Removal of Tetracycline Antibiotics from Dairy Farm Wastewater by Electrocoagulation Using Iron Electrodes
Veterinary antibiotic residues in wastewater discharged from livestock facilities have become an environmental issue. In this study, the removal of veterinary antibiotics by electrocoagulation was investigated for dairy farm wastewater treatment. Three tetracycline antibiotics (TCs) and cefazolin (C...
Saved in:
Published in | Journal of Water and Environment Technology Vol. 18; no. 3; pp. 157 - 165 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japan Society on Water Environment
2020
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1348-2165 1348-2165 |
DOI | 10.2965/jwet.19-124 |
Cover
Abstract | Veterinary antibiotic residues in wastewater discharged from livestock facilities have become an environmental issue. In this study, the removal of veterinary antibiotics by electrocoagulation was investigated for dairy farm wastewater treatment. Three tetracycline antibiotics (TCs) and cefazolin (CEZ), a cephalosporin antibiotic, in synthetic wastewater were electrochemically coagulated using iron electrodes under a constant current. The removal rates of the TCs were higher than 80% after electrocoagulation and gravity settlement. The specific properties of TCs enable them to coordinate to metal ions. In contrast, the electrocoagulation showed a lower removal rate of 2.5% for CEZ which lacks of interaction with metal ions. The results indicated that higher removal of TCs was achieved by this iron–tetracycline interaction. The removal rates of oxytetracycline (OTC) in dairy farm wastewater were increased with increasing electric charge and reached more than 88% at different temperatures. The isothermal data obtained from OTC in the synthetic wastewater showed that the Langmuir model was a better fitting model than the Freundlich model, thus, indicating the applicability of monolayer coverage. The results showed that electrocoagulation is an effective method for the removal of antibiotics that are able to coordinate with the metal ion. |
---|---|
AbstractList | Veterinary antibiotic residues in wastewater discharged from livestock facilities have become an environmental issue. In this study, the removal of veterinary antibiotics by electrocoagulation was investigated for dairy farm wastewater treatment. Three tetracycline antibiotics (TCs) and cefazolin (CEZ), a cephalosporin antibiotic, in synthetic wastewater were electrochemically coagulated using iron electrodes under a constant current. The removal rates of the TCs were higher than 80% after electrocoagulation and gravity settlement. The specific properties of TCs enable them to coordinate to metal ions. In contrast, the electrocoagulation showed a lower removal rate of 2.5% for CEZ which lacks of interaction with metal ions. The results indicated that higher removal of TCs was achieved by this iron–tetracycline interaction. The removal rates of oxytetracycline (OTC) in dairy farm wastewater were increased with increasing electric charge and reached more than 88% at different temperatures. The isothermal data obtained from OTC in the synthetic wastewater showed that the Langmuir model was a better fitting model than the Freundlich model, thus, indicating the applicability of monolayer coverage. The results showed that electrocoagulation is an effective method for the removal of antibiotics that are able to coordinate with the metal ion. |
Author | Toyoda, Kiyohiko Kitazono, Yumika Yoshida, Gen Takeda, Noriaki Ihara, Ikko Umetsu, Kazutaka |
Author_xml | – sequence: 1 fullname: Toyoda, Kiyohiko organization: Graduate School of Agricultural Science, Kobe University, Kobe, Japan – sequence: 1 fullname: Ihara, Ikko organization: Graduate School of Agricultural Science, Kobe University, Kobe, Japan – sequence: 1 fullname: Takeda, Noriaki organization: Graduate School of Agricultural Science, Kobe University, Kobe, Japan – sequence: 1 fullname: Yoshida, Gen organization: Graduate School of Agricultural Science, Kobe University, Kobe, Japan – sequence: 1 fullname: Umetsu, Kazutaka organization: Department of Animal Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, Japan – sequence: 1 fullname: Kitazono, Yumika organization: Graduate School of Agricultural Science, Kobe University, Kobe, Japan |
BookMark | eNptkU1r3DAQhk1IoUnaU_-AoMfixLK-rOOSJs1CoFASehRjebSR8VqppG3Yf19tnIRSetEMmmdeZuY9rY7nMGNVfaLNeauluBifMJ9TXdOWH1UnlPGubqkUx3_l76vTlMamEaqR8qQaf-A2_IaJBEfuMEewezv5Gclqzr73IXubiIthS76Cj3tyDXFLfkLK-AQZI-n35GpCm2OwATa7CbIPM7lPft6QdSzpS3XA9KF652BK-PElnlX311d3lzf17fdv68vVbW0F73jNnHI4DABONYoxVJRJ2riu7610iipOkVtLba9KQKBCDL12PWfCCmhZx86q9aI7BBjNY_RbiHsTwJvnjxA3BmLZa0IjW65Vy5VCbLhC2lPeAnLNgGtOLRStz4vWYwy_dpiyGcMuzmV803KquRSy04WiC2VjSCmiM9bn50uUg_rJ0MYc7DEHewzVpthTer780_M66f_p1UKPKcMG39jXRRa2M-zwLD1vNfsA0eDM_gB9BqzG |
CitedBy_id | crossref_primary_10_1155_2022_9629145 crossref_primary_10_1016_j_cherd_2021_10_012 crossref_primary_10_1007_s40726_021_00192_6 |
Cites_doi | 10.1016/j.jhazmat.2007.04.055 10.1016/S0020-1693(00)90781-3 10.1016/j.cej.2011.05.041 10.1016/j.jhazmat.2009.01.081 10.1016/S0043-1354(96)00297-7 10.1021/es100834s 10.1016/j.chemosphere.2008.11.086 10.3168/jds.2010-3379 10.2965/jswe.27.685 10.1016/j.desal.2007.01.243 10.1016/j.jphotochem.2006.04.007 10.1016/j.bej.2018.02.012 10.1016/j.chemosphere.2006.08.024 10.1002/jssc.200700170 10.1016/S0011-9164(02)00941-4 10.1007/s11270-010-0412-2 10.2965/jwet.2015.325 10.1016/j.chemosphere.2006.03.014 10.1016/j.jhazmat.2005.03.004 10.1016/j.chemosphere.2010.08.032 10.1016/j.seppur.2007.01.031 10.1007/s11270-017-3388-3 10.1016/j.cej.2013.02.024 10.1016/j.jhazmat.2004.03.021 10.1016/j.chemosphere.2011.12.062 10.1016/j.jhazmat.2006.04.009 10.2965/jwet.17-046 10.1016/j.jhazmat.2008.08.045 10.1016/S0021-9673(02)01446-2 10.1016/j.agwat.2014.12.003 10.2166/wrd.2015.070 10.1007/BF01045296 10.1016/j.jhazmat.2009.06.119 10.1016/j.chemosphere.2010.11.067 10.1016/j.apcatb.2007.02.017 10.1021/es048603o 10.1016/j.chemosphere.2011.01.038 10.1007/BF01212382 10.1038/177433a0 |
ContentType | Journal Article |
Copyright | 2020 Japan Society on Water Environment 2020. This work is published under https://creativecommons.org/licenses/by/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 Japan Society on Water Environment – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI DOA |
DOI | 10.2965/jwet.19-124 |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1348-2165 |
EndPage | 165 |
ExternalDocumentID | oai_doaj_org_article_624972477ee047e1b142ae493a4941ca 10_2965_jwet_19_124 article_jwet_18_3_18_19_124_article_char_en |
GroupedDBID | 29L 2WC 5GY ACIWK ADDVE AFRAH ALMA_UNASSIGNED_HOLDINGS CS3 DU5 E3Z GROUPED_DOAJ HH5 JSF JSH KQ8 M~E OK1 OVT RJT RNS RZJ TKC TR2 XSB ZBA AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c5484-3f7feddaaf70733e713610f8bbc6f71741e4cc1cb74ccea155db9fb435c5a2383 |
IEDL.DBID | DOA |
ISSN | 1348-2165 |
IngestDate | Wed Aug 27 01:23:29 EDT 2025 Mon Jun 30 08:14:58 EDT 2025 Thu Apr 24 23:04:42 EDT 2025 Tue Jul 01 01:56:46 EDT 2025 Wed Sep 03 06:26:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/deed.ja |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5484-3f7feddaaf70733e713610f8bbc6f71741e4cc1cb74ccea155db9fb435c5a2383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/624972477ee047e1b142ae493a4941ca |
PQID | 2419465689 |
PQPubID | 1976400 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_624972477ee047e1b142ae493a4941ca proquest_journals_2419465689 crossref_citationtrail_10_2965_jwet_19_124 crossref_primary_10_2965_jwet_19_124 jstage_primary_article_jwet_18_3_18_19_124_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Water and Environment Technology |
PublicationTitleAlternate | J. of Wat. & Envir. Tech. |
PublicationYear | 2020 |
Publisher | Japan Society on Water Environment Japan Science and Technology Agency |
Publisher_xml | – name: Japan Society on Water Environment – name: Japan Science and Technology Agency |
References | [9] Lange F, Cornelissen S, Kubac D, Sein MM, von Sonntag J, Hannich CB, Golloch A, Heipieper HJ, Möder M, von Sonntag C: Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin. Chemosphere, 65(1), 17–23, 2006. PMID:16631229, doi:10.1016/j.chemosphere.2006.03.014 [20] Kim TH, Park C, Shin EB, Kim S: Decolorization of disperse and reactive dyes by continuous electrocoagulation process. Desalination, 150(2), 165–175, 2002. doi:10.1016/S0011-9164(02)00941-4 [5] Kümmerer K: Antibiotics in the aquatic environment – A review – Part I. Chemosphere, 75(4), 417–434, 2009. PMID:19185900, doi:10.1016/j.chemosphere.2008.11.086 [14] Villegas-Guzman P, Oppenheimer-Barrot S, Silva-Agredo J, Torres-Palma RA: Comparative evaluation of photo-chemical AOPs for ciprofoxacin degradation: elimination in natural waters and analysis of ph effect, primary degradation by-products, and the relationship with the antibiotic activity. Water Air Soil Pollut., 228(6), 209–224, 2017. doi:10.1007/s11270-017-3388-3 [15] Dirany A, Sirés I, Oturan N, Oturan MA: Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 81(5), 594–602, 2010. PMID:20833409, doi:10.1016/j.chemosphere.2010.08.032 [12] Wang C, Jian JJ: Degradation and detoxicity of tetracycline by an enhanced sonolysis. J. Water Environ. Technol., 13(4), 325–334, 2015. doi:10.2965/jwet.2015.325 [22] Husein MM, Al-As’ad A: Effect of coagulant and flocculant addition scheme on the treatment of dairy farm wastewater. J. Water Reuse Desalin., 5(3), 271–281, 2015. doi:10.2166/wrd.2015.070 [31] Christodoulou EA, Samanidou VF, Papadoyannis IN: Development and validation of an HPLC confirmatory method for residue analysis of ten quinolones in tissues of various food-producing animals, according to the European Union Decision 2002/657/EC. J. Sep. Sci., 30(16), 2676–2686, 2007. PMID:17763524, doi:10.1002/jssc.200700170 [8] Andreozzi R, Canterino M, Marotta R, Paxeus N: Antibiotic removal from wastewaters: The ozonation of amoxicillin. J. Hazard. Mater., 122(3), 243–250, 2005. PMID:15967280, doi:10.1016/j.jhazmat.2005.03.004 [37] Huang L, Sun Y, Wang W, Yue Q, Yang T: Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC). Chem. Eng. J., 171(3), 1446–1453, 2011. doi:10.1016/j.cej.2011.05.041 [27] Zhang H, Huang CH: Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 66(8), 1502–1512, 2007. PMID:17083963, doi:10.1016/j.chemosphere.2006.08.024 [29] Cagnardi P, Villa R, Gallo M, Locatelli C, Carli S, Moroni P, Zonca A: Cefoperazone sodium preparation behavior after intramammary administration in healthy and infected cows. J. Dairy Sci., 93(9), 4105–4110, 2010. PMID:20723685, doi:10.3168/jds.2010-3379 [21] Duan J, Geng C, Li X, Duan Z, Yang L: The treatment performance and nutrient removal of a garden land infiltration system receiving dairy farm wastewater. Agric. Water Manage., 150(1), 103–110, 2015. doi:10.1016/j.agwat.2014.12.003 [26] Chou WL, Huang YH: Electrochemical removal of indium ions from aqueous solution using iron electrodes. J. Hazard. Mater., 172(1), 46–53, 2009. PMID:19625124, doi:10.1016/j.jhazmat.2009.06.119 [19] Tezcan Ün Ü, Koparal AS, Bakir Öğütveren Ü: Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes. J. Hazard. Mater., 164(2–3), 580–586, 2009. PMID:18819748, doi:10.1016/j.jhazmat.2008.08.045 [16] Tsai CT, Lin ST, Shue YC, Su PL: Electrolysis of soluble organic matter in leachate from landfills. Water Res., 31(12), 3073–3081, 1997. doi:10.1016/S0043-1354(96)00297-7 [3] Watanabe N, Bergamaschi BA, Loftin KA, Meyer MT, Harter T: Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environ. Sci. Technol., 44(17), 6591–6600, 2010. PMID:20698525, doi:10.1021/es100834s [36] Brion M, Berthon G, Fourtillan JB: Metal ion tetracyclines interactions in biological fluids. Potentiometric study of calcium complexes with tetracycline, oxytetracycline, doxycycline and minocycline and simulation of their distributions under physiological conditions. Inorg. Chim. Acta, 55, 47–56, 1981. doi:10.1016/S0020-1693(00)90781-3 [39] Moreno-Casillas HA, Cocke DL, Gomes JAG, Morkovsky P, Parga JR, Peterson E: Electrocoagulation mechanism for COD removal. Separ. Purif. Tech., 56(2), 204–211, 2007. doi:10.1016/j.seppur.2007.01.031 [10] Reyes C, Fernández J, Freer J, Mondaca MA, Zaror C, Malato S, Mansilla HD: Degradation and inactivation of tetracycline by TiO2 photocatalysis. J. Photochem. Photobiol. Chem., 184(1–2), 141–146, 2006. doi:10.1016/j.jphotochem.2006.04.007 [2] Matsui Y, Ozu T, Inoue T, Matsushita T: Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms. Desalination, 226(1-3), 215–221, 2008. doi:10.1016/j.desal.2007.01.243 [38] Kong W, Li C, Dolhi JM, Li S, He J, Qiao M: Characteristics of oxytetracycline sorption and potential bioavailability in soils with various physical–chemical properties. Chemosphere, 87(5), 542–548, 2012. PMID:22245075, doi:10.1016/j.chemosphere.2011.12.062 [11] Abellán MN, Bayarri B, Giménez J, Costa J: Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B, 74(3–4), 233–241, 2007. doi:10.1016/j.apcatb.2007.02.017 [13] González O, Sans C, Esplugas S: Sulfamethoxazole abatement by photo-Fenton. J. Hazard. Mater., 146(3), 459–464, 2007. PMID:17540504, doi:10.1016/j.jhazmat.2007.04.055 [23] Shams DF, Singhal N, Elefsiniotis P: Effect of feed characteristics and operational conditions on treatment of dairy farm wastewater in a coupled anoxic-upflow and aerobic system. Biochem. Eng. J., 133(15), 186–195, 2018. doi:10.1016/j.bej.2018.02.012 [7] Sharma VK, Liu F, Tolan S, Sohn M, Kim H, Oturan MA: Oxidation of β-lactam antibiotics by ferrate(VI). Chem. Eng. J., 221, 446–451, 2013. doi:10.1016/j.cej.2013.02.024 [35] Pallier V, Feuillade-Cathalifaud G, Serpaud B: Influence of organic matter on arsenic removal by continuous flow electrocoagulation treatment of weakly mineralized waters. Chemosphere, 83(1), 21–28, 2011. PMID:21324507, doi:10.1016/j.chemosphere.2011.01.038 [1] Seino A, Furusho S, Masunaga S: Occurrence of pharmaceuticals used in human and veterinary medicine in aquatic environments in Japan. J. Jpn. Soc. Water Environ. 27(11), 685–691, 2004. [in Japanese with English abstract] doi:10.2965/jswe.27.685 [6] Sulfikar RH, Honda R, Noguchi M, Yamamoto-Ikemoto R, Watanabe T: Effect of sedimentation and aeration on antibiotic resistance induction in the activated sludge process. J. Water Environ. Technol., 16(2), 94–105, 2018. doi:10.2965/jwet.17-046 [30] Cinquina AL, Longo F, Anastasi G, Giannetti L, Cozzani R: Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle. J. Chromatogr. A, 987(1–2), 227–233, 2003. PMID:12613816, doi:10.1016/S0021-9673(02)01446-2 [17] Daneshvar N, Ashassi Sorkhabi H, Kasiri MB: Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. J. Hazard. Mater., 112(1–2), 55–62, 2004. PMID:15225930, doi:10.1016/j.jhazmat.2004.03.021 [25] Hassan SSM, Amer MM, Ahmed SA: Composition and stability constants of iron- and copper-oxytetracycline chelates. Mikrochim. Acta, 84(3–4), 165–175, 1984. doi:10.1007/BF01212382 [4] Kim KR, Owens G, Kwon SI, So KH, Lee DB, Ok YS: Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut., 214(1–4), 163–174, 2011. doi:10.1007/s11270-010-0412-2 [28] Balasubramanian N, Kojima T, Basha CA, Srinivasakannan C: Removal of arsenic from aqueous solution using electrocoagulation. J. Hazard. Mater., 167(1-3), 966–969, 2009. PMID:19231076, doi:10.1016/j.jhazmat.2009.01.081 [33] Ghandour MA, Azab HA, Hassan A, Ali AM: Potentiometric studies on the complexes of tetracycline (TC) and oxytetracyclin (OTC) with some metal ions. Monatshefte für Chemie / Chemical Monthly, 123(1–2), 51–58, 1992. doi:10.1007/BF01045296 [32] Albert A, Rees CW: Avidity of the tetracyclines for the cations of metals. Nature, 177(4505), 433–434, 1956. PMID:13309332, doi:10.1038/177433a0 [34] Gu C, Karthikeyan KG: Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol., 39(8), 2660–2667, 2005. PMID:15884363, doi:10.1021/es048603o [18] Şengil İA, özacar M: Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes. J. Hazard. Mater., 137(2), 1197–1205, 2006. PMID:16846691, doi:10.1016/j.jhazmat.2006.04.009 [24] Wei R, Ge F, Huang S, Chen M, Wang R: Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82(10), 1408–1414, 2011. PMID:21159362, doi:10.1016/j.chemosphere.2010.11.067 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: [32] Albert A, Rees CW: Avidity of the tetracyclines for the cations of metals. Nature, 177(4505), 433–434, 1956. PMID:13309332, doi:10.1038/177433a0 – reference: [36] Brion M, Berthon G, Fourtillan JB: Metal ion tetracyclines interactions in biological fluids. Potentiometric study of calcium complexes with tetracycline, oxytetracycline, doxycycline and minocycline and simulation of their distributions under physiological conditions. Inorg. Chim. Acta, 55, 47–56, 1981. doi:10.1016/S0020-1693(00)90781-3 – reference: [2] Matsui Y, Ozu T, Inoue T, Matsushita T: Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms. Desalination, 226(1-3), 215–221, 2008. doi:10.1016/j.desal.2007.01.243 – reference: [12] Wang C, Jian JJ: Degradation and detoxicity of tetracycline by an enhanced sonolysis. J. Water Environ. Technol., 13(4), 325–334, 2015. doi:10.2965/jwet.2015.325 – reference: [16] Tsai CT, Lin ST, Shue YC, Su PL: Electrolysis of soluble organic matter in leachate from landfills. Water Res., 31(12), 3073–3081, 1997. doi:10.1016/S0043-1354(96)00297-7 – reference: [9] Lange F, Cornelissen S, Kubac D, Sein MM, von Sonntag J, Hannich CB, Golloch A, Heipieper HJ, Möder M, von Sonntag C: Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin. Chemosphere, 65(1), 17–23, 2006. PMID:16631229, doi:10.1016/j.chemosphere.2006.03.014 – reference: [38] Kong W, Li C, Dolhi JM, Li S, He J, Qiao M: Characteristics of oxytetracycline sorption and potential bioavailability in soils with various physical–chemical properties. Chemosphere, 87(5), 542–548, 2012. PMID:22245075, doi:10.1016/j.chemosphere.2011.12.062 – reference: [24] Wei R, Ge F, Huang S, Chen M, Wang R: Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82(10), 1408–1414, 2011. PMID:21159362, doi:10.1016/j.chemosphere.2010.11.067 – reference: [13] González O, Sans C, Esplugas S: Sulfamethoxazole abatement by photo-Fenton. J. Hazard. Mater., 146(3), 459–464, 2007. PMID:17540504, doi:10.1016/j.jhazmat.2007.04.055 – reference: [25] Hassan SSM, Amer MM, Ahmed SA: Composition and stability constants of iron- and copper-oxytetracycline chelates. Mikrochim. Acta, 84(3–4), 165–175, 1984. doi:10.1007/BF01212382 – reference: [22] Husein MM, Al-As’ad A: Effect of coagulant and flocculant addition scheme on the treatment of dairy farm wastewater. J. Water Reuse Desalin., 5(3), 271–281, 2015. doi:10.2166/wrd.2015.070 – reference: [7] Sharma VK, Liu F, Tolan S, Sohn M, Kim H, Oturan MA: Oxidation of β-lactam antibiotics by ferrate(VI). Chem. Eng. J., 221, 446–451, 2013. doi:10.1016/j.cej.2013.02.024 – reference: [29] Cagnardi P, Villa R, Gallo M, Locatelli C, Carli S, Moroni P, Zonca A: Cefoperazone sodium preparation behavior after intramammary administration in healthy and infected cows. J. Dairy Sci., 93(9), 4105–4110, 2010. PMID:20723685, doi:10.3168/jds.2010-3379 – reference: [20] Kim TH, Park C, Shin EB, Kim S: Decolorization of disperse and reactive dyes by continuous electrocoagulation process. Desalination, 150(2), 165–175, 2002. doi:10.1016/S0011-9164(02)00941-4 – reference: [3] Watanabe N, Bergamaschi BA, Loftin KA, Meyer MT, Harter T: Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environ. Sci. Technol., 44(17), 6591–6600, 2010. PMID:20698525, doi:10.1021/es100834s – reference: [23] Shams DF, Singhal N, Elefsiniotis P: Effect of feed characteristics and operational conditions on treatment of dairy farm wastewater in a coupled anoxic-upflow and aerobic system. Biochem. Eng. J., 133(15), 186–195, 2018. doi:10.1016/j.bej.2018.02.012 – reference: [33] Ghandour MA, Azab HA, Hassan A, Ali AM: Potentiometric studies on the complexes of tetracycline (TC) and oxytetracyclin (OTC) with some metal ions. Monatshefte für Chemie / Chemical Monthly, 123(1–2), 51–58, 1992. doi:10.1007/BF01045296 – reference: [6] Sulfikar RH, Honda R, Noguchi M, Yamamoto-Ikemoto R, Watanabe T: Effect of sedimentation and aeration on antibiotic resistance induction in the activated sludge process. J. Water Environ. Technol., 16(2), 94–105, 2018. doi:10.2965/jwet.17-046 – reference: [8] Andreozzi R, Canterino M, Marotta R, Paxeus N: Antibiotic removal from wastewaters: The ozonation of amoxicillin. J. Hazard. Mater., 122(3), 243–250, 2005. PMID:15967280, doi:10.1016/j.jhazmat.2005.03.004 – reference: [35] Pallier V, Feuillade-Cathalifaud G, Serpaud B: Influence of organic matter on arsenic removal by continuous flow electrocoagulation treatment of weakly mineralized waters. Chemosphere, 83(1), 21–28, 2011. PMID:21324507, doi:10.1016/j.chemosphere.2011.01.038 – reference: [11] Abellán MN, Bayarri B, Giménez J, Costa J: Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B, 74(3–4), 233–241, 2007. doi:10.1016/j.apcatb.2007.02.017 – reference: [15] Dirany A, Sirés I, Oturan N, Oturan MA: Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 81(5), 594–602, 2010. PMID:20833409, doi:10.1016/j.chemosphere.2010.08.032 – reference: [1] Seino A, Furusho S, Masunaga S: Occurrence of pharmaceuticals used in human and veterinary medicine in aquatic environments in Japan. J. Jpn. Soc. Water Environ. 27(11), 685–691, 2004. [in Japanese with English abstract] doi:10.2965/jswe.27.685 – reference: [5] Kümmerer K: Antibiotics in the aquatic environment – A review – Part I. Chemosphere, 75(4), 417–434, 2009. PMID:19185900, doi:10.1016/j.chemosphere.2008.11.086 – reference: [21] Duan J, Geng C, Li X, Duan Z, Yang L: The treatment performance and nutrient removal of a garden land infiltration system receiving dairy farm wastewater. Agric. Water Manage., 150(1), 103–110, 2015. doi:10.1016/j.agwat.2014.12.003 – reference: [37] Huang L, Sun Y, Wang W, Yue Q, Yang T: Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC). Chem. Eng. J., 171(3), 1446–1453, 2011. doi:10.1016/j.cej.2011.05.041 – reference: [14] Villegas-Guzman P, Oppenheimer-Barrot S, Silva-Agredo J, Torres-Palma RA: Comparative evaluation of photo-chemical AOPs for ciprofoxacin degradation: elimination in natural waters and analysis of ph effect, primary degradation by-products, and the relationship with the antibiotic activity. Water Air Soil Pollut., 228(6), 209–224, 2017. doi:10.1007/s11270-017-3388-3 – reference: [28] Balasubramanian N, Kojima T, Basha CA, Srinivasakannan C: Removal of arsenic from aqueous solution using electrocoagulation. J. Hazard. Mater., 167(1-3), 966–969, 2009. PMID:19231076, doi:10.1016/j.jhazmat.2009.01.081 – reference: [30] Cinquina AL, Longo F, Anastasi G, Giannetti L, Cozzani R: Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle. J. Chromatogr. A, 987(1–2), 227–233, 2003. PMID:12613816, doi:10.1016/S0021-9673(02)01446-2 – reference: [10] Reyes C, Fernández J, Freer J, Mondaca MA, Zaror C, Malato S, Mansilla HD: Degradation and inactivation of tetracycline by TiO2 photocatalysis. J. Photochem. Photobiol. Chem., 184(1–2), 141–146, 2006. doi:10.1016/j.jphotochem.2006.04.007 – reference: [26] Chou WL, Huang YH: Electrochemical removal of indium ions from aqueous solution using iron electrodes. J. Hazard. Mater., 172(1), 46–53, 2009. PMID:19625124, doi:10.1016/j.jhazmat.2009.06.119 – reference: [4] Kim KR, Owens G, Kwon SI, So KH, Lee DB, Ok YS: Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut., 214(1–4), 163–174, 2011. doi:10.1007/s11270-010-0412-2 – reference: [17] Daneshvar N, Ashassi Sorkhabi H, Kasiri MB: Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. J. Hazard. Mater., 112(1–2), 55–62, 2004. PMID:15225930, doi:10.1016/j.jhazmat.2004.03.021 – reference: [27] Zhang H, Huang CH: Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 66(8), 1502–1512, 2007. PMID:17083963, doi:10.1016/j.chemosphere.2006.08.024 – reference: [34] Gu C, Karthikeyan KG: Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol., 39(8), 2660–2667, 2005. PMID:15884363, doi:10.1021/es048603o – reference: [19] Tezcan Ün Ü, Koparal AS, Bakir Öğütveren Ü: Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes. J. Hazard. Mater., 164(2–3), 580–586, 2009. PMID:18819748, doi:10.1016/j.jhazmat.2008.08.045 – reference: [31] Christodoulou EA, Samanidou VF, Papadoyannis IN: Development and validation of an HPLC confirmatory method for residue analysis of ten quinolones in tissues of various food-producing animals, according to the European Union Decision 2002/657/EC. J. Sep. Sci., 30(16), 2676–2686, 2007. PMID:17763524, doi:10.1002/jssc.200700170 – reference: [18] Şengil İA, özacar M: Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes. J. Hazard. Mater., 137(2), 1197–1205, 2006. PMID:16846691, doi:10.1016/j.jhazmat.2006.04.009 – reference: [39] Moreno-Casillas HA, Cocke DL, Gomes JAG, Morkovsky P, Parga JR, Peterson E: Electrocoagulation mechanism for COD removal. Separ. Purif. Tech., 56(2), 204–211, 2007. doi:10.1016/j.seppur.2007.01.031 – ident: 13 doi: 10.1016/j.jhazmat.2007.04.055 – ident: 36 doi: 10.1016/S0020-1693(00)90781-3 – ident: 37 doi: 10.1016/j.cej.2011.05.041 – ident: 28 doi: 10.1016/j.jhazmat.2009.01.081 – ident: 16 doi: 10.1016/S0043-1354(96)00297-7 – ident: 3 doi: 10.1021/es100834s – ident: 5 doi: 10.1016/j.chemosphere.2008.11.086 – ident: 29 doi: 10.3168/jds.2010-3379 – ident: 1 doi: 10.2965/jswe.27.685 – ident: 2 doi: 10.1016/j.desal.2007.01.243 – ident: 10 doi: 10.1016/j.jphotochem.2006.04.007 – ident: 23 doi: 10.1016/j.bej.2018.02.012 – ident: 27 doi: 10.1016/j.chemosphere.2006.08.024 – ident: 31 doi: 10.1002/jssc.200700170 – ident: 20 doi: 10.1016/S0011-9164(02)00941-4 – ident: 4 doi: 10.1007/s11270-010-0412-2 – ident: 12 doi: 10.2965/jwet.2015.325 – ident: 9 doi: 10.1016/j.chemosphere.2006.03.014 – ident: 8 doi: 10.1016/j.jhazmat.2005.03.004 – ident: 15 doi: 10.1016/j.chemosphere.2010.08.032 – ident: 39 doi: 10.1016/j.seppur.2007.01.031 – ident: 14 doi: 10.1007/s11270-017-3388-3 – ident: 7 doi: 10.1016/j.cej.2013.02.024 – ident: 17 doi: 10.1016/j.jhazmat.2004.03.021 – ident: 38 doi: 10.1016/j.chemosphere.2011.12.062 – ident: 18 doi: 10.1016/j.jhazmat.2006.04.009 – ident: 6 doi: 10.2965/jwet.17-046 – ident: 19 doi: 10.1016/j.jhazmat.2008.08.045 – ident: 30 doi: 10.1016/S0021-9673(02)01446-2 – ident: 21 doi: 10.1016/j.agwat.2014.12.003 – ident: 22 doi: 10.2166/wrd.2015.070 – ident: 33 doi: 10.1007/BF01045296 – ident: 26 doi: 10.1016/j.jhazmat.2009.06.119 – ident: 24 doi: 10.1016/j.chemosphere.2010.11.067 – ident: 11 doi: 10.1016/j.apcatb.2007.02.017 – ident: 34 doi: 10.1021/es048603o – ident: 35 doi: 10.1016/j.chemosphere.2011.01.038 – ident: 25 doi: 10.1007/BF01212382 – ident: 32 doi: 10.1038/177433a0 |
SSID | ssj0057066 |
Score | 2.1215193 |
Snippet | Veterinary antibiotic residues in wastewater discharged from livestock facilities have become an environmental issue. In this study, the removal of veterinary... |
SourceID | doaj proquest crossref jstage |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 157 |
SubjectTerms | Agricultural wastes Antibiotics Cefazolin Cephalosporins dairy farm wastewater Dairy farms Electric charge Electrocoagulation Electrodes Gravity Iron iron electrode Livestock Metal ions Metals Oxytetracycline Removal tetracycline antibiotic Wastewater discharges Wastewater treatment |
Title | Removal of Tetracycline Antibiotics from Dairy Farm Wastewater by Electrocoagulation Using Iron Electrodes |
URI | https://www.jstage.jst.go.jp/article/jwet/18/3/18_19-124/_article/-char/en https://www.proquest.com/docview/2419465689 https://doaj.org/article/624972477ee047e1b142ae493a4941ca |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Water and Environment Technology, 2020, Vol.18(3), pp.157-165 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp3KoSiliKVQ-cEJKsTfOw71B2RUgbQ8VqNwsP8aoK9hU2UXVXvrbOxNnV1tRqZdekih2Yms88XzjeOZj7ESVQejgfFZ4RxRmMWTae8hEcNIJO8ytpGjkyZfy6k7d3Bf3G1RftCcspQdOgjsr0T-ohqqqAISqQNKihQWlc6u0kr6DRkKLlTOV5uCiEt1fSpkr1ANZFikyb6jL4mz6ExYfJXEAqD9sUZeyH-3QFFHZw8upubM34zfsdQ8U-Xnq4C7bgtlbtrORPnCPTb_CU4OawpvIb2HRWr-kQEfg5zOKBGkoAzOn-BF-ab-3Sz627RP_Zue0Xobi5G7JR4kFxzf2oefx4t0mAn7d4mVfGmD-jt2NR7efr7KeOyHz6IOoLI9VhBCsjRXRMgL6ogiUYu2cLyO6cEqC8l56V-EJLKKK4HR0CJ58gSNU5_tse9bM4IBxKwpEUXVAc6eUynNXQpRYXQTptIt2wE5XUjS-TyxO_BaPBh0MErkhkRupDYp8wE7WlX-kfBp_r3ZBw7GuQkmwuxuoGqZXDfMv1RiwT2kw169ZPZlaqk1Oh9Tiuoyi3XDKGLCjlQKY_rOeG4Q7mhLM1frwf3TwPXs1JPe9W9E5YtuL9hmOEeMs3IdOnfE4-TX6DcgI_N8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+Tetracycline+Antibiotics+from+Dairy+Farm+Wastewater+by+Electrocoagulation+Using+Iron+Electrodes&rft.jtitle=Journal+of+Water+and+Environment+Technology&rft.au=Toyoda%2C+Kiyohiko&rft.au=Ihara%2C+Ikko&rft.au=Takeda%2C+Noriaki&rft.au=Yoshida%2C+Gen&rft.date=2020&rft.pub=Japan+Society+on+Water+Environment&rft.eissn=1348-2165&rft.volume=18&rft.issue=3&rft.spage=157&rft.epage=165&rft_id=info:doi/10.2965%2Fjwet.19-124&rft.externalDocID=article_jwet_18_3_18_19_124_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1348-2165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1348-2165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1348-2165&client=summon |