Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software
The Critical Assessment of Metagenome Interpretation (CAMI) community initiative presents results from its first challenge, a rigorous benchmarking of software for metagenome assembly, binning and taxonomic profiling. Methods for assembly, taxonomic profiling and binning are key to interpreting meta...
Saved in:
Published in | Nature methods Vol. 14; no. 11; pp. 1063 - 1071 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.11.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Critical Assessment of Metagenome Interpretation (CAMI) community initiative presents results from its first challenge, a rigorous benchmarking of software for metagenome assembly, binning and taxonomic profiling.
Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions. |
---|---|
AbstractList | Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ~700 newly sequenced microorganisms and ~600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions. Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions. The Critical Assessment of Metagenome Interpretation (CAMI) community initiative presents results from its first challenge, a rigorous benchmarking of software for metagenome assembly, binning and taxonomic profiling. Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions. Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from [similar]700 newly sequenced microorganisms and [similar]600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions. |
Audience | Academic |
Author | Quince, Christopher Klenk, Hans-Peter Wu, Yu-Wei Sczyrba, Alexander Balvočiūtė, Monika Lingner, Thomas Jørgensen, Tue Sparholt Jain, Chirag Nagarajan, Niranjan Darling, Aaron E Rattei, Thomas Strous, Marc Chia, Burton K H Schulze-Lefert, Paul Woyke, Tanja Fritz, Adrian Dröge, Johannes Blood, Philip D Dahms, Eik Renard, Bernhard Y Barton, Michael D Edwards, Robert A Göker, Markus McHardy, Alice C Pop, Mihai Fiedler, Jessika Lin, Hsin-Hung Majda, Stephan Vorholt, Julia A Rubin, Edward M Hofmann, Peter Wang, Zhong Rizk, Guillaume Meyer, Fernando Cuevas, Daniel A Denis, Bertrand Turaev, Dmitrij Deltel, Charles Egan, Robert Bai, Yang Garrido-Oter, Ruben Don Kang, Dongwan Bremges, Andreas Janssen, Stefan Lavenier, Dominique DeMaere, Matthew Z Shapiro, Nicole Gurevich, Alexey Chikhi, Rayan Singer, Steven W Koslicki, David Belmann, Peter Kyrpides, Nikos C Silva, Genivaldo Gueiros Z Klingenberg, Heiner Saha, Surya Sørensen, Søren J Froula, Jeff L Lemaitre, Claire Hansen, Lars Hestbjerg Cook, Jeffrey J Gregor, Ivan Meinicke, Peter Peterlongo, Pierre Liao, Yu |
Author_xml | – sequence: 1 givenname: Alexander surname: Sczyrba fullname: Sczyrba, Alexander email: asczyrba@cebitec.uni-bielefeld.de organization: Faculty of Technology, Bielefeld University, Center for Biotechnology, Bielefeld University – sequence: 2 givenname: Peter surname: Hofmann fullname: Hofmann, Peter organization: Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre of Systems Biology (BRICS) – sequence: 3 givenname: Peter surname: Belmann fullname: Belmann, Peter organization: Faculty of Technology, Bielefeld University, Center for Biotechnology, Bielefeld University, Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre of Systems Biology (BRICS) – sequence: 4 givenname: David surname: Koslicki fullname: Koslicki, David organization: Mathematics Department, Oregon State University – sequence: 5 givenname: Stefan surname: Janssen fullname: Janssen, Stefan organization: Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Department of Pediatrics, University of California, Department of Computer Science and Engineering, University of California – sequence: 6 givenname: Johannes surname: Dröge fullname: Dröge, Johannes organization: Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre of Systems Biology (BRICS) – sequence: 7 givenname: Ivan surname: Gregor fullname: Gregor, Ivan organization: Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre of Systems Biology (BRICS) – sequence: 8 givenname: Stephan surname: Majda fullname: Majda, Stephan organization: Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Department of Biodiversity, University of Duisburg-Essen – sequence: 9 givenname: Jessika surname: Fiedler fullname: Fiedler, Jessika organization: Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI) – sequence: 10 givenname: Eik surname: Dahms fullname: Dahms, Eik organization: Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre of Systems Biology (BRICS) – sequence: 11 givenname: Andreas surname: Bremges fullname: Bremges, Andreas organization: Faculty of Technology, Bielefeld University, Center for Biotechnology, Bielefeld University, Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre of Systems Biology (BRICS), German Center for Infection Research (DZIF), partner site Hannover-Braunschweig – sequence: 12 givenname: Adrian surname: Fritz fullname: Fritz, Adrian organization: Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre of Systems Biology (BRICS) – sequence: 13 givenname: Ruben surname: Garrido-Oter fullname: Garrido-Oter, Ruben organization: Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre of Systems Biology (BRICS), Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cluster of Excellence on Plant Sciences (CEPLAS) – sequence: 14 givenname: Tue Sparholt surname: Jørgensen fullname: Jørgensen, Tue Sparholt organization: Department of Environmental Science, Section of Environmental microbiology and Biotechnology, Aarhus University, Department of Microbiology, University of Copenhagen, Department of Science and Environment, Roskilde University – sequence: 15 givenname: Nicole surname: Shapiro fullname: Shapiro, Nicole organization: Department of Energy, Joint Genome Institute – sequence: 16 givenname: Philip D surname: Blood fullname: Blood, Philip D organization: Pittsburgh Supercomputing Center, Carnegie Mellon University – sequence: 17 givenname: Alexey surname: Gurevich fullname: Gurevich, Alexey organization: Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University – sequence: 18 givenname: Yang surname: Bai fullname: Bai, Yang organization: Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Centre of Excellence for Plant and Microbial Sciences (CEPAMS) – sequence: 19 givenname: Dmitrij surname: Turaev fullname: Turaev, Dmitrij organization: Department of Microbiology and Ecosystem Science, University of Vienna – sequence: 20 givenname: Matthew Z surname: DeMaere fullname: DeMaere, Matthew Z organization: The ithree institute, University of Technology Sydney – sequence: 21 givenname: Rayan surname: Chikhi fullname: Chikhi, Rayan organization: Department of Computer Science, Research Center in Computer Science (CRIStAL), Signal and Automatic Control of Lille, National Centre of the Scientific Research (CNRS) – sequence: 22 givenname: Niranjan surname: Nagarajan fullname: Nagarajan, Niranjan organization: Department of Computational and Systems Biology, Genome Institute of Singapore – sequence: 23 givenname: Christopher surname: Quince fullname: Quince, Christopher organization: Department of Microbiology and Infection, Warwick Medical School, University of Warwick – sequence: 24 givenname: Fernando surname: Meyer fullname: Meyer, Fernando organization: Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre of Systems Biology (BRICS) – sequence: 25 givenname: Monika surname: Balvočiūtė fullname: Balvočiūtė, Monika organization: Department of Computer Science, University of Tuebingen – sequence: 26 givenname: Lars Hestbjerg surname: Hansen fullname: Hansen, Lars Hestbjerg organization: Department of Environmental Science, Section of Environmental microbiology and Biotechnology, Aarhus University – sequence: 27 givenname: Søren J surname: Sørensen fullname: Sørensen, Søren J organization: Department of Microbiology, University of Copenhagen – sequence: 28 givenname: Burton K H surname: Chia fullname: Chia, Burton K H organization: Department of Computational and Systems Biology, Genome Institute of Singapore – sequence: 29 givenname: Bertrand surname: Denis fullname: Denis, Bertrand organization: Department of Computational and Systems Biology, Genome Institute of Singapore – sequence: 30 givenname: Jeff L surname: Froula fullname: Froula, Jeff L organization: Department of Energy, Joint Genome Institute – sequence: 31 givenname: Zhong surname: Wang fullname: Wang, Zhong organization: Department of Energy, Joint Genome Institute – sequence: 32 givenname: Robert surname: Egan fullname: Egan, Robert organization: Department of Energy, Joint Genome Institute – sequence: 33 givenname: Dongwan surname: Don Kang fullname: Don Kang, Dongwan organization: Department of Energy, Joint Genome Institute – sequence: 34 givenname: Jeffrey J surname: Cook fullname: Cook, Jeffrey J organization: Intel Corporation – sequence: 35 givenname: Charles surname: Deltel fullname: Deltel, Charles organization: GenScale—Bioinformatics Research Team, Inria Rennes—Bretagne Atlantique Research Centre, Institute of Research in Informatics and Random Systems (IRISA) – sequence: 36 givenname: Michael surname: Beckstette fullname: Beckstette, Michael organization: Department of Molecular Infection Biology, Helmholtz Centre for Infection Research – sequence: 37 givenname: Claire surname: Lemaitre fullname: Lemaitre, Claire organization: GenScale—Bioinformatics Research Team, Inria Rennes—Bretagne Atlantique Research Centre, Institute of Research in Informatics and Random Systems (IRISA) – sequence: 38 givenname: Pierre surname: Peterlongo fullname: Peterlongo, Pierre organization: GenScale—Bioinformatics Research Team, Inria Rennes—Bretagne Atlantique Research Centre, Institute of Research in Informatics and Random Systems (IRISA) – sequence: 39 givenname: Guillaume surname: Rizk fullname: Rizk, Guillaume organization: Institute of Research in Informatics and Random Systems (IRISA), Algorizk–IT consulting and software systems – sequence: 40 givenname: Dominique surname: Lavenier fullname: Lavenier, Dominique organization: National Centre of the Scientific Research (CNRS), Institute of Research in Informatics and Random Systems (IRISA) – sequence: 41 givenname: Yu-Wei surname: Wu fullname: Wu, Yu-Wei organization: Joint BioEnergy Institute, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University – sequence: 42 givenname: Steven W surname: Singer fullname: Singer, Steven W organization: Joint BioEnergy Institute, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory – sequence: 43 givenname: Chirag surname: Jain fullname: Jain, Chirag organization: School of Computational Science and Engineering, Georgia Institute of Technology – sequence: 44 givenname: Marc surname: Strous fullname: Strous, Marc organization: Energy Engineering and Geomicrobiology, University of Calgary – sequence: 45 givenname: Heiner surname: Klingenberg fullname: Klingenberg, Heiner organization: Department of Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen – sequence: 46 givenname: Peter surname: Meinicke fullname: Meinicke, Peter organization: Department of Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen – sequence: 47 givenname: Michael D surname: Barton fullname: Barton, Michael D organization: Department of Energy, Joint Genome Institute – sequence: 48 givenname: Thomas surname: Lingner fullname: Lingner, Thomas organization: Genevention GmbH – sequence: 49 givenname: Hsin-Hung surname: Lin fullname: Lin, Hsin-Hung organization: Institute of Population Health Sciences, National Health Research Institutes – sequence: 50 givenname: Yu-Chieh surname: Liao fullname: Liao, Yu-Chieh organization: Institute of Population Health Sciences, National Health Research Institutes – sequence: 51 givenname: Genivaldo Gueiros Z surname: Silva fullname: Silva, Genivaldo Gueiros Z organization: Computational Science Research Center, San Diego State University – sequence: 52 givenname: Daniel A surname: Cuevas fullname: Cuevas, Daniel A organization: Computational Science Research Center, San Diego State University – sequence: 53 givenname: Robert A surname: Edwards fullname: Edwards, Robert A organization: Computational Science Research Center, San Diego State University – sequence: 54 givenname: Surya surname: Saha fullname: Saha, Surya organization: Boyce Thompson Institute for Plant Research – sequence: 55 givenname: Vitor C surname: Piro fullname: Piro, Vitor C organization: Research Group Bioinformatics (NG4), Robert Koch Institute, Coordination for the Improvement of Higher Education Personnel (CAPES) Foundation, Ministry of Education of Brazil – sequence: 56 givenname: Bernhard Y surname: Renard fullname: Renard, Bernhard Y organization: Research Group Bioinformatics (NG4), Robert Koch Institute – sequence: 57 givenname: Mihai surname: Pop fullname: Pop, Mihai organization: Center for Bioinformatics and Computational Biology, University of Maryland, Department of Computer Science, University of Maryland – sequence: 58 givenname: Hans-Peter surname: Klenk fullname: Klenk, Hans-Peter organization: School of Biology, Newcastle University – sequence: 59 givenname: Markus surname: Göker fullname: Göker, Markus organization: Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures – sequence: 60 givenname: Nikos C surname: Kyrpides fullname: Kyrpides, Nikos C organization: Department of Energy, Joint Genome Institute – sequence: 61 givenname: Tanja surname: Woyke fullname: Woyke, Tanja organization: Department of Energy, Joint Genome Institute – sequence: 62 givenname: Julia A surname: Vorholt fullname: Vorholt, Julia A organization: Institute of Microbiology, ETH Zurich – sequence: 63 givenname: Paul surname: Schulze-Lefert fullname: Schulze-Lefert, Paul organization: Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cluster of Excellence on Plant Sciences (CEPLAS) – sequence: 64 givenname: Edward M surname: Rubin fullname: Rubin, Edward M organization: Department of Energy, Joint Genome Institute – sequence: 65 givenname: Aaron E orcidid: 0000-0003-2397-7925 surname: Darling fullname: Darling, Aaron E organization: The ithree institute, University of Technology Sydney – sequence: 66 givenname: Thomas orcidid: 0000-0002-0592-7791 surname: Rattei fullname: Rattei, Thomas organization: Department of Microbiology and Ecosystem Science, University of Vienna – sequence: 67 givenname: Alice C orcidid: 0000-0003-2370-3430 surname: McHardy fullname: McHardy, Alice C email: alice.mchardy@helmholtz-hzi.de organization: Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre of Systems Biology (BRICS), Cluster of Excellence on Plant Sciences (CEPLAS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28967888$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1543734$$D View this record in Osti.gov |
BookMark | eNptkU1OWzEUhS1ExU9gwgLQE51RJfg3doZRVFokqk5ADC0_5zoxzbOD7ajqrIvoClkJfg0pqoQ9sHX93eNjn2O0H2IAhM4IHhHM1FXooCxHnAu1h46I4GooCRb7uz2ekEN0nPMjxoxxKg7QIVWTsVRKHaGHWfLFW7NqpjlDzh2E0kTXfINiFhBiB81NKJDWqRaKj-H59x_TtBDssjPpR492O9Tb3OToyk-T4AR9cGaV4fR1HaD76893s6_D2-9fbmbT26EVXJahm9Nqsp2MxZgoI7CU1BLKKQHpuFFs3BrJzARkiwVw5uqotinDBLfCOsoG6GKrG3PxOltfwC5tDAFs0VWaScYr9HELrVN82kAu-jFuUqi-NCUYq3oflm_UwqxA--BiScZ2Pls9Fb0p3KsN0Ogdqs451A-owThf6_81XG4bbIo5J3B6nXz9u1-aYN3np__mp_v8Knz-6nTTdjD_h-4Cq8CnLZDrUVhAenvKO3IvSL6mBw |
CitedBy_id | crossref_primary_10_1186_s40168_018_0541_1 crossref_primary_10_1016_j_copbio_2018_11_014 crossref_primary_10_1038_s41597_023_02877_7 crossref_primary_10_1007_s12539_022_00526_y crossref_primary_10_1038_s41597_022_01762_z crossref_primary_10_1093_bioinformatics_bty844 crossref_primary_10_1186_s40168_021_01039_4 crossref_primary_10_1038_s41467_021_27542_8 crossref_primary_10_3389_fmicb_2022_869834 crossref_primary_10_1186_s40793_022_00425_1 crossref_primary_10_1007_s00253_018_9209_9 crossref_primary_10_1101_gr_275894_121 crossref_primary_10_1093_bioinformatics_bty830 crossref_primary_10_1016_j_biombioe_2019_02_016 crossref_primary_10_1093_bioinformatics_btaa760 crossref_primary_10_1038_s41592_021_01141_3 crossref_primary_10_1093_dnares_dsad010 crossref_primary_10_7717_peerj_12198 crossref_primary_10_1007_s12551_023_01124_y crossref_primary_10_1038_s41467_024_46539_7 crossref_primary_10_1186_s43008_019_0012_8 crossref_primary_10_1038_s41467_024_46888_3 crossref_primary_10_1093_bioadv_vbab039 crossref_primary_10_1093_bioinformatics_btaa657 crossref_primary_10_1186_s13059_022_02810_y crossref_primary_10_1016_j_tifs_2020_04_007 crossref_primary_10_1038_s43705_021_00010_6 crossref_primary_10_1186_s12864_023_09912_2 crossref_primary_10_1186_s13059_022_02832_6 crossref_primary_10_1007_s40484_018_0142_9 crossref_primary_10_1186_s40168_023_01644_5 crossref_primary_10_1093_nargab_lqaa047 crossref_primary_10_1093_bib_bbab030 crossref_primary_10_1128_AEM_00724_20 crossref_primary_10_1038_s41586_019_1065_y crossref_primary_10_1186_s40793_022_00403_7 crossref_primary_10_1038_s41564_022_01089_w crossref_primary_10_1093_bioinformatics_bty733 crossref_primary_10_3389_fgene_2019_01344 crossref_primary_10_1093_bioinformatics_btac845 crossref_primary_10_1093_nargab_lqab009 crossref_primary_10_3389_fmicb_2023_1078760 crossref_primary_10_1146_annurev_biodatasci_030320_041014 crossref_primary_10_1016_j_mimet_2018_06_007 crossref_primary_10_3389_fmicb_2022_854423 crossref_primary_10_1371_journal_pcbi_1006967 crossref_primary_10_1186_s40168_019_0653_2 crossref_primary_10_1089_cmb_2022_0208 crossref_primary_10_1186_s13059_019_1755_7 crossref_primary_10_1016_j_syapm_2018_08_009 crossref_primary_10_1080_09670262_2019_1638523 crossref_primary_10_1038_s41587_019_0191_2 crossref_primary_10_1186_s12859_021_04227_z crossref_primary_10_1038_s42003_023_05452_3 crossref_primary_10_1186_s40793_024_00561_w crossref_primary_10_1080_1040841X_2022_2132850 crossref_primary_10_1186_s12859_023_05589_2 crossref_primary_10_1093_nar_gkaa568 crossref_primary_10_1093_nar_gkac988 crossref_primary_10_1186_s12859_022_05052_8 crossref_primary_10_1093_bioinformatics_bty767 crossref_primary_10_1093_bib_bbaa121 crossref_primary_10_1128_Spectrum_01164_21 crossref_primary_10_1038_s41467_022_33633_x crossref_primary_10_1038_s12276_024_01262_7 crossref_primary_10_1038_s41592_022_01431_4 crossref_primary_10_1145_3445967 crossref_primary_10_1128_msystems_01178_22 crossref_primary_10_1016_j_micinf_2023_105105 crossref_primary_10_1128_mbio_02414_22 crossref_primary_10_1016_j_biortech_2021_126350 crossref_primary_10_1186_s12859_020_03737_6 crossref_primary_10_1186_s40168_019_0633_6 crossref_primary_10_1099_mgen_0_001197 crossref_primary_10_1016_j_micres_2022_127023 crossref_primary_10_1186_s40168_023_01630_x crossref_primary_10_1161_JAHA_121_021934 crossref_primary_10_1111_1755_0998_12923 crossref_primary_10_1093_nar_gky174 crossref_primary_10_1016_j_cub_2020_04_070 crossref_primary_10_1186_s40168_019_0743_1 crossref_primary_10_3389_fbinf_2022_871393 crossref_primary_10_1016_j_celrep_2020_02_036 crossref_primary_10_3389_fmicb_2018_00872 crossref_primary_10_1016_j_jenvman_2024_120544 crossref_primary_10_1093_bioinformatics_btaa458 crossref_primary_10_2903_sp_efsa_2024_EN_8597 crossref_primary_10_1186_s40168_021_01092_z crossref_primary_10_1093_bib_bbac443 crossref_primary_10_1007_s40265_021_01572_4 crossref_primary_10_1038_s42003_023_04676_7 crossref_primary_10_1093_bioinformatics_btaa697 crossref_primary_10_1016_j_syapm_2018_11_001 crossref_primary_10_1039_D3MO00089C crossref_primary_10_1093_bib_bby072 crossref_primary_10_1371_journal_pone_0211139 crossref_primary_10_1038_s41467_019_09406_4 crossref_primary_10_1146_annurev_micro_012520_072314 crossref_primary_10_1128_mSphere_00854_20 crossref_primary_10_1007_s00248_022_02148_9 crossref_primary_10_1038_s41579_023_00984_1 crossref_primary_10_1093_bioinformatics_btaa588 crossref_primary_10_1186_s12864_019_6289_6 crossref_primary_10_1093_nar_gkad943 crossref_primary_10_1186_s13059_020_1933_7 crossref_primary_10_1093_bib_bbac431 crossref_primary_10_7717_peerj_16695 crossref_primary_10_1186_s13062_020_00287_y crossref_primary_10_1038_s41467_020_18164_7 crossref_primary_10_1186_s13059_021_02443_7 crossref_primary_10_2174_1568026620666200320112731 crossref_primary_10_12688_f1000research_51494_1 crossref_primary_10_12688_f1000research_51494_2 crossref_primary_10_1093_bib_bbz155 crossref_primary_10_1186_s12859_020_03667_3 crossref_primary_10_1016_j_cell_2019_11_017 crossref_primary_10_1038_s41467_022_35178_5 crossref_primary_10_3390_microorganisms11102478 crossref_primary_10_1109_TCBB_2021_3117406 crossref_primary_10_1186_s13059_021_02566_x crossref_primary_10_3389_frsip_2022_842513 crossref_primary_10_1093_bioinformatics_btz899 crossref_primary_10_1128_mSystems_00392_19 crossref_primary_10_1186_s40168_021_01035_8 crossref_primary_10_12688_f1000research_144515_1 crossref_primary_10_1093_bib_bbz020 crossref_primary_10_1373_clinchem_2019_303248 crossref_primary_10_3389_fcvm_2021_763293 crossref_primary_10_7717_peerj_6174 crossref_primary_10_1038_s41380_020_0729_1 crossref_primary_10_1093_nargab_lqac050 crossref_primary_10_1038_s42003_022_03114_4 crossref_primary_10_1093_bib_bbz025 crossref_primary_10_1038_s41467_021_24129_1 crossref_primary_10_1002_mbo3_1298 crossref_primary_10_1098_rstb_2019_0573 crossref_primary_10_1093_bioinformatics_btaa489 crossref_primary_10_1016_j_syapm_2020_126070 crossref_primary_10_1016_j_micres_2022_127180 crossref_primary_10_3390_genes10060424 crossref_primary_10_1111_1755_0998_13135 crossref_primary_10_1038_s41396_021_01149_9 crossref_primary_10_7717_peerj_6160 crossref_primary_10_1016_j_chom_2017_07_004 crossref_primary_10_1093_nargab_lqab071 crossref_primary_10_1093_gigascience_giad055 crossref_primary_10_12688_f1000research_39214_2 crossref_primary_10_1016_j_scitotenv_2023_164585 crossref_primary_10_12688_f1000research_39214_1 crossref_primary_10_1371_journal_pcbi_1008174 crossref_primary_10_3389_fgene_2021_669495 crossref_primary_10_1038_s41586_019_1058_x crossref_primary_10_1186_s40168_018_0582_5 crossref_primary_10_21105_joss_05627 crossref_primary_10_3389_fmicb_2021_613791 crossref_primary_10_1186_s13059_020_02066_4 crossref_primary_10_1186_s13059_022_02777_w crossref_primary_10_1016_j_watres_2023_120700 crossref_primary_10_1093_bioinformatics_btz790 crossref_primary_10_1186_s40168_019_0684_8 crossref_primary_10_1016_j_cub_2018_05_058 crossref_primary_10_1002_imt2_39 crossref_primary_10_20517_mrr_2024_01 crossref_primary_10_1038_s41598_020_70491_3 crossref_primary_10_1038_s41598_020_67416_5 crossref_primary_10_1371_journal_pcbi_1011001 crossref_primary_10_1038_s41597_022_01463_7 crossref_primary_10_1093_nar_gkab200 crossref_primary_10_1186_s13059_019_1646_y crossref_primary_10_1038_s41467_024_47155_1 crossref_primary_10_1016_j_jhin_2019_11_007 crossref_primary_10_1093_nargab_lqad023 crossref_primary_10_1099_mgen_0_001058 crossref_primary_10_1016_j_anaerobe_2019_02_006 crossref_primary_10_1186_s40168_020_00840_x crossref_primary_10_1128_mSystems_00752_21 crossref_primary_10_7554_eLife_65088 crossref_primary_10_2354_psj_34_004 crossref_primary_10_1128_msystems_00432_22 crossref_primary_10_1038_s41564_022_01266_x crossref_primary_10_7717_peerj_7359 crossref_primary_10_1093_bioinformatics_bty128 crossref_primary_10_1093_ndt_gfad126 crossref_primary_10_12688_f1000research_14509_1 crossref_primary_10_12688_f1000research_14509_2 crossref_primary_10_1093_nargab_lqac007 crossref_primary_10_1038_s41564_019_0643_y crossref_primary_10_1093_bioinformatics_btaa272 crossref_primary_10_1186_s13059_023_02903_2 crossref_primary_10_1016_j_cell_2018_02_015 crossref_primary_10_1186_s10020_021_00371_7 crossref_primary_10_1111_1471_0528_15978 crossref_primary_10_1128_msystems_00213_24 crossref_primary_10_3389_fmicb_2021_685935 crossref_primary_10_1186_s12859_021_03997_w crossref_primary_10_7717_peerj_9762 crossref_primary_10_3389_fpubh_2020_00038 crossref_primary_10_1186_s40168_020_00875_0 crossref_primary_10_1186_s12859_020_03744_7 crossref_primary_10_1186_s12864_022_08967_x crossref_primary_10_3390_biology12081066 crossref_primary_10_1038_s41592_019_0437_4 crossref_primary_10_3389_fdata_2022_1018356 crossref_primary_10_1002_cpz1_128 crossref_primary_10_1021_acs_est_0c05435 crossref_primary_10_1038_s41592_018_0182_0 crossref_primary_10_1099_mgen_0_001231 crossref_primary_10_1093_bioinformatics_bty595 crossref_primary_10_1002_imt2_46 crossref_primary_10_1186_s12859_018_2033_5 crossref_primary_10_3389_fpls_2019_01313 crossref_primary_10_1186_s13059_018_1554_6 crossref_primary_10_1093_ve_veaa091 crossref_primary_10_3390_pathogens11030340 crossref_primary_10_1093_bioinformatics_bty266 crossref_primary_10_1093_bioinformatics_bty387 crossref_primary_10_1038_s41596_020_00480_3 crossref_primary_10_1093_femsle_fnab067 crossref_primary_10_1128_mSystems_00813_19 crossref_primary_10_1093_bioinformatics_btaa180 crossref_primary_10_1111_tbed_14249 crossref_primary_10_2196_30291 crossref_primary_10_1111_1462_2920_14276 crossref_primary_10_1186_s40168_018_0550_0 crossref_primary_10_1186_s13059_019_1643_1 crossref_primary_10_1093_molbev_msz237 crossref_primary_10_24072_pcjournal_37 crossref_primary_10_1128_MRA_01523_19 crossref_primary_10_1128_mSystems_00103_18 crossref_primary_10_1089_cmb_2021_0270 crossref_primary_10_1128_msystems_01280_22 crossref_primary_10_1016_j_watres_2020_115505 crossref_primary_10_1038_s41598_018_30515_5 crossref_primary_10_1099_mgen_0_000691 crossref_primary_10_1186_s12859_024_05666_0 crossref_primary_10_1111_1755_0998_13407 crossref_primary_10_1016_j_csbj_2021_11_028 crossref_primary_10_1093_gigascience_giz096 crossref_primary_10_1093_toxsci_kfac029 crossref_primary_10_1016_j_drudis_2018_06_005 crossref_primary_10_2139_ssrn_4109818 crossref_primary_10_1038_s41592_022_01419_0 crossref_primary_10_3389_fgene_2019_00957 crossref_primary_10_1089_cmb_2021_0258 crossref_primary_10_3389_fmicb_2021_827229 crossref_primary_10_3390_life10120356 crossref_primary_10_1186_s12859_021_04154_z crossref_primary_10_1093_bioinformatics_btab184 crossref_primary_10_1093_gigascience_giac122 crossref_primary_10_1038_s41467_019_08973_w crossref_primary_10_1128_Spectrum_01434_21 crossref_primary_10_1093_bioinformatics_btad243 crossref_primary_10_1093_bioinformatics_btac398 crossref_primary_10_1099_mgen_0_001203 crossref_primary_10_1093_nar_gky901 crossref_primary_10_1038_s41587_020_0718_6 crossref_primary_10_3390_biomedicines9080910 crossref_primary_10_1093_gbe_evae102 crossref_primary_10_1186_s13059_019_1817_x crossref_primary_10_1038_s41569_022_00771_0 crossref_primary_10_7717_peerj_8614 crossref_primary_10_1128_aem_02109_21 crossref_primary_10_1016_j_autrev_2019_03_016 crossref_primary_10_1016_j_copbio_2020_12_021 crossref_primary_10_1038_s41396_021_01178_4 crossref_primary_10_1186_s12859_019_2896_0 crossref_primary_10_1186_s13059_021_02328_9 crossref_primary_10_1186_s40168_018_0470_z crossref_primary_10_1128_mSphere_00448_20 crossref_primary_10_1093_bioinformatics_btac295 crossref_primary_10_1128_msystems_01468_21 crossref_primary_10_1186_s12859_022_05103_0 crossref_primary_10_1038_s41597_019_0287_z crossref_primary_10_1186_s13059_021_02426_8 crossref_primary_10_1038_nmeth_4485 crossref_primary_10_7717_peerj_8966 crossref_primary_10_1101_gr_260398_119 crossref_primary_10_3389_feart_2021_683010 crossref_primary_10_1128_mSystems_00768_19 crossref_primary_10_1186_s12864_022_08803_2 crossref_primary_10_1007_s12275_021_0632_8 crossref_primary_10_1371_journal_pcbi_1007208 crossref_primary_10_1186_s40168_018_0460_1 crossref_primary_10_3389_fendo_2022_877518 crossref_primary_10_1111_1755_0998_13687 crossref_primary_10_1111_1751_7915_12982 crossref_primary_10_1099_mgen_0_000651 crossref_primary_10_1186_s13062_018_0225_6 crossref_primary_10_1128_mbio_02696_23 crossref_primary_10_1038_s41579_020_0368_1 crossref_primary_10_3390_plants10020250 crossref_primary_10_1186_s12859_020_3533_7 crossref_primary_10_1186_s13059_019_1819_8 crossref_primary_10_1016_j_fsigen_2020_102257 crossref_primary_10_1186_s12864_019_5699_9 crossref_primary_10_3389_fgene_2019_00516 crossref_primary_10_1016_j_jare_2019_04_007 crossref_primary_10_1016_j_jcv_2021_104908 crossref_primary_10_1016_j_isci_2020_101223 crossref_primary_10_1111_jgh_15503 crossref_primary_10_1146_annurev_micro_090817_062436 crossref_primary_10_1038_s41564_018_0171_1 crossref_primary_10_1038_s41598_021_83081_8 crossref_primary_10_1186_s13059_019_1773_5 crossref_primary_10_1007_s00439_020_02218_3 crossref_primary_10_1016_j_csbj_2020_11_057 crossref_primary_10_1099_mgen_0_000436 crossref_primary_10_1016_j_yfrne_2021_100917 crossref_primary_10_1016_j_watres_2019_115250 crossref_primary_10_3389_fmicb_2020_01739 crossref_primary_10_3389_fmicb_2020_00648 crossref_primary_10_1038_s41598_020_62840_z crossref_primary_10_1038_s42003_021_02331_7 crossref_primary_10_7717_peerj_10119 crossref_primary_10_1021_acs_est_3c06466 crossref_primary_10_1016_j_coviro_2021_10_011 crossref_primary_10_1186_s12859_019_2904_4 crossref_primary_10_1016_j_csbj_2020_11_049 crossref_primary_10_3390_microorganisms10122416 crossref_primary_10_1093_gigascience_giad008 crossref_primary_10_1038_s41396_019_0395_y crossref_primary_10_1128_msystems_00167_22 crossref_primary_10_1186_s40168_020_00993_9 crossref_primary_10_7717_peerj_12772 crossref_primary_10_3389_fgene_2019_00972 crossref_primary_10_1128_mSphere_00529_18 crossref_primary_10_1111_1755_0998_13430 crossref_primary_10_3897_rio_9_e110501 crossref_primary_10_1371_journal_pone_0284031 crossref_primary_10_1016_j_tim_2024_03_008 crossref_primary_10_1093_bib_bbad087 crossref_primary_10_1016_S1002_0160_19_60824_6 crossref_primary_10_1093_bioinformatics_btae150 crossref_primary_10_1099_mic_0_001469 crossref_primary_10_1093_gigascience_giaa111 crossref_primary_10_3390_genes13122280 crossref_primary_10_1038_s41467_019_08844_4 crossref_primary_10_1007_s11306_020_01744_5 crossref_primary_10_1186_s13059_019_1738_8 crossref_primary_10_1038_s41597_023_02222_y crossref_primary_10_1128_AEM_02593_20 crossref_primary_10_2174_1574893617666220520100535 crossref_primary_10_1038_s41598_022_18903_4 crossref_primary_10_1186_s13059_020_02159_0 crossref_primary_10_1016_j_ymeth_2020_07_011 crossref_primary_10_3390_genes10030220 crossref_primary_10_1038_s41467_019_10934_2 crossref_primary_10_1038_s43588_023_00576_2 crossref_primary_10_1093_bib_bbad381 crossref_primary_10_3390_genes11080946 crossref_primary_10_1099_mgen_0_000501 crossref_primary_10_1002_ecs2_3807 crossref_primary_10_1007_s13258_024_01514_w crossref_primary_10_1186_s40104_021_00643_6 crossref_primary_10_1038_s41467_022_29843_y crossref_primary_10_1093_bioinformatics_btae047 crossref_primary_10_1186_s13062_019_0242_0 crossref_primary_10_1371_journal_pcbi_1008972 crossref_primary_10_1186_s12864_023_09338_w crossref_primary_10_1093_gigascience_giy054 crossref_primary_10_1093_mmy_myz109 crossref_primary_10_1146_annurev_genet_080320_040045 crossref_primary_10_1089_cmb_2022_0262 crossref_primary_10_1111_1462_2920_14934 crossref_primary_10_1016_j_ijfoodmicro_2023_110488 crossref_primary_10_1111_apt_16262 crossref_primary_10_1016_j_cell_2019_07_010 crossref_primary_10_1093_bib_bbad050 crossref_primary_10_1038_s41592_018_0176_y crossref_primary_10_3389_fmicb_2021_643682 crossref_primary_10_1038_s41587_020_00777_4 crossref_primary_10_1093_gigascience_giy057 crossref_primary_10_1093_gigascience_giz154 crossref_primary_10_1016_j_jgg_2021_12_005 crossref_primary_10_1038_s41467_021_22409_4 crossref_primary_10_7717_peerj_4892 crossref_primary_10_3389_fmars_2019_00395 crossref_primary_10_3389_fviro_2024_1371958 crossref_primary_10_3390_v13122541 crossref_primary_10_1093_bib_bbad162 crossref_primary_10_1099_mgen_0_000886 crossref_primary_10_1099_mgen_0_000409 crossref_primary_10_1186_s13059_019_1834_9 crossref_primary_10_1080_07388551_2023_2254933 crossref_primary_10_1038_s41467_024_49060_z crossref_primary_10_1186_s12859_020_03802_0 crossref_primary_10_1038_s41592_020_00971_x crossref_primary_10_1128_mBio_02691_19 crossref_primary_10_1093_gigascience_giy069 crossref_primary_10_12688_wellcomeopenres_15639_1 crossref_primary_10_12688_wellcomeopenres_15639_2 crossref_primary_10_1093_gigascience_giz043 crossref_primary_10_3389_fmicb_2021_766364 crossref_primary_10_1128_spectrum_03328_22 crossref_primary_10_1016_j_ymeth_2019_03_003 crossref_primary_10_1038_s41598_018_24280_8 crossref_primary_10_1186_s40168_018_0579_0 crossref_primary_10_1186_s40793_022_00433_1 crossref_primary_10_1186_s40168_019_0626_5 crossref_primary_10_1016_j_watres_2021_117993 crossref_primary_10_1093_bib_bbad351 crossref_primary_10_1038_s41596_021_00508_2 crossref_primary_10_1002_lno_11935 crossref_primary_10_1128_mSystems_01154_20 crossref_primary_10_1128_msystems_01378_21 crossref_primary_10_1038_s41576_019_0108_4 crossref_primary_10_1093_bib_bbac013 crossref_primary_10_1016_j_chom_2024_06_005 crossref_primary_10_1093_bioadv_vbad014 crossref_primary_10_1007_s10123_024_00492_z crossref_primary_10_1099_mgen_0_000949 crossref_primary_10_1038_s41579_018_0029_9 crossref_primary_10_1371_journal_pone_0261548 crossref_primary_10_1002_ece3_6594 crossref_primary_10_1016_j_copbio_2019_05_009 crossref_primary_10_1186_s40793_019_0347_1 crossref_primary_10_1128_mSystems_00048_20 crossref_primary_10_1016_j_watres_2020_116288 crossref_primary_10_1186_s40168_021_01019_8 crossref_primary_10_1186_s13059_022_02626_w crossref_primary_10_1186_s40168_018_0569_2 crossref_primary_10_1186_s13059_019_1791_3 crossref_primary_10_1186_s13059_020_02014_2 crossref_primary_10_1038_s41598_024_57981_4 crossref_primary_10_1038_s41598_023_33959_6 crossref_primary_10_1186_s40168_022_01410_z crossref_primary_10_1101_gr_276601_122 crossref_primary_10_1016_j_micinf_2018_02_005 crossref_primary_10_1186_s12859_020_03585_4 |
Cites_doi | 10.1089/cmb.2009.0238 10.1186/2042-5783-2-3 10.1093/bioinformatics/btu661 10.1093/bioinformatics/btu745 10.1126/science.1248575 10.7717/peerj.425 10.1186/s12864-015-1419-2 10.1186/1471-2164-12-S2-S4 10.1093/bioinformatics/btw150 10.1186/s13742-015-0087-0 10.1038/nmeth.2693 10.1093/bioinformatics/btv638 10.1038/nature09944 10.1016/j.copbio.2016.04.011 10.1038/nature16192 10.1038/nmeth.2066 10.1093/bioinformatics/btt336 10.1186/s40168-016-0154-5 10.1089/cmb.2011.0170 10.1371/journal.pone.0023501 10.1093/bioinformatics/btu721 10.7717/peerj.1165 10.1371/journal.pone.0140644 10.1128/AEM.71.12.8228-8235.2005 10.1186/1748-7188-8-22 10.1038/srep19233 10.3389/fmicb.2012.00410 10.1038/srep24175 10.1371/journal.pcbi.1004957 10.1128/mSystems.00020-16 10.1371/journal.pcbi.1002863 10.1038/ismej.2015.241 10.1038/nmeth.3103 10.1186/gm485 10.1093/bioinformatics/btt077 10.1126/scitranslmed.aad0917 10.1093/nar/gkm864 10.1038/nmeth.3837 10.1073/pnas.0409727102 10.1093/bioinformatics/btv697 10.1093/bioinformatics/btv033 10.1093/bioinformatics/btu320 10.1038/nmeth1043 10.7717/peerj.1603 10.1186/gb-2014-15-3-r46 10.1186/s12864-017-3501-4 10.1038/nature11234 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 COPYRIGHT 2017 Nature Publishing Group Copyright Nature Publishing Group Nov 2017 |
Copyright_xml | – notice: The Author(s) 2017 – notice: COPYRIGHT 2017 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 2017 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) Univ. of California, Oakland, CA (United States) |
CorporateAuthor_xml | – name: Univ. of California, Oakland, CA (United States) – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PQEST PQQKQ PQUKI PTHSS PYCSY Q9U RC3 OIOZB OTOTI |
DOI | 10.1038/nmeth.4458 |
DatabaseName | Springer Nature OA Free Journals Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Databases Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1548-7105 |
EndPage | 1071 |
ExternalDocumentID | 1543734 A512420437 10_1038_nmeth_4458 28967888 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/L015080/1 – fundername: NIAID NIH HHS grantid: R01 AI100947 – fundername: Medical Research Council grantid: MR/M50161X/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L027801/1 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAZLF ABJCF ABJNI ABLJU ABUWG ABVXF ACGFS ACGOD ACIWK ACPRK ADBBV AENEX AFKRA AFRAH AFSHS AGAYW AGEZK AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CS3 D1I D1J D1K DU5 DWQXO EBS EE. EJD ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT TAOOD TBHMF TDRGL TSG UKHRP AAYZH ABAWZ ABDBF AFBBN CGR CUY CVF DB5 ECM EIF EMOBN NPM ODYON SV3 TUS ~8M AAYXX CITATION ACBWK AADEA AADWK AAYJO ABEEJ ABGIJ ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGGBP AHGBK AJDOV FIGPU ZA5 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PQEST PQUKI Q9U RC3 AAPBV ABPTK NYICJ OIOZB OTOTI |
ID | FETCH-LOGICAL-c547t-fd2154b965618a50772c12421e7f4a836ba73a9e7b05e43ffff88823010b5cf23 |
IEDL.DBID | C6C |
ISSN | 1548-7091 |
IngestDate | Mon Jul 03 03:59:25 EDT 2023 Thu Oct 10 20:59:07 EDT 2024 Thu Feb 22 23:34:57 EST 2024 Tue Nov 12 23:32:28 EST 2024 Thu Sep 12 16:31:51 EDT 2024 Wed Oct 16 00:44:32 EDT 2024 Fri Oct 11 20:36:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c547t-fd2154b965618a50772c12421e7f4a836ba73a9e7b05e43ffff88823010b5cf23 |
Notes | AC02-05CH11231 USDOE Office of Science (SC) |
ORCID | 0000-0003-2370-3430 0000-0003-2397-7925 0000-0002-0592-7791 0000000323977925 0000000205927791 0000000323703430 |
OpenAccessLink | https://doi.org/10.1038/nmeth.4458 |
PMID | 28967888 |
PQID | 2100842107 |
PQPubID | 28015 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1543734 proquest_journals_2100842107 gale_infotracmisc_A512420437 gale_infotracacademiconefile_A512420437 crossref_primary_10_1038_nmeth_4458 pubmed_primary_28967888 springer_journals_10_1038_nmeth_4458 |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Techniques for life scientists and chemists |
PublicationTitle | Nature methods |
PublicationTitleAbbrev | Nat Methods |
PublicationTitleAlternate | Nat Methods |
PublicationYear | 2017 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Mavromatis (CR2) 2007; 4 Alneberg (CR22) 2014; 11 Liu, Gibbons, Ghodsi, Treangen, Pop (CR36) 2011; 12 Koslicki, Falush (CR32) 2016; 1 Piro, Lindner, Renard (CR33) 2016; 32 Lozupone, Knight (CR48) 2005; 71 Chapman (CR13) 2011; 6 Lindgreen, Adair, Gardner (CR3) 2016; 6 Kang, Froula, Egan, Wang (CR20) 2015; 3 Klingenberg, Aßhauer, Lingner, Meinicke (CR41) 2013; 29 Nguyen, Mirarab, Liu, Pop, Warnow (CR42) 2014; 30 Li, Liu, Luo, Sadakane, Lam (CR11) 2015; 31 Miller, Montoya, Gardy, Patrick, Tang (CR27) 2013; 5 CR16 Pruesse (CR46) 2007; 35 Yassour (CR6) 2016; 8 Wood, Salzberg (CR26) 2014; 15 Kashtan (CR9) 2014; 344 Strous, Kraft, Bisdorf, Tegetmeyer (CR21) 2012; 3 Ounit, Wanamaker, Close, Lonardi (CR31) 2015; 16 Coil, Jospin, Darling (CR45) 2015; 31 Gao, Sung, Nagarajan (CR14) 2011; 18 Silva, Cuevas, Dutilh, Edwards (CR34) 2014; 2 Bai (CR8) 2015; 528 Balvočiūtė, Huson (CR43) 2017; 18 Huson (CR25) 2016; 12 Segata (CR35) 2012; 9 Bendall (CR7) 2016; 10 Boisvert, Laviolette, Corbeil (CR15) 2010; 17 Dröge, Gregor, McHardy (CR24) 2015; 31 Koslicki (CR39) 2015; 10 Arumugam (CR28) 2011; 473 Koren (CR30) 2013; 9 Mikheenko, Saveliev, Gurevich (CR47) 2016; 32 Gregor, Dröge, Schirmer, Quince, McHardy (CR23) 2016; 4 CR29 Marx (CR4) 2016; 13 Belmann (CR10) 2015; 4 Chatterjee (CR40) 2014; 30 Sunagawa (CR37) 2013; 10 Turaev, Rattei (CR1) 2016; 39 Konstantinidis, Tiedje (CR17) 2005; 102 Wu, Simmons, Singer (CR19) 2016; 32 Sangwan, Xia, Gilbert (CR5) 2016; 4 Koslicki, Foucart, Rosen (CR38) 2013; 29 Chikhi, Rizk (CR12) 2013; 8 Lin, Liao (CR18) 2016; 6 Thomas, Gilbert, Meyer (CR44) 2012; 2 GG Silva (BFnmeth4458_CR34) 2014; 2 N Sangwan (BFnmeth4458_CR5) 2016; 4 V Marx (BFnmeth4458_CR4) 2016; 13 RR Miller (BFnmeth4458_CR27) 2013; 5 YW Wu (BFnmeth4458_CR19) 2016; 32 B Liu (BFnmeth4458_CR36) 2011; 12 K Mavromatis (BFnmeth4458_CR2) 2007; 4 ML Bendall (BFnmeth4458_CR7) 2016; 10 D Koslicki (BFnmeth4458_CR32) 2016; 1 J Alneberg (BFnmeth4458_CR22) 2014; 11 BFnmeth4458_CR16 M Strous (BFnmeth4458_CR21) 2012; 3 M Arumugam (BFnmeth4458_CR28) 2011; 473 D Koslicki (BFnmeth4458_CR39) 2015; 10 H Klingenberg (BFnmeth4458_CR41) 2013; 29 NP Nguyen (BFnmeth4458_CR42) 2014; 30 C Lozupone (BFnmeth4458_CR48) 2005; 71 T Thomas (BFnmeth4458_CR44) 2012; 2 M Yassour (BFnmeth4458_CR6) 2016; 8 R Ounit (BFnmeth4458_CR31) 2015; 16 P Belmann (BFnmeth4458_CR10) 2015; 4 S Chatterjee (BFnmeth4458_CR40) 2014; 30 S Gao (BFnmeth4458_CR14) 2011; 18 E Pruesse (BFnmeth4458_CR46) 2007; 35 M Balvočiūtė (BFnmeth4458_CR43) 2017; 18 HH Lin (BFnmeth4458_CR18) 2016; 6 O Koren (BFnmeth4458_CR30) 2013; 9 N Segata (BFnmeth4458_CR35) 2012; 9 A Mikheenko (BFnmeth4458_CR47) 2016; 32 D Turaev (BFnmeth4458_CR1) 2016; 39 S Sunagawa (BFnmeth4458_CR37) 2013; 10 D Li (BFnmeth4458_CR11) 2015; 31 S Lindgreen (BFnmeth4458_CR3) 2016; 6 BFnmeth4458_CR29 R Chikhi (BFnmeth4458_CR12) 2013; 8 VC Piro (BFnmeth4458_CR33) 2016; 32 DE Wood (BFnmeth4458_CR26) 2014; 15 D Coil (BFnmeth4458_CR45) 2015; 31 S Boisvert (BFnmeth4458_CR15) 2010; 17 D Koslicki (BFnmeth4458_CR38) 2013; 29 J Dröge (BFnmeth4458_CR24) 2015; 31 Y Bai (BFnmeth4458_CR8) 2015; 528 DD Kang (BFnmeth4458_CR20) 2015; 3 KT Konstantinidis (BFnmeth4458_CR17) 2005; 102 JA Chapman (BFnmeth4458_CR13) 2011; 6 I Gregor (BFnmeth4458_CR23) 2016; 4 DH Huson (BFnmeth4458_CR25) 2016; 12 N Kashtan (BFnmeth4458_CR9) 2014; 344 |
References_xml | – volume: 17 start-page: 1519 year: 2010 end-page: 1533 ident: CR15 article-title: Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies publication-title: J. Comput. Biol. doi: 10.1089/cmb.2009.0238 contributor: fullname: Corbeil – volume: 2 start-page: 3 year: 2012 ident: CR44 article-title: Metagenomics—a guide from sampling to data analysis publication-title: Microb. Inform. Exp. doi: 10.1186/2042-5783-2-3 contributor: fullname: Meyer – volume: 31 start-page: 587 year: 2015 end-page: 589 ident: CR45 article-title: A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu661 contributor: fullname: Darling – volume: 31 start-page: 817 year: 2015 end-page: 824 ident: CR24 article-title: Taxator-tk: precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu745 contributor: fullname: McHardy – volume: 344 start-page: 416 year: 2014 end-page: 420 ident: CR9 article-title: Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus publication-title: Science doi: 10.1126/science.1248575 contributor: fullname: Kashtan – volume: 2 start-page: e425 year: 2014 ident: CR34 article-title: FOCUS: an alignment-free model to identify organisms in metagenomes using non-negative least squares publication-title: PeerJ doi: 10.7717/peerj.425 contributor: fullname: Edwards – volume: 16 start-page: 236 year: 2015 ident: CR31 article-title: CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers publication-title: BMC Genomics doi: 10.1186/s12864-015-1419-2 contributor: fullname: Lonardi – ident: CR16 – volume: 12 start-page: S4 issue: Suppl. 2 year: 2011 ident: CR36 article-title: Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences publication-title: BMC Genomics doi: 10.1186/1471-2164-12-S2-S4 contributor: fullname: Pop – volume: 32 start-page: 2272 year: 2016 end-page: 2280 ident: CR33 article-title: DUDes: a top-down taxonomic profiler for metagenomics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw150 contributor: fullname: Renard – volume: 4 start-page: 47 year: 2015 ident: CR10 article-title: Bioboxes: standardised containers for interchangeable bioinformatics software publication-title: Gigascience doi: 10.1186/s13742-015-0087-0 contributor: fullname: Belmann – volume: 10 start-page: 1196 year: 2013 end-page: 1199 ident: CR37 article-title: Metagenomic species profiling using universal phylogenetic marker genes publication-title: Nat. Methods doi: 10.1038/nmeth.2693 contributor: fullname: Sunagawa – volume: 32 start-page: 605 year: 2016 end-page: 607 ident: CR19 article-title: MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv638 contributor: fullname: Singer – volume: 473 start-page: 174 year: 2011 end-page: 180 ident: CR28 article-title: Enterotypes of the human gut microbiome publication-title: Nature doi: 10.1038/nature09944 contributor: fullname: Arumugam – volume: 39 start-page: 174 year: 2016 end-page: 181 ident: CR1 article-title: High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.04.011 contributor: fullname: Rattei – ident: CR29 – volume: 528 start-page: 364 year: 2015 end-page: 369 ident: CR8 article-title: Functional overlap of the leaf and root microbiota publication-title: Nature doi: 10.1038/nature16192 contributor: fullname: Bai – volume: 9 start-page: 811 year: 2012 end-page: 814 ident: CR35 article-title: Metagenomic microbial community profiling using unique clade-specific marker genes publication-title: Nat. Methods doi: 10.1038/nmeth.2066 contributor: fullname: Segata – volume: 29 start-page: 2096 year: 2013 end-page: 2102 ident: CR38 article-title: Quikr: a method for rapid reconstruction of bacterial communities via compressive sensing publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt336 contributor: fullname: Rosen – volume: 4 start-page: 8 year: 2016 ident: CR5 article-title: Recovering complete and draft population genomes from metagenome datasets publication-title: Microbiome doi: 10.1186/s40168-016-0154-5 contributor: fullname: Gilbert – volume: 18 start-page: 1681 year: 2011 end-page: 1691 ident: CR14 article-title: Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences publication-title: J. Comput. Biol. doi: 10.1089/cmb.2011.0170 contributor: fullname: Nagarajan – volume: 6 start-page: e23501 year: 2011 ident: CR13 article-title: Meraculous: genome assembly with short paired-end reads publication-title: PLoS One doi: 10.1371/journal.pone.0023501 contributor: fullname: Chapman – volume: 30 start-page: 3548 year: 2014 end-page: 3555 ident: CR42 article-title: TIPP: taxonomic identification and phylogenetic profiling publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu721 contributor: fullname: Warnow – volume: 3 start-page: e1165 year: 2015 ident: CR20 article-title: MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities publication-title: PeerJ doi: 10.7717/peerj.1165 contributor: fullname: Wang – volume: 10 start-page: e0140644 year: 2015 ident: CR39 article-title: ARK: Aggregation of Reads by -Means for estimation of bacterial community composition publication-title: PLoS One doi: 10.1371/journal.pone.0140644 contributor: fullname: Koslicki – volume: 71 start-page: 8228 year: 2005 end-page: 8235 ident: CR48 article-title: UniFrac: a new phylogenetic method for comparing microbial communities publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.12.8228-8235.2005 contributor: fullname: Knight – volume: 8 start-page: 22 year: 2013 ident: CR12 article-title: Space-efficient and exact de Bruijn graph representation based on a Bloom filter publication-title: Algorithms Mol. Biol. doi: 10.1186/1748-7188-8-22 contributor: fullname: Rizk – volume: 6 start-page: 19233 year: 2016 ident: CR3 article-title: An evaluation of the accuracy and speed of metagenome analysis tools publication-title: Sci. Rep. doi: 10.1038/srep19233 contributor: fullname: Gardner – volume: 3 start-page: 410 year: 2012 ident: CR21 article-title: The binning of metagenomic contigs for microbial physiology of mixed cultures publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00410 contributor: fullname: Tegetmeyer – volume: 6 start-page: 24175 year: 2016 ident: CR18 article-title: Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes publication-title: Sci. Rep. doi: 10.1038/srep24175 contributor: fullname: Liao – volume: 12 start-page: e1004957 year: 2016 ident: CR25 article-title: MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004957 contributor: fullname: Huson – volume: 1 start-page: e00020 year: 2016 end-page: 16 ident: CR32 article-title: MetaPalette: a k-mer Painting Approach for Metagenomic Taxonomic Profiling and Quantification of Novel Strain Variation publication-title: mSystems doi: 10.1128/mSystems.00020-16 contributor: fullname: Falush – volume: 9 start-page: e1002863 year: 2013 ident: CR30 article-title: A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1002863 contributor: fullname: Koren – volume: 10 start-page: 1589 year: 2016 end-page: 1601 ident: CR7 article-title: Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations publication-title: ISME J. doi: 10.1038/ismej.2015.241 contributor: fullname: Bendall – volume: 11 start-page: 1144 year: 2014 end-page: 1146 ident: CR22 article-title: Binning metagenomic contigs by coverage and composition publication-title: Nat. Methods doi: 10.1038/nmeth.3103 contributor: fullname: Alneberg – volume: 5 start-page: 81 year: 2013 ident: CR27 article-title: Metagenomics for pathogen detection in public health publication-title: Genome Med. doi: 10.1186/gm485 contributor: fullname: Tang – volume: 29 start-page: 973 year: 2013 end-page: 980 ident: CR41 article-title: Protein signature-based estimation of metagenomic abundances including all domains of life and viruses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt077 contributor: fullname: Meinicke – volume: 8 start-page: 343ra81 year: 2016 ident: CR6 article-title: Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad0917 contributor: fullname: Yassour – volume: 35 start-page: 7188 year: 2007 end-page: 7196 ident: CR46 article-title: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm864 contributor: fullname: Pruesse – volume: 13 start-page: 401 year: 2016 end-page: 404 ident: CR4 article-title: Microbiology: the road to strain-level identification publication-title: Nat. Methods doi: 10.1038/nmeth.3837 contributor: fullname: Marx – volume: 102 start-page: 2567 year: 2005 end-page: 2572 ident: CR17 article-title: Genomic insights that advance the species definition for prokaryotes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0409727102 contributor: fullname: Tiedje – volume: 32 start-page: 1088 year: 2016 end-page: 1090 ident: CR47 article-title: MetaQUAST: evaluation of metagenome assemblies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv697 contributor: fullname: Gurevich – volume: 31 start-page: 1674 year: 2015 end-page: 1676 ident: CR11 article-title: MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv033 contributor: fullname: Lam – volume: 30 start-page: 2423 year: 2014 end-page: 2431 ident: CR40 article-title: SEK: sparsity exploiting -mer-based estimation of bacterial community composition publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu320 contributor: fullname: Chatterjee – volume: 4 start-page: 495 year: 2007 end-page: 500 ident: CR2 article-title: Use of simulated data sets to evaluate the fidelity of metagenomic processing methods publication-title: Nat. Methods doi: 10.1038/nmeth1043 contributor: fullname: Mavromatis – volume: 4 start-page: e1603 year: 2016 ident: CR23 article-title: PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes publication-title: PeerJ doi: 10.7717/peerj.1603 contributor: fullname: McHardy – volume: 15 start-page: R46 year: 2014 ident: CR26 article-title: Kraken: ultrafast metagenomic sequence classification using exact alignments publication-title: Genome Biol. doi: 10.1186/gb-2014-15-3-r46 contributor: fullname: Salzberg – volume: 18 start-page: 114 issue: Suppl 2 year: 2017 ident: CR43 article-title: SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare? publication-title: BMC Genomics doi: 10.1186/s12864-017-3501-4 contributor: fullname: Huson – volume: 29 start-page: 973 year: 2013 ident: BFnmeth4458_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt077 contributor: fullname: H Klingenberg – volume: 12 start-page: S4 issue: Suppl. 2 year: 2011 ident: BFnmeth4458_CR36 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-S2-S4 contributor: fullname: B Liu – ident: BFnmeth4458_CR16 – volume: 12 start-page: e1004957 year: 2016 ident: BFnmeth4458_CR25 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004957 contributor: fullname: DH Huson – volume: 32 start-page: 1088 year: 2016 ident: BFnmeth4458_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv697 contributor: fullname: A Mikheenko – volume: 18 start-page: 1681 year: 2011 ident: BFnmeth4458_CR14 publication-title: J. Comput. Biol. doi: 10.1089/cmb.2011.0170 contributor: fullname: S Gao – volume: 10 start-page: 1589 year: 2016 ident: BFnmeth4458_CR7 publication-title: ISME J. doi: 10.1038/ismej.2015.241 contributor: fullname: ML Bendall – volume: 15 start-page: R46 year: 2014 ident: BFnmeth4458_CR26 publication-title: Genome Biol. doi: 10.1186/gb-2014-15-3-r46 contributor: fullname: DE Wood – ident: BFnmeth4458_CR29 doi: 10.1038/nature11234 – volume: 3 start-page: 410 year: 2012 ident: BFnmeth4458_CR21 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00410 contributor: fullname: M Strous – volume: 4 start-page: e1603 year: 2016 ident: BFnmeth4458_CR23 publication-title: PeerJ doi: 10.7717/peerj.1603 contributor: fullname: I Gregor – volume: 1 start-page: e00020 year: 2016 ident: BFnmeth4458_CR32 publication-title: mSystems doi: 10.1128/mSystems.00020-16 contributor: fullname: D Koslicki – volume: 39 start-page: 174 year: 2016 ident: BFnmeth4458_CR1 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.04.011 contributor: fullname: D Turaev – volume: 35 start-page: 7188 year: 2007 ident: BFnmeth4458_CR46 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm864 contributor: fullname: E Pruesse – volume: 102 start-page: 2567 year: 2005 ident: BFnmeth4458_CR17 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0409727102 contributor: fullname: KT Konstantinidis – volume: 6 start-page: 19233 year: 2016 ident: BFnmeth4458_CR3 publication-title: Sci. Rep. doi: 10.1038/srep19233 contributor: fullname: S Lindgreen – volume: 32 start-page: 605 year: 2016 ident: BFnmeth4458_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv638 contributor: fullname: YW Wu – volume: 10 start-page: 1196 year: 2013 ident: BFnmeth4458_CR37 publication-title: Nat. Methods doi: 10.1038/nmeth.2693 contributor: fullname: S Sunagawa – volume: 13 start-page: 401 year: 2016 ident: BFnmeth4458_CR4 publication-title: Nat. Methods doi: 10.1038/nmeth.3837 contributor: fullname: V Marx – volume: 4 start-page: 8 year: 2016 ident: BFnmeth4458_CR5 publication-title: Microbiome doi: 10.1186/s40168-016-0154-5 contributor: fullname: N Sangwan – volume: 31 start-page: 1674 year: 2015 ident: BFnmeth4458_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv033 contributor: fullname: D Li – volume: 6 start-page: 24175 year: 2016 ident: BFnmeth4458_CR18 publication-title: Sci. Rep. doi: 10.1038/srep24175 contributor: fullname: HH Lin – volume: 11 start-page: 1144 year: 2014 ident: BFnmeth4458_CR22 publication-title: Nat. Methods doi: 10.1038/nmeth.3103 contributor: fullname: J Alneberg – volume: 344 start-page: 416 year: 2014 ident: BFnmeth4458_CR9 publication-title: Science doi: 10.1126/science.1248575 contributor: fullname: N Kashtan – volume: 32 start-page: 2272 year: 2016 ident: BFnmeth4458_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw150 contributor: fullname: VC Piro – volume: 8 start-page: 22 year: 2013 ident: BFnmeth4458_CR12 publication-title: Algorithms Mol. Biol. doi: 10.1186/1748-7188-8-22 contributor: fullname: R Chikhi – volume: 528 start-page: 364 year: 2015 ident: BFnmeth4458_CR8 publication-title: Nature doi: 10.1038/nature16192 contributor: fullname: Y Bai – volume: 3 start-page: e1165 year: 2015 ident: BFnmeth4458_CR20 publication-title: PeerJ doi: 10.7717/peerj.1165 contributor: fullname: DD Kang – volume: 5 start-page: 81 year: 2013 ident: BFnmeth4458_CR27 publication-title: Genome Med. doi: 10.1186/gm485 contributor: fullname: RR Miller – volume: 16 start-page: 236 year: 2015 ident: BFnmeth4458_CR31 publication-title: BMC Genomics doi: 10.1186/s12864-015-1419-2 contributor: fullname: R Ounit – volume: 17 start-page: 1519 year: 2010 ident: BFnmeth4458_CR15 publication-title: J. Comput. Biol. doi: 10.1089/cmb.2009.0238 contributor: fullname: S Boisvert – volume: 8 start-page: 343ra81 year: 2016 ident: BFnmeth4458_CR6 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad0917 contributor: fullname: M Yassour – volume: 2 start-page: e425 year: 2014 ident: BFnmeth4458_CR34 publication-title: PeerJ doi: 10.7717/peerj.425 contributor: fullname: GG Silva – volume: 31 start-page: 817 year: 2015 ident: BFnmeth4458_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu745 contributor: fullname: J Dröge – volume: 29 start-page: 2096 year: 2013 ident: BFnmeth4458_CR38 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt336 contributor: fullname: D Koslicki – volume: 71 start-page: 8228 year: 2005 ident: BFnmeth4458_CR48 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.12.8228-8235.2005 contributor: fullname: C Lozupone – volume: 30 start-page: 3548 year: 2014 ident: BFnmeth4458_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu721 contributor: fullname: NP Nguyen – volume: 4 start-page: 47 year: 2015 ident: BFnmeth4458_CR10 publication-title: Gigascience doi: 10.1186/s13742-015-0087-0 contributor: fullname: P Belmann – volume: 30 start-page: 2423 year: 2014 ident: BFnmeth4458_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu320 contributor: fullname: S Chatterjee – volume: 9 start-page: e1002863 year: 2013 ident: BFnmeth4458_CR30 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1002863 contributor: fullname: O Koren – volume: 4 start-page: 495 year: 2007 ident: BFnmeth4458_CR2 publication-title: Nat. Methods doi: 10.1038/nmeth1043 contributor: fullname: K Mavromatis – volume: 6 start-page: e23501 year: 2011 ident: BFnmeth4458_CR13 publication-title: PLoS One doi: 10.1371/journal.pone.0023501 contributor: fullname: JA Chapman – volume: 10 start-page: e0140644 year: 2015 ident: BFnmeth4458_CR39 publication-title: PLoS One doi: 10.1371/journal.pone.0140644 contributor: fullname: D Koslicki – volume: 18 start-page: 114 issue: Suppl 2 year: 2017 ident: BFnmeth4458_CR43 publication-title: BMC Genomics doi: 10.1186/s12864-017-3501-4 contributor: fullname: M Balvočiūtė – volume: 2 start-page: 3 year: 2012 ident: BFnmeth4458_CR44 publication-title: Microb. Inform. Exp. doi: 10.1186/2042-5783-2-3 contributor: fullname: T Thomas – volume: 31 start-page: 587 year: 2015 ident: BFnmeth4458_CR45 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu661 contributor: fullname: D Coil – volume: 473 start-page: 174 year: 2011 ident: BFnmeth4458_CR28 publication-title: Nature doi: 10.1038/nature09944 contributor: fullname: M Arumugam – volume: 9 start-page: 811 year: 2012 ident: BFnmeth4458_CR35 publication-title: Nat. Methods doi: 10.1038/nmeth.2066 contributor: fullname: N Segata |
SSID | ssj0033425 |
Score | 2.7125745 |
Snippet | The Critical Assessment of Metagenome Interpretation (CAMI) community initiative presents results from its first challenge, a rigorous benchmarking of software... Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates... |
SourceID | osti proquest gale crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1063 |
SubjectTerms | 49/23 631/114 631/114/1386 631/326/2565/2142 Algorithms analysis Assembly BASIC BIOLOGICAL SCIENCES Benchmarking Benchmarks Biochemistry & Molecular Biology Biodiversity Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Computer programs Critical care medicine Genomes Life Sciences MATHEMATICS AND COMPUTING Metagenomics Microorganisms Performance assessment Plasmids Proteomics Reproducibility Sequence Analysis, DNA Software Taxonomy |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LTttAcARBlbhUQAuYR2UJpJ6W4H147VMVVaQICU5NldtqXxZVlYQmRqh_3xnHBqIgfPDFu_buzOy8PQNwrmQevJeaZdbmaKBUCvkg1wx1Y106FbLoyQ95e5dfj-TNWI1bh9uiTavseGLDqMPMk4-8z6kKjcS7_vbwl1HXKIquti00NmEr41qT8VUMf3ScWAjZNF0lrZxpFIxdeVJR9KfUoPlCSmr1_kogtWy5N8Pz9ZbOuRYvbcTQcAc-tvpjOlgifBc24nQPPiw7Sv77BL-61gXp4LnkZjqr0ttYWyrHOonpapohYzZ1SKn3Ezv_QyMn3cjffpEukEk_2Xn8DKPh1c_v16xtncC8krpmVUBRLl2J2lpWWNT5NPcZRX-jrqQtRO6sFraM2l2qKEWFF5rCaI5kl075iot96E1n03gIKRqYZR55WfkiSHxNwcsoXFAuyBAD1wmcdfAzD8sKGaaJbIvCNFA2BOUEvhJoDR2bem69bbP_8RtUgMoMFC2PCi0lcLIyEsndrzw-JuQYVBCoyq2ndCBfG9yt0ELi5A5npj2MC_NCOgkcLPH4vFK0N3PyAiRw3iH2ZeL6No7ef_8xbHMS-82_iifQq-eP8RSVltp9aSjzP3E46S8 priority: 102 providerName: ProQuest |
Title | Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software |
URI | https://link.springer.com/article/10.1038/nmeth.4458 https://www.ncbi.nlm.nih.gov/pubmed/28967888 https://www.proquest.com/docview/2100842107 https://www.osti.gov/servlets/purl/1543734 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTuMwcARFK-0F8ViW8qgiQNpTlia2Y-dYKgpCAiG0aHuzbMcRCLVFbRDixkfwhXwJM2kCiuBADrlkJrFn7HlkxjMAB4InmXNchpExCToouUA5GMsQbWOZWpFF3tF_yPOL5PSanw3FcAH26rMwjfg9U4djaqT8l3OhFmEJda-itK1-0q-lLWO8bKxKlncoUfnVJUgbuA2lU4ne1gT30Fd25aeYaKlqBiuwXNmIQW_O1FVY8OM1-DHvGvm0Dv_r9gRB772sZjDJg3NfGCq5OvJBM5Xw9fnFBBaX483ITO8IdFSD3rpZMENJ_Gim_hdcD47_9U_Dqj9C6ASXRZhnqK-5TdEki5RBw07GLqIQr5c5N4ol1khmUi9tV3jOcrzQ30WfI-pa4fKYbUBrPBn7TQjQi0wTH6e5UxnH16g49cxmwmY881ks27BfE1Dfz8tg6DJ8zZQuyayJzG34Q7TVtDeKqXGmSvHHb1CVKd0TNDyqptSGnQYkrmnXeLxN3NFoBVApW0c5P67QOFsmGUfkmmm62nEzHVOVIpx7F5F_zxn5PlJ0KhNy9dtwUHP2A_HzNLa-B7YNP2PS8eXBxB1oFdMHv4sWSmE7sCiHEu9qcNKBpaPji8urTrls3wCnu-Vp |
link.rule.ids | 230,315,783,787,888,12068,12777,21400,27936,27937,31731,33385,33756,41132,42201,43322,43612,43817,51588,74073,74363,74630 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9BEYKXaXxtGQwigcSToYntOHmaqmmlfJQnQLxZ_oqYprbQZpr23-8uTYAKtDzkJbZj39l3v7PPdwBHUmTeOaFYYkyGBkopUQ6miiE2VoWVPgmO9iGH19ngVlzcy_tmw23WuFW2MrEW1H7iaI_8NKUoNALf6tvjE6OsUXS62qTQWIYVwVFX003x_lkriTkXddJVQuVMoWJsw5Py_HRMCZpPhKBU768UUiOWOxNcX-9hzjfnpbUa6n-EDw1-jHtzhm_AUhhvwuo8o-TfLbhrUxfEveeQm_GkjIehMhSOdRTiRTdDxkxscaY-jMz0F5UctSV_ulk8QyH9x0zDNtz2f9x8H7AmdQJzUqiKlR5VubAForUkN4j5VOoSOv0NqhQm55k1ipsiKNuVQfASHzSF0RxJula6MuU70BlPxuEzxGhgFllIi9LlXmAzeVoEbr20XvjgUxXBYUs__TiPkKHrk22e65rKmqgcwTGRVtOyqabGmcb7H_9BAah0T1L3KNBSBHsLJXG6u4XPu8QcjQCBotw6cgdylcbRcsUFVm55ppvFONMvUyeCT3M-PvcU7c2MdgEiOGoZ-1Lx7TC-_L_9A1gb3Ayv9NX59eUurKcEAep7i3vQqaa_w1cEMJXdr2fpP2y67BE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCa6FBt2Gdo9Oq-PGViBnbTElmTZpyJ9BN2jQTGsQ2-CXkaLIUmXeBj270c6crugxXzwxZIsiRT1UaRIgH0pCu-cUCwzpkAFpZYoB3PFEBurykqfBUfnkGfj4vRCfLqUl9H_aRHdKjuZ2ApqP3N0Rt7PKQqNwLfq19Et4vx4dHDzk1EGKbK0xnQaj2BdiYIPerB-eDI-_9rJZc5Fm4KVMDpTuE12wUp52Z9SuuYPQlDi93-2pyikezNcbQ8h0HvW03ZTGm3As4gm0-GS_JuwFqbP4fEyv-SfF_C9S2SQDm8DcKazOj0LjaHgrJOQrjodMmZSi3x7NTHzH1Ry0pW8dot0gSL7t5mHl3AxOvl2dMpiIgXmpFANqz1u7MJWiN2y0iACVLnLyBYcVC1MyQtrFDdVUHYgg-A1PqgYo3KSDax0dc5fQW86m4bXkKK6WRUhr2pXeoHNlHkVuPXSeuGDz1UC77r50zfLeBm6tXPzUrezrGmWE3hPU6tpETVz40y8C4D_oHBUeiipexR2KYGdlZLI_G7l8zYRRyNcoJi3jpyDXKNxtFxxgZU7mum4NBf6jpES2FrS8banqH0WdCaQwH5H2LuK94fx5v_tv4UnyKL6y8fx5214mhMeaC8x7kCvmf8Ku4hmGrsX2fQvm_Lxrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+Assessment+of+Metagenome+Interpretation%E2%80%94a+benchmark+of+metagenomics+software&rft.jtitle=Nature+methods&rft.au=Sczyrba%2C+Alexander&rft.au=Hofmann%2C+Peter&rft.au=Belmann%2C+Peter&rft.au=Koslicki%2C+David&rft.date=2017-11-01&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=14&rft.issue=11&rft.spage=1063&rft.epage=1071&rft_id=info:doi/10.1038%2Fnmeth.4458&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nmeth_4458 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |