The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review
Astrocytes outnumber neurons in the human brain, and they play a key role in numerous functions within the central nervous system (CNS), including glutamate, ion (i.e., Ca2+, K+) and water homeostasis, defense against oxidative/nitrosative stress, energy storage, mitochondria biogenesis, scar format...
Saved in:
Published in | Antioxidants Vol. 8; no. 5; p. 121 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
05.05.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Astrocytes outnumber neurons in the human brain, and they play a key role in numerous functions within the central nervous system (CNS), including glutamate, ion (i.e., Ca2+, K+) and water homeostasis, defense against oxidative/nitrosative stress, energy storage, mitochondria biogenesis, scar formation, tissue repair via angiogenesis and neurogenesis, and synapse modulation. After CNS injury, astrocytes communicate with surrounding neuronal and vascular systems, leading to the clearance of disease-specific protein aggregates, such as β-amyloid, and α-synuclein. The astrocytic big conductance K+ (BK) channel plays a role in these processes. Recently, potential therapeutic agents that target astrocytes have been tested for their potential to repair the brain. In this review, we discuss the role of the BK channel and antioxidant agents such as heme oxygenase metabolites following CNS injury. A better understanding of the cellular and molecular mechanisms of astrocytes’ functions in the healthy and diseased brains will greatly contribute to the development of therapeutic approaches following CNS injury, such as Alzheimer’s disease, Parkinson’s disease, and stroke. |
---|---|
AbstractList | Astrocytes outnumber neurons in the human brain, and they play a key role in numerous functions within the central nervous system (CNS), including glutamate, ion (i.e., Ca2+, K+) and water homeostasis, defense against oxidative/nitrosative stress, energy storage, mitochondria biogenesis, scar formation, tissue repair via angiogenesis and neurogenesis, and synapse modulation. After CNS injury, astrocytes communicate with surrounding neuronal and vascular systems, leading to the clearance of disease-specific protein aggregates, such as β-amyloid, and α-synuclein. The astrocytic big conductance K+ (BK) channel plays a role in these processes. Recently, potential therapeutic agents that target astrocytes have been tested for their potential to repair the brain. In this review, we discuss the role of the BK channel and antioxidant agents such as heme oxygenase metabolites following CNS injury. A better understanding of the cellular and molecular mechanisms of astrocytes' functions in the healthy and diseased brains will greatly contribute to the development of therapeutic approaches following CNS injury, such as Alzheimer's disease, Parkinson's disease, and stroke.Astrocytes outnumber neurons in the human brain, and they play a key role in numerous functions within the central nervous system (CNS), including glutamate, ion (i.e., Ca2+, K+) and water homeostasis, defense against oxidative/nitrosative stress, energy storage, mitochondria biogenesis, scar formation, tissue repair via angiogenesis and neurogenesis, and synapse modulation. After CNS injury, astrocytes communicate with surrounding neuronal and vascular systems, leading to the clearance of disease-specific protein aggregates, such as β-amyloid, and α-synuclein. The astrocytic big conductance K+ (BK) channel plays a role in these processes. Recently, potential therapeutic agents that target astrocytes have been tested for their potential to repair the brain. In this review, we discuss the role of the BK channel and antioxidant agents such as heme oxygenase metabolites following CNS injury. A better understanding of the cellular and molecular mechanisms of astrocytes' functions in the healthy and diseased brains will greatly contribute to the development of therapeutic approaches following CNS injury, such as Alzheimer's disease, Parkinson's disease, and stroke. Astrocytes outnumber neurons in the human brain, and they play a key role in numerous functions within the central nervous system (CNS), including glutamate, ion (i.e., Ca2+, K+) and water homeostasis, defense against oxidative/nitrosative stress, energy storage, mitochondria biogenesis, scar formation, tissue repair via angiogenesis and neurogenesis, and synapse modulation. After CNS injury, astrocytes communicate with surrounding neuronal and vascular systems, leading to the clearance of disease-specific protein aggregates, such as β-amyloid, and α-synuclein. The astrocytic big conductance K+ (BK) channel plays a role in these processes. Recently, potential therapeutic agents that target astrocytes have been tested for their potential to repair the brain. In this review, we discuss the role of the BK channel and antioxidant agents such as heme oxygenase metabolites following CNS injury. A better understanding of the cellular and molecular mechanisms of astrocytes’ functions in the healthy and diseased brains will greatly contribute to the development of therapeutic approaches following CNS injury, such as Alzheimer’s disease, Parkinson’s disease, and stroke. Astrocytes outnumber neurons in the human brain, and they play a key role in numerous functions within the central nervous system (CNS), including glutamate, ion (i.e., Ca , K ) and water homeostasis, defense against oxidative/nitrosative stress, energy storage, mitochondria biogenesis, scar formation, tissue repair via angiogenesis and neurogenesis, and synapse modulation. After CNS injury, astrocytes communicate with surrounding neuronal and vascular systems, leading to the clearance of disease-specific protein aggregates, such as β-amyloid, and α-synuclein. The astrocytic big conductance K (BK) channel plays a role in these processes. Recently, potential therapeutic agents that target astrocytes have been tested for their potential to repair the brain. In this review, we discuss the role of the BK channel and antioxidant agents such as heme oxygenase metabolites following CNS injury. A better understanding of the cellular and molecular mechanisms of astrocytes' functions in the healthy and diseased brains will greatly contribute to the development of therapeutic approaches following CNS injury, such as Alzheimer's disease, Parkinson's disease, and stroke. Astrocytes outnumber neurons in the human brain, and they play a key role in numerous functions within the central nervous system (CNS), including glutamate, ion (i.e., Ca 2+ , K + ) and water homeostasis, defense against oxidative/nitrosative stress, energy storage, mitochondria biogenesis, scar formation, tissue repair via angiogenesis and neurogenesis, and synapse modulation. After CNS injury, astrocytes communicate with surrounding neuronal and vascular systems, leading to the clearance of disease-specific protein aggregates, such as β-amyloid, and α-synuclein. The astrocytic big conductance K + (BK) channel plays a role in these processes. Recently, potential therapeutic agents that target astrocytes have been tested for their potential to repair the brain. In this review, we discuss the role of the BK channel and antioxidant agents such as heme oxygenase metabolites following CNS injury. A better understanding of the cellular and molecular mechanisms of astrocytes’ functions in the healthy and diseased brains will greatly contribute to the development of therapeutic approaches following CNS injury, such as Alzheimer’s disease, Parkinson’s disease, and stroke. |
Author | Choi, Yoon Kyung Park, Jinhong Kim, Yonghee |
AuthorAffiliation | Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; dydgml@konkuk.ac.kr (Y.K.); wls2137@konkuk.ac.kr (J.P.) |
AuthorAffiliation_xml | – name: Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; dydgml@konkuk.ac.kr (Y.K.); wls2137@konkuk.ac.kr (J.P.) |
Author_xml | – sequence: 1 givenname: Yonghee surname: Kim fullname: Kim, Yonghee – sequence: 2 givenname: Jinhong surname: Park fullname: Park, Jinhong – sequence: 3 givenname: Yoon Kyung orcidid: 0000-0003-0242-9612 surname: Choi fullname: Choi, Yoon Kyung |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31060341$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1vFCEYhyemxn7Yo1dD4sXLKt8zeDBZN9Y2VpvUeiYM884umxlogV27_32pW5tuE7lAeB-evPzgsNrzwUNVvSH4A2MKfzQ-u3DbYIEJJS-qA4prOWGKkr0n6_3qOKUlLkMR1mD1qtpnBEvMODmo0tUC0GUYAIUeTVOOwW4yJOQ8yqUyA5-jGdBPiOuwSujXJmUY0UmwqwQdCh59-Y5mC-M9DMj4Dp3CCOjidjMHbxKgH5BNGwZXlJ_QFF3C2sGf19XL3gwJjh_mo-r3yder2enk_OLb2Wx6PrGC13lisWgxV7JrBHClJBE95kJKI5QR1mBrTW-7VhjblAQ60jesNZKrjmHak7ZmR9XZ1tsFs9TX0Y0mbnQwTv_dCHGuTczODqAFqwmvGZecCs6xMEpZbGhbbJgTwMX1eeu6XrUjdHaby450t-LdQs_DWkshaSNYEbx_EMRws4KU9eiShWEwHkqymlJGCaMC04K-e4Yuwyr6EpUu3cmmZrVqCvX2aUePrfx72wJMtoCNIaUI_SNCsL7_Pnrn-xSePeOty6YQ9xdyw39O3QGlIsgU |
CitedBy_id | crossref_primary_10_1177_15353702231222027 crossref_primary_10_3389_fncel_2024_1414662 crossref_primary_10_1172_jci_insight_152012 crossref_primary_10_4103_jrcr_jrcr_57_21 crossref_primary_10_1016_j_lfs_2023_121433 crossref_primary_10_3390_fractalfract6080457 crossref_primary_10_1242_bio_058870 crossref_primary_10_1038_s41598_023_45694_z crossref_primary_10_3390_antiox12051036 crossref_primary_10_1007_s12017_021_08666_y crossref_primary_10_1016_j_drudis_2021_02_008 crossref_primary_10_1186_s40035_025_00474_9 crossref_primary_10_3390_cells13030286 crossref_primary_10_1016_j_bbadva_2023_100077 crossref_primary_10_1007_s11064_024_04290_x crossref_primary_10_3390_ijms25137406 crossref_primary_10_1016_j_brainresbull_2022_08_015 crossref_primary_10_1140_epjs_s11734_021_00311_w crossref_primary_10_1002_adhm_202402960 crossref_primary_10_1002_glia_24594 crossref_primary_10_3390_ijms222313081 crossref_primary_10_1007_s00726_022_03191_z crossref_primary_10_3390_cancers14030687 crossref_primary_10_1007_s11481_025_10182_w crossref_primary_10_2174_1389200224666230608110349 crossref_primary_10_1080_19490976_2023_2206504 crossref_primary_10_1093_mtomcs_mfac005 crossref_primary_10_1016_j_addicn_2022_100027 crossref_primary_10_1007_s12519_022_00576_8 crossref_primary_10_1016_j_neubiorev_2023_105202 crossref_primary_10_3390_cells11050892 crossref_primary_10_1186_s10194_025_01977_6 crossref_primary_10_3389_fbiom_2023_1215384 crossref_primary_10_3390_nu13020282 crossref_primary_10_1016_j_prp_2023_154880 crossref_primary_10_1042_BST20220771 crossref_primary_10_1155_2022_9946439 crossref_primary_10_1177_10738584211037351 crossref_primary_10_3390_jpm14050488 crossref_primary_10_3390_biom15010142 crossref_primary_10_1021_acschemneuro_0c00137 crossref_primary_10_1038_s41380_024_02861_6 crossref_primary_10_1186_s13195_024_01573_x crossref_primary_10_3390_diagnostics13091585 crossref_primary_10_3390_neuroglia6010010 crossref_primary_10_3389_fimmu_2024_1358719 crossref_primary_10_1111_pim_13071 crossref_primary_10_1186_s13036_024_00434_3 crossref_primary_10_1515_revneuro_2024_0081 crossref_primary_10_1016_j_neuint_2020_104877 crossref_primary_10_1186_s10194_023_01669_z crossref_primary_10_1186_s40659_024_00503_3 crossref_primary_10_3390_life11030229 crossref_primary_10_55529_jhtd_42_13_25 crossref_primary_10_4103_glioma_glioma_2_24 crossref_primary_10_4103_1673_5374_371343 crossref_primary_10_1007_s12035_020_01985_4 crossref_primary_10_36303_SAJAA_2022_28_1_2497 crossref_primary_10_1016_j_trsl_2022_08_008 crossref_primary_10_1134_S1819712424700557 crossref_primary_10_1016_j_jgr_2023_04_001 crossref_primary_10_3233_ADR_220108 crossref_primary_10_3390_ijms26051845 crossref_primary_10_3390_cells13161316 crossref_primary_10_3390_ijms242015430 crossref_primary_10_3390_ijms242216493 crossref_primary_10_3389_fnint_2023_1251387 crossref_primary_10_3390_diseases12050100 crossref_primary_10_3390_neuroglia4030015 crossref_primary_10_3390_cells12111512 crossref_primary_10_3389_fncel_2022_1015556 crossref_primary_10_3390_diagnostics14161730 crossref_primary_10_3390_ijms25063110 crossref_primary_10_1126_sciadv_aaz9499 crossref_primary_10_1016_j_jgr_2024_12_008 crossref_primary_10_1016_j_brainres_2021_147462 crossref_primary_10_3390_biom12030344 crossref_primary_10_1038_s41380_022_01580_0 crossref_primary_10_1186_s12974_023_02806_w crossref_primary_10_1186_s13148_021_01179_2 crossref_primary_10_26599_BSA_2023_9050001 crossref_primary_10_1038_s41598_024_56051_z crossref_primary_10_1016_j_neures_2023_02_001 crossref_primary_10_31083_j_fbl2809208 crossref_primary_10_1111_jnc_15985 crossref_primary_10_3390_ijms23010242 crossref_primary_10_1007_s11011_022_01092_4 crossref_primary_10_3390_ijms222111530 crossref_primary_10_1007_s12031_021_01943_2 crossref_primary_10_3389_fonc_2023_1101522 crossref_primary_10_3390_ijms22168543 crossref_primary_10_4062_biomolther_2019_119 crossref_primary_10_3390_cancers12123720 crossref_primary_10_3390_life14050636 crossref_primary_10_3389_fcvm_2021_649630 crossref_primary_10_3390_cells13020148 crossref_primary_10_3390_ijms22147294 crossref_primary_10_3390_v15010097 crossref_primary_10_1002_cti2_1394 crossref_primary_10_31083_j_jin2204088 crossref_primary_10_3390_ijms21072273 crossref_primary_10_1016_j_bbrc_2024_150655 crossref_primary_10_3390_bioengineering8010004 crossref_primary_10_3390_ijms22094705 crossref_primary_10_1111_bpa_12921 crossref_primary_10_3389_fimmu_2022_761225 crossref_primary_10_3389_fncel_2024_1335849 crossref_primary_10_1039_d0mt00168f crossref_primary_10_1007_s12015_021_10254_3 crossref_primary_10_3390_neuroglia4040020 crossref_primary_10_3389_fnins_2024_1401706 crossref_primary_10_1111_bph_15751 crossref_primary_10_3390_biomedicines9020190 crossref_primary_10_1016_j_chaos_2025_116111 crossref_primary_10_1088_1674_1056_ab9dee crossref_primary_10_3390_antiox13121502 crossref_primary_10_3390_ijms252111638 |
Cites_doi | 10.1038/nature08673 10.1523/JNEUROSCI.0081-05.2005 10.1016/bs.irn.2016.04.001 10.1016/j.neuroscience.2009.01.023 10.3390/ijms19082317 10.1073/pnas.1404651111 10.1016/j.freeradbiomed.2015.12.012 10.1038/nature21029 10.4062/biomolther.2017.133 10.1038/nn1779 10.1038/ng1395 10.1186/s12974-018-1226-1 10.1523/JNEUROSCI.0462-07.2007 10.1016/j.neuropharm.2015.05.027 10.1038/nature09612 10.1523/JNEUROSCI.5368-06.2007 10.1016/j.freeradbiomed.2017.11.020 10.1016/S0197-4580(01)00233-0 10.1002/glia.22695 10.1073/pnas.83.11.4040 10.1007/s12272-017-0971-5 10.1038/nrn1824 10.1016/j.pneurobio.2018.06.008 10.1002/glia.23107 10.1186/s13041-016-0186-6 10.1074/jbc.M110.131284 10.1002/hipo.20263 10.1038/nature06613 10.1016/j.neures.2017.11.012 10.3389/fnmol.2017.00427 10.1016/j.cell.2007.10.036 10.1126/science.1249161 10.1016/j.tins.2017.04.001 10.1016/j.brainresbull.2016.12.002 10.1016/S0006-8993(02)03266-3 10.4049/jimmunol.1100620 10.1016/j.tins.2003.08.008 10.1016/j.bbamcr.2014.02.019 10.1016/j.cell.2009.09.025 10.1089/ars.2016.6684 10.1038/cddis.2017.276 10.1007/s11064-018-2516-9 10.1038/ncomms7340 10.1002/glia.23103 10.1042/AN20120006 10.1523/JNEUROSCI.18-12-04637.1998 10.1002/jnr.20681 10.1126/science.1147949 10.1016/0169-328X(96)80478-5 10.1371/journal.pone.0015601 10.1152/ajpheart.00274.2007 10.1016/j.immuni.2017.06.006 10.1038/s41467-017-01435-1 10.1038/nn1703 10.1002/glia.22821 10.1101/cshperspect.a009399 10.1152/ajpcell.00272.2010 10.1038/nature12776 10.3233/JAD-2010-100309 10.1016/j.neurobiolaging.2006.05.001 10.1161/CIRCRESAHA.107.164145 10.1002/jnr.21169 10.1002/glia.23270 10.1152/ajpcell.00023.2013 10.1523/JNEUROSCI.6752-10.2011 10.1186/s13024-016-0098-z 10.1523/JNEUROSCI.6221-11.2012 10.3233/JAD-2011-110320 10.1523/JNEUROSCI.5572-07.2008 10.1042/BJ20111943 10.3389/fphar.2012.00139 10.1016/j.cell.2004.12.020 10.1124/pr.57.4.5 10.1073/pnas.0808801106 10.1073/pnas.0914722107 10.1111/j.1582-4934.2008.00159.x 10.1038/nature18928 10.2174/1567205012666141218140953 10.1016/S0197-4580(97)00111-5 10.1172/JCI200317977 10.4062/biomolther.2017.144 10.1161/STROKEAHA.108.533786 10.1161/STROKEAHA.108.534404 10.1523/JNEUROSCI.2591-14.2014 10.1038/nn.2929 10.1002/glia.23537 10.3389/fcell.2016.00107 10.1242/dmm.028738 10.1371/journal.pone.0033093 10.1074/jbc.M111.306738 10.1016/j.neuron.2008.10.013 10.1111/j.1460-9568.2009.06712.x 10.1002/glia.23042 10.1038/jcbfm.2013.227 10.1007/s00210-014-1005-1 10.1038/s41593-018-0332-9 10.1161/STROKEAHA.108.533166 10.1017/S1740925X06000202 10.1096/fj.08-106468 10.1371/journal.pone.0202039 10.1038/cr.2010.178 10.1016/S0304-3940(01)01683-4 10.1016/j.nbd.2013.10.021 10.1073/pnas.0605843103 10.1038/srep24200 10.3389/fnagi.2016.00160 10.1016/j.ygeno.2003.09.025 10.1038/342427a0 10.1038/nm.4188 10.1016/j.celrep.2018.01.073 10.2174/1874467208666150507105845 10.1523/JNEUROSCI.4707-08.2009 10.1074/jbc.275.9.6453 10.1007/s10571-019-00649-9 10.1186/s13024-017-0192-x 10.1111/j.1471-4159.2010.06899.x 10.1126/science.1967852 10.1016/0896-6273(90)90091-S 10.1038/nm.3639 10.1016/j.bbrc.2016.09.063 10.1016/S1474-4422(09)70054-7 10.1152/ajpheart.00722.2006 10.1073/pnas.0813361106 10.1177/107385840100700211 10.1074/jbc.M109.081125 10.1101/gad.229518.113 10.3390/ijms20010078 10.1111/j.1471-4159.2010.06646.x 10.1186/s13041-015-0173-3 10.1002/glia.23013 10.1016/j.neuron.2008.09.001 10.1016/j.freeradbiomed.2012.12.008 10.1016/j.neulet.2013.12.030 10.1161/STROKEAHA.110.607101 10.1523/JNEUROSCI.4518-15.2016 10.1038/cddis.2014.529 10.1146/annurev-pharmtox-011112-140320 10.1016/j.tem.2017.11.005 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7QR 7T5 7TO 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ H94 HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/antiox8050121 |
DatabaseName | CrossRef PubMed Chemoreception Abstracts Immunology Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (via ProQuest) ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2076-3921 |
ExternalDocumentID | oai_doaj_org_article_5371473464254405a99c0a2b49d041e0 PMC6562853 31060341 10_3390_antiox8050121 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Korea Govenment grantid: 2018R1E1A2A02084465, and 2018R1D1A1B07040323 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7QR 7T5 7TO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ H94 P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c547t-c05b0496d85e499615f04566a59a5ca0ccafcdb5ac8805d1f83ba649d302f1b73 |
IEDL.DBID | M48 |
ISSN | 2076-3921 |
IngestDate | Wed Aug 27 01:33:21 EDT 2025 Thu Aug 21 18:15:21 EDT 2025 Thu Jul 10 20:54:58 EDT 2025 Fri Jul 25 12:04:33 EDT 2025 Thu Apr 03 07:09:05 EDT 2025 Thu Apr 24 23:04:45 EDT 2025 Tue Jul 01 03:07:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | BK channel astrocytes oxidative/nitrosative stress heme oxygenase metabolites |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c547t-c05b0496d85e499615f04566a59a5ca0ccafcdb5ac8805d1f83ba649d302f1b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-0242-9612 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/antiox8050121 |
PMID | 31060341 |
PQID | 2546873798 |
PQPubID | 2032435 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5371473464254405a99c0a2b49d041e0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6562853 proquest_miscellaneous_2232132502 proquest_journals_2546873798 pubmed_primary_31060341 crossref_primary_10_3390_antiox8050121 crossref_citationtrail_10_3390_antiox8050121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190505 |
PublicationDateYYYYMMDD | 2019-05-05 |
PublicationDate_xml | – month: 5 year: 2019 text: 20190505 day: 5 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Antioxidants |
PublicationTitleAlternate | Antioxidants (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kanu (ref_124) 2009; 40 Gegg (ref_112) 2014; 62 Sherwood (ref_68) 2017; 65 Zamanian (ref_96) 2012; 32 Rungta (ref_47) 2016; 64 Oberheim (ref_33) 2009; 29 Jennings (ref_111) 2017; 65 Baranova (ref_29) 2004; 83 Wood (ref_73) 1986; 83 ref_134 Almeida (ref_25) 2012; 443 Stevens (ref_69) 2007; 131 Wang (ref_120) 2018; 15 Eroglu (ref_11) 2010; 468 Rubini (ref_30) 2014; 387 Yu (ref_99) 2016; 6 Mooradian (ref_108) 1997; 18 Semenza (ref_84) 2007; 318 Fakler (ref_55) 2008; 59 Hayakawa (ref_57) 2016; 535 Heller (ref_60) 2015; 63 Choi (ref_21) 2016; 479 Davila (ref_18) 2018; 66 Fang (ref_83) 2019; 22 Barres (ref_39) 1990; 5 Choi (ref_65) 2016; 22 ref_22 Dirnagl (ref_119) 2009; 8 Lam (ref_77) 2001; 22 Gueguinou (ref_4) 2014; 1843 Wang (ref_103) 2015; 97 Morgan (ref_130) 2011; 21 Almeida (ref_131) 2012; 287 Blanco (ref_50) 2010; 22 Wang (ref_121) 2011; 42 Nedergaard (ref_35) 2003; 26 Leffler (ref_123) 2006; 291 Wang (ref_53) 2006; 9 Morais (ref_114) 2014; 344 Wang (ref_92) 2007; 85 Cocchiglia (ref_135) 2009; 106 Regan (ref_20) 2005; 82 Schubert (ref_94) 2009; 29 Liddelow (ref_1) 2017; 46 Ramamoorthy (ref_88) 2019; 44 Jung (ref_17) 2018; 26 Hettiarachchi (ref_129) 2014; 5 Emsley (ref_32) 2006; 2 Torralba (ref_79) 2016; 4 Forman (ref_75) 2005; 25 Wu (ref_48) 2019; 67 Barone (ref_133) 2016; 91 ref_80 Arany (ref_90) 2008; 451 Chen (ref_100) 2009; 106 Gribkoff (ref_5) 2001; 7 Schipper (ref_95) 2019; 172 Sherwood (ref_34) 2006; 103 Rochette (ref_122) 2018; 29 Koh (ref_85) 2015; 6 Wright (ref_91) 2008; 22 Ploia (ref_97) 2011; 26 Muller (ref_59) 1989; 342 Brenner (ref_54) 2000; 275 Booth (ref_116) 2017; 40 Chien (ref_117) 2013; 58 Hettiarachchi (ref_19) 2017; 8 Wilcock (ref_101) 2009; 159 Chen (ref_132) 2018; 115 Cao (ref_93) 2004; 36 Puro (ref_40) 1996; 37 Lee (ref_70) 2015; 8 Zhao (ref_107) 2007; 28 Jo (ref_71) 2014; 20 Badawi (ref_89) 2012; 4 Filippini (ref_110) 2019; 39 Leyns (ref_74) 2017; 12 Li (ref_126) 2008; 102 Finkbeiner (ref_27) 1990; 247 Basuroy (ref_127) 2013; 304 Agulhon (ref_12) 2012; 3 Chuquet (ref_46) 2011; 14 Huang (ref_113) 2017; 8 Freeman (ref_58) 2014; 28 Choi (ref_86) 2007; 27 Chung (ref_14) 2013; 504 Choi (ref_138) 2018; 26 Chun (ref_137) 2018; 126 Contet (ref_3) 2016; 128 Jackson (ref_82) 2016; 36 Petravicz (ref_44) 2008; 28 Eroglu (ref_66) 2009; 139 Choi (ref_9) 2017; 27 Catterall (ref_37) 2005; 57 Takano (ref_63) 2009; 40 Kitazawa (ref_76) 2011; 187 Basuroy (ref_128) 2011; 300 Bonder (ref_45) 2014; 34 Kanu (ref_125) 2007; 293 Girouard (ref_10) 2010; 107 Ries (ref_105) 2016; 8 ref_118 Seifert (ref_7) 2018; 136 Choi (ref_115) 2016; 9 Zaichick (ref_13) 2017; 10 Beckel (ref_28) 2014; 62 Sollvander (ref_72) 2016; 11 Davis (ref_81) 2014; 111 Dietrich (ref_31) 2014; 34 Sun (ref_136) 2003; 111 Carmignoto (ref_36) 1998; 18 Stefanis (ref_109) 2012; 2 Striessnig (ref_41) 2015; 8 Wang (ref_106) 2010; 115 Alvarez (ref_49) 2010; 113 Yamamoto (ref_102) 2011; 31 Choi (ref_42) 2010; 285 Price (ref_6) 2002; 956 Baranello (ref_104) 2015; 12 Filosa (ref_56) 2006; 9 ref_43 Xu (ref_51) 2007; 17 Esposito (ref_78) 2008; 12 Barres (ref_15) 2008; 60 (ref_23) 2017; 10 Zhang (ref_8) 2018; 22 Chung (ref_52) 2001; 302 Lo (ref_64) 2009; 40 Lee (ref_24) 2010; 285 Piet (ref_26) 2007; 27 Henneberger (ref_67) 2010; 463 Liddelow (ref_62) 2017; 541 Anderson (ref_61) 2014; 565 Ma (ref_98) 2013; 53 Abbott (ref_2) 2006; 7 Cheli (ref_38) 2016; 64 Christopherson (ref_16) 2005; 120 Choi (ref_87) 2017; 40 |
References_xml | – volume: 463 start-page: 232 year: 2010 ident: ref_67 article-title: Long-term potentiation depends on release of D-serine from astrocytes publication-title: Nature doi: 10.1038/nature08673 – volume: 25 start-page: 3539 year: 2005 ident: ref_75 article-title: Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0081-05.2005 – volume: 128 start-page: 281 year: 2016 ident: ref_3 article-title: BK Channels in the Central Nervous System publication-title: Int. Rev. Neurobiol. doi: 10.1016/bs.irn.2016.04.001 – volume: 159 start-page: 1055 year: 2009 ident: ref_101 article-title: Vascular amyloid alters astrocytic water and potassium channels in mouse models and humans with Alzheimer’s disease publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.01.023 – ident: ref_134 doi: 10.3390/ijms19082317 – volume: 111 start-page: 9633 year: 2014 ident: ref_81 article-title: Transcellular degradation of axonal mitochondria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1404651111 – volume: 91 start-page: 127 year: 2016 ident: ref_133 article-title: Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.12.012 – volume: 541 start-page: 481 year: 2017 ident: ref_62 article-title: Neurotoxic reactive astrocytes are induced by activated microglia publication-title: Nature doi: 10.1038/nature21029 – volume: 26 start-page: 350 year: 2018 ident: ref_17 article-title: Phagocytic Roles of Glial Cells in Healthy and Diseased Brains publication-title: Biomol. Ther. doi: 10.4062/biomolther.2017.133 – volume: 9 start-page: 1397 year: 2006 ident: ref_56 article-title: Local potassium signaling couples neuronal activity to vasodilation in the brain publication-title: Nat. Neurosci. doi: 10.1038/nn1779 – volume: 36 start-page: 827 year: 2004 ident: ref_93 article-title: VEGF links hippocampal activity with neurogenesis, learning and memory publication-title: Nat. Genet. doi: 10.1038/ng1395 – volume: 15 start-page: 188 year: 2018 ident: ref_120 article-title: Carbon monoxide-releasing molecule-3 protects against ischemic stroke by suppressing neuroinflammation and alleviating blood-brain barrier disruption publication-title: J. Neuroinflammation doi: 10.1186/s12974-018-1226-1 – volume: 27 start-page: 4027 year: 2007 ident: ref_26 article-title: Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0462-07.2007 – volume: 97 start-page: 210 year: 2015 ident: ref_103 article-title: Improvement of spatial learning by facilitating large-conductance calcium-activated potassium channel with transcranial magnetic stimulation in Alzheimer’s disease model mice publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2015.05.027 – volume: 468 start-page: 223 year: 2010 ident: ref_11 article-title: Regulation of synaptic connectivity by glia publication-title: Nature doi: 10.1038/nature09612 – volume: 27 start-page: 4472 year: 2007 ident: ref_86 article-title: AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia-inducible factor-1alpha publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5368-06.2007 – volume: 115 start-page: 156 year: 2018 ident: ref_132 article-title: Absence of the biliverdin reductase-a gene is associated with increased endogenous oxidative stress publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.11.020 – volume: 22 start-page: 765 year: 2001 ident: ref_77 article-title: Mechanism of glial activation by S100B: Involvement of the transcription factor NFkappaB publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(01)00233-0 – volume: 62 start-page: 1486 year: 2014 ident: ref_28 article-title: Mechanosensitive release of adenosine 5’-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: A mechanism for purinergic involvement in chronic strain publication-title: Glia doi: 10.1002/glia.22695 – volume: 83 start-page: 4040 year: 1986 ident: ref_73 article-title: Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau) publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.83.11.4040 – volume: 40 start-page: 1433 year: 2017 ident: ref_87 article-title: A positive circuit of VEGF increases Glut-1 expression by increasing HIF-1alpha gene expression in human retinal endothelial cells publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-017-0971-5 – volume: 7 start-page: 41 year: 2006 ident: ref_2 article-title: Astrocyte-endothelial interactions at the blood-brain barrier publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1824 – volume: 172 start-page: 40 year: 2019 ident: ref_95 article-title: The sinister face of heme oxygenase-1 in brain aging and disease publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2018.06.008 – volume: 65 start-page: 502 year: 2017 ident: ref_68 article-title: Astrocytic IP3 Rs: Contribution to Ca2+ signalling and hippocampal LTP publication-title: Glia doi: 10.1002/glia.23107 – volume: 9 start-page: 5 year: 2016 ident: ref_115 article-title: PINK1 expression increases during brain development and stem cell differentiation, and affects the development of GFAP-positive astrocytes publication-title: Mol. Brain doi: 10.1186/s13041-016-0186-6 – volume: 285 start-page: 32116 year: 2010 ident: ref_42 article-title: Carbon monoxide promotes VEGF expression by increasing HIF-1alpha protein level via two distinct mechanisms, translational activation and stabilization of HIF-1alpha protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.131284 – volume: 17 start-page: 235 year: 2007 ident: ref_51 article-title: Ca(v)1.2, Ca(v)1.3, and Ca(v)2.1 in the mouse hippocampus during and after pilocarpine-induced status epilepticus publication-title: Hippocampus doi: 10.1002/hipo.20263 – volume: 451 start-page: 1008 year: 2008 ident: ref_90 article-title: HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha publication-title: Nature doi: 10.1038/nature06613 – volume: 126 start-page: 44 year: 2018 ident: ref_137 article-title: Reactive astrocytes in Alzheimer’s disease: A double-edged sword publication-title: Neurosci. Res. doi: 10.1016/j.neures.2017.11.012 – volume: 10 start-page: 427 year: 2017 ident: ref_23 article-title: Involvement of Astrocytes in Alzheimer’s Disease from a Neuroinflammatory and Oxidative Stress Perspective publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2017.00427 – volume: 131 start-page: 1164 year: 2007 ident: ref_69 article-title: The classical complement cascade mediates CNS synapse elimination publication-title: Cell doi: 10.1016/j.cell.2007.10.036 – volume: 344 start-page: 203 year: 2014 ident: ref_114 article-title: PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling publication-title: Science doi: 10.1126/science.1249161 – volume: 40 start-page: 358 year: 2017 ident: ref_116 article-title: The Role of Astrocyte Dysfunction in Parkinson’s Disease Pathogenesis publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.04.001 – volume: 136 start-page: 26 year: 2018 ident: ref_7 article-title: Diversity of astrocyte potassium channels: An update publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2016.12.002 – volume: 956 start-page: 183 year: 2002 ident: ref_6 article-title: Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet publication-title: Brain Res. doi: 10.1016/S0006-8993(02)03266-3 – volume: 187 start-page: 6539 year: 2011 ident: ref_76 article-title: Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer’s disease model publication-title: J. Immunol. doi: 10.4049/jimmunol.1100620 – volume: 26 start-page: 523 year: 2003 ident: ref_35 article-title: New roles for astrocytes: Redefining the functional architecture of the brain publication-title: Trends Neurosci. doi: 10.1016/j.tins.2003.08.008 – volume: 1843 start-page: 2322 year: 2014 ident: ref_4 article-title: KCa and Ca2+ channels: the complex thought publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2014.02.019 – volume: 139 start-page: 380 year: 2009 ident: ref_66 article-title: Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis publication-title: Cell doi: 10.1016/j.cell.2009.09.025 – volume: 27 start-page: 21 year: 2017 ident: ref_9 article-title: Carbon Monoxide Potentiation of L-Type Ca2+ Channel Activity Increases HIF-1alpha-Independent VEGF Expression via an AMPKalpha/SIRT1-Mediated PGC-1alpha/ERRalpha Axis publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2016.6684 – volume: 8 start-page: e2884 year: 2017 ident: ref_19 article-title: Heme oxygenase-1 derived carbon monoxide suppresses Abeta1-42 toxicity in astrocytes publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.276 – volume: 44 start-page: 258 year: 2019 ident: ref_88 article-title: Expression of Hypoxia Inducible Factor 1alpha Is Protein Kinase A-dependent in Primary Cortical Astrocytes Exposed to Severe Hypoxia publication-title: Neurochem. Res. doi: 10.1007/s11064-018-2516-9 – volume: 6 start-page: 6340 year: 2015 ident: ref_85 article-title: The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia publication-title: Nat. Commun. doi: 10.1038/ncomms7340 – volume: 65 start-page: 447 year: 2017 ident: ref_111 article-title: Dopamine elevates and lowers astroglial Ca(2+) through distinct pathways depending on local synaptic circuitry publication-title: Glia doi: 10.1002/glia.23103 – volume: 4 start-page: 231 year: 2012 ident: ref_89 article-title: Hypoxia-inducible factor 1 protects hypoxic astrocytes against glutamate toxicity publication-title: ASN Neuro doi: 10.1042/AN20120006 – volume: 18 start-page: 4637 year: 1998 ident: ref_36 article-title: On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-12-04637.1998 – volume: 82 start-page: 802 year: 2005 ident: ref_20 article-title: Cultured astrocytes from heme oxygenase-1 knockout mice are more vulnerable to heme-mediated oxidative injury publication-title: J. Neurosci. Res. doi: 10.1002/jnr.20681 – volume: 318 start-page: 62 year: 2007 ident: ref_84 article-title: Life with oxygen publication-title: Science doi: 10.1126/science.1147949 – volume: 37 start-page: 41 year: 1996 ident: ref_40 article-title: Characterization of an L-type calcium channel expressed by human retinal Muller (glial) cells publication-title: Brain Res. Mol. Brain Res. doi: 10.1016/0169-328X(96)80478-5 – ident: ref_118 doi: 10.1371/journal.pone.0015601 – volume: 293 start-page: H3193 year: 2007 ident: ref_125 article-title: Carbon monoxide and Ca2+-activated K+ channels in cerebral arteriolar responses to glutamate and hypoxia in newborn pigs publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00274.2007 – volume: 46 start-page: 957 year: 2017 ident: ref_1 article-title: Reactive Astrocytes: Production, Function, and Therapeutic Potential publication-title: Immunity doi: 10.1016/j.immuni.2017.06.006 – volume: 8 start-page: 1399 year: 2017 ident: ref_113 article-title: PINK1-mediated phosphorylation of LETM1 regulates mitochondrial calcium transport and protects neurons against mitochondrial stress publication-title: Nat. Commun. doi: 10.1038/s41467-017-01435-1 – volume: 9 start-page: 816 year: 2006 ident: ref_53 article-title: Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo publication-title: Nat. Neurosci. doi: 10.1038/nn1703 – volume: 63 start-page: 2133 year: 2015 ident: ref_60 article-title: Morphological plasticity of astroglia: Understanding synaptic microenvironment publication-title: Glia doi: 10.1002/glia.22821 – volume: 2 start-page: a009399 year: 2012 ident: ref_109 article-title: alpha-Synuclein in Parkinson’s disease publication-title: Cold Spring Harb Perspect Med. doi: 10.1101/cshperspect.a009399 – volume: 300 start-page: C256 year: 2011 ident: ref_128 article-title: Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-alpha-induced apoptosis publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00272.2010 – volume: 504 start-page: 394 year: 2013 ident: ref_14 article-title: Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways publication-title: Nature doi: 10.1038/nature12776 – volume: 22 start-page: 493 year: 2010 ident: ref_50 article-title: Amyloid-beta induces cyclooxygenase-2 and PGE2 release in human astrocytes in NF-kappa B dependent manner publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-100309 – volume: 28 start-page: 824 year: 2007 ident: ref_107 article-title: Insulin degrading enzyme activity selectively decreases in the hippocampal formation of cases at high risk to develop Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.05.001 – volume: 102 start-page: 234 year: 2008 ident: ref_126 article-title: Astrocyte-derived CO is a diffusible messenger that mediates glutamate-induced cerebral arteriolar dilation by activating smooth muscle Cell KCa channels publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.107.164145 – volume: 85 start-page: 740 year: 2007 ident: ref_92 article-title: VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21169 – volume: 66 start-page: 637 year: 2018 ident: ref_18 article-title: Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease publication-title: Glia doi: 10.1002/glia.23270 – volume: 304 start-page: C1105 year: 2013 ident: ref_127 article-title: CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00023.2013 – volume: 31 start-page: 11100 year: 2011 ident: ref_102 article-title: Suppression of a neocortical potassium channel activity by intracellular amyloid-beta and its rescue with Homer1a publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6752-10.2011 – volume: 11 start-page: 38 year: 2016 ident: ref_72 article-title: Accumulation of amyloid-beta by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons publication-title: Mol. Neurodegener. doi: 10.1186/s13024-016-0098-z – volume: 32 start-page: 6391 year: 2012 ident: ref_96 article-title: Genomic analysis of reactive astrogliosis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6221-11.2012 – volume: 26 start-page: 315 year: 2011 ident: ref_97 article-title: JNK plays a key role in tau hyperphosphorylation in Alzheimer’s disease models publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-110320 – volume: 28 start-page: 4967 year: 2008 ident: ref_44 article-title: Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5572-07.2008 – volume: 443 start-page: 3 year: 2012 ident: ref_25 article-title: Antioxidant and bioenergetic coupling between neurons and astrocytes publication-title: Biochem. J. doi: 10.1042/BJ20111943 – volume: 3 start-page: 139 year: 2012 ident: ref_12 article-title: Calcium Signaling and Gliotransmission in Normal vs. Reactive Astrocytes publication-title: Front. Pharmacol. doi: 10.3389/fphar.2012.00139 – volume: 120 start-page: 421 year: 2005 ident: ref_16 article-title: Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis publication-title: Cell doi: 10.1016/j.cell.2004.12.020 – volume: 57 start-page: 411 year: 2005 ident: ref_37 article-title: International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels publication-title: Pharmacol. Rev. doi: 10.1124/pr.57.4.5 – volume: 106 start-page: 2188 year: 2009 ident: ref_135 article-title: PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0808801106 – volume: 107 start-page: 3811 year: 2010 ident: ref_10 article-title: Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0914722107 – volume: 12 start-page: 914 year: 2008 ident: ref_78 article-title: S100B induces tau protein hyperphosphorylation via Dickopff-1 up-regulation and disrupts the Wnt pathway in human neural stem cells publication-title: J. Cell Mol. Med. doi: 10.1111/j.1582-4934.2008.00159.x – volume: 535 start-page: 551 year: 2016 ident: ref_57 article-title: Transfer of mitochondria from astrocytes to neurons after stroke publication-title: Nature doi: 10.1038/nature18928 – volume: 12 start-page: 32 year: 2015 ident: ref_104 article-title: Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease publication-title: Curr. Alzheimer Res. doi: 10.2174/1567205012666141218140953 – volume: 18 start-page: 469 year: 1997 ident: ref_108 article-title: GLUT-1 expression in the cerebra of patients with Alzheimer’s disease publication-title: Neurobiol Aging doi: 10.1016/S0197-4580(97)00111-5 – volume: 111 start-page: 1843 year: 2003 ident: ref_136 article-title: VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia publication-title: J. Clin. Invest. doi: 10.1172/JCI200317977 – volume: 26 start-page: 93 year: 2018 ident: ref_138 article-title: Role of Carbon Monoxide in Neurovascular Repair Processing publication-title: Biomol. Ther. (Seoul) doi: 10.4062/biomolther.2017.144 – volume: 40 start-page: 930 year: 2009 ident: ref_124 article-title: Roles of glia limitans astrocytes and carbon monoxide in adenosine diphosphate-induced pial arteriolar dilation in newborn pigs publication-title: Stroke doi: 10.1161/STROKEAHA.108.533786 – volume: 40 start-page: S2 year: 2009 ident: ref_64 article-title: The neurovascular unit in health and disease: Introduction publication-title: Stroke doi: 10.1161/STROKEAHA.108.534404 – volume: 34 start-page: 13139 year: 2014 ident: ref_45 article-title: Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2591-14.2014 – volume: 14 start-page: 1276 year: 2011 ident: ref_46 article-title: Local Ca2+ detection and modulation of synaptic release by astrocytes publication-title: Nat. Neurosci. doi: 10.1038/nn.2929 – volume: 67 start-page: 246 year: 2019 ident: ref_48 article-title: Morphological profile determines the frequency of spontaneous calcium events in astrocytic processes publication-title: Glia doi: 10.1002/glia.23537 – volume: 4 start-page: 107 year: 2016 ident: ref_79 article-title: Mitochondria Know No Boundaries: Mechanisms and Functions of Intercellular Mitochondrial Transfer publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2016.00107 – volume: 10 start-page: 519 year: 2017 ident: ref_13 article-title: The role of Ca2+ signaling in Parkinson’s disease publication-title: Dis. Model. Mech. doi: 10.1242/dmm.028738 – ident: ref_80 doi: 10.1371/journal.pone.0033093 – volume: 287 start-page: 10761 year: 2012 ident: ref_131 article-title: Carbon monoxide modulates apoptosis by reinforcing oxidative metabolism in astrocytes: role of BCL-2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.306738 – volume: 60 start-page: 430 year: 2008 ident: ref_15 article-title: The mystery and magic of glia: a perspective on their roles in health and disease publication-title: Neuron doi: 10.1016/j.neuron.2008.10.013 – volume: 29 start-page: 1323 year: 2009 ident: ref_94 article-title: The induction of HIF-1 reduces astrocyte activation by amyloid beta peptide publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2009.06712.x – volume: 64 start-page: 2093 year: 2016 ident: ref_47 article-title: Ca2+ transients in astrocyte fine processes occur via Ca2+ influx in the adult mouse hippocampus publication-title: Glia doi: 10.1002/glia.23042 – volume: 34 start-page: 369 year: 2014 ident: ref_31 article-title: Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2013.227 – volume: 387 start-page: 943 year: 2014 ident: ref_30 article-title: Functional P2X7 receptors at cultured hippocampal astrocytes but not neurons publication-title: Naunyn Schmiedebergs Arch. Pharmacol. doi: 10.1007/s00210-014-1005-1 – volume: 22 start-page: 401 year: 2019 ident: ref_83 article-title: Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0332-9 – volume: 40 start-page: S8 year: 2009 ident: ref_63 article-title: Astrocytes and ischemic injury publication-title: Stroke doi: 10.1161/STROKEAHA.108.533166 – volume: 2 start-page: 175 year: 2006 ident: ref_32 article-title: Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS publication-title: Neuron Glia Biol. doi: 10.1017/S1740925X06000202 – volume: 22 start-page: 3264 year: 2008 ident: ref_91 article-title: VEGF stimulation of mitochondrial biogenesis: requirement of AKT3 kinase publication-title: FASEB J. doi: 10.1096/fj.08-106468 – ident: ref_22 doi: 10.1371/journal.pone.0202039 – volume: 21 start-page: 103 year: 2011 ident: ref_130 article-title: Crosstalk of reactive oxygen species and NF-kappaB signaling publication-title: Cell Res. doi: 10.1038/cr.2010.178 – volume: 302 start-page: 93 year: 2001 ident: ref_52 article-title: Enhanced expression of L-type Ca2+ channels in reactive astrocytes after ischemic injury in rats publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(01)01683-4 – volume: 62 start-page: 426 year: 2014 ident: ref_112 article-title: Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2013.10.021 – volume: 103 start-page: 13606 year: 2006 ident: ref_34 article-title: Evolution of increased glia-neuron ratios in the human frontal cortex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0605843103 – volume: 6 start-page: 24200 year: 2016 ident: ref_99 article-title: Differences in vulnerability of neurons and astrocytes to heme oxygenase-1 modulation: Implications for mitochondrial ferritin publication-title: Sci. Rep. doi: 10.1038/srep24200 – volume: 8 start-page: 160 year: 2016 ident: ref_105 article-title: Mechanisms of Abeta Clearance and Degradation by Glial Cells publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2016.00160 – volume: 83 start-page: 706 year: 2004 ident: ref_29 article-title: The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins publication-title: Genomics doi: 10.1016/j.ygeno.2003.09.025 – volume: 342 start-page: 427 year: 1989 ident: ref_59 article-title: Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes publication-title: Nature doi: 10.1038/342427a0 – volume: 22 start-page: 1335 year: 2016 ident: ref_65 article-title: Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury publication-title: Nat. Med. doi: 10.1038/nm.4188 – volume: 22 start-page: 1956 year: 2018 ident: ref_8 article-title: BK Potassium Channels Suppress Cavalα2δ Subunit Function to Reduce Inflammatory and Neuropathic Pain publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.073 – volume: 8 start-page: 110 year: 2015 ident: ref_41 article-title: Pharmacology of L-type Calcium Channels: Novel Drugs for Old Targets? publication-title: Curr. Mol. Pharmacol. doi: 10.2174/1874467208666150507105845 – volume: 29 start-page: 3276 year: 2009 ident: ref_33 article-title: Uniquely hominid features of adult human astrocytes publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4707-08.2009 – volume: 275 start-page: 6453 year: 2000 ident: ref_54 article-title: Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4 publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.9.6453 – volume: 39 start-page: 161 year: 2019 ident: ref_110 article-title: alpha-Synuclein and Glia in Parkinson’s Disease: A Beneficial or a Detrimental Duet for the Endo-Lysosomal System? publication-title: Cell Mol. Neurobiol. doi: 10.1007/s10571-019-00649-9 – volume: 12 start-page: 50 year: 2017 ident: ref_74 article-title: Glial contributions to neurodegeneration in tauopathies publication-title: Mol. Neurodegener. doi: 10.1186/s13024-017-0192-x – volume: 115 start-page: 47 year: 2010 ident: ref_106 article-title: Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer’s brain publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2010.06899.x – volume: 247 start-page: 470 year: 1990 ident: ref_27 article-title: Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling publication-title: Science doi: 10.1126/science.1967852 – volume: 5 start-page: 527 year: 1990 ident: ref_39 article-title: Ion channel expression by white matter glia: The type-1 astrocyte publication-title: Neuron doi: 10.1016/0896-6273(90)90091-S – volume: 20 start-page: 886 year: 2014 ident: ref_71 article-title: GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease publication-title: Nat. Med. doi: 10.1038/nm.3639 – volume: 479 start-page: 297 year: 2016 ident: ref_21 article-title: Carbon monoxide stimulates astrocytic mitochondrial biogenesis via L-type Ca2+ channel-mediated PGC-1alpha/ERRalpha activation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.09.063 – volume: 8 start-page: 398 year: 2009 ident: ref_119 article-title: Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(09)70054-7 – volume: 291 start-page: H2897 year: 2006 ident: ref_123 article-title: Contributions of astrocytes and CO to pial arteriolar dilation to glutamate in newborn pigs publication-title: Am. J. Physiol Heart Circ. Physiol. doi: 10.1152/ajpheart.00722.2006 – volume: 106 start-page: 2933 year: 2009 ident: ref_100 article-title: Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: Critical role for the astrocyte publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0813361106 – volume: 7 start-page: 166 year: 2001 ident: ref_5 article-title: Maxi-K potassium channels: form, function, and modulation of a class of endogenous regulators of intracellular calcium publication-title: Neuroscientist doi: 10.1177/107385840100700211 – volume: 285 start-page: 9262 year: 2010 ident: ref_24 article-title: Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.081125 – volume: 28 start-page: 20 year: 2014 ident: ref_58 article-title: Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons publication-title: Genes Dev. doi: 10.1101/gad.229518.113 – ident: ref_43 doi: 10.3390/ijms20010078 – volume: 113 start-page: 772 year: 2010 ident: ref_49 article-title: Nuclear factor-kappaB activation regulates cyclooxygenase-2 induction in human astrocytes in response to CXCL12: role in neuronal toxicity publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2010.06646.x – volume: 8 start-page: 84 year: 2015 ident: ref_70 article-title: Metallothionein-3 modulates the amyloid beta endocytosis of astrocytes through its effects on actin polymerization publication-title: Mol. Brain doi: 10.1186/s13041-015-0173-3 – volume: 64 start-page: 1396 year: 2016 ident: ref_38 article-title: L-type voltage-operated calcium channels contribute to astrocyte activation in vitro publication-title: Glia doi: 10.1002/glia.23013 – volume: 59 start-page: 873 year: 2008 ident: ref_55 article-title: Control of K(Ca) channels by calcium nano/microdomains publication-title: Neuron doi: 10.1016/j.neuron.2008.09.001 – volume: 58 start-page: 160 year: 2013 ident: ref_117 article-title: Increase of oxidative stress by a novel PINK1 mutation, P209A publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.12.008 – volume: 565 start-page: 23 year: 2014 ident: ref_61 article-title: Heterogeneity of reactive astrocytes publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2013.12.030 – volume: 42 start-page: 2605 year: 2011 ident: ref_121 article-title: Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia publication-title: Stroke doi: 10.1161/STROKEAHA.110.607101 – volume: 36 start-page: 7109 year: 2016 ident: ref_82 article-title: Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4518-15.2016 – volume: 5 start-page: e1569 year: 2014 ident: ref_129 article-title: Heme oxygenase-1 protects against Alzheimer’s amyloid-beta(1-42)-induced toxicity via carbon monoxide production publication-title: Cell Death Dis doi: 10.1038/cddis.2014.529 – volume: 53 start-page: 401 year: 2013 ident: ref_98 article-title: Role of nrf2 in oxidative stress and toxicity publication-title: Annu Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-011112-140320 – volume: 29 start-page: 74 year: 2018 ident: ref_122 article-title: Redox Functions of Heme Oxygenase-1 and Biliverdin Reductase in Diabetes publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2017.11.005 |
SSID | ssj0000913809 |
Score | 2.4702225 |
SecondaryResourceType | review_article |
Snippet | Astrocytes outnumber neurons in the human brain, and they play a key role in numerous functions within the central nervous system (CNS), including glutamate,... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 121 |
SubjectTerms | Adenosine triphosphate Alzheimer's disease Angiogenesis Antioxidants Astrocytes Biosynthesis BK channel Brain Calcium homeostasis Central nervous system Energy storage Enzymes Gene expression Heme heme oxygenase metabolites Homeostasis Kinases Metabolites Mitochondria Molecular modelling Morphology Movement disorders Nervous system Neurodegenerative diseases Neurogenesis Neuromodulation Neurons oxidative/nitrosative stress Oxygenase Parkinson's disease Phosphorylation Physiology Potassium Potassium conductance Proteins Review Synuclein Vascular endothelial growth factor Vascular system β-Amyloid |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KTumh9Ltu0zCF0lNNtLJkW71tQpalJSmUBnIz-qSBrVxqB5J_35HtLOvS0kuvthCyZqR5zxq9AXhLMT_Qxmdyb7nJBbcqT-lguQzWKCetcYPw_Nl5ub4QHy_l5U6pr5QTNsoDjxN3JJOkXFUIwslSELrQSlmmuRHKMbHwA1unmLdDpoY9WC2KmqlRVLMgXn-kU_LgTc1kEjGbBaFBq_9PAPP3PMmdwLN6CA8mxIjLcaSP4J6Pj-H-jo7gE-jI2Pil3XhsAy67noLSLUFIvIpI-A6nP7h4TvsCEX0cVcpx1drrzjtsIx5_wnTNIPoN6uhw7b97_HxzS85FQQ7PfE-uki4rdx9wieNxwlO4WJ1-PVnnUzWF3EpR9bll0hAdKF0tPdEcQjIhwblSS6Wl1YxMGawzUlta0tItQl0YXdI0F4yHhamKZ7AX2-hfAHLnUhlw5Tx1IYyuneCpD64DwcsQMnh_N72NnaTGU8WLTUOUI1mjmVkjg3fb5j9GjY2_NTxOtto2StLYwwNymGZymOZfDpPBwZ2lm2m9dk2qClBXRaXqDN5sX9NKS8cnOnoyTkNAihN3l4xn8Hx0jO1ICCSXjABBBtXMZWZDnb-JV98GNW8C1Jww08v_8W2vYJ8AnRoSMuUB7PU_r_1rAk29ORzWxy-s1BTR priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDojxTWjRIiBNRvU6cxFyq3aqrFagLqqjUW-RnqbQkbZNK7b9nnHhDg4BrYllO5vWNPf6GkPcY8x06PhVbzVScMi1iXw4Wc6eVMFwr0xHPH6-y5Wn6-YyfhQ23JpRVbnxi56hNrf0e-b7nbS_yJBfFweVV7LtG-dPV0ELjIdlCF1wUE7I1P1p9Oxl2WTzrZUFFT66ZYH6_L30R4W1BuSczGwWjjrP_b0Dzz3rJewFo8ZQ8CcgRZr2ot8kDWz0jj-_xCT4nDQodTuq1hdrBrGkxON0hlISLChDnQdjJhRX6B0z4oWcrh0WtbxproK5g_gX8dYPKrkFWBpb2p4Wvt3eoZBjs4Ni2qDL-0nLzCWbQHyu8IKeLo--Hyzh0VYg1T_M21pQrTAsyU3CL6Q4iGudhXSa5kFxLiiJ12iguNZo2N1NXJEpmqTAJZW6q8uQlmVR1ZV8TYMb4duDCWJwiVbIwKfNzMOkQZjoXkY-b31vqQDnuO1-sS0w9vDTKkTQi8mEYftlzbfxr4NzLahjkKbK7B_X1eRksruSeizBPUkyweIqwVAqhqWQKv4SmU0sjsruRdBnstil_a1lE3g2v0eL8MYqsLAqnREDFMIfnlEXkVa8Yw0oQLGcUgUFE8pHKjJY6flNd_OhYvRFYM8ROO_9f1hvyCCGb6Eou-S6ZtNc3dg9hUaveBt3_Bbl1EBk priority: 102 providerName: ProQuest |
Title | The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31060341 https://www.proquest.com/docview/2546873798 https://www.proquest.com/docview/2232132502 https://pubmed.ncbi.nlm.nih.gov/PMC6562853 https://doaj.org/article/5371473464254405a99c0a2b49d041e0 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_0DuTuQfw2epYRxCejm022yQoirVwpSqscFu4t7Kce9BJtUmj_e2eTtF70fPE1-8FmZ2bnN_vxG0JeoM93uPCp0GqmwoRpEfrrYCF3WgnDtTIN8fxsPpwuko_n_Pw3pVA3gdW1oZ3PJ7VYLV9vfm7fo8G_8xEnhuxvpL8XuMko9_xkN8khOqXUJzOYdUi_WZRFFGdUtCybf7c6IrcQ5wxpnEQ9B9Xw-F8HPv-8Q3nFKU3ukNsdmoRRK_675IYt7pHjKxyD90mFigBn5dJC6WBU1eiwtggv4aIAxH7Q7e7CHNeMcl1By2AOk1KvK2ugLGD8CfwThMIuQRYGpvbSwufNFhUPHSDMbI1q5B8yV29hBO1RwwOymJx-_TANu0wLoeZJWoeacoWhwtBk3GIIhCjHeag3lFxIriVFMTttFJcazZ2byGWxksNEmJgyF6k0fkgOirKwjwkwY3yKcGEsdpEomZmE-T6YdAg9nQvIq9305rqjIffZMJY5hiNeMHlPMAF5ua_-o-Xf-FfFsZfVvpKnzW4-lKtveWeFOff8hGmcYNDFE4SqUghNJVP4JzSJLA3IyU7S-U4Vc58xIEvjVGQBeb4vRiv0RyuysCicHEEWw7ieUxaQR61i7EeyU6yApD2V6Q21X1JcfG-YvhFsM8RTT_675VNyhAhPNDc0-Qk5qFdr-wxRVK0G5HB8Ov9yNmh2IQaNtfwCUHkhuQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9AAcEN8YCgwScMKqs_baXiSEEmiUkiagqpV6M_vltlKwS52I5k_xG5m1ndAg4NarvVqtPW9n3u7OvgF4STE_J8enfKuZ8iOmhe_SwXyeayUM18rUwvPjSTw8jD4d8aMN-Lm8C-PSKpc-sXbUptRuj3zb6banSZiI9P3Zd99VjXKnq8sSGg0sRnbxg5Zs1bvdj2TfV4wNdg4-DP22qoCveZTMfB1wRbQ4Nim3RPcpoueO1sSSC8m1DOiTcm0Ul5qgzU03T0Ml40iYMGB5VyUh9XsNNqMwDlgHNvs7ky_7q10dp7KZBqIR8wxDEWxLl7R4QT058bS14FfXCPgbsf0zP_NSwBvchlstU8VeA607sGGLu3Dzkn7hPagIZLhfTi2WOfaqGQXDBVFXPC2QeCW2O8c4IX9Uzits1NFxUOp5ZQ2WBfZH6K43FHaKsjA4tN8sfr5YEKgpuOLYzgii7pJ09RZ72Bxj3IfDK_nfD6BTlIV9BMiMceXHhbHURaRkaiLm-mAyJ1qb5x68Wf7eTLcS567SxjSjpY6zRrZmDQ9er5qfNdoe_2rYd7ZaNXKS3PWD8vw4a2d4xp32YRJGtKDjEdFgKYQOJFP0JUHUtYEHW0tLZ62fqLLfqPbgxeo1zXB3bCMLS8bJiMCxbkhUlXnwsAHGaiREzuOAiIgHyRpk1oa6_qY4PalVxInIM-Jqj_8_rOdwfXgw3sv2diejJ3CD6KKo0z35FnRm53P7lCjZTD1r5wHC16ueer8A4KZNHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMBIwBNRUyduYiSEWrZqo6xME5P2FnyFSSUZSyvWv8av45wkLSsC3vYaW5adc_tsH38H4DnGfI-OT4fOcB0m3MiQ0sFC4Y2WVhhta-L5_Ul_9yh5fyyON-Dn8i0MpVUufWLtqG1p6Iy8S7ztWRqnMuv6Ni3iYHv09vR7SBWk6KZ1WU6jUZGxW_zA7Vv1Zm8bZf2C89HOp3e7YVthIDQiSWehiYRGiNy3mXAI_TG6e4I4fSWkEkZFuDxvrBbKoJoL2_NZrFU_kTaOuO_pNMZxr8BmSruiDmwOdyYHh6sTHmLczCLZEHvGsYy6ihIYz3EkIlJbC4R1vYC_gdw_czUvBL_RTbjRolY2aNTsFmy44jZcv8BleAcqVDh2WE4dKz0bVDMMjAuEseykYIgxWXuKzCbom8p5xRqmdDYqzbxylpUFG44ZPXUo3JSpwrJd982xj-cLVHAMtGzfzVBd6cF09ZoNWHOlcReOLuV_34NOURbuATBuLZUil9bhEIlWmU04jcGVR4jrfQCvlr83Ny3dOVXdmOa47SFp5GvSCODlqvtpw_Pxr45DktWqE9Fz1x_Ksy95a-25IB7ENE5wcycShMRKShMprnElUdJzUQBbS0nnrc-o8t8aHsCzVTNaO13hqMKhcHIEc7wXI2zlAdxvFGM1EwTq_QhBSQDpmsqsTXW9pTj5WjOKI6jniNse_n9aT-Eqmlz-YW8yfgTXEDnKOvNTbEFndjZ3jxGdzfST1gwYfL5sy_sFMXNRUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Astrocytes+in+the+Central+Nervous+System+Focused+on+BK+Channel+and+Heme+Oxygenase+Metabolites%3A+A+Review&rft.jtitle=Antioxidants&rft.au=Kim%2C+Yonghee&rft.au=Park%2C+Jinhong&rft.au=Choi%2C+Yoon+Kyung&rft.date=2019-05-05&rft.pub=MDPI&rft.eissn=2076-3921&rft.volume=8&rft.issue=5&rft_id=info:doi/10.3390%2Fantiox8050121&rft_id=info%3Apmid%2F31060341&rft.externalDocID=PMC6562853 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3921&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3921&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3921&client=summon |