Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers
Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high‐order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present stu...
Saved in:
Published in | Journal of comparative neurology (1911) Vol. 514; no. 6; pp. 595 - 623 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
20.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high‐order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934;41:129–264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG. J. Comp. Neurol. 514:595–623, 2009. © 2009 Wiley‐Liss, Inc. |
---|---|
AbstractList | Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high‐order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934;41:129–264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG. J. Comp. Neurol. 514:595–623, 2009. © 2009 Wiley‐Liss, Inc. Although human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases, few studies on the parcellation and extent of human TPC are available using modern neuroanatomical techniques. The present study investigated TPC with combined analysis of several different cellular, neurochemical, and pathological markers finding that this area is not homogenous as at least six different areas extend into TPC with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC while areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into TPC is defined as TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as temporal insular cortex and named as area TI after Beck (1934) . Finally, a dysgranular TPC region which capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG. Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934; 41:129-264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG. J. Comp. Neurol. 514:595-623, 2009. Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934;41:129-264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG.Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934;41:129-264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG. Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases, few studies on the parcellation and extent of the human TPC are available that have used modern neuroanatomical techniques. The present study investigated the TPC with combined analysis of several different cellular, neurochemical, and pathological markers and found that this area is not homogenous, as at least six different areas extend into the TPC, with another area being unique to the polar region. Specifically, perirhinal area 35 extends into the posterior TPC, whereas areas 36 and TE extend more anteriorly. Dorsolaterally, an area located anterior to the typical area TA or parabelt auditory cortex is distinguishable from area TA and is defined as area TAr (rostral). The polysensory cortical area located primarily in the dorsal bank of the superior temporal sulcus, separate from area TA, extends for some distance into the TPC and is defined as the TAp (polysensory). Anterior to the limen insulae and the temporal pyriform cortex, a cortical area, characterized by its olfactory fibers in layer Ia and lack of layer IV, was defined as the temporal insular cortex and named as area TI after Beck (J. Psychol. Neurol. 1934;41:129-264). Finally, a dysgranular TPC region that capped the tip with some extension into the dorsal aspect of the TPC is defined as temporopolar area TG. Therefore, the human TPC actually includes areas TAr and TI, anterior parts of areas 35, 36, TE, and TAp, and the unique temporopolar area TG. |
Author | Poremba, Amy Ding, Song-Lin Van Hoesen, Gary W. Cassell, Martin D. |
AuthorAffiliation | 2 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242 3 Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642 1 Department of Psychology, University of Iowa, Iowa City, Iowa 52242 |
AuthorAffiliation_xml | – name: 3 Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642 – name: 1 Department of Psychology, University of Iowa, Iowa City, Iowa 52242 – name: 2 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242 |
Author_xml | – sequence: 1 givenname: Song-Lin surname: Ding fullname: Ding, Song-Lin email: song-lin_ding@urmc.rochester.edu organization: Department of Psychology, University of Iowa, Iowa City, Iowa 52242 – sequence: 2 givenname: Gary W. surname: Van Hoesen fullname: Van Hoesen, Gary W. organization: Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242 – sequence: 3 givenname: Martin D. surname: Cassell fullname: Cassell, Martin D. organization: Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242 – sequence: 4 givenname: Amy surname: Poremba fullname: Poremba, Amy organization: Department of Psychology, University of Iowa, Iowa City, Iowa 52242 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19363802$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAUtFAR3S4c-AMoJyQk0vojdmwOSNVSCqhdEKrE0XIcp2tw7BA7wP4HfjTu7nYFFYiTrfdmxvM87wgc-OANAI8RPEYQ4hPtzTHGkJJ7YIagYKXgDB2AWe6hUghWH4KjGD9DCIUg_AE4RIIwwiGegZ8f1KiNcyrZ4IvQFaupV75Iph_CqFwxBKfGQocxmR8vitN86xvrTVsor9w62njD6SeX7OBModcpZL2VTUan4K1-XuiV6e_WlG-LQaVVcOHa6vxKr8YvZowPwf1OuWge7c45uHp9drV4U168P3-7OL0oNa04KTvYCgZxR7QwHBNslDYEU06rinPaoYohSBuK2ka3WDdai1o1CuNc463oyBy83MoOU9ObVhuf8qhyGG32sZZBWflnx9uVvA7fJGGMkqrKAk93AmP4OpmYZG_j5he9CVOUrEY1YZT_F5gzo1zkNObgye-W9l5ug8qAky1AjyHG0XRS27QJLTu0TiIob1ZB5lWQm1XIjGd3GHvRv2B36t-tM-t_A-VieXbLKLcMG_Nm7Bk5xzw9qan8tDyXl2iJX12Sj_Id-QXnqdYo |
CitedBy_id | crossref_primary_10_3233_JAD_170693 crossref_primary_10_1002_cne_25243 crossref_primary_10_3389_fnana_2023_1240545 crossref_primary_10_1016_j_jchemneu_2010_06_002 crossref_primary_10_1016_j_jchemneu_2021_101925 crossref_primary_10_1016_j_comppsych_2011_09_004 crossref_primary_10_1093_cercor_bhp289 crossref_primary_10_1093_cercor_bhq019 crossref_primary_10_1007_s00213_014_3670_7 crossref_primary_10_1016_j_neuroimage_2017_04_024 crossref_primary_10_1002_hbm_22278 crossref_primary_10_1002_hbm_26119 crossref_primary_10_1038_nrn_2016_150 crossref_primary_10_14802_jmd_17061 crossref_primary_10_1016_j_neurobiolaging_2015_06_023 crossref_primary_10_1093_cercor_bhw195 crossref_primary_10_1093_brain_awab262 crossref_primary_10_1098_rspb_2009_1831 crossref_primary_10_1002_ar_22957 crossref_primary_10_1523_JNEUROSCI_2247_14_2014 crossref_primary_10_1093_cercor_bhv024 crossref_primary_10_1038_npp_2015_185 crossref_primary_10_1111_j_1528_1167_2010_02777_x crossref_primary_10_1016_j_neurobiolaging_2017_12_010 crossref_primary_10_1152_jn_00401_2012 crossref_primary_10_1002_hbm_24607 crossref_primary_10_1162_jocn_a_00007 crossref_primary_10_3171_2017_4_JNS162699 crossref_primary_10_1080_02687038_2019_1659935 crossref_primary_10_1155_2012_624519 crossref_primary_10_3390_anatomia3020007 crossref_primary_10_3280_RIP2019_002001 crossref_primary_10_1093_brain_aws059 crossref_primary_10_1097_WNR_0b013e328333d690 crossref_primary_10_1016_j_chc_2012_08_008 crossref_primary_10_1523_JNEUROSCI_2999_15_2016 crossref_primary_10_1016_j_plrev_2014_01_002 crossref_primary_10_1093_cercor_bhw260 crossref_primary_10_1038_s41598_023_33318_5 crossref_primary_10_1016_j_tics_2016_03_003 crossref_primary_10_1016_j_neuropsychologia_2010_11_018 crossref_primary_10_1016_j_neuropsychologia_2011_07_033 crossref_primary_10_1016_j_neuroimage_2012_03_041 crossref_primary_10_1016_j_neuroimage_2013_05_053 crossref_primary_10_1016_j_tics_2021_07_006 crossref_primary_10_1016_j_cortex_2016_02_015 crossref_primary_10_1093_scan_nss119 crossref_primary_10_1016_j_cortex_2012_08_009 crossref_primary_10_1093_brain_awac339 crossref_primary_10_1016_j_neulet_2012_03_020 crossref_primary_10_1097_MD_0000000000001767 crossref_primary_10_1007_s00429_020_02039_0 crossref_primary_10_1002_hbm_26771 crossref_primary_10_1111_bpa_12964 crossref_primary_10_1371_journal_pone_0068250 crossref_primary_10_1111_nyas_12951 crossref_primary_10_1016_j_gpb_2021_08_008 crossref_primary_10_1016_j_neuron_2015_12_001 crossref_primary_10_1186_s40035_019_0174_8 crossref_primary_10_1038_srep37973 crossref_primary_10_1093_cercor_bht260 crossref_primary_10_1111_srt_12965 crossref_primary_10_1098_rstb_2012_0392 crossref_primary_10_1007_s11682_016_9589_3 crossref_primary_10_1371_journal_pone_0166049 crossref_primary_10_1002_hbm_20940 crossref_primary_10_1007_s00429_014_0919_1 crossref_primary_10_1093_brain_aww313 crossref_primary_10_1002_hbm_26046 crossref_primary_10_1080_02643294_2014_914022 crossref_primary_10_1111_j_1750_3639_2012_00581_x crossref_primary_10_1002_cne_25684 crossref_primary_10_1002_cne_23786 crossref_primary_10_1088_0967_3334_35_3_323 crossref_primary_10_1002_cne_25449 crossref_primary_10_1093_cercor_bhu262 crossref_primary_10_1038_nrneurol_2014_159 crossref_primary_10_1002_cne_23707 crossref_primary_10_1007_s00429_014_0872_z crossref_primary_10_1016_j_cortex_2016_05_014 crossref_primary_10_1002_cne_24080 crossref_primary_10_1038_s44220_023_00125_w crossref_primary_10_1212_WNL_0000000000006920 crossref_primary_10_1038_s41598_020_62378_0 crossref_primary_10_1093_cercor_bhae312 crossref_primary_10_1093_cercor_bhad232 crossref_primary_10_1111_ejn_13706 crossref_primary_10_5056_jnm17076 crossref_primary_10_1002_hbm_23167 crossref_primary_10_1002_cne_23431 crossref_primary_10_1007_s00429_012_0441_2 crossref_primary_10_1016_j_neurobiolaging_2024_12_011 crossref_primary_10_1002_cne_23432 crossref_primary_10_1016_j_neuroimage_2012_08_071 crossref_primary_10_1038_tp_2015_69 crossref_primary_10_1038_s41583_019_0213_6 crossref_primary_10_1016_j_neuropsychologia_2016_05_002 crossref_primary_10_1089_cap_2011_0005 crossref_primary_10_1097_WNR_0000000000000602 crossref_primary_10_1371_journal_pone_0211699 crossref_primary_10_1007_s00429_017_1513_0 crossref_primary_10_3171_2017_3_JNS162821 crossref_primary_10_1162_jocn_a_00722 crossref_primary_10_1016_j_tics_2015_09_002 crossref_primary_10_1007_s10548_014_0353_y crossref_primary_10_1016_j_bbr_2020_113103 crossref_primary_10_1002_hbm_25976 crossref_primary_10_1007_s00429_019_01987_6 crossref_primary_10_1016_j_brainresbull_2011_08_010 crossref_primary_10_1093_brain_awt222 crossref_primary_10_1080_17470919_2013_797020 crossref_primary_10_1109_ACCESS_2022_3186888 crossref_primary_10_1016_j_bandl_2017_04_004 crossref_primary_10_3389_fnana_2018_00093 crossref_primary_10_1093_cercor_bht196 crossref_primary_10_1371_journal_pone_0124527 crossref_primary_10_1523_JNEUROSCI_2180_11_2011 crossref_primary_10_1016_j_cortex_2015_04_021 crossref_primary_10_1002_cne_25550 crossref_primary_10_1038_s41593_024_01774_5 crossref_primary_10_1016_j_neubiorev_2020_05_008 crossref_primary_10_1016_j_nbd_2010_09_011 crossref_primary_10_1162_jocn_a_00263 crossref_primary_10_1002_hipo_23602 crossref_primary_10_1016_j_jmva_2017_10_002 crossref_primary_10_1002_cne_23416 crossref_primary_10_1016_j_neuroimage_2012_09_055 crossref_primary_10_1002_hipo_22354 crossref_primary_10_3389_fnagi_2016_00260 crossref_primary_10_1016_j_cortex_2015_10_020 crossref_primary_10_1371_journal_pone_0039516 crossref_primary_10_1016_j_nicl_2017_05_022 crossref_primary_10_1523_ENEURO_0392_17_2017 crossref_primary_10_3389_fpsyg_2017_00517 crossref_primary_10_1093_cercor_bhaa022 crossref_primary_10_1016_j_neuroimage_2011_10_006 |
Cites_doi | 10.1093/brain/123.9.1903 10.1002/cne.21141 10.1093/brain/124.10.2087 10.1007/BF00293315 10.1093/brain/awh512 10.1152/jn.1981.46.2.369 10.1007/s002210100778 10.1016/0959-4388(94)90066-3 10.1016/S0197-4580(03)00113-1 10.1093/brain/awg092 10.1007/978-3-642-80890-6 10.1002/cne.10609 10.1016/S0169-328X(00)00194-7 10.1016/0306-4522(93)90132-Y 10.1016/j.neuroimage.2007.12.043 10.1001/archpsyc.57.8.769 10.1002/cne.902210206 10.1080/02724990444000177 10.1093/cercor/4.5.470 10.1002/(SICI)1096-9861(19990802)410:3<343::AID-CNE1>3.0.CO;2-1 10.1002/cne.903430308 10.1016/j.pscychresns.2004.09.002 10.1016/0168-0102(92)90014-4 10.1523/JNEUROSCI.16-15-04757.1996 10.1002/(SICI)1096-9861(19981005)399:4<469::AID-CNE3>3.0.CO;2-# 10.1002/cne.21577 10.1002/hbm.1033 10.1016/0006-8993(78)90584-X 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V 10.1093/cercor/1.1.103 10.1073/pnas.80.19.6126 10.1002/cne.902120104 10.1002/cne.10842 10.1111/j.1365-2990.1989.tb01255.x 10.1002/(SICI)1098-1063(1999)9:1<54::AID-HIPO6>3.0.CO;2-O 10.1016/0166-4328(95)00227-8 10.1016/S0920-9964(98)00094-2 10.1002/(SICI)1096-9861(19961125)375:4<552::AID-CNE2>3.0.CO;2-0 10.1002/(SICI)1096-9861(19990412)406:3<299::AID-CNE2>3.0.CO;2-9 10.1002/cne.1320 10.1002/cne.902640306 10.1002/(SICI)1097-0029(19981001)43:1<8::AID-JEMT2>3.0.CO;2-4 10.1111/j.1460-9568.2005.04299.x 10.1016/S1474-4422(07)70266-1 10.1111/j.1749-6632.2000.tb06731.x 10.1093/brain/awm052 10.1002/(SICI)1096-9861(19971110)388:1<64::AID-CNE5>3.0.CO;2-M 10.1002/cne.902560108 10.1016/B978-0-12-547625-6.50025-8 10.1002/cne.903550203 10.1006/nimg.2001.1015 10.1523/JNEUROSCI.11-04-01095.1991 10.1002/cne.902820204 10.1016/0165-3806(91)90119-4 10.1002/cne.903500402 10.1093/brain/122.10.1839 10.1002/cne.902760302 10.1002/(SICI)1096-9861(19961202)376:1<112::AID-CNE7>3.0.CO;2-6 10.1093/brain/122.12.2337 10.1002/cne.903120412 10.1001/archneur.1994.00540140051014 10.1002/cne.903630408 10.1002/cne.902610304 10.1002/cne.10744 10.1016/B978-0-12-547625-6.50034-9 10.1002/hipo.450050503 10.1126/science.1078900 10.1002/cne.903460305 10.1002/cne.902120103 10.1002/cne.903100403 10.1002/(SICI)1096-9861(19960219)365:4<610::AID-CNE8>3.0.CO;2-7 10.1016/S0006-8993(98)01182-2 10.1016/j.heares.2007.01.003 10.1038/380499a0 10.1002/cne.10516 10.1523/JNEUROSCI.20-13-05083.2000 10.1523/JNEUROSCI.20-18-06974.2000 10.1162/089892902760191144 10.1016/S0028-3932(02)00089-1 10.1007/s004290000135 10.1002/cne.902800303 10.1162/08989290260045800 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1002/cne.22053 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1096-9861 |
EndPage | 623 |
ExternalDocumentID | PMC3665344 19363802 10_1002_cne_22053 CNE22053 ark_67375_WNG_M1N2DM3R_J |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Mental Health funderid: MH 065452 – fundername: National Institute on Deafness and Other Communication Disorders funderid: DC0007156 – fundername: National Institute of Neurological Disorders and Stroke funderid: NS 14944; PO NS 19632 – fundername: NINDS NIH HHS grantid: R01 NS014944 – fundername: NINDS NIH HHS grantid: NS 14944 – fundername: NIMH NIH HHS grantid: R01 MH065452 – fundername: NIDCD NIH HHS grantid: DC0007156 – fundername: NINDS NIH HHS grantid: P0 NS 19632 – fundername: NINDS NIH HHS grantid: P01 NS019632 – fundername: NIDCD NIH HHS grantid: R01 DC007156 – fundername: NIMH NIH HHS grantid: MH 065452 – fundername: National Institute on Deafness and Other Communication Disorders : NIDCD grantid: R01 DC007156 || DC |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ABOCM ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 YQT ZZTAW ~IA ~WT AAHQN AAMNL AANHP ACRPL ACYXJ ADNMO ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5483-f0d9602f3c9e8232eace3258544885f146105b51dbcd2cbcc97aba225b58d9f3 |
IEDL.DBID | DR2 |
ISSN | 0021-9967 1096-9861 |
IngestDate | Thu Aug 21 14:00:25 EDT 2025 Fri Jul 11 08:00:54 EDT 2025 Fri Jul 11 11:04:23 EDT 2025 Mon Jul 21 05:28:55 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Tue Jul 01 01:57:21 EDT 2025 Wed Jan 22 16:21:30 EST 2025 Wed Oct 30 09:49:00 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5483-f0d9602f3c9e8232eace3258544885f146105b51dbcd2cbcc97aba225b58d9f3 |
Notes | ArticleID:CNE22053 ark:/67375/WNG-M1N2DM3R-J National Institute of Neurological Disorders and Stroke - No. NS 14944; No. PO NS 19632 istex:2070AA6636E9371B1E505A61AF11ADCCE01BE0D7 National Institute of Mental Health - No. MH 065452 National Institute on Deafness and Other Communication Disorders - No. DC0007156 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3665344 |
PMID | 19363802 |
PQID | 20558919 |
PQPubID | 23462 |
PageCount | 29 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3665344 proquest_miscellaneous_67173658 proquest_miscellaneous_20558919 pubmed_primary_19363802 crossref_citationtrail_10_1002_cne_22053 crossref_primary_10_1002_cne_22053 wiley_primary_10_1002_cne_22053_CNE22053 istex_primary_ark_67375_WNG_M1N2DM3R_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20 June 2009 |
PublicationDateYYYYMMDD | 2009-06-20 |
PublicationDate_xml | – month: 06 year: 2009 text: 20 June 2009 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of comparative neurology (1911) |
PublicationTitleAlternate | J. Comp. Neurol |
PublicationYear | 2009 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Webster MJ, Bachevalier J, Ungerleider LG. 1994. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4: 470-483. Barbas H, Ghashghaei H, Dombrowski SM, Rempel-Clower NL. 1999. Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J Comp Neurol 410: 343-367. Holdstock JS. 2005. The role of the human medial temporal lobe in object recognition and object discrimination. Q J Exp Psychol B 58: 326-339. Noppeney U, Price CJ. 2002. A PET study of stimulus- and task-induced semantic processing. Neuroimage 15: 927-935. Munoz M, Insausti R. 2005. Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis). Eur J Neurosci 22: 1368-1388. Olson IR, Plotzker A, Ezzyat Y. 2007. The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130: 1718-1731. Krieg WS. 1975. Interpretative atlas of the monkey's brain. Evanston, IL: Brain Books. Nakamura K, Kawahima R, Sato N, Nakamura A, Sugiura M, Kato T, Hatano K, Ito K, Fukuda H, Schormann T, Zilles K. 2000. Functional delineation of the human occipito-temporal areas related to face and scene processing: a PET study. Brain 123: 1903-1912. Von Economo C. 1929. The cytoarchitectonics of the human cerebral cortex. London: Oxford University Press. Barbas H, 1988. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276: 313-342. Allison AC. 1954. The secondary olfactory areas in the human brain. J Anat 88: 481-488. Hilbig H, Bidmon HJ, Blohm U, Zilles K. 2001. Wisteria floribunda agglutinin labeling patterns in the human cortex: a tool for revealing areal borders and subdivisions in parallel with immunocytochemistry. Anat Embryol 203: 45-52. Kondo H Saleem KS, Price JL. 2003. Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 465: 499-523. von Bonin G, Bailey P. 1947. The neocortex of Macaca mulatta. Urbana: University of Illinois Press. Saleem KS, Price JL, Hashikawa T. 2007. Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 500: 973-1006. Hof PR, Ungerleider LG, Webster MJ, Gattass R, Adams MM, Sailstad CA, Morrison JH. 1996. Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways. J Comp Neurol 376: 112-127. Seltzer B, Pandya DN. 1994. Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J Comp Neurol 343: 445-463. Saleem KS, Tanaka K. 1996. Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey. J Neurosci 16: 4757-4775. Ungerleider LG, Haxby JV. 1994. "What" and "where" in the human brain. Curr Opin Neurobiol 4: 157-165. Carmichael ST, Price JL. 1995. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363: 615-641. Poremba A, Mishkin M. 2007. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys. Hear Res 229: 14-23. Hackett TA, Stepniewska I, Kaas JH. 1999. Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res 817: 45-58. Shi CJ, Cassell MD. 1999. Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat. J Comp Neurol 406: 299-328. Ding SL, Morecraft RJ, Van Hoesen GW. 2003. Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. J Comp Neurol 456: 184-201. Van Hoesen GW, Augustinack JC, Dierking J, Redman SJ, Thangavel R. 2000. The parahippocampal gyrus in Alzheimer's disease. Clinical and preclinical neuroanatomical correlates. Ann N Y Acad Sci 911: 254-274. Moran MA, Mufson EJ, Mesulam M-M. 1987. Neural inputs into the temporopolar cortex of the rhesus monkey. J Comp Neurol 256: 88-103. Barbas H. 1993. Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey. Neuroscience 56: 841-864. Wright IC, Ellison ZR, Sharma T, Friston KJ, Murray RM, McGuire PK. 1999. Mapping of grey matter changes in schizophrenia. Schizophr Res 35: 1-14. Emmorey K, Grabowski T, McCullough S, Damasio H, Ponto LLB, Hichwa RD, Bellugi U. 2003. Neural systems underlying lexical retrieval for sign language. Neuropsychologia 41: 85-95. Suzuki WA, Amaral DG. 2003. Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463: 67-91. Braak E, Braak H, Mandelkow EM. 1994. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87: 554-567. Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkanen A. 1998b. MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 19: 659-671. Shi CJ, Cassell MD. 1998. Cascade projections from somatosensory cortex to the rat basolateral amygdala via the parietal insular cortex. J Comp Neurol 399: 469-491. Mufson EJ, Mesulam MM. 1982. Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J Comp Neurol 212: 23-37. Ongur D, Ferry AT, Price JL. 2003. Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460: 425-449. Stefanacci L, Suzuki WA, Amaral DG. 1996. Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 375: 552-582. Afifi AK, Bergman PA. 1998. Functional neuroanatomy: test and atlas. New York: McGraw-Hill. Vandenberghe R, Nobre AC, Price CJ. 2002. The response of left temporal cortex to sentences. J Cogn Neurosci 14: 550-560. Ding SL, Rockland. 2001. Modular organization of the monkey presubiculum. Exp Brain Res 139: 255-265. Saleem KS, Suzuki W, Tanaka K, Hashikawa T. 2000. Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey. J Neurosci 20: 5083-5101. Vogt BA, Vogt LJ, Perl DP, Hof PR. 2001. Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices. J Comp Neurol 438: 353-376. Braak H, Braak E. 1992. The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6-31. Brodmann K. 1909. Vergleichende lokalisationslehre der Grosshirnrinde. Leipzig: Barth. Suzuki WA, Amaral DG. 1994. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350: 497-533. Galaburda AM, Pandya DN. 1983. The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221: 169-184. Bailey PA, Von Bonin G. 1951. The isocortex of man. Urbana: University of Illinois Press. Perani D, Cappa SF, Schnur T, Tettamanti M, Collina S, Rosa MM, Fazio1 F. 1999. The neural correlates of verb and noun processing: a PET study. Brain 122: 2337-2344. Sarkissov SA, Filimonoff IN, Kononowa EP, Preobraschenskaja IS, Kukuew LA. 1955. Atlas of the cytoarchitectonics of the human cerebral cortex. Moscow: Medgiz. Crespo-Facorro B, Nopoulos PC, Chemerinski E, Kim JJ, Andreasen NC, Magnotta V. 2004. Temporal pole morphology and psychopathology in males with schizophrenia. Psychistry Res 132: 107-115. Beck E. 1934. Die myeloarchitektonik der dorsalen Schlafenlappenrinde beim Menschen. J Psychol Neurol 41: 129-264. Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR. 1996. A neural basis for lexical retrieval. Nature 380: 499-505. Gur RE, Turetsky BI, Cowell PE, Finkelman C, Maany V, Grossman RI, Arnold SE, Bilker WB, Gur RC. 2000. Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57: 769-775. Nakamura K, Kubota K. 1996. The primate temporal pole: its putative role in object recognition and memory. Behav Brain Res 77: 53-77. Semah F. 2002. Temporoporal metabolic abnormalities in temporal lobe. Epileptic Disord 4: S41-49. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. 1991. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex 1: 103-116. Von Economo C, Koskinas GN. 1925. Die Cytoarchitecktonik der Grosshirnrinde des erwachsenen Menschen. Berlin: Springer. Carmichael ST, Price JL. 1994. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol 346: 366-402. Preuss TM, Goldman-Rakic, PS. 1991. Architectonics of the parietal and temporal association cortex in the strepsitrhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310: 475-506. Gainotti G, Barbier A, Marra C. 2003. Slowly progressive defect in recognition of familiar people in a patient with right anterior temporal atrophy. Brain 126: 792-803. Schultz C, Ghebremedhin E, Tredici KD, Rüb U, Braak H. 2004. High prevalence of thorn-shaped astrocytes in the aged human medial temporal lobe. Neurobiol Aging 25: 397-405. Ang LC, Munoz DG, Shul D, George DH. 1991. SMI-32 immunoreactivity in human striate cortex during postnatal development. Dev Brain Res 61: 103-109. Johnson DM, Illig KR, Behan M, Haberly LB. 2000. New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that "primary" olfactory cortex functions like "association" cortex in other sensory systems. J Neurosci 20: 6974-6982. Maguire EA, Frith CD, Morris RGM. 1999. The functional neuroanatomy of comprehension and memory: the importance of prior knowledge. Bra 2007; 500 2002; 14 1987; 261 2002; 15 1991; 312 2007; 229 1987; 264 1991; 310 1954; 88 1991; 11 2004; 25 2008; 506 1989; 280 1981; 46 1975 1989; 282 1996; 380 1992; 15 1999; 122 1999; 403 1998; 399 2005; 22 1996; 77 1999; 406 1997; 388 1994; 343 2004; 132 1999; 817 1909 1983; 221 1994; 346 1998b; 19 1990 2001 2000; 57 1999; 15 2007; 130 2007; 6 1999; 410 1996; 375 1982; 212 1981 2000; 123 1995; 363 2003; 126 1978; 149 2001; 13 2003; 41 1996; 376 1975; 4 1947 2001; 139 2001; 124 1991; 1 1994; 350 2000; 911 2000; 20 1998 1951 2002; 4 1995; 355 1907; 41 1934; 41 2003; 456 1996; 16 2003; 299 1996; 365 2001; 203 1995; 5 1994; 87 1999; 9 1955 1993; 56 1987; 256 1991; 61 2005; 128 1999; 35 1988; 276 1983; 80 1989; 15 2001; 438 1929 2008; 40 2003; 465 2003; 463 1925 1994; 51 1994; 4 2005; 58 1998a; 43 2003; 460 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_30_1 e_1_2_6_72_1 Stephan H (e_1_2_6_84_1) 1975 Brodmann K (e_1_2_6_14_1) 1909 e_1_2_6_19_1 Semah F (e_1_2_6_78_1) 2002; 4 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 von Bonin G (e_1_2_6_94_1) 1947 Von Economo C (e_1_2_6_95_1) 1929 e_1_2_6_9_1 Insausti R (e_1_2_6_43_1) 1998; 19 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_54_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 Beck E (e_1_2_6_11_1) 1934; 41 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_80_1 Allison AC (e_1_2_6_3_1) 1954; 88 Van Hoesen GW (e_1_2_6_91_1) 1981 e_1_2_6_6_1 Krieg WS (e_1_2_6_47_1) 1975 e_1_2_6_23_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 Afifi AK (e_1_2_6_2_1) 1998 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 Ding SL (e_1_2_6_25_1) 1999; 15 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_20_1 Bailey PA (e_1_2_6_7_1) 1951 e_1_2_6_24_1 Sarkissov SA (e_1_2_6_73_1) 1955 e_1_2_6_66_1 Smith GE (e_1_2_6_81_1) 1907; 41 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_71_1 Ostrowsky K (e_1_2_6_61_1) 2002; 4 e_1_2_6_90_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_82_1 Von Economo C (e_1_2_6_96_1) 1925 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – reference: Semah F. 2002. Temporoporal metabolic abnormalities in temporal lobe. Epileptic Disord 4: S41-49. – reference: Perani D, Cappa SF, Schnur T, Tettamanti M, Collina S, Rosa MM, Fazio1 F. 1999. The neural correlates of verb and noun processing: a PET study. Brain 122: 2337-2344. – reference: Beck E. 1934. Die myeloarchitektonik der dorsalen Schlafenlappenrinde beim Menschen. J Psychol Neurol 41: 129-264. – reference: Lamy C, Duyckaerts C, Delaere P, Payan C, Fermanian J, Poulain V, Hauw JJ. 1989. Comparison of seven staining methods for senile plaques and neurofibrillary tangles in a prospective series of 15 elderly patients. Neuropathol Appl Neurobiol 15: 563-578. – reference: Emmorey K, Grabowski T, McCullough S, Damasio H, Ponto LLB, Hichwa RD, Bellugi U. 2003. Neural systems underlying lexical retrieval for sign language. Neuropsychologia 41: 85-95. – reference: Munoz M, Insausti R. 2005. Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis). Eur J Neurosci 22: 1368-1388. – reference: Allison AC. 1954. The secondary olfactory areas in the human brain. J Anat 88: 481-488. – reference: Mikkonen M, Soininen H, Pitkänen, A. 1997. Distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex. J Comp Neurol 388: 64-88. – reference: Gur RE, Turetsky BI, Cowell PE, Finkelman C, Maany V, Grossman RI, Arnold SE, Bilker WB, Gur RC. 2000. Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57: 769-775. – reference: Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkanen A. 1998b. MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 19: 659-671. – reference: Kondo H Saleem KS, Price JL. 2003. Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 465: 499-523. – reference: Von Economo C, Koskinas GN. 1925. Die Cytoarchitecktonik der Grosshirnrinde des erwachsenen Menschen. Berlin: Springer. – reference: Arnold SE, Hyman BT, Van Hoesen GW. 1994. Neuropathologic changes of the temporal pole in Alzheimer's disease and Pick's disease. Arch Neurol 51: 145-150. – reference: Mufson EJ, Mesulam MM. 1982. Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J Comp Neurol 212: 23-37. – reference: Shi CJ, Cassell MD. 1998. Cascade projections from somatosensory cortex to the rat basolateral amygdala via the parietal insular cortex. J Comp Neurol 399: 469-491. – reference: Barbas H, Ghashghaei H, Dombrowski SM, Rempel-Clower NL. 1999. Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J Comp Neurol 410: 343-367. – reference: Hoistad M, Barbas H. 2008. Sequence of information processing for emotions through pathways linking temporal and insular cortices with the amygdala. NeuroImage 40: 1016-1033. – reference: Insausti R, Tunon T, Sobreviela T, Insausti AM, Gonzalo LM. 1995. The human entorhinal cortex: a cytoarchitectonic analysis. J Comp Neurol 355: 171-198. – reference: Webster MJ, Bachevalier J, Ungerleider LG. 1994. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4: 470-483. – reference: Nakamura K, Kubota K. 1996. The primate temporal pole: its putative role in object recognition and memory. Behav Brain Res 77: 53-77. – reference: Preuss TM, Goldman-Rakic, PS. 1991. Architectonics of the parietal and temporal association cortex in the strepsitrhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310: 475-506. – reference: Vogt BA, Vogt LJ, Perl DP, Hof PR. 2001. Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices. J Comp Neurol 438: 353-376. – reference: Carmichael ST, Price JL. 1994. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol 346: 366-402. – reference: Hackett TA, Stepniewska I, Kaas JH. 1999. Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res 817: 45-58. – reference: Sternberger LA, Sternberger NH. 1983. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A 80: 6126-6130. – reference: Saleem KS, Suzuki W, Tanaka K, Hashikawa T. 2000. Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey. J Neurosci 20: 5083-5101. – reference: Maguire EA, Mummery CJ. 1999. Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus 9: 54-61. – reference: Saleem KS, Kondo H, Price JL. 2008. Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J Comp Neurol 506: 659-693. – reference: Schultz C, Ghebremedhin E, Tredici KD, Rüb U, Braak H. 2004. High prevalence of thorn-shaped astrocytes in the aged human medial temporal lobe. Neurobiol Aging 25: 397-405. – reference: Stefanacci L, Suzuki WA, Amaral DG. 1996. Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 375: 552-582. – reference: Braak H, Braak E. 1992. The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6-31. – reference: Holdstock JS. 2005. The role of the human medial temporal lobe in object recognition and object discrimination. Q J Exp Psychol B 58: 326-339. – reference: Romanski LM, Bates JF, Goldman-Rakic PS. 1999. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403: 141-157. – reference: Suzuki WA, Amaral DG. 2003. Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463: 67-91. – reference: Noppeney U, Price CJ. 2002. A PET study of stimulus- and task-induced semantic processing. Neuroimage 15: 927-935. – reference: Tsukiura T, Fujii T, Fukatsu R, Otsuki T, Okuda J, Umetsu A, Suzuki K, Tabuchi M, Yanagawa I, Nagasaka T, Kawashima R, Fukuda H, Takahashi S, Yamadori A. 2002. Neural basis of the retrieval of people's names: evidence from brain-damaged patients and fMRI. J Cogn Neurosci 14: 922-937. – reference: Ding SL, Rockland. 2001. Modular organization of the monkey presubiculum. Exp Brain Res 139: 255-265. – reference: Sarkissov SA, Filimonoff IN, Kononowa EP, Preobraschenskaja IS, Kukuew LA. 1955. Atlas of the cytoarchitectonics of the human cerebral cortex. Moscow: Medgiz. – reference: Ongur D, Ferry AT, Price JL. 2003. Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460: 425-449. – reference: Smith GE. 1907. A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat 41: 237-254. – reference: Iwai E, Yukie M. 1987. Amygdalofugal and amygdaloprtal connections with modality-specific visual cortical areas in macaques (Macaca fuscata, M. mulatta, and M. fascicularis). J Comp Neurol 261: 362-387. – reference: Wright IC, Ellison ZR, Sharma T, Friston KJ, Murray RM, McGuire PK. 1999. Mapping of grey matter changes in schizophrenia. Schizophr Res 35: 1-14. – reference: Burwell RD, Witter MP, Amaral DG. 1995. Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus 5: 390-408. – reference: Ding SL, Zheng DS, Yan YH, Sun WW. 1999. Developmental changes of calbindin-D28k immunoreactivity in the hippocampal formation of human fetus. Chin J Neuroanat 15: 385-389. – reference: Olson IR, Plotzker A, Ezzyat Y. 2007. The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130: 1718-1731. – reference: Ding SL, Morecraft RJ, Van Hoesen GW. 2003. Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. J Comp Neurol 456: 184-201. – reference: Saleem KS, Tanaka K. 1996. Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey. J Neurosci 16: 4757-4775. – reference: Seltzer B, Pandya DN. 1978. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149: 1-24. – reference: Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. 1991. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex 1: 103-116. – reference: Ostrowsky K, Desestret V, Ryvlin P, Coste S, Mauguiere F. 2002. Direct electrical stimulations of the temporal pole in human. Epileptic Disord 4: S23-27. – reference: Suzuki WA, Amaral DG. 1994. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350: 497-533. – reference: Barbas H, 1988. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276: 313-342. – reference: Hodges JR, Patterson K. 2007. Semantic dementia: a unique clinico-pathological syndrome. Lancet Neurol 6: 1004-1014. – reference: Maguire EA, Frith CD, Morris RGM. 1999. The functional neuroanatomy of comprehension and memory: the importance of prior knowledge. Brain 122: 1839-1850. – reference: Seltzer B, Pandya DN. 1991. Post-rolandic cortical projections of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 312: 625-640. – reference: Solodkin A, Van Hoesen GW. 1996. Entorhinal cortex modules of the human brain. J Comp Neurol 365: 610-627. – reference: Hof PR, Ungerleider LG, Webster MJ, Gattass R, Adams MM, Sailstad CA, Morrison JH. 1996. Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways. J Comp Neurol 376: 112-127. – reference: Ungerleider LG, Haxby JV. 1994. "What" and "where" in the human brain. Curr Opin Neurobiol 4: 157-165. – reference: Insausti R, Insausti AM, Sobreviela MT, Salinas A, Martinez-Penuela JM. 1998a. Human medial temporal lobe in adding: anatomical base of memory preservation. Microsc Res Tech 43: 8-15. – reference: Vandenberghe R, Nobre AC, Price CJ. 2002. The response of left temporal cortex to sentences. J Cogn Neurosci 14: 550-560. – reference: Johnson DM, Illig KR, Behan M, Haberly LB. 2000. New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that "primary" olfactory cortex functions like "association" cortex in other sensory systems. J Neurosci 20: 6974-6982. – reference: Moran MA, Mufson EJ, Mesulam M-M. 1987. Neural inputs into the temporopolar cortex of the rhesus monkey. J Comp Neurol 256: 88-103. – reference: Chabardès S, Kahane P, Minotti L, Tassi L, Grand S, Hoffmann D, Benabid AL. 2005. The temporopolar cortex plays a pivotal role in temporal lobe seizures. Brain 128: 1818-1831. – reference: Paxinos G, Franklin KBJ. 2001. The mouse brain in stereotaxic coordinates. San Diego: Academic Press. – reference: Barbas H. 1993. Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey. Neuroscience 56: 841-864. – reference: Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR. 1996. A neural basis for lexical retrieval. Nature 380: 499-505. – reference: Nakamura K, Kawahima R, Sato N, Nakamura A, Sugiura M, Kato T, Hatano K, Ito K, Fukuda H, Schormann T, Zilles K. 2000. Functional delineation of the human occipito-temporal areas related to face and scene processing: a PET study. Brain 123: 1903-1912. – reference: Webster MJ, Ungerleider LG, Bachevalier J. 1991. Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 11: 1095-1116. – reference: Gower EC. 1989. Efferent projections from limbic cortex of the temporal pole to the magnocellular medial dorsal nucleus in the rhesus monkey. J Comp Neurol 280: 343-358. – reference: Shi CJ, Cassell MD. 1999. Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat. J Comp Neurol 406: 299-328. – reference: Seltzer B, Pandya DN. 1994. Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J Comp Neurol 343: 445-463. – reference: Van Hoesen GW, Augustinack JC, Dierking J, Redman SJ, Thangavel R. 2000. The parahippocampal gyrus in Alzheimer's disease. Clinical and preclinical neuroanatomical correlates. Ann N Y Acad Sci 911: 254-274. – reference: Bailey PA, Von Bonin G. 1951. The isocortex of man. Urbana: University of Illinois Press. – reference: Carmichael ST, Price JL. 1995. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363: 615-641. – reference: Poremba A, Mishkin M. 2007. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys. Hear Res 229: 14-23. – reference: Saleem KS, Price JL, Hashikawa T. 2007. Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 500: 973-1006. – reference: Gainotti G, Barbier A, Marra C. 2003. Slowly progressive defect in recognition of familiar people in a patient with right anterior temporal atrophy. Brain 126: 792-803. – reference: Gorno-Tempini ML, Price CJ. 2001. Identification of famous faces and buildings: a functional neuroimaging study of semantically unique items. Brain. 124: 2087-2097. – reference: Hilbig H, Bidmon HJ, Blohm U, Zilles K. 2001. Wisteria floribunda agglutinin labeling patterns in the human cortex: a tool for revealing areal borders and subdivisions in parallel with immunocytochemistry. Anat Embryol 203: 45-52. – reference: Poremba A, Saunders RC, Crane AM, Cook M, Sokoloff L, Mishkin M. 2003. Functional mapping of the primate auditory system. Science 299: 568-572. – reference: Afifi AK, Bergman PA. 1998. Functional neuroanatomy: test and atlas. New York: McGraw-Hill. – reference: Braak E, Braak H, Mandelkow EM. 1994. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87: 554-567. – reference: Crespo-Facorro B, Nopoulos PC, Chemerinski E, Kim JJ, Andreasen NC, Magnotta V. 2004. Temporal pole morphology and psychopathology in males with schizophrenia. Psychistry Res 132: 107-115. – reference: Krieg WS. 1975. Interpretative atlas of the monkey's brain. Evanston, IL: Brain Books. – reference: von Bonin G, Bailey P. 1947. The neocortex of Macaca mulatta. Urbana: University of Illinois Press. – reference: Ang LC, Munoz DG, Shul D, George DH. 1991. SMI-32 immunoreactivity in human striate cortex during postnatal development. Dev Brain Res 61: 103-109. – reference: Brodmann K. 1909. Vergleichende lokalisationslehre der Grosshirnrinde. Leipzig: Barth. – reference: Insausti R, Amaral DG, Cowan WM. 1987. The entorhinal cortex of the monkey. II. Cortical afferents. J Comp Neul 264: 356-359. – reference: Von Economo C. 1929. The cytoarchitectonics of the human cerebral cortex. London: Oxford University Press. – reference: Mesulam MM, Mufson EJ. 1982. Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol 212: 38-52. – reference: Campbell MJ, Morrison JH. 1989. Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282: 191-205. – reference: Bruce C, Desimone R, Gross CG. 1981. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46: 369-384. – reference: Galaburda AM, Pandya DN. 1983. The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221: 169-184. – reference: Grabowski TJ, Damasio H, Tranel D, Ponto LL, Hichwa RD, Damasio AR. 2001. A role for left temporal pole in the retrieval of words for unique entities. Hum Brain Mapp 13: 199-212. – volume: 299 start-page: 568 year: 2003 end-page: 572 article-title: Functional mapping of the primate auditory system publication-title: Science – start-page: 77 year: 1981 end-page: 90 – volume: 41 start-page: 129 year: 1934 end-page: 264 article-title: Die myeloarchitektonik der dorsalen Schlafenlappenrinde beim Menschen publication-title: J Psychol Neurol – volume: 203 start-page: 45 year: 2001 end-page: 52 article-title: agglutinin labeling patterns in the human cortex: a tool for revealing areal borders and subdivisions in parallel with immunocytochemistry publication-title: Anat Embryol – volume: 350 start-page: 497 year: 1994 end-page: 533 article-title: Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents publication-title: J Comp Neurol – volume: 87 start-page: 554 year: 1994 end-page: 567 article-title: A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads publication-title: Acta Neuropathol – volume: 20 start-page: 6974 year: 2000 end-page: 6982 article-title: New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems publication-title: J Neurosci – year: 1975 – volume: 4 start-page: S41 year: 2002 end-page: 49 article-title: Temporoporal metabolic abnormalities in temporal lobe publication-title: Epileptic Disord – volume: 149 start-page: 1 year: 1978 end-page: 24 article-title: Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey publication-title: Brain Res – volume: 463 start-page: 67 year: 2003 end-page: 91 article-title: Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization publication-title: J Comp Neurol – year: 1998 – volume: 123 start-page: 1903 year: 2000 end-page: 1912 article-title: Functional delineation of the human occipito‐temporal areas related to face and scene processing: a PET study publication-title: Brain – volume: 132 start-page: 107 year: 2004 end-page: 115 article-title: Temporal pole morphology and psychopathology in males with schizophrenia publication-title: Psychistry Res – volume: 14 start-page: 922 year: 2002 end-page: 937 article-title: Neural basis of the retrieval of people's names: evidence from brain‐damaged patients and fMRI publication-title: J Cogn Neurosci – volume: 312 start-page: 625 year: 1991 end-page: 640 article-title: Post‐rolandic cortical projections of the superior temporal sulcus in the rhesus monkey publication-title: J Comp Neurol – volume: 15 start-page: 563 year: 1989 end-page: 578 article-title: Comparison of seven staining methods for senile plaques and neurofibrillary tangles in a prospective series of 15 elderly patients publication-title: Neuropathol Appl Neurobiol – volume: 41 start-page: 85 year: 2003 end-page: 95 article-title: Neural systems underlying lexical retrieval for sign language publication-title: Neuropsychologia – volume: 6 start-page: 1004 year: 2007 end-page: 1014 article-title: Semantic dementia: a unique clinico‐pathological syndrome publication-title: Lancet Neurol – year: 1955 – volume: 212 start-page: 23 year: 1982 end-page: 37 article-title: Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum publication-title: J Comp Neurol – volume: 4 start-page: 470 year: 1994 end-page: 483 article-title: Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys publication-title: Cereb Cortex – volume: 80 start-page: 6126 year: 1983 end-page: 6130 article-title: Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ publication-title: Proc Natl Acad Sci U S A – volume: 128 start-page: 1818 year: 2005 end-page: 1831 article-title: The temporopolar cortex plays a pivotal role in temporal lobe seizures publication-title: Brain – volume: 817 start-page: 45 year: 1999 end-page: 58 article-title: Prefrontal connections of the parabelt auditory cortex in macaque monkeys publication-title: Brain Res – year: 1925 – volume: 11 start-page: 1095 year: 1991 end-page: 1116 article-title: Connections of inferior temporal areas TE and TEO with medial temporal‐lobe structures in infant and adult monkeys publication-title: J Neurosci – volume: 41 start-page: 237 year: 1907 end-page: 254 article-title: A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci publication-title: J Anat – volume: 19 start-page: 659 year: 1998b end-page: 671 article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices publication-title: AJNR Am J Neuroradiol – volume: 4 start-page: S23 year: 2002 end-page: 27 article-title: Direct electrical stimulations of the temporal pole in human publication-title: Epileptic Disord – volume: 282 start-page: 191 year: 1989 end-page: 205 article-title: Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex publication-title: J Comp Neurol – volume: 35 start-page: 1 year: 1999 end-page: 14 article-title: Mapping of grey matter changes in schizophrenia publication-title: Schizophr Res – volume: 61 start-page: 103 year: 1991 end-page: 109 article-title: SMI‐32 immunoreactivity in human striate cortex during postnatal development publication-title: Dev Brain Res – year: 1947 – volume: 46 start-page: 369 year: 1981 end-page: 384 article-title: Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque publication-title: J Neurophysiol – volume: 399 start-page: 469 year: 1998 end-page: 491 article-title: Cascade projections from somatosensory cortex to the rat basolateral amygdala via the parietal insular cortex publication-title: J Comp Neurol – volume: 911 start-page: 254 year: 2000 end-page: 274 article-title: The parahippocampal gyrus in Alzheimer's disease. Clinical and preclinical neuroanatomical correlates publication-title: Ann N Y Acad Sci – start-page: 583 year: 1990 end-page: 710 – start-page: 979 year: 1990 end-page: 998 – volume: 13 start-page: 199 year: 2001 end-page: 212 article-title: A role for left temporal pole in the retrieval of words for unique entities publication-title: Hum Brain Mapp – volume: 77 start-page: 53 year: 1996 end-page: 77 article-title: The primate temporal pole: its putative role in object recognition and memory publication-title: Behav Brain Res – volume: 346 start-page: 366 year: 1994 end-page: 402 article-title: Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey publication-title: J Comp Neurol – volume: 88 start-page: 481 year: 1954 end-page: 488 article-title: The secondary olfactory areas in the human brain publication-title: J Anat – volume: 410 start-page: 343 year: 1999 end-page: 367 article-title: Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory‐related areas in the rhesus monkey publication-title: J Comp Neurol – volume: 124 start-page: 2087 year: 2001 end-page: 2097 article-title: Identification of famous faces and buildings: a functional neuroimaging study of semantically unique items publication-title: Brain. – volume: 460 start-page: 425 year: 2003 end-page: 449 article-title: Architectonic subdivision of the human orbital and medial prefrontal cortex publication-title: J Comp Neurol – volume: 365 start-page: 610 year: 1996 end-page: 627 article-title: Entorhinal cortex modules of the human brain publication-title: J Comp Neurol – volume: 56 start-page: 841 year: 1993 end-page: 864 article-title: Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey publication-title: Neuroscience – volume: 355 start-page: 171 year: 1995 end-page: 198 article-title: The human entorhinal cortex: a cytoarchitectonic analysis publication-title: J Comp Neurol – volume: 500 start-page: 973 year: 2007 end-page: 1006 article-title: Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys publication-title: J Comp Neurol – volume: 58 start-page: 326 year: 2005 end-page: 339 article-title: The role of the human medial temporal lobe in object recognition and object discrimination publication-title: Q J Exp Psychol B – volume: 1 start-page: 103 year: 1991 end-page: 116 article-title: The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease publication-title: Cereb Cortex – year: 2001 – volume: 376 start-page: 112 year: 1996 end-page: 127 article-title: Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways publication-title: J Comp Neurol – volume: 122 start-page: 1839 year: 1999 end-page: 1850 article-title: The functional neuroanatomy of comprehension and memory: the importance of prior knowledge publication-title: Brain – volume: 375 start-page: 552 year: 1996 end-page: 582 article-title: Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys publication-title: J Comp Neurol – volume: 15 start-page: 6 year: 1992 end-page: 31 article-title: The human entorhinal cortex: normal morphology and lamina‐specific pathology in various diseases publication-title: Neurosci Res – volume: 456 start-page: 184 year: 2003 end-page: 201 article-title: Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo‐parahippocampal isthmus and adjoining retrocalcarine areas in the monkey publication-title: J Comp Neurol – volume: 9 start-page: 54 year: 1999 end-page: 61 article-title: Differential modulation of a common memory retrieval network revealed by positron emission tomography publication-title: Hippocampus – volume: 4 year: 1975 – volume: 343 start-page: 445 year: 1994 end-page: 463 article-title: Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study publication-title: J Comp Neurol – volume: 380 start-page: 499 year: 1996 end-page: 505 article-title: A neural basis for lexical retrieval publication-title: Nature – volume: 506 start-page: 659 year: 2008 end-page: 693 article-title: Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey publication-title: J Comp Neurol – volume: 5 start-page: 390 year: 1995 end-page: 408 article-title: Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain publication-title: Hippocampus – volume: 388 start-page: 64 year: 1997 end-page: 88 article-title: Distribution of parvalbumin‐, calretinin‐, and calbindin‐D28k‐immunoreactive neurons and fibers in the human entorhinal cortex publication-title: J Comp Neurol – volume: 229 start-page: 14 year: 2007 end-page: 23 article-title: Exploring the extent and function of higher‐order auditory cortex in rhesus monkeys publication-title: Hear Res – volume: 40 start-page: 1016 year: 2008 end-page: 1033 article-title: Sequence of information processing for emotions through pathways linking temporal and insular cortices with the amygdala publication-title: NeuroImage – volume: 16 start-page: 4757 year: 1996 end-page: 4775 article-title: Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey publication-title: J Neurosci – volume: 4 start-page: 157 year: 1994 end-page: 165 article-title: “What” and “where” in the human brain publication-title: Curr Opin Neurobiol – year: 1951 – volume: 139 start-page: 255 year: 2001 end-page: 265 article-title: Modular organization of the monkey presubiculum publication-title: Exp Brain Res – volume: 280 start-page: 343 year: 1989 end-page: 358 article-title: Efferent projections from limbic cortex of the temporal pole to the magnocellular medial dorsal nucleus in the rhesus monkey publication-title: J Comp Neurol – volume: 256 start-page: 88 year: 1987 end-page: 103 article-title: Neural inputs into the temporopolar cortex of the rhesus monkey publication-title: J Comp Neurol – volume: 261 start-page: 362 year: 1987 end-page: 387 article-title: Amygdalofugal and amygdaloprtal connections with modality‐specific visual cortical areas in macaques ( , , and ) publication-title: J Comp Neurol – volume: 406 start-page: 299 year: 1999 end-page: 328 article-title: Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat publication-title: J Comp Neurol – year: 1929 – volume: 57 start-page: 769 year: 2000 end-page: 775 article-title: Temporolimbic volume reductions in schizophrenia publication-title: Arch Gen Psychiatry – volume: 130 start-page: 1718 year: 2007 end-page: 1731 article-title: The enigmatic temporal pole: a review of findings on social and emotional processing publication-title: Brain – volume: 20 start-page: 5083 year: 2000 end-page: 5101 article-title: Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey publication-title: J Neurosci – volume: 25 start-page: 397 year: 2004 end-page: 405 article-title: High prevalence of thorn‐shaped astrocytes in the aged human medial temporal lobe publication-title: Neurobiol Aging – volume: 221 start-page: 169 year: 1983 end-page: 184 article-title: The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey publication-title: J Comp Neurol – volume: 363 start-page: 615 year: 1995 end-page: 641 article-title: Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys publication-title: J Comp Neurol – volume: 43 start-page: 8 year: 1998a end-page: 15 article-title: Human medial temporal lobe in adding: anatomical base of memory preservation publication-title: Microsc Res Tech – volume: 22 start-page: 1368 year: 2005 end-page: 1388 article-title: Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey ( ) publication-title: Eur J Neurosci – volume: 212 start-page: 38 year: 1982 end-page: 52 article-title: Insula of the old world monkey. III: Efferent cortical output and comments on function publication-title: J Comp Neurol – volume: 126 start-page: 792 year: 2003 end-page: 803 article-title: Slowly progressive defect in recognition of familiar people in a patient with right anterior temporal atrophy publication-title: Brain – volume: 465 start-page: 499 year: 2003 end-page: 523 article-title: Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys publication-title: J Comp Neurol – volume: 264 start-page: 356 year: 1987 end-page: 359 article-title: The entorhinal cortex of the monkey. II. Cortical afferents publication-title: J Comp Neul – year: 1909 – volume: 15 start-page: 385 year: 1999 end-page: 389 article-title: Developmental changes of calbindin‐D28k immunoreactivity in the hippocampal formation of human fetus publication-title: Chin J Neuroanat – volume: 51 start-page: 145 year: 1994 end-page: 150 article-title: Neuropathologic changes of the temporal pole in Alzheimer's disease and Pick's disease publication-title: Arch Neurol – volume: 403 start-page: 141 year: 1999 end-page: 157 article-title: Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey publication-title: J Comp Neurol – volume: 14 start-page: 550 year: 2002 end-page: 560 article-title: The response of left temporal cortex to sentences publication-title: J Cogn Neurosci – volume: 276 start-page: 313 year: 1988 end-page: 342 article-title: Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey publication-title: J Comp Neurol – volume: 438 start-page: 353 year: 2001 end-page: 376 article-title: Cytology of human caudomedial cingulate, retrosplenial, and caudal parahippocampal cortices publication-title: J Comp Neurol – volume: 310 start-page: 475 year: 1991 end-page: 506 article-title: Architectonics of the parietal and temporal association cortex in the strepsitrhine primate compared to the anthropoid primate publication-title: J Comp Neurol – volume: 15 start-page: 927 year: 2002 end-page: 935 article-title: A PET study of stimulus‐ and task‐induced semantic processing publication-title: Neuroimage – volume: 122 start-page: 2337 year: 1999 end-page: 2344 article-title: The neural correlates of verb and noun processing: a PET study publication-title: Brain – ident: e_1_2_6_57_1 doi: 10.1093/brain/123.9.1903 – volume-title: Interpretative atlas of the monkey's brain year: 1975 ident: e_1_2_6_47_1 – ident: e_1_2_6_71_1 doi: 10.1002/cne.21141 – ident: e_1_2_6_30_1 doi: 10.1093/brain/124.10.2087 – ident: e_1_2_6_13_1 doi: 10.1007/BF00293315 – ident: e_1_2_6_20_1 doi: 10.1093/brain/awh512 – ident: e_1_2_6_15_1 doi: 10.1152/jn.1981.46.2.369 – ident: e_1_2_6_24_1 doi: 10.1007/s002210100778 – ident: e_1_2_6_89_1 doi: 10.1016/0959-4388(94)90066-3 – volume: 4 start-page: S41 year: 2002 ident: e_1_2_6_78_1 article-title: Temporoporal metabolic abnormalities in temporal lobe publication-title: Epileptic Disord – ident: e_1_2_6_74_1 doi: 10.1016/S0197-4580(03)00113-1 – ident: e_1_2_6_28_1 doi: 10.1093/brain/awg092 – volume: 41 start-page: 129 year: 1934 ident: e_1_2_6_11_1 article-title: Die myeloarchitektonik der dorsalen Schlafenlappenrinde beim Menschen publication-title: J Psychol Neurol – year: 1975 ident: e_1_2_6_84_1 doi: 10.1007/978-3-642-80890-6 – ident: e_1_2_6_60_1 doi: 10.1002/cne.10609 – volume-title: The neocortex of Macaca mulatta year: 1947 ident: e_1_2_6_94_1 – ident: e_1_2_6_62_1 doi: 10.1016/S0169-328X(00)00194-7 – ident: e_1_2_6_9_1 doi: 10.1016/0306-4522(93)90132-Y – ident: e_1_2_6_38_1 doi: 10.1016/j.neuroimage.2007.12.043 – ident: e_1_2_6_33_1 doi: 10.1001/archpsyc.57.8.769 – ident: e_1_2_6_29_1 doi: 10.1002/cne.902210206 – ident: e_1_2_6_39_1 doi: 10.1080/02724990444000177 – ident: e_1_2_6_98_1 doi: 10.1093/cercor/4.5.470 – ident: e_1_2_6_10_1 doi: 10.1002/(SICI)1096-9861(19990802)410:3<343::AID-CNE1>3.0.CO;2-1 – ident: e_1_2_6_77_1 doi: 10.1002/cne.903430308 – ident: e_1_2_6_21_1 doi: 10.1016/j.pscychresns.2004.09.002 – ident: e_1_2_6_12_1 doi: 10.1016/0168-0102(92)90014-4 – ident: e_1_2_6_69_1 doi: 10.1523/JNEUROSCI.16-15-04757.1996 – ident: e_1_2_6_79_1 doi: 10.1002/(SICI)1096-9861(19981005)399:4<469::AID-CNE3>3.0.CO;2-# – ident: e_1_2_6_72_1 doi: 10.1002/cne.21577 – ident: e_1_2_6_32_1 doi: 10.1002/hbm.1033 – ident: e_1_2_6_75_1 doi: 10.1016/0006-8993(78)90584-X – volume-title: Atlas of the cytoarchitectonics of the human cerebral cortex year: 1955 ident: e_1_2_6_73_1 – ident: e_1_2_6_68_1 doi: 10.1002/(SICI)1096-9861(19990111)403:2<141::AID-CNE1>3.0.CO;2-V – start-page: 77 volume-title: The amygdaloid complex year: 1981 ident: e_1_2_6_91_1 – ident: e_1_2_6_5_1 doi: 10.1093/cercor/1.1.103 – ident: e_1_2_6_85_1 doi: 10.1073/pnas.80.19.6126 – ident: e_1_2_6_51_1 doi: 10.1002/cne.902120104 – ident: e_1_2_6_46_1 doi: 10.1002/cne.10842 – ident: e_1_2_6_48_1 doi: 10.1111/j.1365-2990.1989.tb01255.x – ident: e_1_2_6_49_1 doi: 10.1002/(SICI)1098-1063(1999)9:1<54::AID-HIPO6>3.0.CO;2-O – volume: 88 start-page: 481 year: 1954 ident: e_1_2_6_3_1 article-title: The secondary olfactory areas in the human brain publication-title: J Anat – ident: e_1_2_6_56_1 doi: 10.1016/0166-4328(95)00227-8 – ident: e_1_2_6_99_1 doi: 10.1016/S0920-9964(98)00094-2 – ident: e_1_2_6_83_1 doi: 10.1002/(SICI)1096-9861(19961125)375:4<552::AID-CNE2>3.0.CO;2-0 – ident: e_1_2_6_80_1 doi: 10.1002/(SICI)1096-9861(19990412)406:3<299::AID-CNE2>3.0.CO;2-9 – ident: e_1_2_6_93_1 doi: 10.1002/cne.1320 – ident: e_1_2_6_40_1 doi: 10.1002/cne.902640306 – ident: e_1_2_6_42_1 doi: 10.1002/(SICI)1097-0029(19981001)43:1<8::AID-JEMT2>3.0.CO;2-4 – ident: e_1_2_6_55_1 doi: 10.1111/j.1460-9568.2005.04299.x – ident: e_1_2_6_36_1 doi: 10.1016/S1474-4422(07)70266-1 – ident: e_1_2_6_92_1 doi: 10.1111/j.1749-6632.2000.tb06731.x – ident: e_1_2_6_59_1 doi: 10.1093/brain/awm052 – ident: e_1_2_6_52_1 doi: 10.1002/(SICI)1096-9861(19971110)388:1<64::AID-CNE5>3.0.CO;2-M – ident: e_1_2_6_53_1 doi: 10.1002/cne.902560108 – ident: e_1_2_6_23_1 doi: 10.1016/B978-0-12-547625-6.50025-8 – ident: e_1_2_6_41_1 doi: 10.1002/cne.903550203 – volume: 15 start-page: 385 year: 1999 ident: e_1_2_6_25_1 article-title: Developmental changes of calbindin‐D28k immunoreactivity in the hippocampal formation of human fetus publication-title: Chin J Neuroanat – ident: e_1_2_6_58_1 doi: 10.1006/nimg.2001.1015 – ident: e_1_2_6_97_1 doi: 10.1523/JNEUROSCI.11-04-01095.1991 – ident: e_1_2_6_17_1 doi: 10.1002/cne.902820204 – volume: 4 start-page: S23 year: 2002 ident: e_1_2_6_61_1 article-title: Direct electrical stimulations of the temporal pole in human publication-title: Epileptic Disord – ident: e_1_2_6_4_1 doi: 10.1016/0165-3806(91)90119-4 – ident: e_1_2_6_86_1 doi: 10.1002/cne.903500402 – ident: e_1_2_6_50_1 doi: 10.1093/brain/122.10.1839 – volume: 41 start-page: 237 year: 1907 ident: e_1_2_6_81_1 article-title: A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci publication-title: J Anat – ident: e_1_2_6_8_1 doi: 10.1002/cne.902760302 – ident: e_1_2_6_37_1 doi: 10.1002/(SICI)1096-9861(19961202)376:1<112::AID-CNE7>3.0.CO;2-6 – ident: e_1_2_6_63_1 doi: 10.1093/brain/122.12.2337 – ident: e_1_2_6_76_1 doi: 10.1002/cne.903120412 – ident: e_1_2_6_6_1 doi: 10.1001/archneur.1994.00540140051014 – ident: e_1_2_6_19_1 doi: 10.1002/cne.903630408 – volume-title: The isocortex of man year: 1951 ident: e_1_2_6_7_1 – volume-title: The cytoarchitectonics of the human cerebral cortex year: 1929 ident: e_1_2_6_95_1 – ident: e_1_2_6_44_1 doi: 10.1002/cne.902610304 – ident: e_1_2_6_87_1 doi: 10.1002/cne.10744 – ident: e_1_2_6_67_1 doi: 10.1016/B978-0-12-547625-6.50034-9 – volume: 19 start-page: 659 year: 1998 ident: e_1_2_6_43_1 article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_16_1 doi: 10.1002/hipo.450050503 – volume-title: Functional neuroanatomy: test and atlas year: 1998 ident: e_1_2_6_2_1 – ident: e_1_2_6_65_1 doi: 10.1126/science.1078900 – ident: e_1_2_6_18_1 doi: 10.1002/cne.903460305 – ident: e_1_2_6_54_1 doi: 10.1002/cne.902120103 – volume-title: Vergleichende lokalisationslehre der Grosshirnrinde year: 1909 ident: e_1_2_6_14_1 – ident: e_1_2_6_66_1 doi: 10.1002/cne.903100403 – volume-title: Die Cytoarchitecktonik der Grosshirnrinde des erwachsenen Menschen year: 1925 ident: e_1_2_6_96_1 – ident: e_1_2_6_82_1 doi: 10.1002/(SICI)1096-9861(19960219)365:4<610::AID-CNE8>3.0.CO;2-7 – ident: e_1_2_6_34_1 doi: 10.1016/S0006-8993(98)01182-2 – ident: e_1_2_6_64_1 doi: 10.1016/j.heares.2007.01.003 – ident: e_1_2_6_22_1 doi: 10.1038/380499a0 – ident: e_1_2_6_26_1 doi: 10.1002/cne.10516 – ident: e_1_2_6_70_1 doi: 10.1523/JNEUROSCI.20-13-05083.2000 – ident: e_1_2_6_45_1 doi: 10.1523/JNEUROSCI.20-18-06974.2000 – ident: e_1_2_6_88_1 doi: 10.1162/089892902760191144 – ident: e_1_2_6_27_1 doi: 10.1016/S0028-3932(02)00089-1 – ident: e_1_2_6_35_1 doi: 10.1007/s004290000135 – ident: e_1_2_6_31_1 doi: 10.1002/cne.902800303 – ident: e_1_2_6_90_1 doi: 10.1162/08989290260045800 |
SSID | ssj0009938 |
Score | 2.368881 |
Snippet | Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high‐order brain functions and many neurological... Although the human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological... Although human temporal polar cortex (TPC), anterior to the limen insulae, is heavily involved in high-order brain functions and many neurological diseases,... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 595 |
SubjectTerms | Aged Aged, 80 and over Aging Alzheimer Disease - metabolism Alzheimer Disease - pathology Antigens, Nuclear - metabolism auditory cortex Benzothiazoles Female Histocytochemistry Humans Immunohistochemistry insular cortex Male medial temporal lobe Nerve Tissue Proteins - metabolism neurofibrillary tangle perirhinal cortex Plant Lectins Pyramidal Cells - cytology pyriform cortex Receptors, N-Acetylglucosamine Tauopathies - pathology temporal area TG Temporal Lobe - anatomy & histology Temporal Lobe - cytology Temporal Lobe - metabolism Temporal Lobe - pathology Thiazoles |
Title | Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers |
URI | https://api.istex.fr/ark:/67375/WNG-M1N2DM3R-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.22053 https://www.ncbi.nlm.nih.gov/pubmed/19363802 https://www.proquest.com/docview/20558919 https://www.proquest.com/docview/67173658 https://pubmed.ncbi.nlm.nih.gov/PMC3665344 |
Volume | 514 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEA6lIvjF-u7WqkFE_OBe9zab7EY_ldpaCndIqVhECHlbLO3tlt4d1P4Gf7Qz2Zfzagvit7A7WTbJZDKTPHmGkNfOyZJnAjw3U_A4M17GspRZ7F2hhwbWLKtxQ380Fntfsv0jfrRCPnR3YRp-iH7DDWdGsNc4wbWZbi5IQ23lB3hLFJk-EauFDtHBgjoK1t3GCiMEQYq8YxVK0s2-5tJadAu79eI6R_NvvOSffmxYiHbXyPeuCQ3-5GQwn5mBvbzC7vifbbxH7rYOKt1qNOo-WfHVA3L7Wx223x-SX5912OwPA0rrkoYkf7RluDqlZxgqU4sQ3ov3dAtKE4i9vaO6ZT_BOh2Kkdqfs7o_ykCS3ncUlGhy9ZmuHMXUyZ2hphMEFZ1PH5HD3Z3D7b24zegQW4iMWFwmDiKmtGRW-gJ8ObD6nqUQsUCQWPASc4wn3PChM9al1lgrc200mBzDC1Aq9pisVnXlnxJa2DxNjMxMpnmWeiat8MJ5mQiHnHVlRN52Q6tsy3aOSTdOVcPTnCroWxX6NiKvetGzhuLjOqE3QT96CWgnYuJyrr6OP6nRcJx-HLEDtR-Rl50CKZipYUQqX8-nCj6DKRzlzRICIRHgEkbkSaNwi_-RDAxlkkYkX1LFXgBZwpffVMc_Als4E4KzLIMOCZp2cxPV9ngnFNb_XfQZudMcrwkwtxtkdXY-98_BS5uZF2E6_gar7DyY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKKwQv3Ee4aiGEeCDbbBw7MeKlKi1L6UaoWkSFhKz4iEB0k6rdlQq_gR_NjHMsW1oJ8WYl4yhjj8cz4_E3hDyzVpY8EWC56YyHiXYylKVMQmezYqhhzzIFBvTHuRh9THYP-MEKed3dhWnwIfqAG64Mr69xgWNAemOBGmoqN8BrouwSWcOK3t6h2l-AR8HO2-hhTEKQIu1whaJ4o--6tBut4cCenmdq_p0x-acl67einevkS8dEk4HyfTCf6YH5eQbf8X-5vEGutTYq3WyE6iZZcdUtcvlz7SPwt8mvD4WP9_s5pXVJfZ0_2oJcHdIj9JapwSze01d0E1pTcL-dpUULgIJ9ukRGan7M6v40A3F6X1KQo-nZZ0VlKVZP7nQ1nWJe0fHJHTLZ2Z5sjcK2qENowDliYRlZcJrikhnpMjDnQPE7FoPTAn5ixkssMx5xzYdWGxsbbYxMC12A1tE8A7lid8lqVVfuPqGZSeNIy0QnBU9ix6QRTlgnI2ERtq4MyItubpVpAc-x7sahaqCaYwVjq_zYBuRpT3rUoHycR_TcC0hPAXxiWlzK1af8rRoP8_jNmO2r3YCsdxKkYLH6GalcPT9R8Bms4igvphCYFQFWYUDuNRK3-B_JQFdGcUDSJVnsCRAofPlN9e2rBwxnQnCWJDAgXtQuZlFt5du-8eDfSdfJldFkvKf23uXvH5KrzWmbAO37iKzOjufuMRhtM_3Er83fPQpAsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKKxAv3Ee4aiGEeCDbbBw7MTxV3S6lsKuqKmqFkKz4iEB0k1W7KxV-Az-aGedYtrQS4s1KxlFsfx7P2ONvCHlhrSx4IsBy0xkPE-1kKAuZhM5meV_DmmVy3NAfjcXOp2T3iB-tkLftXZiaH6LbcMOZ4fU1TvCpLTYWpKGmdD28JcqukLVERBlCerC_4I6ChbdWwxiDIEXa0gpF8UZXdWkxWsN-PbvI0vw7YPJPQ9avRMOb5EvbhjoA5XtvPtM98_McveN_NvIWudFYqHSzhtRtsuLKO-Tq58rvv98lv_Zyv9vvR5RWBfVZ_mhDcXVMp-grU4MxvGdv6CaUJuB8O0vzhv4E67RhjNT8mFXdWQay9L6mgKLJ-Wd5aSnmTm41NZ1gVNHJ6T1yMNw-2NoJm5QOoQHXiIVFZMFligtmpMvAmAO171gMLgt4iRkvMMl4xDXvW21sbLQxMs11DjpH8wxQxe6T1bIq3UNCM5PGkZaJTnKexI5JI5ywTkbCImldEZBX7dAq09CdY9aNY1UTNccK-lb5vg3I8050WnN8XCT00uOjk4B2YlBcytXh-J0a9cfxYMT21W5A1lsAKZiqfkRKV81PFXwGczjKyyUExkSATRiQBzXgFv8jGWjKKA5IugTFTgBpwpfflN--erpwJgRnSQId4pF2eRPV1njbFx79u-g6ubY3GKqP78cfHpPr9VGbANX7hKzOTubuKVhsM_3Mz8zfeP4_aw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parcellation+of+human+temporal+polar+cortex%3A+a+combined+analysis+of+multiple+cytoarchitectonic%2C+chemoarchitectonic%2C+and+pathological+markers&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Ding%2C+Song-Lin&rft.au=Van+Hoesen%2C+Gary+W&rft.au=Cassell%2C+Martin+D&rft.au=Poremba%2C+Amy&rft.date=2009-06-20&rft.eissn=1096-9861&rft.volume=514&rft.issue=6&rft.spage=595&rft_id=info:doi/10.1002%2Fcne.22053&rft_id=info%3Apmid%2F19363802&rft.externalDocID=19363802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon |