New techniques for cartilage magnetic resonance imaging relaxation time analysis: Texture analysis of flattened cartilage and localized intra- and inter-subject comparisons

MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra‐ and inter‐subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpend...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 59; no. 6; pp. 1472 - 1477
Main Authors Carballido-Gamio, Julio, Link, Thomas M., Majumdar, Sharmila
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra‐ and inter‐subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone–cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second‐order texture measures using gray‐level co‐occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1ρ maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra‐ and inter‐subject T1ρ comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1ρ maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease. Magn Reson Med 59:1472–1477, 2008. © 2008 Wiley‐Liss, Inc.
AbstractList MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone-cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1rho maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T1rho comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1rho maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease.MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone-cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1rho maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T1rho comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1rho maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease.
MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone-cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1rho maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T1rho comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1rho maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease.
MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra‐ and inter‐subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone–cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second‐order texture measures using gray‐level co‐occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T 1ρ maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra‐ and inter‐subject T 1ρ comparisons were obtained with reproducibility similar to that reported in the literature for regional T 2 . Improvement of the reproducibility of GLCM features was obtained by flattening the T 1ρ maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease. Magn Reson Med 59:1472–1477, 2008. © 2008 Wiley‐Liss, Inc.
MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone– cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T 1ρ maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T 1ρ comparisons were obtained with reproducibility similar to that reported in the literature for regional T 2 . Improvement of the reproducibility of GLCM features was obtained by flattening the T 1ρ maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease.
MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra‐ and inter‐subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone–cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second‐order texture measures using gray‐level co‐occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1ρ maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra‐ and inter‐subject T1ρ comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1ρ maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease. Magn Reson Med 59:1472–1477, 2008. © 2008 Wiley‐Liss, Inc.
MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone-cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1 maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T1 comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1 maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease.
Author Majumdar, Sharmila
Link, Thomas M.
Carballido-Gamio, Julio
Author_xml – sequence: 1
  givenname: Julio
  surname: Carballido-Gamio
  fullname: Carballido-Gamio, Julio
  email: Julio.Carballido@radiology.ucsf.edu
  organization: Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology, University of California, San Francisco, San Francisco, California
– sequence: 2
  givenname: Thomas M.
  surname: Link
  fullname: Link, Thomas M.
  organization: Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology, University of California, San Francisco, San Francisco, California
– sequence: 3
  givenname: Sharmila
  surname: Majumdar
  fullname: Majumdar, Sharmila
  organization: Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology, University of California, San Francisco, San Francisco, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18506807$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1vFCEUJabGbqsP_gHDk4kP0zIDDIwPJnWjXZO2Jlpj4gth2cuWysAKrO36m_yRTnf7pYn6BDmcc-653LuDtkIMgNDTmuzVhDT7fer3mppz-gCNat40VcM7toVGRDBS0bpj22gn53NCSNcJ9ght15KTVhIxQj9P4AIXMGfBfVtCxjYmbHQqzus54F7PAxRncIIcgw4GsBswF-YD4vWlLi4GXFwPWAftV9nll_gULssy3SE4Wmy9LgUCzO6Z6zDDPhrt3Y8Bd6EkXa3B4QqpysvpOZiCTewXOrmhfn6MHlrtMzy5PnfRp7dvTseT6uj94bvxwVFlOJO0YqIhjNuOGiq1kC0XQNjMtpYBl1M5a9pW2ynTlOiOttJSqCWzRBraSEvamu6iVxvfxXLaw8zAVTavFmloPq1U1E79_hLcmZrH76qRVApBBoPn1wYpXn1rUb3LBrzXAeIyK1G3tBFc_pfYEMkFHSa7i57dj3Sb5WaSA-HFhmBSzDmBvaMQdbUlatgStd6Sgbv_B9e4sp7l0I3z_1JcOA-rv1ur4w_HN4pqo3C5wOWtQqevqhVUcPX55FB17PX4y2T8UU3oL07P4iY
CitedBy_id crossref_primary_10_1177_19476035241313047
crossref_primary_10_1007_s00167_018_5291_x
crossref_primary_10_1088_1755_1315_704_1_012047
crossref_primary_10_1002_jor_25029
crossref_primary_10_1186_s12891_019_2547_7
crossref_primary_10_1007_s00256_012_1522_2
crossref_primary_10_1016_j_arthro_2010_06_026
crossref_primary_10_1016_j_joca_2020_07_005
crossref_primary_10_1148_radiol_10101006
crossref_primary_10_1016_j_joca_2007_10_019
crossref_primary_10_1016_j_joca_2013_10_014
crossref_primary_10_1007_s10439_016_1754_8
crossref_primary_10_1016_j_joca_2021_02_561
crossref_primary_10_1016_j_joca_2019_02_800
crossref_primary_10_2214_AJR_24_31655
crossref_primary_10_1016_j_knee_2011_09_004
crossref_primary_10_1016_j_jmr_2018_10_008
crossref_primary_10_1016_j_joca_2013_05_010
crossref_primary_10_1016_j_joca_2016_09_015
crossref_primary_10_1016_j_joca_2013_06_007
crossref_primary_10_1002_jor_25293
crossref_primary_10_1177_1090820X11423916
crossref_primary_10_1002_jmri_24313
crossref_primary_10_1007_s10067_013_2447_4
crossref_primary_10_1016_j_knee_2019_03_006
crossref_primary_10_1007_s00330_022_08897_y
crossref_primary_10_1002_jmri_25881
crossref_primary_10_1111_nep_12003
crossref_primary_10_1007_s00256_012_1511_5
crossref_primary_10_1007_s00330_017_4850_8
crossref_primary_10_1177_19476035211029698
crossref_primary_10_1002_jor_23358
crossref_primary_10_2106_JBJS_OA_19_00010
crossref_primary_10_1002_jor_21513
crossref_primary_10_1177_1941738116661975
crossref_primary_10_1002_mrm_22693
crossref_primary_10_1016_j_mri_2024_03_039
crossref_primary_10_1177_1536012116683597
crossref_primary_10_1016_j_ejrad_2009_04_046
crossref_primary_10_1177_0363546512449816
crossref_primary_10_1007_s00256_016_2360_4
crossref_primary_10_1017_S1431927613000524
crossref_primary_10_1007_s00167_013_2779_2
crossref_primary_10_1016_j_joca_2013_07_012
crossref_primary_10_1016_j_joca_2017_11_018
crossref_primary_10_1016_j_joca_2012_07_015
crossref_primary_10_1002_mrm_22836
Cites_doi 10.1007/BF01774016
10.1016/j.joca.2007.03.016
10.1097/00004728-199801000-00003
10.1148/radiology.194.1.7997582
10.1016/j.joca.2006.02.026
10.1109/TSMC.1973.4309314
10.1007/BF02123482
10.1002/1522-2594(200010)44:4<592::AID-MRM13>3.0.CO;2-J
10.1109/TMI.2006.891484
10.1002/mrm.21005
10.1162/jocn.1996.8.1.1
10.1016/j.acra.2005.04.018
10.22203/eCM.v013a08
10.1109/42.925295
10.1148/radiology.205.2.9356643
10.1088/0031-9155/36/6/001
10.1002/jmri.20536
10.1148/radiology.164.3.3615875
10.1016/j.joca.2007.01.011
10.1002/jmri.21122
10.1016/j.mri.2005.10.016
10.1148/radiology.214.1.r00ja15259
10.1002/jmri.1150
10.1016/j.mri.2004.01.076
10.1007/s00774-004-0536-9
10.1016/j.joca.2005.03.007
10.1055/s-2004-861764
10.1002/(SICI)1522-2594(199903)41:3<529::AID-MRM15>3.0.CO;2-Z
10.2106/JBJS.F.00614
10.1002/nbm.1063
10.1016/S0262-8856(00)00057-3
10.1148/radiol.2322030976
10.1016/S1350-4533(02)00006-1
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
Copyright (c) 2008 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
– notice: Copyright (c) 2008 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
8FD
FR3
P64
7X8
5PM
DOI 10.1002/mrm.21553
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef


Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1477
ExternalDocumentID PMC2838770
18506807
10_1002_mrm_21553
MRM21553
ark_67375_WNG_94BCZHCS_H
Genre shortCommunication
Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health (NIH)
  funderid: R01 AR 46905; U01 AR‐06‐006
– fundername: NIAMS NIH HHS
  grantid: R01 AR046905
– fundername: NIAMS NIH HHS
  grantid: R01 AR 46905
– fundername: NIAMS NIH HHS
  grantid: U01 AR-06-006
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5483-472045f93c38a78657e04df6f4e58b8d266afb4a30a9368f3e184f08c328f0613
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Thu Aug 21 18:22:54 EDT 2025
Fri Jul 11 10:39:55 EDT 2025
Fri Jul 11 06:33:17 EDT 2025
Fri May 30 11:01:51 EDT 2025
Tue Jul 01 01:20:39 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Wed Jan 22 16:36:18 EST 2025
Wed Oct 30 09:53:38 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright (c) 2008 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5483-472045f93c38a78657e04df6f4e58b8d266afb4a30a9368f3e184f08c328f0613
Notes ark:/67375/WNG-94BCZHCS-H
ArticleID:MRM21553
istex:E509E68F3D9077BAA4105E179945B7DADDAE5B23
National Institutes of Health (NIH) - No. R01 AR 46905; No. U01 AR-06-006
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.21553
PMID 18506807
PQID 20857355
PQPubID 23462
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2838770
proquest_miscellaneous_71632758
proquest_miscellaneous_20857355
pubmed_primary_18506807
crossref_primary_10_1002_mrm_21553
crossref_citationtrail_10_1002_mrm_21553
wiley_primary_10_1002_mrm_21553_MRM21553
istex_primary_ark_67375_WNG_94BCZHCS_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2008
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: June 2008
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T. Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology 1995; 194: 55-59.
Link TM, Majumdar S, Lin JC, Augat P, Gould RG, Newitt D, Ouyang X, Lang TF, Mathur A, Genant HK. Assessment of trabecular structure using high resolution CT images and texture analysis. J Comput Assist Tomogr 1998; 22: 15-24.
Chappard D, Guggenbuhl P, Legrand E, Basle MF, Audran M. Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J Bone Miner Metab 2005; 23: 24-29.
Qazi AA, Folkesson J, Pettersen PC, Karsdal MA, Christiansen C, Dam EB. Separation of healthy and early osteoarthritis by automatic quantification of cartilage homogeneity. Osteoarthritis Cartilage 2007; 15: 1199-1206.
Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 2006; 14 ( Suppl A): A46-75.
Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology 1997; 205: 546-550.
Fornefett M, Rohr K, Stiehl HS. Radial basis functions with compact support for elastic registration of medical images. Image Vision Comput 2001; 19: 87-96.
Lee KY, Dunn TC, Steinbach LS, Ozhinsky E, Ries MD, Majumdar S. Computer-aided quantification of focal cartilage lesions of osteoarthritic knee using MRI. Magn Reson Imaging 2004; 22: 1105-1115.
Verma R, Khurd P, Davatzikos C. On analyzing diffusion tensor images by identifying manifold structure using isomaps. IEEE Trans Med Imaging 2007; 26: 772-778.
Konig H, Sauter R, Deimling M, Vogt M. Cartilage disorders: comparison of spin-echo, CHESS, and FLASH sequence MR images. Radiology 1987; 164: 753-758.
Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8: 355-368.
Wendland H. Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Adv Comput Math 1995; 4: 389-396.
Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2-preliminary findings at 3 T. Radiology 2000; 214: 259-266.
Hohe J, Faber S, Muehlbauer R, Reiser M, Englmeier KH, Eckstein F. Three-dimensional analysis and visualization of regional MR signal intensity distribution of articular cartilage. Med Eng Phys 2002; 24: 219-227.
Schwarz D, Kasparek T, Provaznik I. Comparison of point similarity measures for atlas-based registration of MRI brain images. Conf Proc IEEE Eng Med Biol Soc 2005; 1: 455-458.
Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybernet 1973; SMC-3: 610-618.
Lynch JA, Hawkes DJ, Buckland-Wright JC. Analysis of texture in macroradiographs of osteoarthritic knees using the fractal signature. Phys Med Biol 1991; 36: 709-722.
Shindle MK, Foo LF, Kelly BT, Khanna AJ, Domb BG, Farber A, Wanich T, Potter HG. Magnetic resonance imaging of cartilage in the athlete: current techniques and spectrum of disease. J Bone Joint Surg Am 2006; 88( Suppl 4): 27-46.
Carballido-Gamio J, Bauer JS, Stahl R, Lee KY, Krause S, Link TM, Majumdar S. Inter-subject comparison of MRI knee cartilage thickness. Med Image Anal 2007 (in press).
Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater 2007; 13: 76-86.
Nowinski WL, Belov D. Toward atlas-assisted automatic interpretation of MRI morphological brain scans in the presence of tumor. Acad Radiol 2005; 12: 1049-1057.
Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging 2007; 26: 1001-1009.
Stammberger T, Hohe J, Englmeier KH, Reiser M, Eckstein F. Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness. Magn Reson Med 2000; 44: 592-601.
Glüer CC, Blake G, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporosis Int 1995; 5: 262-270.
Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, Carballido-Gamio J, Ries M, Majumdar S. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage 2007; 15: 789-797.
Glaser C, Mendlik T, Dinges J, Weber J, Stahl R, Trumm C, Reiser M. Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med 2006; 56: 527-534.
Kovalev VA, Kruggel F, Gertz HJ, von Cramon DY. Three-dimensional texture analysis of MRI brain datasets. IEEE Trans Med Imaging 2001; 20: 424-433.
Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 2006; 19: 822-854.
Oh J, Han ET, Pelletier D, Nelson SJ. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn Reson Imaging 2006; 24: 33-43.
Stammberger T, Eckstein F, Englmeier KH, Reiser M. Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living. Magn Reson Med 1999; 41: 529-536.
Lee KY, Masi JN, Sell CA, Schier R, Link TM, Steinbach LS, Safran M, Ma B, Majumdar S. Computer-aided quantification of focal cartilage lesions using MRI: accuracy and initial arthroscopic comparison. Osteoarthritis Cartilage 2005; 13: 728-737.
Drury HA, Van Essen DC, Anderson CH, Lee CW, Coogan TA, Lewis JW. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J Cogn Neurosci 1996; 8: 1-28.
Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, Schmithorst VJ, Smith MB. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 2001; 14: 50-55.
Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging 2006; 23: 547-553.
Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004; 232: 592-598.
1987; 164
2004; 22
1991; 36
2006; 56
2000; 214
2004; 8
2000; 44
2006; 14
2007
2006; 19
2005
1999; 41
2004
2003
2002
1995; 4
2007; 13
1995; 5
1995; 194
1998; 22
2005; 23
2007; 15
2001; 20
2004; 232
1997; 205
2006; 23
2006; 24
2006; 88
2002; 24
2001; 19
2005; 1
1973; SMC‐3
2001; 14
1996; 8
2005; 12
2007; 26
2005; 13
e_1_2_6_31_2
e_1_2_6_30_2
Schwarz D (e_1_2_6_32_2) 2005; 1
e_1_2_6_18_2
Williams TG (e_1_2_6_28_2) 2003
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_37_2
Blumenkrantz G (e_1_2_6_14_2) 2005
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
Carballido‐Gamio J (e_1_2_6_19_2) 2007
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Kovalev VA, Kruggel F, Gertz HJ, von Cramon DY. Three-dimensional texture analysis of MRI brain datasets. IEEE Trans Med Imaging 2001; 20: 424-433.
– reference: Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 2006; 14 ( Suppl A): A46-75.
– reference: Stammberger T, Hohe J, Englmeier KH, Reiser M, Eckstein F. Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness. Magn Reson Med 2000; 44: 592-601.
– reference: Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 2006; 19: 822-854.
– reference: Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology 1997; 205: 546-550.
– reference: Qazi AA, Folkesson J, Pettersen PC, Karsdal MA, Christiansen C, Dam EB. Separation of healthy and early osteoarthritis by automatic quantification of cartilage homogeneity. Osteoarthritis Cartilage 2007; 15: 1199-1206.
– reference: Lynch JA, Hawkes DJ, Buckland-Wright JC. Analysis of texture in macroradiographs of osteoarthritic knees using the fractal signature. Phys Med Biol 1991; 36: 709-722.
– reference: Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging 2006; 23: 547-553.
– reference: Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging 2007; 26: 1001-1009.
– reference: Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T. Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology 1995; 194: 55-59.
– reference: Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, Schmithorst VJ, Smith MB. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 2001; 14: 50-55.
– reference: Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, Carballido-Gamio J, Ries M, Majumdar S. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage 2007; 15: 789-797.
– reference: Schwarz D, Kasparek T, Provaznik I. Comparison of point similarity measures for atlas-based registration of MRI brain images. Conf Proc IEEE Eng Med Biol Soc 2005; 1: 455-458.
– reference: Wendland H. Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Adv Comput Math 1995; 4: 389-396.
– reference: Oh J, Han ET, Pelletier D, Nelson SJ. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn Reson Imaging 2006; 24: 33-43.
– reference: Lee KY, Dunn TC, Steinbach LS, Ozhinsky E, Ries MD, Majumdar S. Computer-aided quantification of focal cartilage lesions of osteoarthritic knee using MRI. Magn Reson Imaging 2004; 22: 1105-1115.
– reference: Hohe J, Faber S, Muehlbauer R, Reiser M, Englmeier KH, Eckstein F. Three-dimensional analysis and visualization of regional MR signal intensity distribution of articular cartilage. Med Eng Phys 2002; 24: 219-227.
– reference: Verma R, Khurd P, Davatzikos C. On analyzing diffusion tensor images by identifying manifold structure using isomaps. IEEE Trans Med Imaging 2007; 26: 772-778.
– reference: Link TM, Majumdar S, Lin JC, Augat P, Gould RG, Newitt D, Ouyang X, Lang TF, Mathur A, Genant HK. Assessment of trabecular structure using high resolution CT images and texture analysis. J Comput Assist Tomogr 1998; 22: 15-24.
– reference: Stammberger T, Eckstein F, Englmeier KH, Reiser M. Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living. Magn Reson Med 1999; 41: 529-536.
– reference: Chappard D, Guggenbuhl P, Legrand E, Basle MF, Audran M. Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J Bone Miner Metab 2005; 23: 24-29.
– reference: Lee KY, Masi JN, Sell CA, Schier R, Link TM, Steinbach LS, Safran M, Ma B, Majumdar S. Computer-aided quantification of focal cartilage lesions using MRI: accuracy and initial arthroscopic comparison. Osteoarthritis Cartilage 2005; 13: 728-737.
– reference: Glaser C, Mendlik T, Dinges J, Weber J, Stahl R, Trumm C, Reiser M. Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med 2006; 56: 527-534.
– reference: Shindle MK, Foo LF, Kelly BT, Khanna AJ, Domb BG, Farber A, Wanich T, Potter HG. Magnetic resonance imaging of cartilage in the athlete: current techniques and spectrum of disease. J Bone Joint Surg Am 2006; 88( Suppl 4): 27-46.
– reference: Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8: 355-368.
– reference: Drury HA, Van Essen DC, Anderson CH, Lee CW, Coogan TA, Lewis JW. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. J Cogn Neurosci 1996; 8: 1-28.
– reference: Nowinski WL, Belov D. Toward atlas-assisted automatic interpretation of MRI morphological brain scans in the presence of tumor. Acad Radiol 2005; 12: 1049-1057.
– reference: Glüer CC, Blake G, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporosis Int 1995; 5: 262-270.
– reference: Carballido-Gamio J, Bauer JS, Stahl R, Lee KY, Krause S, Link TM, Majumdar S. Inter-subject comparison of MRI knee cartilage thickness. Med Image Anal 2007 (in press).
– reference: Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater 2007; 13: 76-86.
– reference: Konig H, Sauter R, Deimling M, Vogt M. Cartilage disorders: comparison of spin-echo, CHESS, and FLASH sequence MR images. Radiology 1987; 164: 753-758.
– reference: Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004; 232: 592-598.
– reference: Fornefett M, Rohr K, Stiehl HS. Radial basis functions with compact support for elastic registration of medical images. Image Vision Comput 2001; 19: 87-96.
– reference: Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybernet 1973; SMC-3: 610-618.
– reference: Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2-preliminary findings at 3 T. Radiology 2000; 214: 259-266.
– volume: 14
  start-page: 50
  year: 2001
  end-page: 55
  article-title: Spatial variation in cartilage T2 of the knee
  publication-title: J Magn Reson Imaging
– volume: SMC‐3
  start-page: 610
  year: 1973
  end-page: 618
  article-title: Textural features for image classification
  publication-title: IEEE Trans Syst Man Cybernet
– volume: 12
  start-page: 1049
  year: 2005
  end-page: 1057
  article-title: Toward atlas‐assisted automatic interpretation of MRI morphological brain scans in the presence of tumor
  publication-title: Acad Radiol
– volume: 19
  start-page: 822
  year: 2006
  end-page: 854
  article-title: Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis
  publication-title: NMR Biomed
– volume: 5
  start-page: 262
  year: 1995
  end-page: 270
  article-title: Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques
  publication-title: Osteoporosis Int
– volume: 22
  start-page: 15
  year: 1998
  end-page: 24
  article-title: Assessment of trabecular structure using high resolution CT images and texture analysis
  publication-title: J Comput Assist Tomogr
– year: 2005
– volume: 15
  start-page: 1199
  year: 2007
  end-page: 1206
  article-title: Separation of healthy and early osteoarthritis by automatic quantification of cartilage homogeneity
  publication-title: Osteoarthritis Cartilage
– volume: 88
  start-page: 27
  issue: Suppl 4
  year: 2006
  end-page: 46
  article-title: Magnetic resonance imaging of cartilage in the athlete: current techniques and spectrum of disease
  publication-title: J Bone Joint Surg Am
– year: 2003
– volume: 41
  start-page: 529
  year: 1999
  end-page: 536
  article-title: Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living
  publication-title: Magn Reson Med
– volume: 23
  start-page: 24
  year: 2005
  end-page: 29
  article-title: Texture analysis of X‐ray radiographs is correlated with bone histomorphometry
  publication-title: J Bone Miner Metab
– volume: 205
  start-page: 546
  year: 1997
  end-page: 550
  article-title: Spatial variation of T2 in human articular cartilage
  publication-title: Radiology
– volume: 26
  start-page: 772
  year: 2007
  end-page: 778
  article-title: On analyzing diffusion tensor images by identifying manifold structure using isomaps
  publication-title: IEEE Trans Med Imaging
– volume: 19
  start-page: 87
  year: 2001
  end-page: 96
  article-title: Radial basis functions with compact support for elastic registration of medical images
  publication-title: Image Vision Comput
– volume: 232
  start-page: 592
  year: 2004
  end-page: 598
  article-title: T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis
  publication-title: Radiology
– volume: 1
  start-page: 455
  year: 2005
  end-page: 458
  article-title: Comparison of point similarity measures for atlas‐based registration of MRI brain images
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 26
  start-page: 1001
  year: 2007
  end-page: 1009
  article-title: Parallel imaging of knee cartilage at 3 Tesla
  publication-title: J Magn Reson Imaging
– volume: 13
  start-page: 728
  year: 2005
  end-page: 737
  article-title: Computer‐aided quantification of focal cartilage lesions using MRI: accuracy and initial arthroscopic comparison
  publication-title: Osteoarthritis Cartilage
– start-page: 473
  year: 2005
– volume: 214
  start-page: 259
  year: 2000
  end-page: 266
  article-title: Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T
  publication-title: Radiology
– volume: 14
  start-page: A46
  issue: Suppl A
  year: 2006
  end-page: 75
  article-title: Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment
  publication-title: Osteoarthritis Cartilage
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  article-title: Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree
  publication-title: Adv Comput Math
– volume: 15
  start-page: 789
  year: 2007
  end-page: 797
  article-title: In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI
  publication-title: Osteoarthritis Cartilage
– volume: 24
  start-page: 33
  year: 2006
  end-page: 43
  article-title: Measurement of in vivo multi‐component T2 relaxation times for brain tissue using multi‐slice T2 prep at 1.5 and 3 T
  publication-title: Magn Reson Imaging
– volume: 194
  start-page: 55
  year: 1995
  end-page: 59
  article-title: Trabecular texture analysis of CT images in the relationship with spinal fracture
  publication-title: Radiology
– volume: 24
  start-page: 219
  year: 2002
  end-page: 227
  article-title: Three‐dimensional analysis and visualization of regional MR signal intensity distribution of articular cartilage
  publication-title: Med Eng Phys
– volume: 20
  start-page: 424
  year: 2001
  end-page: 433
  article-title: Three‐dimensional texture analysis of MRI brain datasets
  publication-title: IEEE Trans Med Imaging
– year: 2002
– volume: 56
  start-page: 527
  year: 2006
  end-page: 534
  article-title: Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage
  publication-title: Magn Reson Med
– volume: 8
  start-page: 355
  year: 2004
  end-page: 368
  article-title: Cartilage MRI T2 relaxation time mapping: overview and applications
  publication-title: Semin Musculoskelet Radiol
– volume: 8
  start-page: 1
  year: 1996
  end-page: 28
  article-title: Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface‐based coordinate system
  publication-title: J Cogn Neurosci
– year: 2004
– volume: 44
  start-page: 592
  year: 2000
  end-page: 601
  article-title: Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness
  publication-title: Magn Reson Med
– volume: 22
  start-page: 1105
  year: 2004
  end-page: 1115
  article-title: Computer‐aided quantification of focal cartilage lesions of osteoarthritic knee using MRI
  publication-title: Magn Reson Imaging
– volume: 36
  start-page: 709
  year: 1991
  end-page: 722
  article-title: Analysis of texture in macroradiographs of osteoarthritic knees using the fractal signature
  publication-title: Phys Med Biol
– volume: 13
  start-page: 76
  year: 2007
  end-page: 86
  article-title: Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis
  publication-title: Eur Cell Mater
– volume: 23
  start-page: 547
  year: 2006
  end-page: 553
  article-title: T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2
  publication-title: J Magn Reson Imaging
– year: 2007
  article-title: Inter‐subject comparison of MRI knee cartilage thickness
  publication-title: Med Image Anal
– volume: 164
  start-page: 753
  year: 1987
  end-page: 758
  article-title: Cartilage disorders: comparison of spin‐echo, CHESS, and FLASH sequence MR images
  publication-title: Radiology
– ident: e_1_2_6_24_2
  doi: 10.1007/BF01774016
– ident: e_1_2_6_13_2
  doi: 10.1016/j.joca.2007.03.016
– ident: e_1_2_6_36_2
  doi: 10.1097/00004728-199801000-00003
– ident: e_1_2_6_35_2
  doi: 10.1148/radiology.194.1.7997582
– ident: e_1_2_6_21_2
– ident: e_1_2_6_4_2
  doi: 10.1016/j.joca.2006.02.026
– ident: e_1_2_6_15_2
  doi: 10.1109/TSMC.1973.4309314
– ident: e_1_2_6_22_2
  doi: 10.1007/BF02123482
– ident: e_1_2_6_25_2
  doi: 10.1002/1522-2594(200010)44:4<592::AID-MRM13>3.0.CO;2-J
– ident: e_1_2_6_41_2
  doi: 10.1109/TMI.2006.891484
– ident: e_1_2_6_34_2
  doi: 10.1002/mrm.21005
– ident: e_1_2_6_40_2
  doi: 10.1162/jocn.1996.8.1.1
– ident: e_1_2_6_33_2
  doi: 10.1016/j.acra.2005.04.018
– ident: e_1_2_6_3_2
  doi: 10.22203/eCM.v013a08
– ident: e_1_2_6_37_2
  doi: 10.1109/42.925295
– ident: e_1_2_6_9_2
  doi: 10.1148/radiology.205.2.9356643
– volume: 1
  start-page: 455
  year: 2005
  ident: e_1_2_6_32_2
  article-title: Comparison of point similarity measures for atlas‐based registration of MRI brain images
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: e_1_2_6_39_2
  doi: 10.1088/0031-9155/36/6/001
– ident: e_1_2_6_11_2
  doi: 10.1002/jmri.20536
– ident: e_1_2_6_5_2
  doi: 10.1148/radiology.164.3.3615875
– ident: e_1_2_6_8_2
  doi: 10.1016/j.joca.2007.01.011
– ident: e_1_2_6_16_2
  doi: 10.1002/jmri.21122
– ident: e_1_2_6_18_2
  doi: 10.1016/j.mri.2005.10.016
– ident: e_1_2_6_30_2
  doi: 10.1148/radiology.214.1.r00ja15259
– ident: e_1_2_6_10_2
  doi: 10.1002/jmri.1150
– volume-title: University of Sheffield
  year: 2003
  ident: e_1_2_6_28_2
– ident: e_1_2_6_27_2
  doi: 10.1016/j.mri.2004.01.076
– ident: e_1_2_6_38_2
  doi: 10.1007/s00774-004-0536-9
– ident: e_1_2_6_29_2
– ident: e_1_2_6_26_2
  doi: 10.1016/j.joca.2005.03.007
– ident: e_1_2_6_6_2
  doi: 10.1055/s-2004-861764
– ident: e_1_2_6_20_2
  doi: 10.1002/(SICI)1522-2594(199903)41:3<529::AID-MRM15>3.0.CO;2-Z
– ident: e_1_2_6_12_2
  doi: 10.2106/JBJS.F.00614
– ident: e_1_2_6_2_2
  doi: 10.1002/nbm.1063
– ident: e_1_2_6_23_2
  doi: 10.1016/S0262-8856(00)00057-3
– year: 2007
  ident: e_1_2_6_19_2
  article-title: Inter‐subject comparison of MRI knee cartilage thickness
  publication-title: Med Image Anal
– ident: e_1_2_6_7_2
  doi: 10.1148/radiol.2322030976
– ident: e_1_2_6_17_2
– volume-title: OARSI
  year: 2005
  ident: e_1_2_6_14_2
– ident: e_1_2_6_31_2
  doi: 10.1016/S1350-4533(02)00006-1
SSID ssj0009974
Score 2.1230469
Snippet MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1472
SubjectTerms Adult
cartilage
Cartilage, Articular - anatomy & histology
Female
flattening
Humans
Image Processing, Computer-Assisted
inter-subject comparisons
magnetic resonance imaging (MRI)
Magnetic Resonance Imaging - methods
Male
Osteoarthritis, Knee - pathology
relaxation time
Reproducibility of Results
T1rho
texture
Title New techniques for cartilage magnetic resonance imaging relaxation time analysis: Texture analysis of flattened cartilage and localized intra- and inter-subject comparisons
URI https://api.istex.fr/ark:/67375/WNG-94BCZHCS-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.21553
https://www.ncbi.nlm.nih.gov/pubmed/18506807
https://www.proquest.com/docview/20857355
https://www.proquest.com/docview/71632758
https://pubmed.ncbi.nlm.nih.gov/PMC2838770
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLamIRA3A8Zf-LUQQtyki2IntuEKKkaF1F2MTUwIKXJcG6q16ZQ00rQrHoFH4Zl4Es5xfrrCJiHuWvekip3PPt9xjr9DyHPFEzmREQt56mTIlWGhBtoQGu3AX2G5F4kHnMd76eiQfzhKjjbI6-4sTKMP0W-44czw6zVOcJ1XOyvR0Hk5H8RY9QbWX8zVQkK0v5KOUqpRYBYc1xnFO1WhKN7pr1zzRVdwWE8vIpp_50ue57HeEe3eIF-6LjT5J8eDepkPzNkf6o7_2cebZKslqPRNg6hbZMMW2-TauH0Fv02u-pxRU90mP2GBpL0GbEWB_lKDSJzBGkXn-muBByQpxPMLVPWwdDr3JZEonp859YigWNqe6lYY5RU9AFdRl6sWunDUzVACFLzBuT_XxYR6Lzw9g_Ypjtev7z98M-pflPClqnPcYqKmL7RY3SGHu-8OhqOwLQARGgikAD9YQSdxihkmtZBpImzEJy513CYylxMgF9rlXLNIK5ZKxyzEqy6ShgHCkKjcJZvForD3CbWRgljCJLFWllu4XDAjDNA3a7kwEQvIyw4KmWnV0bFIxyxrdJ3jDJ5F5p9FQJ71pieNJMhFRi88nnoLXR5jDp1Isk977zPF3w4_j4Yfs1FAnnaAy2Bm4-saXdhFXWW-eirQwcstINZlMQR8AbnXAHR1PyhEKCMRELEG3d4AVcXXfymm37y6OPBNKUQEA-KReXkXs_H-2H948O-mD8n1JuEGt7Eekc1lWdvHwOqW-RM_fX8DtkVO4w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxEB2VVlBeuJTbcquFEOJl01Xsjb2IF4goAZo8lFRUSMhyHG-JmmzQJpGqPvEJfArfxJcw472kgVZCvCXObLT2HnvOeMdnAJ4mIlZDFfFQtFIVisTy0CBtCK1J0V9RuRdFB5y7vVbnQLw_jA_X4GV1FqbQh6g33Ghm-PWaJjhtSO8sVUMn-aTRpLI3l2CDKnr7gGp_KR6VJIUGsxS00iSi0hWKmjv1pSveaIMG9uQ8qvl3xuRZJutd0e51-FJ1oshAOW4s5oOGPf1D3_F_e3kDrpUclb0qQHUT1ly2BVe65Vv4Lbjs00bt7Bb8xDWS1TKwM4YMmFkC4xiXKTYxRxmdkWQY0k9J2MOx0cRXRWJ0hObEg4JRdXtmSm2UF6yP3mKRL1vYNGXpmFRA0SGc-XOTDZl3xKNTbB_RgP36_sM3kwRGjl9miwHtMjFb11qc3YaD3Tf9dicsa0CEFmMphBAV0YnThFuujFStWLpIDNNWKlysBmqI_MKkA2F4ZBLeUil3GLKmkbIcQUZc5Q6sZ9PM3QPmogTDCRs3TeKEw8slt9Iig3NOSBvxAJ5XWNC2FEinOh1jXUg7NzU-C-2fRQBPatNvhSrIeUbPPKBqC5MfUxqdjPWn3ludiNftz532R90JYLtCnMbJTW9sTOami5n2BVSREV5sgeEub2LMF8DdAqHL-yEtQhXJAOQKdmsDEhZf_SUbffUC40g5lZQRDoiH5sVd1N39rv9w_99Nt2Gz0-_u6b13vQ8P4GqRf0O7Wg9hfZ4v3CMkefPBYz-XfwNZ4FL-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxEB2VVlR94VJu4VYLIcTLpqvYu_bCE6SEcEmESqtWCMlyHLtETTZVLlLVJz6BT-Gb-BJmvMmmgVZCvCXObLT2HnvOeMdnAJ5mIlFdFfNIpF5FIrM8MkgbIms8-isq96LogHOrnTb3xfvD5HAFXs7PwhT6EOWGG82MsF7TBD_p-u2FaOhgNKjWqOrNFVgTaawI0ju7C-2oLCskmKWghSYTc1mhuLZdXrrkjNZoXE8vYpp_J0yeJ7LBEzWuw9d5H4oElOPqdNKp2rM_5B3_s5M34NqMobJXBaRuworLN2G9NXsHvwlXQ9KoHd-Cn7hCslIEdsyQ_zJLUOzjIsUG5iinE5IMA_ohyXo41huEmkiMDtCcBkgwqm3PzEwZ5QXbQ18xHS1a2NAz3ycNUHQH5_7c5F0W3HDvDNt7NF6_vv8IzSSAMcIv42mH9piYLSstjm_DfuPNXr0ZzSpARBYjKQQQldBJfMYtV0aqNJEuFl2feuES1VFdZBfGd4Thscl4qjx3GLD6WFmOECOmcgdW82Hu7gFzcYbBhE1qJnPC4eWSW2mRvzknpI15BZ7PoaDtTB6dqnT0dSHsXNP4LHR4FhV4UpqeFJogFxk9C3gqLczomJLoZKIP2m91Jl7XvzTrn3WzAltzwGmc2vS-xuRuOB3rUD4V-eDlFhjs8hpGfBW4WwB0cT-kRKhiWQG5BN3SgGTFl3_Je9-CvDgSTiVljAMSkHl5F3VrtxU-3P930y1Y_7TT0B_ftT88gI0i-Ya2tB7C6mQ0dY-Q4U06j8NM_g1Y3VG2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+techniques+for+cartilage+magnetic+resonance+imaging+relaxation+time+analysis%3A+Texture+analysis+of+flattened+cartilage+and+localized+intra-+and+inter-subject+comparisons&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Carballido-Gamio%2C+Julio&rft.au=Link%2C+Thomas+M&rft.au=Majumdar%2C+Sharmila&rft.date=2008-06-01&rft.issn=0740-3194&rft.volume=59&rft.issue=6&rft.spage=1472&rft.epage=1477&rft_id=info:doi/10.1002%2Fmrm.21553&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon