Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers

Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high‐order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present stu...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative neurology (1911) Vol. 514; no. 6; pp. 595 - 623
Main Authors Ding, Song-Lin, Van Hoesen, Gary W., Cassell, Martin D., Poremba, Amy
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 20.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high‐order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934;41:129–264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG. J. Comp. Neurol. 514:595–623, 2009. © 2009 Wiley‐Liss, Inc.
AbstractList Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high‐order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934;41:129–264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG. J. Comp. Neurol. 514:595–623, 2009. © 2009 Wiley‐Liss, Inc.
Although human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases, few studies on the parcellation and extent of human TPC are available using modern neuroanatomical techniques. The present study investigated TPC with combined analysis of several different cellular, neurochemical, and pathological markers finding that this area is not homogenous as at least six different areas extend into TPC with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC while areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into TPC is defined as TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as temporal insular cortex and named as area TI after Beck (1934) . Finally, a dysgranular TPC region which capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG.
Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934; 41:129-264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG. J. Comp. Neurol. 514:595-623, 2009.
Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934;41:129-264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG.Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934;41:129-264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG.
Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934;41:129-264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG.
Author Poremba, Amy
Ding, Song-Lin
Van Hoesen, Gary W.
Cassell, Martin D.
AuthorAffiliation 2 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
3 Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
1 Department of Psychology, University of Iowa, Iowa City, Iowa 52242
AuthorAffiliation_xml – name: 3 Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
– name: 1 Department of Psychology, University of Iowa, Iowa City, Iowa 52242
– name: 2 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
Author_xml – sequence: 1
  givenname: Song-Lin
  surname: Ding
  fullname: Ding, Song-Lin
  email: song-lin_ding@urmc.rochester.edu
  organization: Department of Psychology, University of Iowa, Iowa City, Iowa 52242
– sequence: 2
  givenname: Gary W.
  surname: Van Hoesen
  fullname: Van Hoesen, Gary W.
  organization: Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
– sequence: 3
  givenname: Martin D.
  surname: Cassell
  fullname: Cassell, Martin D.
  organization: Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
– sequence: 4
  givenname: Amy
  surname: Poremba
  fullname: Poremba, Amy
  organization: Department of Psychology, University of Iowa, Iowa City, Iowa 52242
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19363802$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAUtFAR3S4c-AMoJyQk0vojdmwOSNVSCqhdEKrE0XIcp2tw7BA7wP4HfjTu7nYFFYiTrfdmxvM87wgc-OANAI8RPEYQ4hPtzTHGkJJ7YIagYKXgDB2AWe6hUghWH4KjGD9DCIUg_AE4RIIwwiGegZ8f1KiNcyrZ4IvQFaupV75Iph_CqFwxBKfGQocxmR8vitN86xvrTVsor9w62njD6SeX7OBModcpZL2VTUan4K1-XuiV6e_WlG-LQaVVcOHa6vxKr8YvZowPwf1OuWge7c45uHp9drV4U168P3-7OL0oNa04KTvYCgZxR7QwHBNslDYEU06rinPaoYohSBuK2ka3WDdai1o1CuNc463oyBy83MoOU9ObVhuf8qhyGG32sZZBWflnx9uVvA7fJGGMkqrKAk93AmP4OpmYZG_j5he9CVOUrEY1YZT_F5gzo1zkNObgye-W9l5ug8qAky1AjyHG0XRS27QJLTu0TiIob1ZB5lWQm1XIjGd3GHvRv2B36t-tM-t_A-VieXbLKLcMG_Nm7Bk5xzw9qan8tDyXl2iJX12Sj_Id-QXnqdYo
CitedBy_id crossref_primary_10_3233_JAD_170693
crossref_primary_10_1002_cne_25243
crossref_primary_10_3389_fnana_2023_1240545
crossref_primary_10_1016_j_jchemneu_2010_06_002
crossref_primary_10_1016_j_jchemneu_2021_101925
crossref_primary_10_1016_j_comppsych_2011_09_004
crossref_primary_10_1093_cercor_bhp289
crossref_primary_10_1093_cercor_bhq019
crossref_primary_10_1007_s00213_014_3670_7
crossref_primary_10_1016_j_neuroimage_2017_04_024
crossref_primary_10_1002_hbm_22278
crossref_primary_10_1002_hbm_26119
crossref_primary_10_1038_nrn_2016_150
crossref_primary_10_14802_jmd_17061
crossref_primary_10_1016_j_neurobiolaging_2015_06_023
crossref_primary_10_1093_cercor_bhw195
crossref_primary_10_1093_brain_awab262
crossref_primary_10_1098_rspb_2009_1831
crossref_primary_10_1002_ar_22957
crossref_primary_10_1523_JNEUROSCI_2247_14_2014
crossref_primary_10_1093_cercor_bhv024
crossref_primary_10_1038_npp_2015_185
crossref_primary_10_1111_j_1528_1167_2010_02777_x
crossref_primary_10_1016_j_neurobiolaging_2017_12_010
crossref_primary_10_1152_jn_00401_2012
crossref_primary_10_1002_hbm_24607
crossref_primary_10_1162_jocn_a_00007
crossref_primary_10_3171_2017_4_JNS162699
crossref_primary_10_1080_02687038_2019_1659935
crossref_primary_10_1155_2012_624519
crossref_primary_10_3390_anatomia3020007
crossref_primary_10_3280_RIP2019_002001
crossref_primary_10_1093_brain_aws059
crossref_primary_10_1097_WNR_0b013e328333d690
crossref_primary_10_1016_j_chc_2012_08_008
crossref_primary_10_1523_JNEUROSCI_2999_15_2016
crossref_primary_10_1016_j_plrev_2014_01_002
crossref_primary_10_1093_cercor_bhw260
crossref_primary_10_1038_s41598_023_33318_5
crossref_primary_10_1016_j_tics_2016_03_003
crossref_primary_10_1016_j_neuropsychologia_2010_11_018
crossref_primary_10_1016_j_neuropsychologia_2011_07_033
crossref_primary_10_1016_j_neuroimage_2012_03_041
crossref_primary_10_1016_j_neuroimage_2013_05_053
crossref_primary_10_1016_j_tics_2021_07_006
crossref_primary_10_1016_j_cortex_2016_02_015
crossref_primary_10_1093_scan_nss119
crossref_primary_10_1016_j_cortex_2012_08_009
crossref_primary_10_1093_brain_awac339
crossref_primary_10_1016_j_neulet_2012_03_020
crossref_primary_10_1097_MD_0000000000001767
crossref_primary_10_1007_s00429_020_02039_0
crossref_primary_10_1002_hbm_26771
crossref_primary_10_1111_bpa_12964
crossref_primary_10_1371_journal_pone_0068250
crossref_primary_10_1111_nyas_12951
crossref_primary_10_1016_j_gpb_2021_08_008
crossref_primary_10_1016_j_neuron_2015_12_001
crossref_primary_10_1186_s40035_019_0174_8
crossref_primary_10_1038_srep37973
crossref_primary_10_1093_cercor_bht260
crossref_primary_10_1111_srt_12965
crossref_primary_10_1098_rstb_2012_0392
crossref_primary_10_1007_s11682_016_9589_3
crossref_primary_10_1371_journal_pone_0166049
crossref_primary_10_1002_hbm_20940
crossref_primary_10_1007_s00429_014_0919_1
crossref_primary_10_1093_brain_aww313
crossref_primary_10_1002_hbm_26046
crossref_primary_10_1080_02643294_2014_914022
crossref_primary_10_1111_j_1750_3639_2012_00581_x
crossref_primary_10_1002_cne_25684
crossref_primary_10_1002_cne_23786
crossref_primary_10_1088_0967_3334_35_3_323
crossref_primary_10_1002_cne_25449
crossref_primary_10_1093_cercor_bhu262
crossref_primary_10_1038_nrneurol_2014_159
crossref_primary_10_1002_cne_23707
crossref_primary_10_1007_s00429_014_0872_z
crossref_primary_10_1016_j_cortex_2016_05_014
crossref_primary_10_1002_cne_24080
crossref_primary_10_1038_s44220_023_00125_w
crossref_primary_10_1212_WNL_0000000000006920
crossref_primary_10_1038_s41598_020_62378_0
crossref_primary_10_1093_cercor_bhae312
crossref_primary_10_1093_cercor_bhad232
crossref_primary_10_1111_ejn_13706
crossref_primary_10_5056_jnm17076
crossref_primary_10_1002_hbm_23167
crossref_primary_10_1002_cne_23431
crossref_primary_10_1007_s00429_012_0441_2
crossref_primary_10_1016_j_neurobiolaging_2024_12_011
crossref_primary_10_1002_cne_23432
crossref_primary_10_1016_j_neuroimage_2012_08_071
crossref_primary_10_1038_tp_2015_69
crossref_primary_10_1038_s41583_019_0213_6
crossref_primary_10_1016_j_neuropsychologia_2016_05_002
crossref_primary_10_1089_cap_2011_0005
crossref_primary_10_1097_WNR_0000000000000602
crossref_primary_10_1371_journal_pone_0211699
crossref_primary_10_1007_s00429_017_1513_0
crossref_primary_10_3171_2017_3_JNS162821
crossref_primary_10_1162_jocn_a_00722
crossref_primary_10_1016_j_tics_2015_09_002
crossref_primary_10_1007_s10548_014_0353_y
crossref_primary_10_1016_j_bbr_2020_113103
crossref_primary_10_1002_hbm_25976
crossref_primary_10_1007_s00429_019_01987_6
crossref_primary_10_1016_j_brainresbull_2011_08_010
crossref_primary_10_1093_brain_awt222
crossref_primary_10_1080_17470919_2013_797020
crossref_primary_10_1109_ACCESS_2022_3186888
crossref_primary_10_1016_j_bandl_2017_04_004
crossref_primary_10_3389_fnana_2018_00093
crossref_primary_10_1093_cercor_bht196
crossref_primary_10_1371_journal_pone_0124527
crossref_primary_10_1523_JNEUROSCI_2180_11_2011
crossref_primary_10_1016_j_cortex_2015_04_021
crossref_primary_10_1002_cne_25550
crossref_primary_10_1038_s41593_024_01774_5
crossref_primary_10_1016_j_neubiorev_2020_05_008
crossref_primary_10_1016_j_nbd_2010_09_011
crossref_primary_10_1162_jocn_a_00263
crossref_primary_10_1002_hipo_23602
crossref_primary_10_1016_j_jmva_2017_10_002
crossref_primary_10_1002_cne_23416
crossref_primary_10_1016_j_neuroimage_2012_09_055
crossref_primary_10_1002_hipo_22354
crossref_primary_10_3389_fnagi_2016_00260
crossref_primary_10_1016_j_cortex_2015_10_020
crossref_primary_10_1371_journal_pone_0039516
crossref_primary_10_1016_j_nicl_2017_05_022
crossref_primary_10_1523_ENEURO_0392_17_2017
crossref_primary_10_3389_fpsyg_2017_00517
crossref_primary_10_1093_cercor_bhaa022
crossref_primary_10_1016_j_neuroimage_2011_10_006
Cites_doi 10.1093/brain/123.9.1903
10.1002/cne.21141
10.1093/brain/124.10.2087
10.1007/BF00293315
10.1093/brain/awh512
10.1152/jn.1981.46.2.369
10.1007/s002210100778
10.1016/0959-4388(94)90066-3
10.1016/S0197-4580(03)00113-1
10.1093/brain/awg092
10.1007/978-3-642-80890-6
10.1002/cne.10609
10.1016/S0169-328X(00)00194-7
10.1016/0306-4522(93)90132-Y
10.1016/j.neuroimage.2007.12.043
10.1001/archpsyc.57.8.769
10.1002/cne.902210206
10.1080/02724990444000177
10.1093/cercor/4.5.470
10.1002/(SICI)1096-9861(19990802)410:3<343::AID-CNE1>3.0.CO;2-1
10.1002/cne.903430308
10.1016/j.pscychresns.2004.09.002
10.1016/0168-0102(92)90014-4
10.1523/JNEUROSCI.16-15-04757.1996
10.1002/(SICI)1096-9861(19981005)399:4<469::AID-CNE3>3.0.CO;2-#
10.1002/cne.21577
10.1002/hbm.1033
10.1016/0006-8993(78)90584-X
10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V
10.1093/cercor/1.1.103
10.1073/pnas.80.19.6126
10.1002/cne.902120104
10.1002/cne.10842
10.1111/j.1365-2990.1989.tb01255.x
10.1002/(SICI)1098-1063(1999)9:1<54::AID-HIPO6>3.0.CO;2-O
10.1016/0166-4328(95)00227-8
10.1016/S0920-9964(98)00094-2
10.1002/(SICI)1096-9861(19961125)375:4<552::AID-CNE2>3.0.CO;2-0
10.1002/(SICI)1096-9861(19990412)406:3<299::AID-CNE2>3.0.CO;2-9
10.1002/cne.1320
10.1002/cne.902640306
10.1002/(SICI)1097-0029(19981001)43:1<8::AID-JEMT2>3.0.CO;2-4
10.1111/j.1460-9568.2005.04299.x
10.1016/S1474-4422(07)70266-1
10.1111/j.1749-6632.2000.tb06731.x
10.1093/brain/awm052
10.1002/(SICI)1096-9861(19971110)388:1<64::AID-CNE5>3.0.CO;2-M
10.1002/cne.902560108
10.1016/B978-0-12-547625-6.50025-8
10.1002/cne.903550203
10.1006/nimg.2001.1015
10.1523/JNEUROSCI.11-04-01095.1991
10.1002/cne.902820204
10.1016/0165-3806(91)90119-4
10.1002/cne.903500402
10.1093/brain/122.10.1839
10.1002/cne.902760302
10.1002/(SICI)1096-9861(19961202)376:1<112::AID-CNE7>3.0.CO;2-6
10.1093/brain/122.12.2337
10.1002/cne.903120412
10.1001/archneur.1994.00540140051014
10.1002/cne.903630408
10.1002/cne.902610304
10.1002/cne.10744
10.1016/B978-0-12-547625-6.50034-9
10.1002/hipo.450050503
10.1126/science.1078900
10.1002/cne.903460305
10.1002/cne.902120103
10.1002/cne.903100403
10.1002/(SICI)1096-9861(19960219)365:4<610::AID-CNE8>3.0.CO;2-7
10.1016/S0006-8993(98)01182-2
10.1016/j.heares.2007.01.003
10.1038/380499a0
10.1002/cne.10516
10.1523/JNEUROSCI.20-13-05083.2000
10.1523/JNEUROSCI.20-18-06974.2000
10.1162/089892902760191144
10.1016/S0028-3932(02)00089-1
10.1007/s004290000135
10.1002/cne.902800303
10.1162/08989290260045800
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1002/cne.22053
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList

Neurosciences Abstracts
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1096-9861
EndPage 623
ExternalDocumentID PMC3665344
19363802
10_1002_cne_22053
CNE22053
ark_67375_WNG_M1N2DM3R_J
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Mental Health
  funderid: MH 065452
– fundername: National Institute on Deafness and Other Communication Disorders
  funderid: DC0007156
– fundername: National Institute of Neurological Disorders and Stroke
  funderid: NS 14944; PO NS 19632
– fundername: NINDS NIH HHS
  grantid: R01 NS014944
– fundername: NINDS NIH HHS
  grantid: NS 14944
– fundername: NIMH NIH HHS
  grantid: R01 MH065452
– fundername: NIDCD NIH HHS
  grantid: DC0007156
– fundername: NINDS NIH HHS
  grantid: P0 NS 19632
– fundername: NINDS NIH HHS
  grantid: P01 NS019632
– fundername: NIDCD NIH HHS
  grantid: R01 DC007156
– fundername: NIMH NIH HHS
  grantid: MH 065452
– fundername: National Institute on Deafness and Other Communication Disorders : NIDCD
  grantid: R01 DC007156 || DC
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABJNI
ABOCM
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XV2
YQT
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
ACRPL
ACYXJ
ADNMO
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c5483-f0d9602f3c9e8232eace3258544885f146105b51dbcd2cbcc97aba225b58d9f3
IEDL.DBID DR2
ISSN 0021-9967
1096-9861
IngestDate Thu Aug 21 14:00:25 EDT 2025
Fri Jul 11 08:00:54 EDT 2025
Fri Jul 11 11:04:23 EDT 2025
Mon Jul 21 05:28:55 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Tue Jul 01 01:57:21 EDT 2025
Wed Jan 22 16:21:30 EST 2025
Wed Oct 30 09:49:00 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5483-f0d9602f3c9e8232eace3258544885f146105b51dbcd2cbcc97aba225b58d9f3
Notes ArticleID:CNE22053
ark:/67375/WNG-M1N2DM3R-J
National Institute of Neurological Disorders and Stroke - No. NS 14944; No. PO NS 19632
istex:2070AA6636E9371B1E505A61AF11ADCCE01BE0D7
National Institute of Mental Health - No. MH 065452
National Institute on Deafness and Other Communication Disorders - No. DC0007156
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3665344
PMID 19363802
PQID 20558919
PQPubID 23462
PageCount 29
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3665344
proquest_miscellaneous_67173658
proquest_miscellaneous_20558919
pubmed_primary_19363802
crossref_citationtrail_10_1002_cne_22053
crossref_primary_10_1002_cne_22053
wiley_primary_10_1002_cne_22053_CNE22053
istex_primary_ark_67375_WNG_M1N2DM3R_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20 June 2009
PublicationDateYYYYMMDD 2009-06-20
PublicationDate_xml – month: 06
  year: 2009
  text: 20 June 2009
  day: 20
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of comparative neurology (1911)
PublicationTitleAlternate J. Comp. Neurol
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Webster MJ, Bachevalier J, Ungerleider LG. 1994. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4: 470-483.
Barbas H, Ghashghaei H, Dombrowski SM, Rempel-Clower NL. 1999. Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J Comp Neurol 410: 343-367.
Holdstock JS. 2005. The role of the human medial temporal lobe in object recognition and object discrimination. Q J Exp Psychol B 58: 326-339.
Noppeney U, Price CJ. 2002. A PET study of stimulus- and task-induced semantic processing. Neuroimage 15: 927-935.
Munoz M, Insausti R. 2005. Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis). Eur J Neurosci 22: 1368-1388.
Olson IR, Plotzker A, Ezzyat Y. 2007. The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130: 1718-1731.
Krieg WS. 1975. Interpretative atlas of the monkey's brain. Evanston, IL: Brain Books.
Nakamura K, Kawahima R, Sato N, Nakamura A, Sugiura M, Kato T, Hatano K, Ito K, Fukuda H, Schormann T, Zilles K. 2000. Functional delineation of the human occipito-temporal areas related to face and scene processing: a PET study. Brain 123: 1903-1912.
Von Economo C. 1929. The cytoarchitectonics of the human cerebral cortex. London: Oxford University Press.
Barbas H, 1988. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276: 313-342.
Allison AC. 1954. The secondary olfactory areas in the human brain. J Anat 88: 481-488.
Hilbig H, Bidmon HJ, Blohm U, Zilles K. 2001. Wisteria floribunda agglutinin labeling patterns in the human cortex: a tool for revealing areal borders and subdivisions in parallel with immunocytochemistry. Anat Embryol 203: 45-52.
Kondo H Saleem KS, Price JL. 2003. Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 465: 499-523.
von Bonin G, Bailey P. 1947. The neocortex of Macaca mulatta. Urbana: University of Illinois Press.
Saleem KS, Price JL, Hashikawa T. 2007. Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 500: 973-1006.
Hof PR, Ungerleider LG, Webster MJ, Gattass R, Adams MM, Sailstad CA, Morrison JH. 1996. Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways. J Comp Neurol 376: 112-127.
Seltzer B, Pandya DN. 1994. Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J Comp Neurol 343: 445-463.
Saleem KS, Tanaka K. 1996. Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey. J Neurosci 16: 4757-4775.
Ungerleider LG, Haxby JV. 1994. "What" and "where" in the human brain. Curr Opin Neurobiol 4: 157-165.
Carmichael ST, Price JL. 1995. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363: 615-641.
Poremba A, Mishkin M. 2007. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys. Hear Res 229: 14-23.
Hackett TA, Stepniewska I, Kaas JH. 1999. Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res 817: 45-58.
Shi CJ, Cassell MD. 1999. Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat. J Comp Neurol 406: 299-328.
Ding SL, Morecraft RJ, Van Hoesen GW. 2003. Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. J Comp Neurol 456: 184-201.
Van Hoesen GW, Augustinack JC, Dierking J, Redman SJ, Thangavel R. 2000. The parahippocampal gyrus in Alzheimer's disease. Clinical and preclinical neuroanatomical correlates. Ann N Y Acad Sci 911: 254-274.
Moran MA, Mufson EJ, Mesulam M-M. 1987. Neural inputs into the temporopolar cortex of the rhesus monkey. J Comp Neurol 256: 88-103.
Barbas H. 1993. Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey. Neuroscience 56: 841-864.
Wright IC, Ellison ZR, Sharma T, Friston KJ, Murray RM, McGuire PK. 1999. Mapping of grey matter changes in schizophrenia. Schizophr Res 35: 1-14.
Emmorey K, Grabowski T, McCullough S, Damasio H, Ponto LLB, Hichwa RD, Bellugi U. 2003. Neural systems underlying lexical retrieval for sign language. Neuropsychologia 41: 85-95.
Suzuki WA, Amaral DG. 2003. Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463: 67-91.
Braak E, Braak H, Mandelkow EM. 1994. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87: 554-567.
Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkanen A. 1998b. MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 19: 659-671.
Shi CJ, Cassell MD. 1998. Cascade projections from somatosensory cortex to the rat basolateral amygdala via the parietal insular cortex. J Comp Neurol 399: 469-491.
Mufson EJ, Mesulam MM. 1982. Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J Comp Neurol 212: 23-37.
Ongur D, Ferry AT, Price JL. 2003. Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460: 425-449.
Stefanacci L, Suzuki WA, Amaral DG. 1996. Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 375: 552-582.
Afifi AK, Bergman PA. 1998. Functional neuroanatomy: test and atlas. New York: McGraw-Hill.
Vandenberghe R, Nobre AC, Price CJ. 2002. The response of left temporal cortex to sentences. J Cogn Neurosci 14: 550-560.
Ding SL, Rockland. 2001. Modular organization of the monkey presubiculum. Exp Brain Res 139: 255-265.
Saleem KS, Suzuki W, Tanaka K, Hashikawa T. 2000. Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey. J Neurosci 20: 5083-5101.
Vogt BA, Vogt LJ, Perl DP, Hof PR. 2001. Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices. J Comp Neurol 438: 353-376.
Braak H, Braak E. 1992. The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6-31.
Brodmann K. 1909. Vergleichende lokalisationslehre der Grosshirnrinde. Leipzig: Barth.
Suzuki WA, Amaral DG. 1994. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350: 497-533.
Galaburda AM, Pandya DN. 1983. The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221: 169-184.
Bailey PA, Von Bonin G. 1951. The isocortex of man. Urbana: University of Illinois Press.
Perani D, Cappa SF, Schnur T, Tettamanti M, Collina S, Rosa MM, Fazio1 F. 1999. The neural correlates of verb and noun processing: a PET study. Brain 122: 2337-2344.
Sarkissov SA, Filimonoff IN, Kononowa EP, Preobraschenskaja IS, Kukuew LA. 1955. Atlas of the cytoarchitectonics of the human cerebral cortex. Moscow: Medgiz.
Crespo-Facorro B, Nopoulos PC, Chemerinski E, Kim JJ, Andreasen NC, Magnotta V. 2004. Temporal pole morphology and psychopathology in males with schizophrenia. Psychistry Res 132: 107-115.
Beck E. 1934. Die myeloarchitektonik der dorsalen Schlafenlappenrinde beim Menschen. J Psychol Neurol 41: 129-264.
Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR. 1996. A neural basis for lexical retrieval. Nature 380: 499-505.
Gur RE, Turetsky BI, Cowell PE, Finkelman C, Maany V, Grossman RI, Arnold SE, Bilker WB, Gur RC. 2000. Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57: 769-775.
Nakamura K, Kubota K. 1996. The primate temporal pole: its putative role in object recognition and memory. Behav Brain Res 77: 53-77.
Semah F. 2002. Temporoporal metabolic abnormalities in temporal lobe. Epileptic Disord 4: S41-49.
Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. 1991. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex 1: 103-116.
Von Economo C, Koskinas GN. 1925. Die Cytoarchitecktonik der Grosshirnrinde des erwachsenen Menschen. Berlin: Springer.
Carmichael ST, Price JL. 1994. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol 346: 366-402.
Preuss TM, Goldman-Rakic, PS. 1991. Architectonics of the parietal and temporal association cortex in the strepsitrhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310: 475-506.
Gainotti G, Barbier A, Marra C. 2003. Slowly progressive defect in recognition of familiar people in a patient with right anterior temporal atrophy. Brain 126: 792-803.
Schultz C, Ghebremedhin E, Tredici KD, Rüb U, Braak H. 2004. High prevalence of thorn-shaped astrocytes in the aged human medial temporal lobe. Neurobiol Aging 25: 397-405.
Ang LC, Munoz DG, Shul D, George DH. 1991. SMI-32 immunoreactivity in human striate cortex during postnatal development. Dev Brain Res 61: 103-109.
Johnson DM, Illig KR, Behan M, Haberly LB. 2000. New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that "primary" olfactory cortex functions like "association" cortex in other sensory systems. J Neurosci 20: 6974-6982.
Maguire EA, Frith CD, Morris RGM. 1999. The functional neuroanatomy of comprehension and memory: the importance of prior knowledge. Bra
2007; 500
2002; 14
1987; 261
2002; 15
1991; 312
2007; 229
1987; 264
1991; 310
1954; 88
1991; 11
2004; 25
2008; 506
1989; 280
1981; 46
1975
1989; 282
1996; 380
1992; 15
1999; 122
1999; 403
1998; 399
2005; 22
1996; 77
1999; 406
1997; 388
1994; 343
2004; 132
1999; 817
1909
1983; 221
1994; 346
1998b; 19
1990
2001
2000; 57
1999; 15
2007; 130
2007; 6
1999; 410
1996; 375
1982; 212
1981
2000; 123
1995; 363
2003; 126
1978; 149
2001; 13
2003; 41
1996; 376
1975; 4
1947
2001; 139
2001; 124
1991; 1
1994; 350
2000; 911
2000; 20
1998
1951
2002; 4
1995; 355
1907; 41
1934; 41
2003; 456
1996; 16
2003; 299
1996; 365
2001; 203
1995; 5
1994; 87
1999; 9
1955
1993; 56
1987; 256
1991; 61
2005; 128
1999; 35
1988; 276
1983; 80
1989; 15
2001; 438
1929
2008; 40
2003; 465
2003; 463
1925
1994; 51
1994; 4
2005; 58
1998a; 43
2003; 460
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_30_1
e_1_2_6_72_1
Stephan H (e_1_2_6_84_1) 1975
Brodmann K (e_1_2_6_14_1) 1909
e_1_2_6_19_1
Semah F (e_1_2_6_78_1) 2002; 4
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
von Bonin G (e_1_2_6_94_1) 1947
Von Economo C (e_1_2_6_95_1) 1929
e_1_2_6_9_1
Insausti R (e_1_2_6_43_1) 1998; 19
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_54_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
Beck E (e_1_2_6_11_1) 1934; 41
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_80_1
Allison AC (e_1_2_6_3_1) 1954; 88
Van Hoesen GW (e_1_2_6_91_1) 1981
e_1_2_6_6_1
Krieg WS (e_1_2_6_47_1) 1975
e_1_2_6_23_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
Afifi AK (e_1_2_6_2_1) 1998
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
Ding SL (e_1_2_6_25_1) 1999; 15
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_20_1
Bailey PA (e_1_2_6_7_1) 1951
e_1_2_6_24_1
Sarkissov SA (e_1_2_6_73_1) 1955
e_1_2_6_66_1
Smith GE (e_1_2_6_81_1) 1907; 41
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_71_1
Ostrowsky K (e_1_2_6_61_1) 2002; 4
e_1_2_6_90_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_82_1
Von Economo C (e_1_2_6_96_1) 1925
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – reference: Semah F. 2002. Temporoporal metabolic abnormalities in temporal lobe. Epileptic Disord 4: S41-49.
– reference: Perani D, Cappa SF, Schnur T, Tettamanti M, Collina S, Rosa MM, Fazio1 F. 1999. The neural correlates of verb and noun processing: a PET study. Brain 122: 2337-2344.
– reference: Beck E. 1934. Die myeloarchitektonik der dorsalen Schlafenlappenrinde beim Menschen. J Psychol Neurol 41: 129-264.
– reference: Lamy C, Duyckaerts C, Delaere P, Payan C, Fermanian J, Poulain V, Hauw JJ. 1989. Comparison of seven staining methods for senile plaques and neurofibrillary tangles in a prospective series of 15 elderly patients. Neuropathol Appl Neurobiol 15: 563-578.
– reference: Emmorey K, Grabowski T, McCullough S, Damasio H, Ponto LLB, Hichwa RD, Bellugi U. 2003. Neural systems underlying lexical retrieval for sign language. Neuropsychologia 41: 85-95.
– reference: Munoz M, Insausti R. 2005. Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis). Eur J Neurosci 22: 1368-1388.
– reference: Allison AC. 1954. The secondary olfactory areas in the human brain. J Anat 88: 481-488.
– reference: Mikkonen M, Soininen H, Pitkänen, A. 1997. Distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex. J Comp Neurol 388: 64-88.
– reference: Gur RE, Turetsky BI, Cowell PE, Finkelman C, Maany V, Grossman RI, Arnold SE, Bilker WB, Gur RC. 2000. Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57: 769-775.
– reference: Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkanen A. 1998b. MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 19: 659-671.
– reference: Kondo H Saleem KS, Price JL. 2003. Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 465: 499-523.
– reference: Von Economo C, Koskinas GN. 1925. Die Cytoarchitecktonik der Grosshirnrinde des erwachsenen Menschen. Berlin: Springer.
– reference: Arnold SE, Hyman BT, Van Hoesen GW. 1994. Neuropathologic changes of the temporal pole in Alzheimer's disease and Pick's disease. Arch Neurol 51: 145-150.
– reference: Mufson EJ, Mesulam MM. 1982. Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J Comp Neurol 212: 23-37.
– reference: Shi CJ, Cassell MD. 1998. Cascade projections from somatosensory cortex to the rat basolateral amygdala via the parietal insular cortex. J Comp Neurol 399: 469-491.
– reference: Barbas H, Ghashghaei H, Dombrowski SM, Rempel-Clower NL. 1999. Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J Comp Neurol 410: 343-367.
– reference: Hoistad M, Barbas H. 2008. Sequence of information processing for emotions through pathways linking temporal and insular cortices with the amygdala. NeuroImage 40: 1016-1033.
– reference: Insausti R, Tunon T, Sobreviela T, Insausti AM, Gonzalo LM. 1995. The human entorhinal cortex: a cytoarchitectonic analysis. J Comp Neurol 355: 171-198.
– reference: Webster MJ, Bachevalier J, Ungerleider LG. 1994. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4: 470-483.
– reference: Nakamura K, Kubota K. 1996. The primate temporal pole: its putative role in object recognition and memory. Behav Brain Res 77: 53-77.
– reference: Preuss TM, Goldman-Rakic, PS. 1991. Architectonics of the parietal and temporal association cortex in the strepsitrhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310: 475-506.
– reference: Vogt BA, Vogt LJ, Perl DP, Hof PR. 2001. Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices. J Comp Neurol 438: 353-376.
– reference: Carmichael ST, Price JL. 1994. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol 346: 366-402.
– reference: Hackett TA, Stepniewska I, Kaas JH. 1999. Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res 817: 45-58.
– reference: Sternberger LA, Sternberger NH. 1983. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A 80: 6126-6130.
– reference: Saleem KS, Suzuki W, Tanaka K, Hashikawa T. 2000. Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey. J Neurosci 20: 5083-5101.
– reference: Maguire EA, Mummery CJ. 1999. Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus 9: 54-61.
– reference: Saleem KS, Kondo H, Price JL. 2008. Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J Comp Neurol 506: 659-693.
– reference: Schultz C, Ghebremedhin E, Tredici KD, Rüb U, Braak H. 2004. High prevalence of thorn-shaped astrocytes in the aged human medial temporal lobe. Neurobiol Aging 25: 397-405.
– reference: Stefanacci L, Suzuki WA, Amaral DG. 1996. Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 375: 552-582.
– reference: Braak H, Braak E. 1992. The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6-31.
– reference: Holdstock JS. 2005. The role of the human medial temporal lobe in object recognition and object discrimination. Q J Exp Psychol B 58: 326-339.
– reference: Romanski LM, Bates JF, Goldman-Rakic PS. 1999. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403: 141-157.
– reference: Suzuki WA, Amaral DG. 2003. Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463: 67-91.
– reference: Noppeney U, Price CJ. 2002. A PET study of stimulus- and task-induced semantic processing. Neuroimage 15: 927-935.
– reference: Tsukiura T, Fujii T, Fukatsu R, Otsuki T, Okuda J, Umetsu A, Suzuki K, Tabuchi M, Yanagawa I, Nagasaka T, Kawashima R, Fukuda H, Takahashi S, Yamadori A. 2002. Neural basis of the retrieval of people's names: evidence from brain-damaged patients and fMRI. J Cogn Neurosci 14: 922-937.
– reference: Ding SL, Rockland. 2001. Modular organization of the monkey presubiculum. Exp Brain Res 139: 255-265.
– reference: Sarkissov SA, Filimonoff IN, Kononowa EP, Preobraschenskaja IS, Kukuew LA. 1955. Atlas of the cytoarchitectonics of the human cerebral cortex. Moscow: Medgiz.
– reference: Ongur D, Ferry AT, Price JL. 2003. Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460: 425-449.
– reference: Smith GE. 1907. A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat 41: 237-254.
– reference: Iwai E, Yukie M. 1987. Amygdalofugal and amygdaloprtal connections with modality-specific visual cortical areas in macaques (Macaca fuscata, M. mulatta, and M. fascicularis). J Comp Neurol 261: 362-387.
– reference: Wright IC, Ellison ZR, Sharma T, Friston KJ, Murray RM, McGuire PK. 1999. Mapping of grey matter changes in schizophrenia. Schizophr Res 35: 1-14.
– reference: Burwell RD, Witter MP, Amaral DG. 1995. Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus 5: 390-408.
– reference: Ding SL, Zheng DS, Yan YH, Sun WW. 1999. Developmental changes of calbindin-D28k immunoreactivity in the hippocampal formation of human fetus. Chin J Neuroanat 15: 385-389.
– reference: Olson IR, Plotzker A, Ezzyat Y. 2007. The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130: 1718-1731.
– reference: Ding SL, Morecraft RJ, Van Hoesen GW. 2003. Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. J Comp Neurol 456: 184-201.
– reference: Saleem KS, Tanaka K. 1996. Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey. J Neurosci 16: 4757-4775.
– reference: Seltzer B, Pandya DN. 1978. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149: 1-24.
– reference: Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. 1991. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex 1: 103-116.
– reference: Ostrowsky K, Desestret V, Ryvlin P, Coste S, Mauguiere F. 2002. Direct electrical stimulations of the temporal pole in human. Epileptic Disord 4: S23-27.
– reference: Suzuki WA, Amaral DG. 1994. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350: 497-533.
– reference: Barbas H, 1988. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276: 313-342.
– reference: Hodges JR, Patterson K. 2007. Semantic dementia: a unique clinico-pathological syndrome. Lancet Neurol 6: 1004-1014.
– reference: Maguire EA, Frith CD, Morris RGM. 1999. The functional neuroanatomy of comprehension and memory: the importance of prior knowledge. Brain 122: 1839-1850.
– reference: Seltzer B, Pandya DN. 1991. Post-rolandic cortical projections of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 312: 625-640.
– reference: Solodkin A, Van Hoesen GW. 1996. Entorhinal cortex modules of the human brain. J Comp Neurol 365: 610-627.
– reference: Hof PR, Ungerleider LG, Webster MJ, Gattass R, Adams MM, Sailstad CA, Morrison JH. 1996. Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways. J Comp Neurol 376: 112-127.
– reference: Ungerleider LG, Haxby JV. 1994. "What" and "where" in the human brain. Curr Opin Neurobiol 4: 157-165.
– reference: Insausti R, Insausti AM, Sobreviela MT, Salinas A, Martinez-Penuela JM. 1998a. Human medial temporal lobe in adding: anatomical base of memory preservation. Microsc Res Tech 43: 8-15.
– reference: Vandenberghe R, Nobre AC, Price CJ. 2002. The response of left temporal cortex to sentences. J Cogn Neurosci 14: 550-560.
– reference: Johnson DM, Illig KR, Behan M, Haberly LB. 2000. New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that "primary" olfactory cortex functions like "association" cortex in other sensory systems. J Neurosci 20: 6974-6982.
– reference: Moran MA, Mufson EJ, Mesulam M-M. 1987. Neural inputs into the temporopolar cortex of the rhesus monkey. J Comp Neurol 256: 88-103.
– reference: Chabardès S, Kahane P, Minotti L, Tassi L, Grand S, Hoffmann D, Benabid AL. 2005. The temporopolar cortex plays a pivotal role in temporal lobe seizures. Brain 128: 1818-1831.
– reference: Paxinos G, Franklin KBJ. 2001. The mouse brain in stereotaxic coordinates. San Diego: Academic Press.
– reference: Barbas H. 1993. Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey. Neuroscience 56: 841-864.
– reference: Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR. 1996. A neural basis for lexical retrieval. Nature 380: 499-505.
– reference: Nakamura K, Kawahima R, Sato N, Nakamura A, Sugiura M, Kato T, Hatano K, Ito K, Fukuda H, Schormann T, Zilles K. 2000. Functional delineation of the human occipito-temporal areas related to face and scene processing: a PET study. Brain 123: 1903-1912.
– reference: Webster MJ, Ungerleider LG, Bachevalier J. 1991. Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 11: 1095-1116.
– reference: Gower EC. 1989. Efferent projections from limbic cortex of the temporal pole to the magnocellular medial dorsal nucleus in the rhesus monkey. J Comp Neurol 280: 343-358.
– reference: Shi CJ, Cassell MD. 1999. Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat. J Comp Neurol 406: 299-328.
– reference: Seltzer B, Pandya DN. 1994. Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J Comp Neurol 343: 445-463.
– reference: Van Hoesen GW, Augustinack JC, Dierking J, Redman SJ, Thangavel R. 2000. The parahippocampal gyrus in Alzheimer's disease. Clinical and preclinical neuroanatomical correlates. Ann N Y Acad Sci 911: 254-274.
– reference: Bailey PA, Von Bonin G. 1951. The isocortex of man. Urbana: University of Illinois Press.
– reference: Carmichael ST, Price JL. 1995. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363: 615-641.
– reference: Poremba A, Mishkin M. 2007. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys. Hear Res 229: 14-23.
– reference: Saleem KS, Price JL, Hashikawa T. 2007. Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 500: 973-1006.
– reference: Gainotti G, Barbier A, Marra C. 2003. Slowly progressive defect in recognition of familiar people in a patient with right anterior temporal atrophy. Brain 126: 792-803.
– reference: Gorno-Tempini ML, Price CJ. 2001. Identification of famous faces and buildings: a functional neuroimaging study of semantically unique items. Brain. 124: 2087-2097.
– reference: Hilbig H, Bidmon HJ, Blohm U, Zilles K. 2001. Wisteria floribunda agglutinin labeling patterns in the human cortex: a tool for revealing areal borders and subdivisions in parallel with immunocytochemistry. Anat Embryol 203: 45-52.
– reference: Poremba A, Saunders RC, Crane AM, Cook M, Sokoloff L, Mishkin M. 2003. Functional mapping of the primate auditory system. Science 299: 568-572.
– reference: Afifi AK, Bergman PA. 1998. Functional neuroanatomy: test and atlas. New York: McGraw-Hill.
– reference: Braak E, Braak H, Mandelkow EM. 1994. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87: 554-567.
– reference: Crespo-Facorro B, Nopoulos PC, Chemerinski E, Kim JJ, Andreasen NC, Magnotta V. 2004. Temporal pole morphology and psychopathology in males with schizophrenia. Psychistry Res 132: 107-115.
– reference: Krieg WS. 1975. Interpretative atlas of the monkey's brain. Evanston, IL: Brain Books.
– reference: von Bonin G, Bailey P. 1947. The neocortex of Macaca mulatta. Urbana: University of Illinois Press.
– reference: Ang LC, Munoz DG, Shul D, George DH. 1991. SMI-32 immunoreactivity in human striate cortex during postnatal development. Dev Brain Res 61: 103-109.
– reference: Brodmann K. 1909. Vergleichende lokalisationslehre der Grosshirnrinde. Leipzig: Barth.
– reference: Insausti R, Amaral DG, Cowan WM. 1987. The entorhinal cortex of the monkey. II. Cortical afferents. J Comp Neul 264: 356-359.
– reference: Von Economo C. 1929. The cytoarchitectonics of the human cerebral cortex. London: Oxford University Press.
– reference: Mesulam MM, Mufson EJ. 1982. Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol 212: 38-52.
– reference: Campbell MJ, Morrison JH. 1989. Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282: 191-205.
– reference: Bruce C, Desimone R, Gross CG. 1981. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46: 369-384.
– reference: Galaburda AM, Pandya DN. 1983. The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221: 169-184.
– reference: Grabowski TJ, Damasio H, Tranel D, Ponto LL, Hichwa RD, Damasio AR. 2001. A role for left temporal pole in the retrieval of words for unique entities. Hum Brain Mapp 13: 199-212.
– volume: 299
  start-page: 568
  year: 2003
  end-page: 572
  article-title: Functional mapping of the primate auditory system
  publication-title: Science
– start-page: 77
  year: 1981
  end-page: 90
– volume: 41
  start-page: 129
  year: 1934
  end-page: 264
  article-title: Die myeloarchitektonik der dorsalen Schlafenlappenrinde beim Menschen
  publication-title: J Psychol Neurol
– volume: 203
  start-page: 45
  year: 2001
  end-page: 52
  article-title: agglutinin labeling patterns in the human cortex: a tool for revealing areal borders and subdivisions in parallel with immunocytochemistry
  publication-title: Anat Embryol
– volume: 350
  start-page: 497
  year: 1994
  end-page: 533
  article-title: Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents
  publication-title: J Comp Neurol
– volume: 87
  start-page: 554
  year: 1994
  end-page: 567
  article-title: A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads
  publication-title: Acta Neuropathol
– volume: 20
  start-page: 6974
  year: 2000
  end-page: 6982
  article-title: New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems
  publication-title: J Neurosci
– year: 1975
– volume: 4
  start-page: S41
  year: 2002
  end-page: 49
  article-title: Temporoporal metabolic abnormalities in temporal lobe
  publication-title: Epileptic Disord
– volume: 149
  start-page: 1
  year: 1978
  end-page: 24
  article-title: Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey
  publication-title: Brain Res
– volume: 463
  start-page: 67
  year: 2003
  end-page: 91
  article-title: Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization
  publication-title: J Comp Neurol
– year: 1998
– volume: 123
  start-page: 1903
  year: 2000
  end-page: 1912
  article-title: Functional delineation of the human occipito‐temporal areas related to face and scene processing: a PET study
  publication-title: Brain
– volume: 132
  start-page: 107
  year: 2004
  end-page: 115
  article-title: Temporal pole morphology and psychopathology in males with schizophrenia
  publication-title: Psychistry Res
– volume: 14
  start-page: 922
  year: 2002
  end-page: 937
  article-title: Neural basis of the retrieval of people's names: evidence from brain‐damaged patients and fMRI
  publication-title: J Cogn Neurosci
– volume: 312
  start-page: 625
  year: 1991
  end-page: 640
  article-title: Post‐rolandic cortical projections of the superior temporal sulcus in the rhesus monkey
  publication-title: J Comp Neurol
– volume: 15
  start-page: 563
  year: 1989
  end-page: 578
  article-title: Comparison of seven staining methods for senile plaques and neurofibrillary tangles in a prospective series of 15 elderly patients
  publication-title: Neuropathol Appl Neurobiol
– volume: 41
  start-page: 85
  year: 2003
  end-page: 95
  article-title: Neural systems underlying lexical retrieval for sign language
  publication-title: Neuropsychologia
– volume: 6
  start-page: 1004
  year: 2007
  end-page: 1014
  article-title: Semantic dementia: a unique clinico‐pathological syndrome
  publication-title: Lancet Neurol
– year: 1955
– volume: 212
  start-page: 23
  year: 1982
  end-page: 37
  article-title: Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum
  publication-title: J Comp Neurol
– volume: 4
  start-page: 470
  year: 1994
  end-page: 483
  article-title: Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys
  publication-title: Cereb Cortex
– volume: 80
  start-page: 6126
  year: 1983
  end-page: 6130
  article-title: Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ
  publication-title: Proc Natl Acad Sci U S A
– volume: 128
  start-page: 1818
  year: 2005
  end-page: 1831
  article-title: The temporopolar cortex plays a pivotal role in temporal lobe seizures
  publication-title: Brain
– volume: 817
  start-page: 45
  year: 1999
  end-page: 58
  article-title: Prefrontal connections of the parabelt auditory cortex in macaque monkeys
  publication-title: Brain Res
– year: 1925
– volume: 11
  start-page: 1095
  year: 1991
  end-page: 1116
  article-title: Connections of inferior temporal areas TE and TEO with medial temporal‐lobe structures in infant and adult monkeys
  publication-title: J Neurosci
– volume: 41
  start-page: 237
  year: 1907
  end-page: 254
  article-title: A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci
  publication-title: J Anat
– volume: 19
  start-page: 659
  year: 1998b
  end-page: 671
  article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices
  publication-title: AJNR Am J Neuroradiol
– volume: 4
  start-page: S23
  year: 2002
  end-page: 27
  article-title: Direct electrical stimulations of the temporal pole in human
  publication-title: Epileptic Disord
– volume: 282
  start-page: 191
  year: 1989
  end-page: 205
  article-title: Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex
  publication-title: J Comp Neurol
– volume: 35
  start-page: 1
  year: 1999
  end-page: 14
  article-title: Mapping of grey matter changes in schizophrenia
  publication-title: Schizophr Res
– volume: 61
  start-page: 103
  year: 1991
  end-page: 109
  article-title: SMI‐32 immunoreactivity in human striate cortex during postnatal development
  publication-title: Dev Brain Res
– year: 1947
– volume: 46
  start-page: 369
  year: 1981
  end-page: 384
  article-title: Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque
  publication-title: J Neurophysiol
– volume: 399
  start-page: 469
  year: 1998
  end-page: 491
  article-title: Cascade projections from somatosensory cortex to the rat basolateral amygdala via the parietal insular cortex
  publication-title: J Comp Neurol
– volume: 911
  start-page: 254
  year: 2000
  end-page: 274
  article-title: The parahippocampal gyrus in Alzheimer's disease. Clinical and preclinical neuroanatomical correlates
  publication-title: Ann N Y Acad Sci
– start-page: 583
  year: 1990
  end-page: 710
– start-page: 979
  year: 1990
  end-page: 998
– volume: 13
  start-page: 199
  year: 2001
  end-page: 212
  article-title: A role for left temporal pole in the retrieval of words for unique entities
  publication-title: Hum Brain Mapp
– volume: 77
  start-page: 53
  year: 1996
  end-page: 77
  article-title: The primate temporal pole: its putative role in object recognition and memory
  publication-title: Behav Brain Res
– volume: 346
  start-page: 366
  year: 1994
  end-page: 402
  article-title: Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey
  publication-title: J Comp Neurol
– volume: 88
  start-page: 481
  year: 1954
  end-page: 488
  article-title: The secondary olfactory areas in the human brain
  publication-title: J Anat
– volume: 410
  start-page: 343
  year: 1999
  end-page: 367
  article-title: Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory‐related areas in the rhesus monkey
  publication-title: J Comp Neurol
– volume: 124
  start-page: 2087
  year: 2001
  end-page: 2097
  article-title: Identification of famous faces and buildings: a functional neuroimaging study of semantically unique items
  publication-title: Brain.
– volume: 460
  start-page: 425
  year: 2003
  end-page: 449
  article-title: Architectonic subdivision of the human orbital and medial prefrontal cortex
  publication-title: J Comp Neurol
– volume: 365
  start-page: 610
  year: 1996
  end-page: 627
  article-title: Entorhinal cortex modules of the human brain
  publication-title: J Comp Neurol
– volume: 56
  start-page: 841
  year: 1993
  end-page: 864
  article-title: Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey
  publication-title: Neuroscience
– volume: 355
  start-page: 171
  year: 1995
  end-page: 198
  article-title: The human entorhinal cortex: a cytoarchitectonic analysis
  publication-title: J Comp Neurol
– volume: 500
  start-page: 973
  year: 2007
  end-page: 1006
  article-title: Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys
  publication-title: J Comp Neurol
– volume: 58
  start-page: 326
  year: 2005
  end-page: 339
  article-title: The role of the human medial temporal lobe in object recognition and object discrimination
  publication-title: Q J Exp Psychol B
– volume: 1
  start-page: 103
  year: 1991
  end-page: 116
  article-title: The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease
  publication-title: Cereb Cortex
– year: 2001
– volume: 376
  start-page: 112
  year: 1996
  end-page: 127
  article-title: Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways
  publication-title: J Comp Neurol
– volume: 122
  start-page: 1839
  year: 1999
  end-page: 1850
  article-title: The functional neuroanatomy of comprehension and memory: the importance of prior knowledge
  publication-title: Brain
– volume: 375
  start-page: 552
  year: 1996
  end-page: 582
  article-title: Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys
  publication-title: J Comp Neurol
– volume: 15
  start-page: 6
  year: 1992
  end-page: 31
  article-title: The human entorhinal cortex: normal morphology and lamina‐specific pathology in various diseases
  publication-title: Neurosci Res
– volume: 456
  start-page: 184
  year: 2003
  end-page: 201
  article-title: Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo‐parahippocampal isthmus and adjoining retrocalcarine areas in the monkey
  publication-title: J Comp Neurol
– volume: 9
  start-page: 54
  year: 1999
  end-page: 61
  article-title: Differential modulation of a common memory retrieval network revealed by positron emission tomography
  publication-title: Hippocampus
– volume: 4
  year: 1975
– volume: 343
  start-page: 445
  year: 1994
  end-page: 463
  article-title: Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study
  publication-title: J Comp Neurol
– volume: 380
  start-page: 499
  year: 1996
  end-page: 505
  article-title: A neural basis for lexical retrieval
  publication-title: Nature
– volume: 506
  start-page: 659
  year: 2008
  end-page: 693
  article-title: Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey
  publication-title: J Comp Neurol
– volume: 5
  start-page: 390
  year: 1995
  end-page: 408
  article-title: Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain
  publication-title: Hippocampus
– volume: 388
  start-page: 64
  year: 1997
  end-page: 88
  article-title: Distribution of parvalbumin‐, calretinin‐, and calbindin‐D28k‐immunoreactive neurons and fibers in the human entorhinal cortex
  publication-title: J Comp Neurol
– volume: 229
  start-page: 14
  year: 2007
  end-page: 23
  article-title: Exploring the extent and function of higher‐order auditory cortex in rhesus monkeys
  publication-title: Hear Res
– volume: 40
  start-page: 1016
  year: 2008
  end-page: 1033
  article-title: Sequence of information processing for emotions through pathways linking temporal and insular cortices with the amygdala
  publication-title: NeuroImage
– volume: 16
  start-page: 4757
  year: 1996
  end-page: 4775
  article-title: Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey
  publication-title: J Neurosci
– volume: 4
  start-page: 157
  year: 1994
  end-page: 165
  article-title: “What” and “where” in the human brain
  publication-title: Curr Opin Neurobiol
– year: 1951
– volume: 139
  start-page: 255
  year: 2001
  end-page: 265
  article-title: Modular organization of the monkey presubiculum
  publication-title: Exp Brain Res
– volume: 280
  start-page: 343
  year: 1989
  end-page: 358
  article-title: Efferent projections from limbic cortex of the temporal pole to the magnocellular medial dorsal nucleus in the rhesus monkey
  publication-title: J Comp Neurol
– volume: 256
  start-page: 88
  year: 1987
  end-page: 103
  article-title: Neural inputs into the temporopolar cortex of the rhesus monkey
  publication-title: J Comp Neurol
– volume: 261
  start-page: 362
  year: 1987
  end-page: 387
  article-title: Amygdalofugal and amygdaloprtal connections with modality‐specific visual cortical areas in macaques ( , , and )
  publication-title: J Comp Neurol
– volume: 406
  start-page: 299
  year: 1999
  end-page: 328
  article-title: Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat
  publication-title: J Comp Neurol
– year: 1929
– volume: 57
  start-page: 769
  year: 2000
  end-page: 775
  article-title: Temporolimbic volume reductions in schizophrenia
  publication-title: Arch Gen Psychiatry
– volume: 130
  start-page: 1718
  year: 2007
  end-page: 1731
  article-title: The enigmatic temporal pole: a review of findings on social and emotional processing
  publication-title: Brain
– volume: 20
  start-page: 5083
  year: 2000
  end-page: 5101
  article-title: Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey
  publication-title: J Neurosci
– volume: 25
  start-page: 397
  year: 2004
  end-page: 405
  article-title: High prevalence of thorn‐shaped astrocytes in the aged human medial temporal lobe
  publication-title: Neurobiol Aging
– volume: 221
  start-page: 169
  year: 1983
  end-page: 184
  article-title: The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey
  publication-title: J Comp Neurol
– volume: 363
  start-page: 615
  year: 1995
  end-page: 641
  article-title: Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys
  publication-title: J Comp Neurol
– volume: 43
  start-page: 8
  year: 1998a
  end-page: 15
  article-title: Human medial temporal lobe in adding: anatomical base of memory preservation
  publication-title: Microsc Res Tech
– volume: 22
  start-page: 1368
  year: 2005
  end-page: 1388
  article-title: Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey ( )
  publication-title: Eur J Neurosci
– volume: 212
  start-page: 38
  year: 1982
  end-page: 52
  article-title: Insula of the old world monkey. III: Efferent cortical output and comments on function
  publication-title: J Comp Neurol
– volume: 126
  start-page: 792
  year: 2003
  end-page: 803
  article-title: Slowly progressive defect in recognition of familiar people in a patient with right anterior temporal atrophy
  publication-title: Brain
– volume: 465
  start-page: 499
  year: 2003
  end-page: 523
  article-title: Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys
  publication-title: J Comp Neurol
– volume: 264
  start-page: 356
  year: 1987
  end-page: 359
  article-title: The entorhinal cortex of the monkey. II. Cortical afferents
  publication-title: J Comp Neul
– year: 1909
– volume: 15
  start-page: 385
  year: 1999
  end-page: 389
  article-title: Developmental changes of calbindin‐D28k immunoreactivity in the hippocampal formation of human fetus
  publication-title: Chin J Neuroanat
– volume: 51
  start-page: 145
  year: 1994
  end-page: 150
  article-title: Neuropathologic changes of the temporal pole in Alzheimer's disease and Pick's disease
  publication-title: Arch Neurol
– volume: 403
  start-page: 141
  year: 1999
  end-page: 157
  article-title: Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey
  publication-title: J Comp Neurol
– volume: 14
  start-page: 550
  year: 2002
  end-page: 560
  article-title: The response of left temporal cortex to sentences
  publication-title: J Cogn Neurosci
– volume: 276
  start-page: 313
  year: 1988
  end-page: 342
  article-title: Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey
  publication-title: J Comp Neurol
– volume: 438
  start-page: 353
  year: 2001
  end-page: 376
  article-title: Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices
  publication-title: J Comp Neurol
– volume: 310
  start-page: 475
  year: 1991
  end-page: 506
  article-title: Architectonics of the parietal and temporal association cortex in the strepsitrhine primate compared to the anthropoid primate
  publication-title: J Comp Neurol
– volume: 15
  start-page: 927
  year: 2002
  end-page: 935
  article-title: A PET study of stimulus‐ and task‐induced semantic processing
  publication-title: Neuroimage
– volume: 122
  start-page: 2337
  year: 1999
  end-page: 2344
  article-title: The neural correlates of verb and noun processing: a PET study
  publication-title: Brain
– ident: e_1_2_6_57_1
  doi: 10.1093/brain/123.9.1903
– volume-title: Interpretative atlas of the monkey's brain
  year: 1975
  ident: e_1_2_6_47_1
– ident: e_1_2_6_71_1
  doi: 10.1002/cne.21141
– ident: e_1_2_6_30_1
  doi: 10.1093/brain/124.10.2087
– ident: e_1_2_6_13_1
  doi: 10.1007/BF00293315
– ident: e_1_2_6_20_1
  doi: 10.1093/brain/awh512
– ident: e_1_2_6_15_1
  doi: 10.1152/jn.1981.46.2.369
– ident: e_1_2_6_24_1
  doi: 10.1007/s002210100778
– ident: e_1_2_6_89_1
  doi: 10.1016/0959-4388(94)90066-3
– volume: 4
  start-page: S41
  year: 2002
  ident: e_1_2_6_78_1
  article-title: Temporoporal metabolic abnormalities in temporal lobe
  publication-title: Epileptic Disord
– ident: e_1_2_6_74_1
  doi: 10.1016/S0197-4580(03)00113-1
– ident: e_1_2_6_28_1
  doi: 10.1093/brain/awg092
– volume: 41
  start-page: 129
  year: 1934
  ident: e_1_2_6_11_1
  article-title: Die myeloarchitektonik der dorsalen Schlafenlappenrinde beim Menschen
  publication-title: J Psychol Neurol
– year: 1975
  ident: e_1_2_6_84_1
  doi: 10.1007/978-3-642-80890-6
– ident: e_1_2_6_60_1
  doi: 10.1002/cne.10609
– volume-title: The neocortex of Macaca mulatta
  year: 1947
  ident: e_1_2_6_94_1
– ident: e_1_2_6_62_1
  doi: 10.1016/S0169-328X(00)00194-7
– ident: e_1_2_6_9_1
  doi: 10.1016/0306-4522(93)90132-Y
– ident: e_1_2_6_38_1
  doi: 10.1016/j.neuroimage.2007.12.043
– ident: e_1_2_6_33_1
  doi: 10.1001/archpsyc.57.8.769
– ident: e_1_2_6_29_1
  doi: 10.1002/cne.902210206
– ident: e_1_2_6_39_1
  doi: 10.1080/02724990444000177
– ident: e_1_2_6_98_1
  doi: 10.1093/cercor/4.5.470
– ident: e_1_2_6_10_1
  doi: 10.1002/(SICI)1096-9861(19990802)410:3<343::AID-CNE1>3.0.CO;2-1
– ident: e_1_2_6_77_1
  doi: 10.1002/cne.903430308
– ident: e_1_2_6_21_1
  doi: 10.1016/j.pscychresns.2004.09.002
– ident: e_1_2_6_12_1
  doi: 10.1016/0168-0102(92)90014-4
– ident: e_1_2_6_69_1
  doi: 10.1523/JNEUROSCI.16-15-04757.1996
– ident: e_1_2_6_79_1
  doi: 10.1002/(SICI)1096-9861(19981005)399:4<469::AID-CNE3>3.0.CO;2-#
– ident: e_1_2_6_72_1
  doi: 10.1002/cne.21577
– ident: e_1_2_6_32_1
  doi: 10.1002/hbm.1033
– ident: e_1_2_6_75_1
  doi: 10.1016/0006-8993(78)90584-X
– volume-title: Atlas of the cytoarchitectonics of the human cerebral cortex
  year: 1955
  ident: e_1_2_6_73_1
– ident: e_1_2_6_68_1
  doi: 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V
– start-page: 77
  volume-title: The amygdaloid complex
  year: 1981
  ident: e_1_2_6_91_1
– ident: e_1_2_6_5_1
  doi: 10.1093/cercor/1.1.103
– ident: e_1_2_6_85_1
  doi: 10.1073/pnas.80.19.6126
– ident: e_1_2_6_51_1
  doi: 10.1002/cne.902120104
– ident: e_1_2_6_46_1
  doi: 10.1002/cne.10842
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1365-2990.1989.tb01255.x
– ident: e_1_2_6_49_1
  doi: 10.1002/(SICI)1098-1063(1999)9:1<54::AID-HIPO6>3.0.CO;2-O
– volume: 88
  start-page: 481
  year: 1954
  ident: e_1_2_6_3_1
  article-title: The secondary olfactory areas in the human brain
  publication-title: J Anat
– ident: e_1_2_6_56_1
  doi: 10.1016/0166-4328(95)00227-8
– ident: e_1_2_6_99_1
  doi: 10.1016/S0920-9964(98)00094-2
– ident: e_1_2_6_83_1
  doi: 10.1002/(SICI)1096-9861(19961125)375:4<552::AID-CNE2>3.0.CO;2-0
– ident: e_1_2_6_80_1
  doi: 10.1002/(SICI)1096-9861(19990412)406:3<299::AID-CNE2>3.0.CO;2-9
– ident: e_1_2_6_93_1
  doi: 10.1002/cne.1320
– ident: e_1_2_6_40_1
  doi: 10.1002/cne.902640306
– ident: e_1_2_6_42_1
  doi: 10.1002/(SICI)1097-0029(19981001)43:1<8::AID-JEMT2>3.0.CO;2-4
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1460-9568.2005.04299.x
– ident: e_1_2_6_36_1
  doi: 10.1016/S1474-4422(07)70266-1
– ident: e_1_2_6_92_1
  doi: 10.1111/j.1749-6632.2000.tb06731.x
– ident: e_1_2_6_59_1
  doi: 10.1093/brain/awm052
– ident: e_1_2_6_52_1
  doi: 10.1002/(SICI)1096-9861(19971110)388:1<64::AID-CNE5>3.0.CO;2-M
– ident: e_1_2_6_53_1
  doi: 10.1002/cne.902560108
– ident: e_1_2_6_23_1
  doi: 10.1016/B978-0-12-547625-6.50025-8
– ident: e_1_2_6_41_1
  doi: 10.1002/cne.903550203
– volume: 15
  start-page: 385
  year: 1999
  ident: e_1_2_6_25_1
  article-title: Developmental changes of calbindin‐D28k immunoreactivity in the hippocampal formation of human fetus
  publication-title: Chin J Neuroanat
– ident: e_1_2_6_58_1
  doi: 10.1006/nimg.2001.1015
– ident: e_1_2_6_97_1
  doi: 10.1523/JNEUROSCI.11-04-01095.1991
– ident: e_1_2_6_17_1
  doi: 10.1002/cne.902820204
– volume: 4
  start-page: S23
  year: 2002
  ident: e_1_2_6_61_1
  article-title: Direct electrical stimulations of the temporal pole in human
  publication-title: Epileptic Disord
– ident: e_1_2_6_4_1
  doi: 10.1016/0165-3806(91)90119-4
– ident: e_1_2_6_86_1
  doi: 10.1002/cne.903500402
– ident: e_1_2_6_50_1
  doi: 10.1093/brain/122.10.1839
– volume: 41
  start-page: 237
  year: 1907
  ident: e_1_2_6_81_1
  article-title: A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci
  publication-title: J Anat
– ident: e_1_2_6_8_1
  doi: 10.1002/cne.902760302
– ident: e_1_2_6_37_1
  doi: 10.1002/(SICI)1096-9861(19961202)376:1<112::AID-CNE7>3.0.CO;2-6
– ident: e_1_2_6_63_1
  doi: 10.1093/brain/122.12.2337
– ident: e_1_2_6_76_1
  doi: 10.1002/cne.903120412
– ident: e_1_2_6_6_1
  doi: 10.1001/archneur.1994.00540140051014
– ident: e_1_2_6_19_1
  doi: 10.1002/cne.903630408
– volume-title: The isocortex of man
  year: 1951
  ident: e_1_2_6_7_1
– volume-title: The cytoarchitectonics of the human cerebral cortex
  year: 1929
  ident: e_1_2_6_95_1
– ident: e_1_2_6_44_1
  doi: 10.1002/cne.902610304
– ident: e_1_2_6_87_1
  doi: 10.1002/cne.10744
– ident: e_1_2_6_67_1
  doi: 10.1016/B978-0-12-547625-6.50034-9
– volume: 19
  start-page: 659
  year: 1998
  ident: e_1_2_6_43_1
  article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_16_1
  doi: 10.1002/hipo.450050503
– volume-title: Functional neuroanatomy: test and atlas
  year: 1998
  ident: e_1_2_6_2_1
– ident: e_1_2_6_65_1
  doi: 10.1126/science.1078900
– ident: e_1_2_6_18_1
  doi: 10.1002/cne.903460305
– ident: e_1_2_6_54_1
  doi: 10.1002/cne.902120103
– volume-title: Vergleichende lokalisationslehre der Grosshirnrinde
  year: 1909
  ident: e_1_2_6_14_1
– ident: e_1_2_6_66_1
  doi: 10.1002/cne.903100403
– volume-title: Die Cytoarchitecktonik der Grosshirnrinde des erwachsenen Menschen
  year: 1925
  ident: e_1_2_6_96_1
– ident: e_1_2_6_82_1
  doi: 10.1002/(SICI)1096-9861(19960219)365:4<610::AID-CNE8>3.0.CO;2-7
– ident: e_1_2_6_34_1
  doi: 10.1016/S0006-8993(98)01182-2
– ident: e_1_2_6_64_1
  doi: 10.1016/j.heares.2007.01.003
– ident: e_1_2_6_22_1
  doi: 10.1038/380499a0
– ident: e_1_2_6_26_1
  doi: 10.1002/cne.10516
– ident: e_1_2_6_70_1
  doi: 10.1523/JNEUROSCI.20-13-05083.2000
– ident: e_1_2_6_45_1
  doi: 10.1523/JNEUROSCI.20-18-06974.2000
– ident: e_1_2_6_88_1
  doi: 10.1162/089892902760191144
– ident: e_1_2_6_27_1
  doi: 10.1016/S0028-3932(02)00089-1
– ident: e_1_2_6_35_1
  doi: 10.1007/s004290000135
– ident: e_1_2_6_31_1
  doi: 10.1002/cne.902800303
– ident: e_1_2_6_90_1
  doi: 10.1162/08989290260045800
SSID ssj0009938
Score 2.368881
Snippet Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high‐order brain functions and many neurological...
Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological...
Although human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 595
SubjectTerms Aged
Aged, 80 and over
Aging
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Antigens, Nuclear - metabolism
auditory cortex
Benzothiazoles
Female
Histocytochemistry
Humans
Immunohistochemistry
insular cortex
Male
medial temporal lobe
Nerve Tissue Proteins - metabolism
neurofibrillary tangle
perirhinal cortex
Plant Lectins
Pyramidal Cells - cytology
pyriform cortex
Receptors, N-Acetylglucosamine
Tauopathies - pathology
temporal area TG
Temporal Lobe - anatomy & histology
Temporal Lobe - cytology
Temporal Lobe - metabolism
Temporal Lobe - pathology
Thiazoles
Title Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers
URI https://api.istex.fr/ark:/67375/WNG-M1N2DM3R-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.22053
https://www.ncbi.nlm.nih.gov/pubmed/19363802
https://www.proquest.com/docview/20558919
https://www.proquest.com/docview/67173658
https://pubmed.ncbi.nlm.nih.gov/PMC3665344
Volume 514
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEA6lIvjF-u7WqkFE_OBe9zab7EY_ldpaCndIqVhECHlbLO3tlt4d1P4Gf7Qz2Zfzagvit7A7WTbJZDKTPHmGkNfOyZJnAjw3U_A4M17GspRZ7F2hhwbWLKtxQ380Fntfsv0jfrRCPnR3YRp-iH7DDWdGsNc4wbWZbi5IQ23lB3hLFJk-EauFDtHBgjoK1t3GCiMEQYq8YxVK0s2-5tJadAu79eI6R_NvvOSffmxYiHbXyPeuCQ3-5GQwn5mBvbzC7vifbbxH7rYOKt1qNOo-WfHVA3L7Wx223x-SX5912OwPA0rrkoYkf7RluDqlZxgqU4sQ3ov3dAtKE4i9vaO6ZT_BOh2Kkdqfs7o_ykCS3ncUlGhy9ZmuHMXUyZ2hphMEFZ1PH5HD3Z3D7b24zegQW4iMWFwmDiKmtGRW-gJ8ObD6nqUQsUCQWPASc4wn3PChM9al1lgrc200mBzDC1Aq9pisVnXlnxJa2DxNjMxMpnmWeiat8MJ5mQiHnHVlRN52Q6tsy3aOSTdOVcPTnCroWxX6NiKvetGzhuLjOqE3QT96CWgnYuJyrr6OP6nRcJx-HLEDtR-Rl50CKZipYUQqX8-nCj6DKRzlzRICIRHgEkbkSaNwi_-RDAxlkkYkX1LFXgBZwpffVMc_Als4E4KzLIMOCZp2cxPV9ngnFNb_XfQZudMcrwkwtxtkdXY-98_BS5uZF2E6_gar7DyY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKKwQv3Ee4aiGEeCDbbBw7MeKlKi1L6UaoWkSFhKz4iEB0k6rdlQq_gR_NjHMsW1oJ8WYl4yhjj8cz4_E3hDyzVpY8EWC56YyHiXYylKVMQmezYqhhzzIFBvTHuRh9THYP-MEKed3dhWnwIfqAG64Mr69xgWNAemOBGmoqN8BrouwSWcOK3t6h2l-AR8HO2-hhTEKQIu1whaJ4o--6tBut4cCenmdq_p0x-acl67einevkS8dEk4HyfTCf6YH5eQbf8X-5vEGutTYq3WyE6iZZcdUtcvlz7SPwt8mvD4WP9_s5pXVJfZ0_2oJcHdIj9JapwSze01d0E1pTcL-dpUULgIJ9ukRGan7M6v40A3F6X1KQo-nZZ0VlKVZP7nQ1nWJe0fHJHTLZ2Z5sjcK2qENowDliYRlZcJrikhnpMjDnQPE7FoPTAn5ixkssMx5xzYdWGxsbbYxMC12A1tE8A7lid8lqVVfuPqGZSeNIy0QnBU9ix6QRTlgnI2ERtq4MyItubpVpAc-x7sahaqCaYwVjq_zYBuRpT3rUoHycR_TcC0hPAXxiWlzK1af8rRoP8_jNmO2r3YCsdxKkYLH6GalcPT9R8Bms4igvphCYFQFWYUDuNRK3-B_JQFdGcUDSJVnsCRAofPlN9e2rBwxnQnCWJDAgXtQuZlFt5du-8eDfSdfJldFkvKf23uXvH5KrzWmbAO37iKzOjufuMRhtM_3Er83fPQpAsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKKxAv3Ee4aiGEeCDbbBw7MTxV3S6lsKuqKmqFkKz4iEB0k1W7KxV-Az-aGedYtrQS4s1KxlFsfx7P2ONvCHlhrSx4IsBy0xkPE-1kKAuZhM5meV_DmmVy3NAfjcXOp2T3iB-tkLftXZiaH6LbcMOZ4fU1TvCpLTYWpKGmdD28JcqukLVERBlCerC_4I6ChbdWwxiDIEXa0gpF8UZXdWkxWsN-PbvI0vw7YPJPQ9avRMOb5EvbhjoA5XtvPtM98_McveN_NvIWudFYqHSzhtRtsuLKO-Tq58rvv98lv_Zyv9vvR5RWBfVZ_mhDcXVMp-grU4MxvGdv6CaUJuB8O0vzhv4E67RhjNT8mFXdWQay9L6mgKLJ-Wd5aSnmTm41NZ1gVNHJ6T1yMNw-2NoJm5QOoQHXiIVFZMFligtmpMvAmAO171gMLgt4iRkvMMl4xDXvW21sbLQxMs11DjpH8wxQxe6T1bIq3UNCM5PGkZaJTnKexI5JI5ywTkbCImldEZBX7dAq09CdY9aNY1UTNccK-lb5vg3I8050WnN8XCT00uOjk4B2YlBcytXh-J0a9cfxYMT21W5A1lsAKZiqfkRKV81PFXwGczjKyyUExkSATRiQBzXgFv8jGWjKKA5IugTFTgBpwpfflN--erpwJgRnSQId4pF2eRPV1njbFx79u-g6ubY3GKqP78cfHpPr9VGbANX7hKzOTubuKVhsM_3Mz8zfeP4_aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parcellation+of+human+temporal+polar+cortex%3A+a+combined+analysis+of+multiple+cytoarchitectonic%2C+chemoarchitectonic%2C+and+pathological+markers&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Ding%2C+Song-Lin&rft.au=Van+Hoesen%2C+Gary+W&rft.au=Cassell%2C+Martin+D&rft.au=Poremba%2C+Amy&rft.date=2009-06-20&rft.eissn=1096-9861&rft.volume=514&rft.issue=6&rft.spage=595&rft_id=info:doi/10.1002%2Fcne.22053&rft_id=info%3Apmid%2F19363802&rft.externalDocID=19363802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon