The Grafting of Multifunctional Antithrombogenic Chemical Networks on Polyurethane Intravascular Catheters
Intravascular catheters (IVCs) and other medical tubing are commonly made of polymeric materials such as polyurethane (PU). Polymers tend to be fouled by surface absorption of proteins and platelets, often resulting in the development of bacterial infections and thrombosis during catheterization, wh...
Saved in:
Published in | Polymers Vol. 12; no. 5; p. 1131 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
15.05.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Intravascular catheters (IVCs) and other medical tubing are commonly made of polymeric materials such as polyurethane (PU). Polymers tend to be fouled by surface absorption of proteins and platelets, often resulting in the development of bacterial infections and thrombosis during catheterization, which can lead to embolism and death. Existing solutions to fouling are based on coating the IVCs with hydrophilic, anti-thrombogenic, or antimicrobial materials. However, the delamination of the coatings themselves is associated with significant morbidity, as reported by the United States Food and Drug Administration (FDA). We developed a lubricious, antimicrobial, and antithrombogenic coating complex, which can be covalently attached to the surface of industrial PU catheters. The coating complex is pre-synthesized and comprises 2-methacryloyloxyethyl phosphorylcholine (MPC) as an antifouling agent, covalently attached to branched polyethyleneimine (bPEI) as a lubricating agent. The two-step coating procedure involves PU-amine surface activation using a diisocyanate, followed by chemical grafting of the bPEI-S-MPC complex. Compared with neat PU, the coating was found to reduce the coefficient of friction of the IVC surface by 30% and the hemolysis ratio by more than 50%. Moreover, the coating exhibited a significant antimicrobial activity under JIS Z2801:2000 standard compared with neat PU. Finally, in in-vivo acute rabbit model studies, the coating exhibited significant antithrombogenic properties, reducing the thrombogenic potential to a score of 1.3 on coated surfaces compared with 3.3 on uncoated surfaces. The materials and process developed could confer lubricious, antithrombogenic, and antimicrobial properties on pre-existing PU-based catheters. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym12051131 |