Specific Histone Lysine 4 Methylation Patterns Define TR-Binding Capacity and Differentiate Direct T3 Responses
Abstract The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T3 and its receptors on transcription does not reflect this diversity. Here, T3-dependent amphibian metamorphosis was exploited to investig...
Saved in:
Published in | Molecular endocrinology (Baltimore, Md.) Vol. 25; no. 2; pp. 225 - 237 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.02.2011
Endocrine Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T3 and its receptors on transcription does not reflect this diversity. Here, T3-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T3 directly regulates gene expression. Two, direct positively regulated T3-response genes encoding transcription factors were analyzed: thyroid hormone receptor β (TRβ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRβ) and differences in induction after T3 treatment (lower for TRβ than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T3 differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T3 -responsive elements (higher for TRβ than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRβ than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T3 responses. |
---|---|
AbstractList | The diversity of thyroid hormone T(3) effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T(3) and its receptors on transcription does not reflect this diversity. Here, T(3)-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T(3) directly regulates gene expression. Two, direct positively regulated T(3)-response genes encoding transcription factors were analyzed: thyroid hormone receptor β (TRβ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRβ) and differences in induction after T(3) treatment (lower for TRβ than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T(3) differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T(3) -responsive elements (higher for TRβ than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRβ than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T(3) responses.The diversity of thyroid hormone T(3) effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T(3) and its receptors on transcription does not reflect this diversity. Here, T(3)-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T(3) directly regulates gene expression. Two, direct positively regulated T(3)-response genes encoding transcription factors were analyzed: thyroid hormone receptor β (TRβ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRβ) and differences in induction after T(3) treatment (lower for TRβ than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T(3) differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T(3) -responsive elements (higher for TRβ than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRβ than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T(3) responses. The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T3 and its receptors on transcription does not reflect this diversity. Here, T3-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T3 directly regulates gene expression. Two, direct positively regulated T3-response genes encoding transcription factors were analyzed: thyroid hormone receptor beta (TR beta ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TR beta ) and differences in induction after T3 treatment (lower for TR beta than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T3 differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T3 -responsive elements (higher for TR beta than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TR beta than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T3 responses. The diversity of thyroid hormone T(3) effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T(3) and its receptors on transcription does not reflect this diversity. Here, T(3)-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T(3) directly regulates gene expression. Two, direct positively regulated T(3)-response genes encoding transcription factors were analyzed: thyroid hormone receptor β (TRβ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRβ) and differences in induction after T(3) treatment (lower for TRβ than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T(3) differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T(3) -responsive elements (higher for TRβ than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRβ than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T(3) responses. The histone code, notably H3 methylation, contributes to the precise control of gene expression that underlies complex physiological T 3 responses. The diversity of thyroid hormone T 3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T 3 and its receptors on transcription does not reflect this diversity. Here, T 3 -dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T 3 directly regulates gene expression. Two, direct positively regulated T 3 -response genes encoding transcription factors were analyzed: thyroid hormone receptor β ( TR β) and TH/bZIP . Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TR β) and differences in induction after T 3 treatment (lower for TR β than for TH/bZIP ). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T 3 differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T 3 -responsive elements (higher for TR β than for TH/bZIP ), correlated with gene-specific modifications of H3K4 methylation (higher for TR β than for TH/bZIP ). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T 3 responses. Abstract The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T3 and its receptors on transcription does not reflect this diversity. Here, T3-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T3 directly regulates gene expression. Two, direct positively regulated T3-response genes encoding transcription factors were analyzed: thyroid hormone receptor β (TRβ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRβ) and differences in induction after T3 treatment (lower for TRβ than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T3 differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T3 -responsive elements (higher for TRβ than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRβ than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T3 responses. |
Author | Sachs, Laurent M. Buisine, Nicolas Jolivet, Pascale Demeneix, Barbara A. Bilesimo, Patrice Alfama, Gladys Mevel, Sebastien Le Havis, Emmanuelle |
Author_xml | – sequence: 1 givenname: Patrice surname: Bilesimo fullname: Bilesimo, Patrice organization: 2WatchFrog S.A. (P.B.), 91000 Evry, France – sequence: 2 givenname: Pascale surname: Jolivet fullname: Jolivet, Pascale organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France – sequence: 3 givenname: Gladys surname: Alfama fullname: Alfama, Gladys organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France – sequence: 4 givenname: Nicolas surname: Buisine fullname: Buisine, Nicolas organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France – sequence: 5 givenname: Sebastien Le surname: Mevel fullname: Mevel, Sebastien Le organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France – sequence: 6 givenname: Emmanuelle surname: Havis fullname: Havis, Emmanuelle organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France – sequence: 7 givenname: Barbara A. surname: Demeneix fullname: Demeneix, Barbara A. organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France – sequence: 8 givenname: Laurent M. surname: Sachs fullname: Sachs, Laurent M. email: sachs@mnhn.fr organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21239616$$D View this record in MEDLINE/PubMed https://hal.science/hal-04027800$$DView record in HAL |
BookMark | eNqFksFrFDEUxoNU7LZ68yy5ieDUZJKZSS5C3bausKLU9RySzEs3MpuZTrKF_e_NdNeiheIpJO_3vnyP952go9AHQOg1JWe0pOTDBs5KQklBylo-QzMqOS-kpM0RmhEhRCEEkcfoJMZfhFBeCfoCHZe0ZLKm9Qz1Pwaw3nmLFz6mrIyXu-jzwfFXSOtdp5PvA_6uU4IxRHwBbqqurotPPrQ-3OC5HrT1aYd1aPGFdw5GCMnrBPk2gk14xfA1xKEPEeJL9NzpLsKrw3mKfl5druaLYvnt85f5-bKwFW9SIVtXSUFFUzlmNHCAbB3AsMoQo20rndaZcbUxljpOayqoNrnFGUMdY-wUfdzrDluzgdZmS6Pu1DD6jR53qtde_VsJfq1u-jtVcdowIrPAu73A-lHb4nyppjfCSdkIQu5oZt8ePhv72y3EpDY-Wug6HaDfRiVJQ6uyEvK_pOCC5eWU0wBv_h7gwcKf1WXg_R6wYx_jCO4BoURNyVAbUFMy1JSMjJeP8Ly0--Xm8X33VNPBbr8dnpK_Dx77DcjSyMk |
CitedBy_id | crossref_primary_10_1101_pdb_prot097725 crossref_primary_10_1210_endocr_bqae137 crossref_primary_10_1371_journal_pone_0137526 crossref_primary_10_1089_thy_2019_0366 crossref_primary_10_1210_en_2015_1190 crossref_primary_10_1016_j_bbagen_2012_06_003 crossref_primary_10_1038_cddis_2017_198 crossref_primary_10_3390_cells10092375 crossref_primary_10_3390_ijms232213715 crossref_primary_10_1016_j_bbagen_2012_04_020 crossref_primary_10_1016_j_gene_2014_02_030 crossref_primary_10_1186_2045_3701_4_73 crossref_primary_10_1186_2045_3701_3_43 crossref_primary_10_1210_me_2014_1349 crossref_primary_10_1210_endocr_bqab028 crossref_primary_10_1016_j_ygcen_2023_114349 crossref_primary_10_1016_j_mce_2024_112193 crossref_primary_10_1186_2045_3701_3_18 crossref_primary_10_1210_en_2014_1439 crossref_primary_10_1210_me_2013_1414 crossref_primary_10_1186_2045_3701_2_25 crossref_primary_10_1002_dvg_23000 crossref_primary_10_1371_journal_pone_0028658 crossref_primary_10_1007_s11154_016_9380_1 crossref_primary_10_1371_journal_pone_0086957 crossref_primary_10_1038_s41598_017_06679_x crossref_primary_10_1210_en_2011_1736 crossref_primary_10_1093_toxsci_kfu012 crossref_primary_10_1186_1471_213X_14_5 crossref_primary_10_3389_fevo_2021_735487 crossref_primary_10_1096_fj_201700131R crossref_primary_10_1210_en_2014_1554 crossref_primary_10_1016_j_cbpc_2011_03_006 crossref_primary_10_1210_en_2012_1308 crossref_primary_10_3389_fendo_2019_00194 crossref_primary_10_1210_en_2016_1558 crossref_primary_10_1016_j_ygcen_2020_113441 crossref_primary_10_1210_en_2016_1953 crossref_primary_10_1089_thy_2013_0109 crossref_primary_10_1186_2045_3701_2_42 crossref_primary_10_1074_jbc_M111_335661 crossref_primary_10_1016_j_bbrc_2015_09_132 crossref_primary_10_1016_j_ygcen_2018_11_012 crossref_primary_10_1210_en_2012_1463 |
Cites_doi | 10.1038/sj.embor.embor908 10.1016/S0021-9258(17)31447-3 10.1016/j.devcel.2008.04.002 10.1016/j.cell.2004.12.012 10.1038/387016a0 10.1093/emboj/cdg219 10.1093/emboj/cdg326 10.1101/gad.1652908 10.1016/j.cell.2006.12.038 10.1210/en.2008-0751 10.1074/jbc.M509593200 10.1016/j.jmb.2007.06.079 10.1038/sj.embor.7400778 10.1074/jbc.M109.066084 10.1038/ng.545 10.1038/nrm1761 10.1074/jbc.M607411200 10.1073/pnas.260141297 10.1016/j.cell.2007.05.042 10.1210/mend.13.12.0383 10.1387/ijdb.082717ph 10.1126/science.1076997 10.1073/pnas.141226798 10.1016/j.cell.2006.02.041 10.1038/sj.embor.7400391 10.1038/emboj.2009.108 10.1016/j.devcel.2009.08.005 10.1128/MCB.25.1.324-335.2005 10.1242/dev.122.10.3173 10.1074/jbc.M500796200 10.1016/j.cell.2007.09.026 10.1128/MCB.02291-06 10.1101/gr.073080.107 10.1038/nature07829 10.1073/pnas.90.15.7322 10.1038/ncb1663 10.1073/pnas.191361698 10.1038/sj.emboj.7601356 10.1016/0092-8674(95)90199-X 10.1016/j.ydbio.2007.03.021 10.1158/0008-5472.CAN-04-0496 10.1016/j.molcel.2006.12.014 10.1038/47412 10.1038/nature04020 |
ContentType | Journal Article |
Copyright | Copyright © 2011 by The Endocrine Society 2011 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2011 by The Endocrine Society 2011 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM F1W H95 L.G 1XC 5PM |
DOI | 10.1210/me.2010-0269 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Nucleic Acids Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1944-9917 0888-8809 |
EndPage | 237 |
ExternalDocumentID | PMC5417309 oai_HAL_hal_04027800v1 21239616 10_1210_me_2010_0269 10.1210/me.2010-0269 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ .55 .XZ 123 18M 29M 2WC 34G 354 39C 3O- 4.4 5RS 5YH 8F7 AABZA AACZT AAPQZ AAPXW AARHZ AAUAY AAVAP ABJNI ABNHQ ABOCM ABPPZ ABPTD ABXVV ACGFO ACGFS ACUFI ADBBV ADGZP ADIYS ADQBN ADVEK AENEX AETEA AFFZL AFOFC AFOSN AFXAL AGINJ AGUTN AJEEA ALMA_UNASSIGNED_HOLDINGS ATGXG BAWUL BAYMD BCRHZ C45 CS3 DIK DU5 E3Z EBS EJD F5P FLUFQ FOEOM GX1 H13 HF~ HZ~ H~9 IH2 KQ8 KSI KSN L7B M5~ NOMLY OAUYM OBH OFXIZ OHH OJZSN OK1 OPAEJ OVD P2P REU ROX ROZ TEORI TJX TR2 VVN W8F WOQ X7M XOL YBU YOC ZCA ZY1 0R~ AAFWJ AAYXX ABDFA ABEJV ABGNP ABVGC ADVOB AEMQT AHMMS ALXQX CITATION .GJ 08P 53G AAKAS ACFRR ACUTJ ACVCV ADZCM AFFNX AGMDO APJGH AQKUS ASAOO ATDFG CGR CUY CVF ECM EIF MBLQV MBTAY NPM WHG X52 ZCG ZGI ZXP 7X8 7TM F1W H95 L.G 1XC 5PM |
ID | FETCH-LOGICAL-c547t-9df5981875f3bae4ee145eeb35b0bacd9faa9dff6bbc1f416181ab598fbb1f333 |
ISSN | 0888-8809 1944-9917 |
IngestDate | Thu Aug 21 14:12:53 EDT 2025 Fri May 09 12:26:59 EDT 2025 Fri Jul 11 03:43:16 EDT 2025 Fri Jul 11 00:05:01 EDT 2025 Mon Jul 21 05:46:05 EDT 2025 Tue Jul 01 01:47:53 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Wed Sep 11 05:00:55 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | TR-α | TR-β Thyroid hormone |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c547t-9df5981875f3bae4ee145eeb35b0bacd9faa9dff6bbc1f416181ab598fbb1f333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1190-2934 0000-0003-0322-0618 0000-0001-5634-3174 0000-0002-7261-1973 0000-0003-4544-971X |
OpenAccessLink | https://academic.oup.com/mend/article-pdf/25/2/225/10721437/mend0225.pdf |
PMID | 21239616 |
PQID | 848321223 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5417309 hal_primary_oai_HAL_hal_04027800v1 proquest_miscellaneous_907152589 proquest_miscellaneous_848321223 pubmed_primary_21239616 crossref_primary_10_1210_me_2010_0269 crossref_citationtrail_10_1210_me_2010_0269 oup_primary_10_1210_me_2010-0269 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Chevy Chase, MD |
PublicationTitle | Molecular endocrinology (Baltimore, Md.) |
PublicationTitleAlternate | Mol Endocrinol |
PublicationYear | 2011 |
Publisher | Oxford University Press Endocrine Society |
Publisher_xml | – name: Oxford University Press – name: Endocrine Society |
References | Kroll (2019041122282999600_B47) 1996; 122 Sachs (2019041122282999600_B37) 2000; 97 Yu (2019041122282999600_B38) 2003; 22 Schreiber (2019041122282999600_B14) 2001; 98 Brown (2019041122282999600_B6) 2007; 306 Swigut (2019041122282999600_B20) 2007; 131 Guenther (2019041122282999600_B30) 2007; 130 Akkers (2019041122282999600_B32) 2009; 17 Coen (2019041122282999600_B15) 2001; 98 Orford (2019041122282999600_B36) 2008; 14 Strahl (2019041122282999600_B2) 2000; 403 Bannister (2019041122282999600_B17) 2005; 280 Ruthenburg (2019041122282999600_B19) 2007; 25 de Luze (2019041122282999600_B44) 1993; 90 Wolffe (2019041122282999600_B3) 1997; 387 Havis (2019041122282999600_B16) 2006; 25 Hublitz (2019041122282999600_B21) 2009; 53 Andersen (2019041122282999600_B13) 2004; 64 Garcia-Bassets (2019041122282999600_B33) 2007; 128 Froidevaux (2019041122282999600_B46) 2006; 7 Ranjan (2019041122282999600_B11) 1994; 269 Stock (2019041122282999600_B31) 2007; 9 Sachs (2019041122282999600_B24) 2001; 8 Furlow (2019041122282999600_B12) 1999; 13 Cao (2019041122282999600_B25) 2002; 298 Bernstein (2019041122282999600_B28) 2006; 125 Huang (2019041122282999600_B4) 2003; 22 Forneris (2019041122282999600_B34) 2006; 281 Hartman (2019041122282999600_B40) 2005; 6 Heintzman (2019041122282999600_B41) 2009; 459 Yoon (2019041122282999600_B39) 2005; 25 Mangelsdorf (2019041122282999600_B1) 1995; 83 Havis (2019041122282999600_B10) 2003; 4 Wang (2019041122282999600_B7) 2008; 149 Buchholz (2019041122282999600_B9) 2005; 280 Pinskaya (2019041122282999600_B35) 2009; 28 Metzger (2019041122282999600_B22) 2005; 437 Yu (2019041122282999600_B29) 2008; 18 Nieuwkoop (2019041122282999600_B45) 1956 Martin (2019041122282999600_B18) 2005; 6 Gillespie (2019041122282999600_B27) 2007; 372 Das (2019041122282999600_B8) 2009; 284 Cloos (2019041122282999600_B26) 2008; 22 Shi (2019041122282999600_B5) 1999 Shi (2019041122282999600_B23) 2004; 119 He (2019041122282999600_B42) 2010; 42 Okitsu (2019041122282999600_B43) 2007; 27 18477461 - Dev Cell. 2008 May;14(5):798-809 17006540 - EMBO J. 2006 Oct 18;25(20):4943-51 11517345 - Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10739-44 8521507 - Cell. 1995 Dec 15;83(6):835-9 11427732 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7869-74 15832170 - EMBO Rep. 2005 May;6(5):445-51 15601853 - Mol Cell Biol. 2005 Jan;25(1):324-35 8898230 - Development. 1996 Oct;122(10):3173-83 19412890 - Int J Dev Biol. 2009;53(2-3):335-54 8346251 - Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7322-6 18562678 - Genome Res. 2008 Aug;18(8):1314-24 15760899 - J Biol Chem. 2005 May 6;280(18):17732-6 16987819 - J Biol Chem. 2006 Nov 17;281(46):35289-95 11078533 - Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13138-43 16261189 - Nat Rev Mol Cell Biol. 2005 Nov;6(11):838-49 17923085 - Cell. 2007 Oct 5;131(1):29-32 18451103 - Genes Dev. 2008 May 1;22(9):1115-40 17449026 - Dev Biol. 2007 Jun 1;306(1):20-33 18635662 - Endocrinology. 2008 Nov;149(11):5610-8 10598583 - Mol Endocrinol. 1999 Dec;13(12):2076-89 16079795 - Nature. 2005 Sep 15;437(7057):436-9 18037880 - Nat Cell Biol. 2007 Dec;9(12 ):1428-35 12840002 - EMBO J. 2003 Jul 1;22(13):3403-10 16236718 - J Biol Chem. 2005 Dec 16;280(50):41222-8 17663992 - J Mol Biol. 2007 Sep 14;372(2):298-316 15620353 - Cell. 2004 Dec 29;119(7):941-53 17242185 - Mol Cell Biol. 2007 Apr;27(7):2746-57 19758566 - Dev Cell. 2009 Sep;17(3):425-34 12351676 - Science. 2002 Nov 1;298(5595):1039-43 10638745 - Nature. 2000 Jan 6;403(6765):41-5 19407817 - EMBO J. 2009 Jun 17;28(12):1697-707 17632057 - Cell. 2007 Jul 13;130(1):77-88 19801647 - J Biol Chem. 2009 Dec 4;284(49):34167-78 16630819 - Cell. 2006 Apr 21;125(2):315-26 19295514 - Nature. 2009 May 7;459(7243):108-12 7929143 - J Biol Chem. 1994 Oct 7;269(40):24699-705 16936638 - EMBO Rep. 2006 Oct;7(10):1035-9 17218268 - Mol Cell. 2007 Jan 12;25(1):15-30 9139815 - Nature. 1997 May 1;387(6628):16-7 11712071 - Int J Mol Med. 2001 Dec;8(6):595-601 15289330 - Cancer Res. 2004 Aug 1;64(15):5245-50 20208536 - Nat Genet. 2010 Apr;42(4):343-7 12727881 - EMBO J. 2003 May 1;22(9):2146-55 12947412 - EMBO Rep. 2003 Sep;4(9):883-8 17289570 - Cell. 2007 Feb 9;128(3):505-18 |
References_xml | – volume: 8 start-page: 595 year: 2001 ident: 2019041122282999600_B24 article-title: An essential role of histone deacetylases in postembryonic organ transformations in Xenopus laevis. publication-title: Int J Mol Med – volume: 4 start-page: 883 year: 2003 ident: 2019041122282999600_B10 article-title: Metamorphic T3-response genes have specific co-regulator requirements. publication-title: EMBO Rep doi: 10.1038/sj.embor.embor908 – volume: 269 start-page: 24699 year: 1994 ident: 2019041122282999600_B11 article-title: Transcriptional repression of Xenopus TR β gene is mediated by a thyroid hormone response element located near the start site. publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)31447-3 – volume: 14 start-page: 798 year: 2008 ident: 2019041122282999600_B36 article-title: Differential H3K4 methylation identifies developmentally poised hematopoietic genes. publication-title: Dev Cell doi: 10.1016/j.devcel.2008.04.002 – volume: 119 start-page: 941 year: 2004 ident: 2019041122282999600_B23 article-title: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. publication-title: Cell doi: 10.1016/j.cell.2004.12.012 – volume: 387 start-page: 16 year: 1997 ident: 2019041122282999600_B3 article-title: Transcriptional control. publication-title: Sinful repression. Nature doi: 10.1038/387016a0 – year: 1956 ident: 2019041122282999600_B45 article-title: Normal table of Xenopus laevis (Daudin) – volume: 22 start-page: 2146 year: 2003 ident: 2019041122282999600_B4 article-title: A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and mediator for transcription. publication-title: EMBO J doi: 10.1093/emboj/cdg219 – volume: 22 start-page: 3403 year: 2003 ident: 2019041122282999600_B38 article-title: A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. publication-title: EMBO J doi: 10.1093/emboj/cdg326 – volume: 22 start-page: 1115 year: 2008 ident: 2019041122282999600_B26 article-title: Erasing the methyl mark : histone demethylases at the center of cellular differentiation and disease. publication-title: Genes Dev doi: 10.1101/gad.1652908 – volume: 128 start-page: 505 year: 2007 ident: 2019041122282999600_B33 article-title: Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. publication-title: Cell doi: 10.1016/j.cell.2006.12.038 – volume: 149 start-page: 5610 year: 2008 ident: 2019041122282999600_B7 article-title: Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis. publication-title: Endocrinology doi: 10.1210/en.2008-0751 – volume: 280 start-page: 41222 year: 2005 ident: 2019041122282999600_B9 article-title: Gene-specific changes in promoter occupancy by thyroid hormone receptor during frog metamorphosis. Implications for developmental gene regulation. publication-title: J Biol Chem doi: 10.1074/jbc.M509593200 – volume: 372 start-page: 298 year: 2007 ident: 2019041122282999600_B27 article-title: Retinoid regulated association of transcriptional co-regulators and the Polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARβ(2), and Cyp26A1 in F9 embryonal carcinoma cells. publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.06.079 – volume: 7 start-page: 1035 year: 2006 ident: 2019041122282999600_B46 article-title: The co-chaperone XAP2 is required for activation of hypothalamic thyrotropin-releasing hormone transcription in vivo. publication-title: EMBO Rep doi: 10.1038/sj.embor.7400778 – volume: 284 start-page: 34167 year: 2009 ident: 2019041122282999600_B8 article-title: Identification of direct thyroid hormone response genes reveals the earliest gene regulation programs during frog metamorphosis. publication-title: J Biol Chem doi: 10.1074/jbc.M109.066084 – volume: 42 start-page: 343 year: 2010 ident: 2019041122282999600_B42 article-title: Nucleosome dynamics define transcriptional enhancers. publication-title: Nat Genet doi: 10.1038/ng.545 – volume: 6 start-page: 838 year: 2005 ident: 2019041122282999600_B18 article-title: The diverse functions of histone lysine methylation. publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1761 – volume: 281 start-page: 35289 year: 2006 ident: 2019041122282999600_B34 article-title: A highly specific mechanism of histone H3–K4 recognition by histone demethylase LSD1. publication-title: J Biol Chem doi: 10.1074/jbc.M607411200 – volume: 97 start-page: 13138 year: 2000 ident: 2019041122282999600_B37 article-title: Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.260141297 – volume: 130 start-page: 77 year: 2007 ident: 2019041122282999600_B30 article-title: A chromatin landmark and transcription initiation at most promoters in human cells. publication-title: Cell doi: 10.1016/j.cell.2007.05.042 – volume: 13 start-page: 2076 year: 1999 ident: 2019041122282999600_B12 article-title: In vitro and in vivo analysis of the regulation of a transcription factor gene by thyroid hormone during Xenopus laevis metamorphosis. publication-title: Mol Endocrinol doi: 10.1210/mend.13.12.0383 – volume: 53 start-page: 335 year: 2009 ident: 2019041122282999600_B21 article-title: Mechanisms of transcriptional repression by histone lysine methylation. publication-title: Int J Dev Biol doi: 10.1387/ijdb.082717ph – volume: 298 start-page: 1039 year: 2002 ident: 2019041122282999600_B25 article-title: Role of histone H3 lysine 27 methylation in Polycomb-group silencing. publication-title: Science doi: 10.1126/science.1076997 – volume: 98 start-page: 7869 year: 2001 ident: 2019041122282999600_B15 article-title: Xenopus Bcl-X(L) selectively protects Rohon-Beard neurons from metamorphic degeneration. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.141226798 – volume: 125 start-page: 315 year: 2006 ident: 2019041122282999600_B28 article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. publication-title: Cell doi: 10.1016/j.cell.2006.02.041 – volume: 6 start-page: 445 year: 2005 ident: 2019041122282999600_B40 article-title: The histone-binding code of nuclear receptor co-repressors matches the substrate specificity of histone deacetylase 3. publication-title: EMBO Rep doi: 10.1038/sj.embor.7400391 – volume: 28 start-page: 1697 year: 2009 ident: 2019041122282999600_B35 article-title: H3 lysine 4 di- and tri-methylation deposited by cryptic transcription attenuates promoter activation. publication-title: EMBO J doi: 10.1038/emboj.2009.108 – volume: 17 start-page: 425 year: 2009 ident: 2019041122282999600_B32 article-title: A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. publication-title: Dev Cell doi: 10.1016/j.devcel.2009.08.005 – volume: 25 start-page: 324 year: 2005 ident: 2019041122282999600_B39 article-title: Reading and function of a histone code involved in targeting corepressor complexes for repression. publication-title: Mol Cell Biol doi: 10.1128/MCB.25.1.324-335.2005 – volume: 122 start-page: 3173 year: 1996 ident: 2019041122282999600_B47 article-title: Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. publication-title: Development doi: 10.1242/dev.122.10.3173 – volume: 280 start-page: 17732 year: 2005 ident: 2019041122282999600_B17 article-title: Spatial distribution of di- and tri-methy lysine 36 of histone H3 at active genes. publication-title: J Biol Chem doi: 10.1074/jbc.M500796200 – volume: 131 start-page: 29 year: 2007 ident: 2019041122282999600_B20 article-title: H3K27 demethylases, at long last. publication-title: Cell doi: 10.1016/j.cell.2007.09.026 – volume: 27 start-page: 2746 year: 2007 ident: 2019041122282999600_B43 article-title: DNA methylation dictates histone H3K4 methylation. publication-title: Mol Cell Biol doi: 10.1128/MCB.02291-06 – volume: 18 start-page: 1314 year: 2008 ident: 2019041122282999600_B29 article-title: Inferring causal relationships among different histone modifications and gene expression. publication-title: Genome Res doi: 10.1101/gr.073080.107 – volume: 459 start-page: 108 year: 2009 ident: 2019041122282999600_B41 article-title: Histone modifications at human enhancers reflect global cell-type-specific gene expression. publication-title: Nature doi: 10.1038/nature07829 – volume: 90 start-page: 7322 year: 1993 ident: 2019041122282999600_B44 article-title: Thyroid hormone-dependent transcriptional regulation of exogenous gene transferred into Xenopus tadpole muscle in vivo. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.90.15.7322 – volume: 9 start-page: 1428 year: 2007 ident: 2019041122282999600_B31 article-title: Ring-1 mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. publication-title: Nat Cell Biol doi: 10.1038/ncb1663 – volume: 98 start-page: 10739 year: 2001 ident: 2019041122282999600_B14 article-title: Divers developmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.191361698 – volume: 25 start-page: 4943 year: 2006 ident: 2019041122282999600_B16 article-title: Unliganded thyroid hormone receptor is essential for Xenopus laevis eye development. publication-title: EMBO J doi: 10.1038/sj.emboj.7601356 – volume: 83 start-page: 835 year: 1995 ident: 2019041122282999600_B1 article-title: The nuclear receptor family: the second decade. publication-title: Cell doi: 10.1016/0092-8674(95)90199-X – volume-title: Amphibian metamorphosis. From morphology to molecular biology year: 1999 ident: 2019041122282999600_B5 – volume: 306 start-page: 20 year: 2007 ident: 2019041122282999600_B6 article-title: Amphibian metamorphosis. publication-title: Dev Biol doi: 10.1016/j.ydbio.2007.03.021 – volume: 64 start-page: 5245 year: 2004 ident: 2019041122282999600_B13 article-title: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-0496 – volume: 25 start-page: 15 year: 2007 ident: 2019041122282999600_B19 article-title: Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. publication-title: Mol Cell doi: 10.1016/j.molcel.2006.12.014 – volume: 403 start-page: 41 year: 2000 ident: 2019041122282999600_B2 article-title: The language of covalent histone modifications. publication-title: Nature doi: 10.1038/47412 – volume: 437 start-page: 436 year: 2005 ident: 2019041122282999600_B22 article-title: LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. publication-title: Nature doi: 10.1038/nature04020 – reference: 18562678 - Genome Res. 2008 Aug;18(8):1314-24 – reference: 10598583 - Mol Endocrinol. 1999 Dec;13(12):2076-89 – reference: 17242185 - Mol Cell Biol. 2007 Apr;27(7):2746-57 – reference: 12727881 - EMBO J. 2003 May 1;22(9):2146-55 – reference: 16236718 - J Biol Chem. 2005 Dec 16;280(50):41222-8 – reference: 12947412 - EMBO Rep. 2003 Sep;4(9):883-8 – reference: 16630819 - Cell. 2006 Apr 21;125(2):315-26 – reference: 15760899 - J Biol Chem. 2005 May 6;280(18):17732-6 – reference: 8521507 - Cell. 1995 Dec 15;83(6):835-9 – reference: 16987819 - J Biol Chem. 2006 Nov 17;281(46):35289-95 – reference: 17218268 - Mol Cell. 2007 Jan 12;25(1):15-30 – reference: 19801647 - J Biol Chem. 2009 Dec 4;284(49):34167-78 – reference: 17923085 - Cell. 2007 Oct 5;131(1):29-32 – reference: 15289330 - Cancer Res. 2004 Aug 1;64(15):5245-50 – reference: 7929143 - J Biol Chem. 1994 Oct 7;269(40):24699-705 – reference: 20208536 - Nat Genet. 2010 Apr;42(4):343-7 – reference: 8898230 - Development. 1996 Oct;122(10):3173-83 – reference: 16261189 - Nat Rev Mol Cell Biol. 2005 Nov;6(11):838-49 – reference: 18635662 - Endocrinology. 2008 Nov;149(11):5610-8 – reference: 18477461 - Dev Cell. 2008 May;14(5):798-809 – reference: 11078533 - Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13138-43 – reference: 17632057 - Cell. 2007 Jul 13;130(1):77-88 – reference: 17449026 - Dev Biol. 2007 Jun 1;306(1):20-33 – reference: 18037880 - Nat Cell Biol. 2007 Dec;9(12 ):1428-35 – reference: 12840002 - EMBO J. 2003 Jul 1;22(13):3403-10 – reference: 15601853 - Mol Cell Biol. 2005 Jan;25(1):324-35 – reference: 11427732 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7869-74 – reference: 18451103 - Genes Dev. 2008 May 1;22(9):1115-40 – reference: 19407817 - EMBO J. 2009 Jun 17;28(12):1697-707 – reference: 17663992 - J Mol Biol. 2007 Sep 14;372(2):298-316 – reference: 12351676 - Science. 2002 Nov 1;298(5595):1039-43 – reference: 16079795 - Nature. 2005 Sep 15;437(7057):436-9 – reference: 17006540 - EMBO J. 2006 Oct 18;25(20):4943-51 – reference: 15620353 - Cell. 2004 Dec 29;119(7):941-53 – reference: 8346251 - Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7322-6 – reference: 9139815 - Nature. 1997 May 1;387(6628):16-7 – reference: 17289570 - Cell. 2007 Feb 9;128(3):505-18 – reference: 10638745 - Nature. 2000 Jan 6;403(6765):41-5 – reference: 11517345 - Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10739-44 – reference: 15832170 - EMBO Rep. 2005 May;6(5):445-51 – reference: 16936638 - EMBO Rep. 2006 Oct;7(10):1035-9 – reference: 19412890 - Int J Dev Biol. 2009;53(2-3):335-54 – reference: 19758566 - Dev Cell. 2009 Sep;17(3):425-34 – reference: 19295514 - Nature. 2009 May 7;459(7243):108-12 – reference: 11712071 - Int J Mol Med. 2001 Dec;8(6):595-601 |
SSID | ssj0014581 |
Score | 2.227041 |
Snippet | Abstract
The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action... The diversity of thyroid hormone T(3) effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T(3)... The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T3 and... The histone code, notably H3 methylation, contributes to the precise control of gene expression that underlies complex physiological T 3 responses. The... |
SourceID | pubmedcentral hal proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 225 |
SubjectTerms | Acetylation Animals Animals, Genetically Modified Basic-Leucine Zipper Transcription Factors - genetics Chromatin Immunoprecipitation Gene Expression Regulation, Developmental Histones - genetics Histones - metabolism Larva - genetics Life Sciences Methylation Original Research Polymerase Chain Reaction Promoter Regions, Genetic RNA Polymerase II - metabolism Thyroid Hormone Receptors beta - genetics Thyroid Hormone Receptors beta - metabolism Transcription, Genetic Triiodothyronine - metabolism Xenopus Xenopus tropicalis |
Title | Specific Histone Lysine 4 Methylation Patterns Define TR-Binding Capacity and Differentiate Direct T3 Responses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21239616 https://www.proquest.com/docview/848321223 https://www.proquest.com/docview/907152589 https://hal.science/hal-04027800 https://pubmed.ncbi.nlm.nih.gov/PMC5417309 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbZLZReSrvbR_pClLaX4FDZlh0fk2W3YUm2UBzIzUi2xBoSpzROIb31n3fGkh27bejjYoKlyMbf59HMeB6EvMlC5bmCg20iM-74Qeo5krmhw5gKMg5vWFD1OpzfBNOFf73ky17vezu7pJTD9Ntv80r-B1U4B7hiluw_INssCifgN-ALR0AYjn-FcdU8XuepKfYB6uJsj2HsA38wVwCACXPDKvzo9duCbNE4Gn9yJrlJZrmArTJFPbwKSLa9UuCdL5WVhYPYQw8_htHaYMO6-1PdVnegimwDosf451FhnYhVmdfxu_Ns2HI2TEAGbWHM6K7YHKDh1fVmBYLXxAyLLTDnwMWVFutKx_2wEtn-4Nff5dvcOGQrPouOCwN9sk04SC3pRg4Ikqgtlk0-tKWf25axdsRs166pGfPLTgCmLMC3VkPzud81DWG6BbdvPiZXi9ksiS-X8Qm544KlUeWLL5soIebzqs9tc4c2dwITn9prd7Sak1uMqe3kS7bMlp-jb1vqTPyA3Ld2CB0bUj0kPVWckfNxIcrNek_f0SoyuIL0jNyd2wCMc7KpKUct5aihHPVpi3K0phw1lKMHytGachQoRzuUo4ZyNPZoQ7lHZHF1GV9MHduzw0m5H5ZOlGkegRIYcu1JoXyl4BEqJT0u30uRZpEWAuboQMqUabSuR0xI-IuWkmnP8x6T0wLu_imhqMy6TINBjy43JiNvxF0vC32Yr9JI9cmgfuZJagvaY1-VVYKGLSCUrFWCCCWIUJ-8bWZ_NoVcjsx7DfA1U7D6-nQ8S_Ac7HduCAbWV9YnFNA9to5j1qE19AlIbPwMJwq12W2TkY_dwUAtPz4lAsWfu3wEqzwxZGmuhapmFLCgT8IOjTp33B0p8tuqbjz3Gezn0bM_X_Y5uXd4T1-Q0_LLTr0E5buUr6rX4weRYtsO |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+Histone+Lysine+4+Methylation+Patterns+Define+TR-Binding+Capacity+and+Differentiate+Direct+T3+Responses&rft.jtitle=Molecular+endocrinology+%28Baltimore%2C+Md.%29&rft.au=Bilesimo%2C+Patrice&rft.au=Jolivet%2C+Pascale&rft.au=Alfama%2C+Gladys&rft.au=Buisine%2C+Nicolas&rft.date=2011-02-01&rft.issn=0888-8809&rft.volume=25&rft.issue=2&rft.spage=225&rft.epage=237&rft_id=info:doi/10.1210%2Fme.2010-0269&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8809&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8809&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8809&client=summon |