Y, Ozu T, Inoue T, Matsushita T: Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms. Desalination, 226(1-3), 215–221, 2008. doi:10.1016/j.desal.2007.01.243
– reference: [12] Wang C, Jian JJ: Degradation and detoxicity of tetracycline by an enhanced sonolysis. J. Water Environ. Technol., 13(4), 325–334, 2015. doi:10.2965/jwet.2015.325
– reference: [16] Tsai CT, Lin ST, Shue YC, Su PL: Electrolysis of soluble organic matter in leachate from landfills. Water Res., 31(12), 3073–3081, 1997. doi:10.1016/S0043-1354(96)00297-7
– reference: [9] Lange F, Cornelissen S, Kubac D, Sein MM, von Sonntag J, Hannich CB, Golloch A, Heipieper HJ, Möder M, von Sonntag C: Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin. Chemosphere, 65(1), 17–23, 2006. PMID:16631229, doi:10.1016/j.chemosphere.2006.03.014
– reference: [38] Kong W, Li C, Dolhi JM, Li S, He J, Qiao M: Characteristics of oxytetracycline sorption and potential bioavailability in soils with various physical–chemical properties. Chemosphere, 87(5), 542–548, 2012. PMID:22245075, doi:10.1016/j.chemosphere.2011.12.062
– reference: [24] Wei R, Ge F, Huang S, Chen M, Wang R: Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82(10), 1408–1414, 2011. PMID:21159362, doi:10.1016/j.chemosphere.2010.11.067
– reference: [13] González O, Sans C, Esplugas S: Sulfamethoxazole abatement by photo-Fenton. J. Hazard. Mater., 146(3), 459–464, 2007. PMID:17540504, doi:10.1016/j.jhazmat.2007.04.055
– reference: [25] Hassan SSM, Amer MM, Ahmed SA: Composition and stability constants of iron- and copper-oxytetracycline chelates. Mikrochim. Acta, 84(3–4), 165–175, 1984. doi:10.1007/BF01212382
– reference: [22] Husein MM, Al-As’ad A: Effect of coagulant and flocculant addition scheme on the treatment of dairy farm wastewater. J. Water Reuse Desalin., 5(3), 271–281, 2015. doi:10.2166/wrd.2015.070
– reference: [7] Sharma VK, Liu F, Tolan S, Sohn M, Kim H, Oturan MA: Oxidation of β-lactam antibiotics by ferrate(VI). Chem. Eng. J., 221, 446–451, 2013. doi:10.1016/j.cej.2013.02.024
– reference: [29] Cagnardi P, Villa R, Gallo M, Locatelli C, Carli S, Moroni P, Zonca A: Cefoperazone sodium preparation behavior after intramammary administration in healthy and infected cows. J. Dairy Sci., 93(9), 4105–4110, 2010. PMID:20723685, doi:10.3168/jds.2010-3379
– reference: [20] Kim TH, Park C, Shin EB, Kim S: Decolorization of disperse and reactive dyes by continuous electrocoagulation process. Desalination, 150(2), 165–175, 2002. doi:10.1016/S0011-9164(02)00941-4
– reference: [3] Watanabe N, Bergamaschi BA, Loftin KA, Meyer MT, Harter T: Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environ. Sci. Technol., 44(17), 6591–6600, 2010. PMID:20698525, doi:10.1021/es100834s
– reference: [23] Shams DF, Singhal N, Elefsiniotis P: Effect of feed characteristics and operational conditions on treatment of dairy farm wastewater in a coupled anoxic-upflow and aerobic system. Biochem. Eng. J., 133(15), 186–195, 2018. doi:10.1016/j.bej.2018.02.012
– reference: [33] Ghandour MA, Azab HA, Hassan A, Ali AM: Potentiometric studies on the complexes of tetracycline (TC) and oxytetracyclin (OTC) with some metal ions. Monatshefte für Chemie / Chemical Monthly, 123(1–2), 51–58, 1992. doi:10.1007/BF01045296
– reference: [6] Sulfikar RH, Honda R, Noguchi M, Yamamoto-Ikemoto R, Watanabe T: Effect of sedimentation and aeration on antibiotic resistance induction in the activated sludge process. J. Water Environ. Technol., 16(2), 94–105, 2018. doi:10.2965/jwet.17-046
– reference: [8] Andreozzi R, Canterino M, Marotta R, Paxeus N: Antibiotic removal from wastewaters: The ozonation of amoxicillin. J. Hazard. Mater., 122(3), 243–250, 2005. PMID:15967280, doi:10.1016/j.jhazmat.2005.03.004
– reference: [35] Pallier V, Feuillade-Cathalifaud G, Serpaud B: Influence of organic matter on arsenic removal by continuous flow electrocoagulation treatment of weakly mineralized waters. Chemosphere, 83(1), 21–28, 2011. PMID:21324507, doi:10.1016/j.chemosphere.2011.01.038
– reference: [11] Abellán MN, Bayarri B, Giménez J, Costa J: Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B, 74(3–4), 233–241, 2007. doi:10.1016/j.apcatb.2007.02.017
– reference: [15] Dirany A, Sirés I, Oturan N, Oturan MA: Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 81(5), 594–602, 2010. PMID:20833409, doi:10.1016/j.chemosphere.2010.08.032
– reference: [1] Seino A, Furusho S, Masunaga S: Occurrence of pharmaceuticals used in human and veterinary medicine in aquatic environments in Japan. J. Jpn. Soc. Water Environ. 27(11), 685–691, 2004. [in Japanese with English abstract] doi:10.2965/jswe.27.685
– reference: [5] Kümmerer K: Antibiotics in the aquatic environment – A review – Part I. Chemosphere, 75(4), 417–434, 2009. PMID:19185900, doi:10.1016/j.chemosphere.2008.11.086
– reference: [21] Duan J, Geng C, Li X, Duan Z, Yang L: The treatment performance and nutrient removal of a garden land infiltration system receiving dairy farm wastewater. Agric. Water Manage., 150(1), 103–110, 2015. doi:10.1016/j.agwat.2014.12.003
– reference: [37] Huang L, Sun Y, Wang W, Yue Q, Yang T: Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC). Chem. Eng. J., 171(3), 1446–1453, 2011. doi:10.1016/j.cej.2011.05.041
– reference: [14] Villegas-Guzman P, Oppenheimer-Barrot S, Silva-Agredo J, Torres-Palma RA: Comparative evaluation of photo-chemical AOPs for ciprofoxacin degradation: elimination in natural waters and analysis of ph effect, primary degradation by-products, and the relationship with the antibiotic activity. Water Air Soil Pollut., 228(6), 209–224, 2017. doi:10.1007/s11270-017-3388-3
– reference: [28] Balasubramanian N, Kojima T, Basha CA, Srinivasakannan C: Removal of arsenic from aqueous solution using electrocoagulation. J. Hazard. Mater., 167(1-3), 966–969, 2009. PMID:19231076, doi:10.1016/j.jhazmat.2009.01.081
– reference: [30] Cinquina AL, Longo F, Anastasi G, Giannetti L, Cozzani R: Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle. J. Chromatogr. A, 987(1–2), 227–233, 2003. PMID:12613816, doi:10.1016/S0021-9673(02)01446-2
– reference: [10] Reyes C, Fernández J, Freer J, Mondaca MA, Zaror C, Malato S, Mansilla HD: Degradation and inactivation of tetracycline by TiO2 photocatalysis. J. Photochem. Photobiol. Chem., 184(1–2), 141–146, 2006. doi:10.1016/j.jphotochem.2006.04.007
– reference: [26] Chou WL, Huang YH: Electrochemical removal of indium ions from aqueous solution using iron electrodes. J. Hazard. Mater., 172(1), 46–53, 2009. PMID:19625124, doi:10.1016/j.jhazmat.2009.06.119
– reference: [4] Kim KR, Owens G, Kwon SI, So KH, Lee DB, Ok YS: Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut., 214(1–4), 163–174, 2011. doi:10.1007/s11270-010-0412-2
– reference: [17] Daneshvar N, Ashassi Sorkhabi H, Kasiri MB: Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. J. Hazard. Mater., 112(1–2), 55–62, 2004. PMID:15225930, doi:10.1016/j.jhazmat.2004.03.021
– reference: [27] Zhang H, Huang CH: Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 66(8), 1502–1512, 2007. PMID:17083963, doi:10.1016/j.chemosphere.2006.08.024
– reference: [34] Gu C, Karthikeyan KG: Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol., 39(8), 2660–2667, 2005. PMID:15884363, doi:10.1021/es048603o
– reference: [19] Tezcan Ün Ü, Koparal AS, Bakir Öğütveren Ü: Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes. J. Hazard. Mater., 164(2–3), 580–586, 2009. PMID:18819748, doi:10.1016/j.jhazmat.2008.08.045
– reference: [31] Christodoulou EA, Samanidou VF, Papadoyannis IN: Development and validation of an HPLC confirmatory method for residue analysis of ten quinolones in tissues of various food-producing animals, according to the European Union Decision 2002/657/EC. J. Sep. Sci., 30(16), 2676–2686, 2007. PMID:17763524, doi:10.1002/jssc.200700170
– reference: [18] Şengil İA, özacar M: Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes. J. Hazard. Mater., 137(2), 1197–1205, 2006. PMID:16846691, doi:10.1016/j.jhazmat.2006.04.009
– reference: [39] Moreno-Casillas HA, Cocke DL, Gomes JAG, Morkovsky P, Parga JR, Peterson E: Electrocoagulation mechanism for COD removal. Separ. Purif. Tech., 56(2), 204–211, 2007. doi:10.1016/j.seppur.2007.01.031
– ident: 13
  doi: 10.1016/j.jhazmat.2007.04.055
– ident: 36
  doi: 10.1016/S0020-1693(00)90781-3
– ident: 37
  doi: 10.1016/j.cej.2011.05.041
– ident: 28
  doi: 10.1016/j.jhazmat.2009.01.081
– ident: 16
  doi: 10.1016/S0043-1354(96)00297-7
– ident: 3
  doi: 10.1021/es100834s
– ident: 5
  doi: 10.1016/j.chemosphere.2008.11.086
– ident: 29
  doi: 10.3168/jds.2010-3379
– ident: 1
  doi: 10.2965/jswe.27.685
– ident: 2
  doi: 10.1016/j.desal.2007.01.243
– ident: 10
  doi: 10.1016/j.jphotochem.2006.04.007
– ident: 23
  doi: 10.1016/j.bej.2018.02.012
– ident: 27
  doi: 10.1016/j.chemosphere.2006.08.024
– ident: 31
  doi: 10.1002/jssc.200700170
– ident: 20
  doi: 10.1016/S0011-9164(02)00941-4
– ident: 4
  doi: 10.1007/s11270-010-0412-2
– ident: 12
  doi: 10.2965/jwet.2015.325
– ident: 9
  doi: 10.1016/j.chemosphere.2006.03.014
– ident: 8
  doi: 10.1016/j.jhazmat.2005.03.004
– ident: 15
  doi: 10.1016/j.chemosphere.2010.08.032
– ident: 39
  doi: 10.1016/j.seppur.2007.01.031
– ident: 14
  doi: 10.1007/s11270-017-3388-3
– ident: 7
  doi: 10.1016/j.cej.2013.02.024
– ident: 17
  doi: 10.1016/j.jhazmat.2004.03.021
– ident: 38
  doi: 10.1016/j.chemosphere.2011.12.062
– ident: 18
  doi: 10.1016/j.jhazmat.2006.04.009
– ident: 6
  doi: 10.2965/jwet.17-046
– ident: 19
  doi: 10.1016/j.jhazmat.2008.08.045
– ident: 30
  doi: 10.1016/S0021-9673(02)01446-2
– ident: 21
  doi: 10.1016/j.agwat.2014.12.003
– ident: 22
  doi: 10.2166/wrd.2015.070
– ident: 33
  doi: 10.1007/BF01045296
– ident: 26
  doi: 10.1016/j.jhazmat.2009.06.119
– ident: 24
  doi: 10.1016/j.chemosphere.2010.11.067
– ident: 11
  doi: 10.1016/j.apcatb.2007.02.017
– ident: 34
  doi: 10.1021/es048603o
– ident: 35
  doi: 10.1016/j.chemosphere.2011.01.038
– ident: 25
  doi: 10.1007/BF01212382
– ident: 32
  doi: 10.1038/177433a0
SSID ssj0057066
Score 2.1215193
Snippet Veterinary antibiotic residues in wastewater discharged from livestock facilities have become an environmental issue. In this study, the removal of veterinary...
SourceID doaj
proquest
crossref
jstage
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 157
SubjectTerms Agricultural wastes
Antibiotics
Cefazolin
Cephalosporins
dairy farm wastewater
Dairy farms
Electric charge
Electrocoagulation
Electrodes
Gravity
Iron
iron electrode
Livestock
Metal ions
Metals
Oxytetracycline
Removal
tetracycline antibiotic
Wastewater discharges
Wastewater treatment
Title Removal of Tetracycline Antibiotics from Dairy Farm Wastewater by Electrocoagulation Using Iron Electrodes
URI https://www.jstage.jst.go.jp/article/jwet/18/3/18_19-124/_article/-char/en
https://www.proquest.com/docview/2419465689
https://doaj.org/article/624972477ee047e1b142ae493a4941ca
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Water and Environment Technology, 2020, Vol.18(3), pp.157-165
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp3KoSiliKVQ-cEJKsTfOw71B2RUgbQ8VqNwsP8aoK9hU2UXVXvrbOxNnV1tRqZdekih2Yms88XzjeOZj7ESVQejgfFZ4RxRmMWTae8hEcNIJO8ytpGjkyZfy6k7d3Bf3G1RftCcspQdOgjsr0T-ohqqqAISqQNKihQWlc6u0kr6DRkKLlTOV5uCiEt1fSpkr1ANZFikyb6jL4mz6ExYfJXEAqD9sUZeyH-3QFFHZw8upubM34zfsdQ8U-Xnq4C7bgtlbtrORPnCPTb_CU4OawpvIb2HRWr-kQEfg5zOKBGkoAzOn-BF-ab-3Sz627RP_Zue0Xobi5G7JR4kFxzf2oefx4t0mAn7d4mVfGmD-jt2NR7efr7KeOyHz6IOoLI9VhBCsjRXRMgL6ogiUYu2cLyO6cEqC8l56V-EJLKKK4HR0CJ58gSNU5_tse9bM4IBxKwpEUXVAc6eUynNXQpRYXQTptIt2wE5XUjS-TyxO_BaPBh0MErkhkRupDYp8wE7WlX-kfBp_r3ZBw7GuQkmwuxuoGqZXDfMv1RiwT2kw169ZPZlaqk1Oh9Tiuoyi3XDKGLCjlQKY_rOeG4Q7mhLM1frwf3TwPXs1JPe9W9E5YtuL9hmOEeMs3IdOnfE4-TX6DcgI_N8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+Tetracycline+Antibiotics+from+Dairy+Farm+Wastewater+by+Electrocoagulation+Using+Iron+Electrodes&rft.jtitle=Journal+of+Water+and+Environment+Technology&rft.au=Toyoda%2C+Kiyohiko&rft.au=Ihara%2C+Ikko&rft.au=Takeda%2C+Noriaki&rft.au=Yoshida%2C+Gen&rft.date=2020&rft.pub=Japan+Society+on+Water+Environment&rft.eissn=1348-2165&rft.volume=18&rft.issue=3&rft.spage=157&rft.epage=165&rft_id=info:doi/10.2965%2Fjwet.19-124&rft.externalDocID=article_jwet_18_3_18_19_124_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1348-2165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1348-2165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1348-2165&client=summon