New techniques for cartilage magnetic resonance imaging relaxation time analysis: Texture analysis of flattened cartilage and localized intra- and inter-subject comparisons
MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra‐ and inter‐subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpend...
Saved in:
Published in | Magnetic resonance in medicine Vol. 59; no. 6; pp. 1472 - 1477 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra‐ and inter‐subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone–cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second‐order texture measures using gray‐level co‐occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1ρ maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra‐ and inter‐subject T1ρ comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1ρ maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease. Magn Reson Med 59:1472–1477, 2008. © 2008 Wiley‐Liss, Inc. |
---|---|
AbstractList | MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone-cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1rho maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T1rho comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1rho maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease.MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone-cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1rho maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T1rho comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1rho maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease. MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone-cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1rho maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T1rho comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1rho maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease. MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra‐ and inter‐subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone–cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second‐order texture measures using gray‐level co‐occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T 1ρ maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra‐ and inter‐subject T 1ρ comparisons were obtained with reproducibility similar to that reported in the literature for regional T 2 . Improvement of the reproducibility of GLCM features was obtained by flattening the T 1ρ maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease. Magn Reson Med 59:1472–1477, 2008. © 2008 Wiley‐Liss, Inc. MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone– cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T 1ρ maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T 1ρ comparisons were obtained with reproducibility similar to that reported in the literature for regional T 2 . Improvement of the reproducibility of GLCM features was obtained by flattening the T 1ρ maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease. MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra‐ and inter‐subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone–cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second‐order texture measures using gray‐level co‐occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1ρ maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra‐ and inter‐subject T1ρ comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1ρ maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease. Magn Reson Med 59:1472–1477, 2008. © 2008 Wiley‐Liss, Inc. MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone-cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1 maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T1 comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1 maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease. |
Author | Majumdar, Sharmila Link, Thomas M. Carballido-Gamio, Julio |
Author_xml | – sequence: 1 givenname: Julio surname: Carballido-Gamio fullname: Carballido-Gamio, Julio email: Julio.Carballido@radiology.ucsf.edu organization: Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology, University of California, San Francisco, San Francisco, California – sequence: 2 givenname: Thomas M. surname: Link fullname: Link, Thomas M. organization: Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology, University of California, San Francisco, San Francisco, California – sequence: 3 givenname: Sharmila surname: Majumdar fullname: Majumdar, Sharmila organization: Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology, University of California, San Francisco, San Francisco, California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18506807$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1vFCEUJabGbqsP_gHDk4kP0zIDDIwPJnWjXZO2Jlpj4gth2cuWysAKrO36m_yRTnf7pYn6BDmcc-653LuDtkIMgNDTmuzVhDT7fer3mppz-gCNat40VcM7toVGRDBS0bpj22gn53NCSNcJ9ght15KTVhIxQj9P4AIXMGfBfVtCxjYmbHQqzus54F7PAxRncIIcgw4GsBswF-YD4vWlLi4GXFwPWAftV9nll_gULssy3SE4Wmy9LgUCzO6Z6zDDPhrt3Y8Bd6EkXa3B4QqpysvpOZiCTewXOrmhfn6MHlrtMzy5PnfRp7dvTseT6uj94bvxwVFlOJO0YqIhjNuOGiq1kC0XQNjMtpYBl1M5a9pW2ynTlOiOttJSqCWzRBraSEvamu6iVxvfxXLaw8zAVTavFmloPq1U1E79_hLcmZrH76qRVApBBoPn1wYpXn1rUb3LBrzXAeIyK1G3tBFc_pfYEMkFHSa7i57dj3Sb5WaSA-HFhmBSzDmBvaMQdbUlatgStd6Sgbv_B9e4sp7l0I3z_1JcOA-rv1ur4w_HN4pqo3C5wOWtQqevqhVUcPX55FB17PX4y2T8UU3oL07P4iY |
CitedBy_id | crossref_primary_10_1177_19476035241313047 crossref_primary_10_1007_s00167_018_5291_x crossref_primary_10_1088_1755_1315_704_1_012047 crossref_primary_10_1002_jor_25029 crossref_primary_10_1186_s12891_019_2547_7 crossref_primary_10_1007_s00256_012_1522_2 crossref_primary_10_1016_j_arthro_2010_06_026 crossref_primary_10_1016_j_joca_2020_07_005 crossref_primary_10_1148_radiol_10101006 crossref_primary_10_1016_j_joca_2007_10_019 crossref_primary_10_1016_j_joca_2013_10_014 crossref_primary_10_1007_s10439_016_1754_8 crossref_primary_10_1016_j_joca_2021_02_561 crossref_primary_10_1016_j_joca_2019_02_800 crossref_primary_10_2214_AJR_24_31655 crossref_primary_10_1016_j_knee_2011_09_004 crossref_primary_10_1016_j_jmr_2018_10_008 crossref_primary_10_1016_j_joca_2013_05_010 crossref_primary_10_1016_j_joca_2016_09_015 crossref_primary_10_1016_j_joca_2013_06_007 crossref_primary_10_1002_jor_25293 crossref_primary_10_1177_1090820X11423916 crossref_primary_10_1002_jmri_24313 crossref_primary_10_1007_s10067_013_2447_4 crossref_primary_10_1016_j_knee_2019_03_006 crossref_primary_10_1007_s00330_022_08897_y crossref_primary_10_1002_jmri_25881 crossref_primary_10_1111_nep_12003 crossref_primary_10_1007_s00256_012_1511_5 crossref_primary_10_1007_s00330_017_4850_8 crossref_primary_10_1177_19476035211029698 crossref_primary_10_1002_jor_23358 crossref_primary_10_2106_JBJS_OA_19_00010 crossref_primary_10_1002_jor_21513 crossref_primary_10_1177_1941738116661975 crossref_primary_10_1002_mrm_22693 crossref_primary_10_1016_j_mri_2024_03_039 crossref_primary_10_1177_1536012116683597 crossref_primary_10_1016_j_ejrad_2009_04_046 crossref_primary_10_1177_0363546512449816 crossref_primary_10_1007_s00256_016_2360_4 crossref_primary_10_1017_S1431927613000524 crossref_primary_10_1007_s00167_013_2779_2 crossref_primary_10_1016_j_joca_2013_07_012 crossref_primary_10_1016_j_joca_2017_11_018 crossref_primary_10_1016_j_joca_2012_07_015 crossref_primary_10_1002_mrm_22836 |
Cites_doi | 10.1007/BF01774016 10.1016/j.joca.2007.03.016 10.1097/00004728-199801000-00003 10.1148/radiology.194.1.7997582 10.1016/j.joca.2006.02.026 10.1109/TSMC.1973.4309314 10.1007/BF02123482 10.1002/1522-2594(200010)44:4<592::AID-MRM13>3.0.CO;2-J 10.1109/TMI.2006.891484 10.1002/mrm.21005 10.1162/jocn.1996.8.1.1 10.1016/j.acra.2005.04.018 10.22203/eCM.v013a08 10.1109/42.925295 10.1148/radiology.205.2.9356643 10.1088/0031-9155/36/6/001 10.1002/jmri.20536 10.1148/radiology.164.3.3615875 10.1016/j.joca.2007.01.011 10.1002/jmri.21122 10.1016/j.mri.2005.10.016 10.1148/radiology.214.1.r00ja15259 10.1002/jmri.1150 10.1016/j.mri.2004.01.076 10.1007/s00774-004-0536-9 10.1016/j.joca.2005.03.007 10.1055/s-2004-861764 10.1002/(SICI)1522-2594(199903)41:3<529::AID-MRM15>3.0.CO;2-Z 10.2106/JBJS.F.00614 10.1002/nbm.1063 10.1016/S0262-8856(00)00057-3 10.1148/radiol.2322030976 10.1016/S1350-4533(02)00006-1 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Wiley‐Liss, Inc. Copyright (c) 2008 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. – notice: Copyright (c) 2008 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 8FD FR3 P64 7X8 5PM |
DOI | 10.1002/mrm.21553 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1477 |
ExternalDocumentID | PMC2838770 18506807 10_1002_mrm_21553 MRM21553 ark_67375_WNG_94BCZHCS_H |
Genre | shortCommunication Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health (NIH) funderid: R01 AR 46905; U01 AR‐06‐006 – fundername: NIAMS NIH HHS grantid: R01 AR046905 – fundername: NIAMS NIH HHS grantid: R01 AR 46905 – fundername: NIAMS NIH HHS grantid: U01 AR-06-006 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5483-472045f93c38a78657e04df6f4e58b8d266afb4a30a9368f3e184f08c328f0613 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Thu Aug 21 18:22:54 EDT 2025 Fri Jul 11 10:39:55 EDT 2025 Fri Jul 11 06:33:17 EDT 2025 Fri May 30 11:01:51 EDT 2025 Tue Jul 01 01:20:39 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Wed Jan 22 16:36:18 EST 2025 Wed Oct 30 09:53:38 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright (c) 2008 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5483-472045f93c38a78657e04df6f4e58b8d266afb4a30a9368f3e184f08c328f0613 |
Notes | ark:/67375/WNG-94BCZHCS-H ArticleID:MRM21553 istex:E509E68F3D9077BAA4105E179945B7DADDAE5B23 National Institutes of Health (NIH) - No. R01 AR 46905; No. U01 AR-06-006 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.21553 |
PMID | 18506807 |
PQID | 20857355 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2838770 proquest_miscellaneous_71632758 proquest_miscellaneous_20857355 pubmed_primary_18506807 crossref_primary_10_1002_mrm_21553 crossref_citationtrail_10_1002_mrm_21553 wiley_primary_10_1002_mrm_21553_MRM21553 istex_primary_ark_67375_WNG_94BCZHCS_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2008 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: June 2008 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T. Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology 1995; 194: 55-59. Link TM, Majumdar S, Lin JC, Augat P, Gould RG, Newitt D, Ouyang X, Lang TF, Mathur A, Genant HK. Assessment of trabecular structure using high resolution CT images and texture analysis. J Comput Assist Tomogr 1998; 22: 15-24. Chappard D, Guggenbuhl P, Legrand E, Basle MF, Audran M. Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J Bone Miner Metab 2005; 23: 24-29. Qazi AA, Folkesson J, Pettersen PC, Karsdal MA, Christiansen C, Dam EB. Separation of healthy and early osteoarthritis by automatic quantification of cartilage homogeneity. Osteoarthritis Cartilage 2007; 15: 1199-1206. Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 2006; 14 ( Suppl A): A46-75. Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology 1997; 205: 546-550. Fornefett M, Rohr K, Stiehl HS. Radial basis functions with compact support for elastic registration of medical images. Image Vision Comput 2001; 19: 87-96. Lee KY, Dunn TC, Steinbach LS, Ozhinsky E, Ries MD, Majumdar S. Computer-aided quantification of focal cartilage lesions of osteoarthritic knee using MRI. Magn Reson Imaging 2004; 22: 1105-1115. Verma R, Khurd P, Davatzikos C. On analyzing diffusion tensor images by identifying manifold structure using isomaps. IEEE Trans Med Imaging 2007; 26: 772-778. Konig H, Sauter R, Deimling M, Vogt M. Cartilage disorders: comparison of spin-echo, CHESS, and FLASH sequence MR images. Radiology 1987; 164: 753-758. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8: 355-368. Wendland H. Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Adv Comput Math 1995; 4: 389-396. Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2-preliminary findings at 3 T. Radiology 2000; 214: 259-266. Hohe J, Faber S, Muehlbauer R, Reiser M, Englmeier KH, Eckstein F. Three-dimensional analysis and visualization of regional MR signal intensity distribution of articular cartilage. Med Eng Phys 2002; 24: 219-227. Schwarz D, Kasparek T, Provaznik I. Comparison of point similarity measures for atlas-based registration of MRI brain images. Conf Proc IEEE Eng Med Biol Soc 2005; 1: 455-458. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybernet 1973; SMC-3: 610-618. Lynch JA, Hawkes DJ, Buckland-Wright JC. Analysis of texture in macroradiographs of osteoarthritic knees using the fractal signature. Phys Med Biol 1991; 36: 709-722. Shindle MK, Foo LF, Kelly BT, Khanna AJ, Domb BG, Farber A, Wanich T, Potter HG. Magnetic resonance imaging of cartilage in the athlete: current techniques and spectrum of disease. J Bone Joint Surg Am 2006; 88( Suppl 4): 27-46. Carballido-Gamio J, Bauer JS, Stahl R, Lee KY, Krause S, Link TM, Majumdar S. Inter-subject comparison of MRI knee cartilage thickness. Med Image Anal 2007 (in press). Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater 2007; 13: 76-86. Nowinski WL, Belov D. Toward atlas-assisted automatic interpretation of MRI morphological brain scans in the presence of tumor. Acad Radiol 2005; 12: 1049-1057. Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging 2007; 26: 1001-1009. Stammberger T, Hohe J, Englmeier KH, Reiser M, Eckstein F. Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness. Magn Reson Med 2000; 44: 592-601. Glüer CC, Blake G, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporosis Int 1995; 5: 262-270. Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, Carballido-Gamio J, Ries M, Majumdar S. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage 2007; 15: 789-797. Glaser C, Mendlik T, Dinges J, Weber J, Stahl R, Trumm C, Reiser M. Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med 2006; 56: 527-534. Kovalev VA, Kruggel F, Gertz HJ, von Cramon DY. Three-dimensional texture analysis of MRI brain datasets. IEEE Trans Med Imaging 2001; 20: 424-433. Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 2006; 19: 822-854. Oh J, Han ET, Pelletier D, Nelson SJ. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn Reson Imaging 2006; 24: 33-43. Stammberger T, Eckstein F, Englmeier KH, Reiser M. Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living. Magn Reson Med 1999; 41: 529-536. Lee KY, Masi JN, Sell CA, Schier R, Link TM, Steinbach LS, Safran M, Ma B, Majumdar S. Computer-aided quantification of focal cartilage lesions using MRI: accuracy and initial arthroscopic comparison. Osteoarthritis Cartilage 2005; 13: 728-737. Drury HA, Van Essen DC, Anderson CH, Lee CW, Coogan TA, Lewis JW. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J Cogn Neurosci 1996; 8: 1-28. Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, Schmithorst VJ, Smith MB. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 2001; 14: 50-55. Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging 2006; 23: 547-553. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004; 232: 592-598. 1987; 164 2004; 22 1991; 36 2006; 56 2000; 214 2004; 8 2000; 44 2006; 14 2007 2006; 19 2005 1999; 41 2004 2003 2002 1995; 4 2007; 13 1995; 5 1995; 194 1998; 22 2005; 23 2007; 15 2001; 20 2004; 232 1997; 205 2006; 23 2006; 24 2006; 88 2002; 24 2001; 19 2005; 1 1973; SMC‐3 2001; 14 1996; 8 2005; 12 2007; 26 2005; 13 e_1_2_6_31_2 e_1_2_6_30_2 Schwarz D (e_1_2_6_32_2) 2005; 1 e_1_2_6_18_2 Williams TG (e_1_2_6_28_2) 2003 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_37_2 Blumenkrantz G (e_1_2_6_14_2) 2005 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_40_2 Carballido‐Gamio J (e_1_2_6_19_2) 2007 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – reference: Kovalev VA, Kruggel F, Gertz HJ, von Cramon DY. Three-dimensional texture analysis of MRI brain datasets. IEEE Trans Med Imaging 2001; 20: 424-433. – reference: Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 2006; 14 ( Suppl A): A46-75. – reference: Stammberger T, Hohe J, Englmeier KH, Reiser M, Eckstein F. Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness. Magn Reson Med 2000; 44: 592-601. – reference: Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 2006; 19: 822-854. – reference: Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology 1997; 205: 546-550. – reference: Qazi AA, Folkesson J, Pettersen PC, Karsdal MA, Christiansen C, Dam EB. Separation of healthy and early osteoarthritis by automatic quantification of cartilage homogeneity. Osteoarthritis Cartilage 2007; 15: 1199-1206. – reference: Lynch JA, Hawkes DJ, Buckland-Wright JC. Analysis of texture in macroradiographs of osteoarthritic knees using the fractal signature. Phys Med Biol 1991; 36: 709-722. – reference: Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging 2006; 23: 547-553. – reference: Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging 2007; 26: 1001-1009. – reference: Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T. Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology 1995; 194: 55-59. – reference: Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, Schmithorst VJ, Smith MB. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 2001; 14: 50-55. – reference: Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, Carballido-Gamio J, Ries M, Majumdar S. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage 2007; 15: 789-797. – reference: Schwarz D, Kasparek T, Provaznik I. Comparison of point similarity measures for atlas-based registration of MRI brain images. Conf Proc IEEE Eng Med Biol Soc 2005; 1: 455-458. – reference: Wendland H. Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Adv Comput Math 1995; 4: 389-396. – reference: Oh J, Han ET, Pelletier D, Nelson SJ. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn Reson Imaging 2006; 24: 33-43. – reference: Lee KY, Dunn TC, Steinbach LS, Ozhinsky E, Ries MD, Majumdar S. Computer-aided quantification of focal cartilage lesions of osteoarthritic knee using MRI. Magn Reson Imaging 2004; 22: 1105-1115. – reference: Hohe J, Faber S, Muehlbauer R, Reiser M, Englmeier KH, Eckstein F. Three-dimensional analysis and visualization of regional MR signal intensity distribution of articular cartilage. Med Eng Phys 2002; 24: 219-227. – reference: Verma R, Khurd P, Davatzikos C. On analyzing diffusion tensor images by identifying manifold structure using isomaps. IEEE Trans Med Imaging 2007; 26: 772-778. – reference: Link TM, Majumdar S, Lin JC, Augat P, Gould RG, Newitt D, Ouyang X, Lang TF, Mathur A, Genant HK. Assessment of trabecular structure using high resolution CT images and texture analysis. J Comput Assist Tomogr 1998; 22: 15-24. – reference: Stammberger T, Eckstein F, Englmeier KH, Reiser M. Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living. Magn Reson Med 1999; 41: 529-536. – reference: Chappard D, Guggenbuhl P, Legrand E, Basle MF, Audran M. Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J Bone Miner Metab 2005; 23: 24-29. – reference: Lee KY, Masi JN, Sell CA, Schier R, Link TM, Steinbach LS, Safran M, Ma B, Majumdar S. Computer-aided quantification of focal cartilage lesions using MRI: accuracy and initial arthroscopic comparison. Osteoarthritis Cartilage 2005; 13: 728-737. – reference: Glaser C, Mendlik T, Dinges J, Weber J, Stahl R, Trumm C, Reiser M. Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med 2006; 56: 527-534. – reference: Shindle MK, Foo LF, Kelly BT, Khanna AJ, Domb BG, Farber A, Wanich T, Potter HG. Magnetic resonance imaging of cartilage in the athlete: current techniques and spectrum of disease. J Bone Joint Surg Am 2006; 88( Suppl 4): 27-46. – reference: Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8: 355-368. – reference: Drury HA, Van Essen DC, Anderson CH, Lee CW, Coogan TA, Lewis JW. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J Cogn Neurosci 1996; 8: 1-28. – reference: Nowinski WL, Belov D. Toward atlas-assisted automatic interpretation of MRI morphological brain scans in the presence of tumor. Acad Radiol 2005; 12: 1049-1057. – reference: Glüer CC, Blake G, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporosis Int 1995; 5: 262-270. – reference: Carballido-Gamio J, Bauer JS, Stahl R, Lee KY, Krause S, Link TM, Majumdar S. Inter-subject comparison of MRI knee cartilage thickness. Med Image Anal 2007 (in press). – reference: Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater 2007; 13: 76-86. – reference: Konig H, Sauter R, Deimling M, Vogt M. Cartilage disorders: comparison of spin-echo, CHESS, and FLASH sequence MR images. Radiology 1987; 164: 753-758. – reference: Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004; 232: 592-598. – reference: Fornefett M, Rohr K, Stiehl HS. Radial basis functions with compact support for elastic registration of medical images. Image Vision Comput 2001; 19: 87-96. – reference: Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybernet 1973; SMC-3: 610-618. – reference: Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2-preliminary findings at 3 T. Radiology 2000; 214: 259-266. – volume: 14 start-page: 50 year: 2001 end-page: 55 article-title: Spatial variation in cartilage T2 of the knee publication-title: J Magn Reson Imaging – volume: SMC‐3 start-page: 610 year: 1973 end-page: 618 article-title: Textural features for image classification publication-title: IEEE Trans Syst Man Cybernet – volume: 12 start-page: 1049 year: 2005 end-page: 1057 article-title: Toward atlas‐assisted automatic interpretation of MRI morphological brain scans in the presence of tumor publication-title: Acad Radiol – volume: 19 start-page: 822 year: 2006 end-page: 854 article-title: Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis publication-title: NMR Biomed – volume: 5 start-page: 262 year: 1995 end-page: 270 article-title: Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques publication-title: Osteoporosis Int – volume: 22 start-page: 15 year: 1998 end-page: 24 article-title: Assessment of trabecular structure using high resolution CT images and texture analysis publication-title: J Comput Assist Tomogr – year: 2005 – volume: 15 start-page: 1199 year: 2007 end-page: 1206 article-title: Separation of healthy and early osteoarthritis by automatic quantification of cartilage homogeneity publication-title: Osteoarthritis Cartilage – volume: 88 start-page: 27 issue: Suppl 4 year: 2006 end-page: 46 article-title: Magnetic resonance imaging of cartilage in the athlete: current techniques and spectrum of disease publication-title: J Bone Joint Surg Am – year: 2003 – volume: 41 start-page: 529 year: 1999 end-page: 536 article-title: Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living publication-title: Magn Reson Med – volume: 23 start-page: 24 year: 2005 end-page: 29 article-title: Texture analysis of X‐ray radiographs is correlated with bone histomorphometry publication-title: J Bone Miner Metab – volume: 205 start-page: 546 year: 1997 end-page: 550 article-title: Spatial variation of T2 in human articular cartilage publication-title: Radiology – volume: 26 start-page: 772 year: 2007 end-page: 778 article-title: On analyzing diffusion tensor images by identifying manifold structure using isomaps publication-title: IEEE Trans Med Imaging – volume: 19 start-page: 87 year: 2001 end-page: 96 article-title: Radial basis functions with compact support for elastic registration of medical images publication-title: Image Vision Comput – volume: 232 start-page: 592 year: 2004 end-page: 598 article-title: T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis publication-title: Radiology – volume: 1 start-page: 455 year: 2005 end-page: 458 article-title: Comparison of point similarity measures for atlas‐based registration of MRI brain images publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 26 start-page: 1001 year: 2007 end-page: 1009 article-title: Parallel imaging of knee cartilage at 3 Tesla publication-title: J Magn Reson Imaging – volume: 13 start-page: 728 year: 2005 end-page: 737 article-title: Computer‐aided quantification of focal cartilage lesions using MRI: accuracy and initial arthroscopic comparison publication-title: Osteoarthritis Cartilage – start-page: 473 year: 2005 – volume: 214 start-page: 259 year: 2000 end-page: 266 article-title: Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T publication-title: Radiology – volume: 14 start-page: A46 issue: Suppl A year: 2006 end-page: 75 article-title: Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment publication-title: Osteoarthritis Cartilage – volume: 4 start-page: 389 year: 1995 end-page: 396 article-title: Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree publication-title: Adv Comput Math – volume: 15 start-page: 789 year: 2007 end-page: 797 article-title: In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI publication-title: Osteoarthritis Cartilage – volume: 24 start-page: 33 year: 2006 end-page: 43 article-title: Measurement of in vivo multi‐component T2 relaxation times for brain tissue using multi‐slice T2 prep at 1.5 and 3 T publication-title: Magn Reson Imaging – volume: 194 start-page: 55 year: 1995 end-page: 59 article-title: Trabecular texture analysis of CT images in the relationship with spinal fracture publication-title: Radiology – volume: 24 start-page: 219 year: 2002 end-page: 227 article-title: Three‐dimensional analysis and visualization of regional MR signal intensity distribution of articular cartilage publication-title: Med Eng Phys – volume: 20 start-page: 424 year: 2001 end-page: 433 article-title: Three‐dimensional texture analysis of MRI brain datasets publication-title: IEEE Trans Med Imaging – year: 2002 – volume: 56 start-page: 527 year: 2006 end-page: 534 article-title: Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage publication-title: Magn Reson Med – volume: 8 start-page: 355 year: 2004 end-page: 368 article-title: Cartilage MRI T2 relaxation time mapping: overview and applications publication-title: Semin Musculoskelet Radiol – volume: 8 start-page: 1 year: 1996 end-page: 28 article-title: Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface‐based coordinate system publication-title: J Cogn Neurosci – year: 2004 – volume: 44 start-page: 592 year: 2000 end-page: 601 article-title: Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness publication-title: Magn Reson Med – volume: 22 start-page: 1105 year: 2004 end-page: 1115 article-title: Computer‐aided quantification of focal cartilage lesions of osteoarthritic knee using MRI publication-title: Magn Reson Imaging – volume: 36 start-page: 709 year: 1991 end-page: 722 article-title: Analysis of texture in macroradiographs of osteoarthritic knees using the fractal signature publication-title: Phys Med Biol – volume: 13 start-page: 76 year: 2007 end-page: 86 article-title: Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis publication-title: Eur Cell Mater – volume: 23 start-page: 547 year: 2006 end-page: 553 article-title: T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2 publication-title: J Magn Reson Imaging – year: 2007 article-title: Inter‐subject comparison of MRI knee cartilage thickness publication-title: Med Image Anal – volume: 164 start-page: 753 year: 1987 end-page: 758 article-title: Cartilage disorders: comparison of spin‐echo, CHESS, and FLASH sequence MR images publication-title: Radiology – ident: e_1_2_6_24_2 doi: 10.1007/BF01774016 – ident: e_1_2_6_13_2 doi: 10.1016/j.joca.2007.03.016 – ident: e_1_2_6_36_2 doi: 10.1097/00004728-199801000-00003 – ident: e_1_2_6_35_2 doi: 10.1148/radiology.194.1.7997582 – ident: e_1_2_6_21_2 – ident: e_1_2_6_4_2 doi: 10.1016/j.joca.2006.02.026 – ident: e_1_2_6_15_2 doi: 10.1109/TSMC.1973.4309314 – ident: e_1_2_6_22_2 doi: 10.1007/BF02123482 – ident: e_1_2_6_25_2 doi: 10.1002/1522-2594(200010)44:4<592::AID-MRM13>3.0.CO;2-J – ident: e_1_2_6_41_2 doi: 10.1109/TMI.2006.891484 – ident: e_1_2_6_34_2 doi: 10.1002/mrm.21005 – ident: e_1_2_6_40_2 doi: 10.1162/jocn.1996.8.1.1 – ident: e_1_2_6_33_2 doi: 10.1016/j.acra.2005.04.018 – ident: e_1_2_6_3_2 doi: 10.22203/eCM.v013a08 – ident: e_1_2_6_37_2 doi: 10.1109/42.925295 – ident: e_1_2_6_9_2 doi: 10.1148/radiology.205.2.9356643 – volume: 1 start-page: 455 year: 2005 ident: e_1_2_6_32_2 article-title: Comparison of point similarity measures for atlas‐based registration of MRI brain images publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: e_1_2_6_39_2 doi: 10.1088/0031-9155/36/6/001 – ident: e_1_2_6_11_2 doi: 10.1002/jmri.20536 – ident: e_1_2_6_5_2 doi: 10.1148/radiology.164.3.3615875 – ident: e_1_2_6_8_2 doi: 10.1016/j.joca.2007.01.011 – ident: e_1_2_6_16_2 doi: 10.1002/jmri.21122 – ident: e_1_2_6_18_2 doi: 10.1016/j.mri.2005.10.016 – ident: e_1_2_6_30_2 doi: 10.1148/radiology.214.1.r00ja15259 – ident: e_1_2_6_10_2 doi: 10.1002/jmri.1150 – volume-title: University of Sheffield year: 2003 ident: e_1_2_6_28_2 – ident: e_1_2_6_27_2 doi: 10.1016/j.mri.2004.01.076 – ident: e_1_2_6_38_2 doi: 10.1007/s00774-004-0536-9 – ident: e_1_2_6_29_2 – ident: e_1_2_6_26_2 doi: 10.1016/j.joca.2005.03.007 – ident: e_1_2_6_6_2 doi: 10.1055/s-2004-861764 – ident: e_1_2_6_20_2 doi: 10.1002/(SICI)1522-2594(199903)41:3<529::AID-MRM15>3.0.CO;2-Z – ident: e_1_2_6_12_2 doi: 10.2106/JBJS.F.00614 – ident: e_1_2_6_2_2 doi: 10.1002/nbm.1063 – ident: e_1_2_6_23_2 doi: 10.1016/S0262-8856(00)00057-3 – year: 2007 ident: e_1_2_6_19_2 article-title: Inter‐subject comparison of MRI knee cartilage thickness publication-title: Med Image Anal – ident: e_1_2_6_7_2 doi: 10.1148/radiol.2322030976 – ident: e_1_2_6_17_2 – volume-title: OARSI year: 2005 ident: e_1_2_6_14_2 – ident: e_1_2_6_31_2 doi: 10.1016/S1350-4533(02)00006-1 |
SSID | ssj0009974 |
Score | 2.1230469 |
Snippet | MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1472 |
SubjectTerms | Adult cartilage Cartilage, Articular - anatomy & histology Female flattening Humans Image Processing, Computer-Assisted inter-subject comparisons magnetic resonance imaging (MRI) Magnetic Resonance Imaging - methods Male Osteoarthritis, Knee - pathology relaxation time Reproducibility of Results T1rho texture |
Title | New techniques for cartilage magnetic resonance imaging relaxation time analysis: Texture analysis of flattened cartilage and localized intra- and inter-subject comparisons |
URI | https://api.istex.fr/ark:/67375/WNG-94BCZHCS-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.21553 https://www.ncbi.nlm.nih.gov/pubmed/18506807 https://www.proquest.com/docview/20857355 https://www.proquest.com/docview/71632758 https://pubmed.ncbi.nlm.nih.gov/PMC2838770 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLamIRA3A8Zf-LUQQtyki2IntuEKKkaF1F2MTUwIKXJcG6q16ZQ00rQrHoFH4Zl4Es5xfrrCJiHuWvekip3PPt9xjr9DyHPFEzmREQt56mTIlWGhBtoQGu3AX2G5F4kHnMd76eiQfzhKjjbI6-4sTKMP0W-44czw6zVOcJ1XOyvR0Hk5H8RY9QbWX8zVQkK0v5KOUqpRYBYc1xnFO1WhKN7pr1zzRVdwWE8vIpp_50ue57HeEe3eIF-6LjT5J8eDepkPzNkf6o7_2cebZKslqPRNg6hbZMMW2-TauH0Fv02u-pxRU90mP2GBpL0GbEWB_lKDSJzBGkXn-muBByQpxPMLVPWwdDr3JZEonp859YigWNqe6lYY5RU9AFdRl6sWunDUzVACFLzBuT_XxYR6Lzw9g_Ypjtev7z98M-pflPClqnPcYqKmL7RY3SGHu-8OhqOwLQARGgikAD9YQSdxihkmtZBpImzEJy513CYylxMgF9rlXLNIK5ZKxyzEqy6ShgHCkKjcJZvForD3CbWRgljCJLFWllu4XDAjDNA3a7kwEQvIyw4KmWnV0bFIxyxrdJ3jDJ5F5p9FQJ71pieNJMhFRi88nnoLXR5jDp1Isk977zPF3w4_j4Yfs1FAnnaAy2Bm4-saXdhFXWW-eirQwcstINZlMQR8AbnXAHR1PyhEKCMRELEG3d4AVcXXfymm37y6OPBNKUQEA-KReXkXs_H-2H948O-mD8n1JuEGt7Eekc1lWdvHwOqW-RM_fX8DtkVO4w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxEB2VVlBeuJTbcquFEOJl01Xsjb2IF4goAZo8lFRUSMhyHG-JmmzQJpGqPvEJfArfxJcw472kgVZCvCXObLT2HnvOeMdnAJ4mIlZDFfFQtFIVisTy0CBtCK1J0V9RuRdFB5y7vVbnQLw_jA_X4GV1FqbQh6g33Ghm-PWaJjhtSO8sVUMn-aTRpLI3l2CDKnr7gGp_KR6VJIUGsxS00iSi0hWKmjv1pSveaIMG9uQ8qvl3xuRZJutd0e51-FJ1oshAOW4s5oOGPf1D3_F_e3kDrpUclb0qQHUT1ly2BVe65Vv4Lbjs00bt7Bb8xDWS1TKwM4YMmFkC4xiXKTYxRxmdkWQY0k9J2MOx0cRXRWJ0hObEg4JRdXtmSm2UF6yP3mKRL1vYNGXpmFRA0SGc-XOTDZl3xKNTbB_RgP36_sM3kwRGjl9miwHtMjFb11qc3YaD3Tf9dicsa0CEFmMphBAV0YnThFuujFStWLpIDNNWKlysBmqI_MKkA2F4ZBLeUil3GLKmkbIcQUZc5Q6sZ9PM3QPmogTDCRs3TeKEw8slt9Iig3NOSBvxAJ5XWNC2FEinOh1jXUg7NzU-C-2fRQBPatNvhSrIeUbPPKBqC5MfUxqdjPWn3ludiNftz532R90JYLtCnMbJTW9sTOami5n2BVSREV5sgeEub2LMF8DdAqHL-yEtQhXJAOQKdmsDEhZf_SUbffUC40g5lZQRDoiH5sVd1N39rv9w_99Nt2Gz0-_u6b13vQ8P4GqRf0O7Wg9hfZ4v3CMkefPBYz-XfwNZ4FL- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxEB2VVlR94VJu4VYLIcTLpqvYu_bCE6SEcEmESqtWCMlyHLtETTZVLlLVJz6BT-Gb-BJmvMmmgVZCvCXObLT2HnvOeMdnAJ5mIlFdFfNIpF5FIrM8MkgbIms8-isq96LogHOrnTb3xfvD5HAFXs7PwhT6EOWGG82MsF7TBD_p-u2FaOhgNKjWqOrNFVgTaawI0ju7C-2oLCskmKWghSYTc1mhuLZdXrrkjNZoXE8vYpp_J0yeJ7LBEzWuw9d5H4oElOPqdNKp2rM_5B3_s5M34NqMobJXBaRuworLN2G9NXsHvwlXQ9KoHd-Cn7hCslIEdsyQ_zJLUOzjIsUG5iinE5IMA_ohyXo41huEmkiMDtCcBkgwqm3PzEwZ5QXbQ18xHS1a2NAz3ycNUHQH5_7c5F0W3HDvDNt7NF6_vv8IzSSAMcIv42mH9piYLSstjm_DfuPNXr0ZzSpARBYjKQQQldBJfMYtV0aqNJEuFl2feuES1VFdZBfGd4Thscl4qjx3GLD6WFmOECOmcgdW82Hu7gFzcYbBhE1qJnPC4eWSW2mRvzknpI15BZ7PoaDtTB6dqnT0dSHsXNP4LHR4FhV4UpqeFJogFxk9C3gqLczomJLoZKIP2m91Jl7XvzTrn3WzAltzwGmc2vS-xuRuOB3rUD4V-eDlFhjs8hpGfBW4WwB0cT-kRKhiWQG5BN3SgGTFl3_Je9-CvDgSTiVljAMSkHl5F3VrtxU-3P930y1Y_7TT0B_ftT88gI0i-Ya2tB7C6mQ0dY-Q4U06j8NM_g1Y3VG2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+techniques+for+cartilage+magnetic+resonance+imaging+relaxation+time+analysis%3A+Texture+analysis+of+flattened+cartilage+and+localized+intra-+and+inter-subject+comparisons&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Carballido-Gamio%2C+Julio&rft.au=Link%2C+Thomas+M&rft.au=Majumdar%2C+Sharmila&rft.date=2008-06-01&rft.issn=0740-3194&rft.volume=59&rft.issue=6&rft.spage=1472&rft.epage=1477&rft_id=info:doi/10.1002%2Fmrm.21553&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |