Specific Histone Lysine 4 Methylation Patterns Define TR-Binding Capacity and Differentiate Direct T3 Responses

Abstract The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T3 and its receptors on transcription does not reflect this diversity. Here, T3-dependent amphibian metamorphosis was exploited to investig...

Full description

Saved in:
Bibliographic Details
Published inMolecular endocrinology (Baltimore, Md.) Vol. 25; no. 2; pp. 225 - 237
Main Authors Bilesimo, Patrice, Jolivet, Pascale, Alfama, Gladys, Buisine, Nicolas, Mevel, Sebastien Le, Havis, Emmanuelle, Demeneix, Barbara A., Sachs, Laurent M.
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.02.2011
Endocrine Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T3 and its receptors on transcription does not reflect this diversity. Here, T3-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T3 directly regulates gene expression. Two, direct positively regulated T3-response genes encoding transcription factors were analyzed: thyroid hormone receptor β (TRβ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRβ) and differences in induction after T3 treatment (lower for TRβ than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T3 differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T3 -responsive elements (higher for TRβ than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRβ than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T3 responses.
AbstractList The diversity of thyroid hormone T(3) effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T(3) and its receptors on transcription does not reflect this diversity. Here, T(3)-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T(3) directly regulates gene expression. Two, direct positively regulated T(3)-response genes encoding transcription factors were analyzed: thyroid hormone receptor β (TRβ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRβ) and differences in induction after T(3) treatment (lower for TRβ than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T(3) differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T(3) -responsive elements (higher for TRβ than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRβ than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T(3) responses.The diversity of thyroid hormone T(3) effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T(3) and its receptors on transcription does not reflect this diversity. Here, T(3)-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T(3) directly regulates gene expression. Two, direct positively regulated T(3)-response genes encoding transcription factors were analyzed: thyroid hormone receptor β (TRβ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRβ) and differences in induction after T(3) treatment (lower for TRβ than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T(3) differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T(3) -responsive elements (higher for TRβ than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRβ than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T(3) responses.
The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T3 and its receptors on transcription does not reflect this diversity. Here, T3-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T3 directly regulates gene expression. Two, direct positively regulated T3-response genes encoding transcription factors were analyzed: thyroid hormone receptor beta (TR beta ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TR beta ) and differences in induction after T3 treatment (lower for TR beta than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T3 differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T3 -responsive elements (higher for TR beta than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TR beta than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T3 responses.
The diversity of thyroid hormone T(3) effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T(3) and its receptors on transcription does not reflect this diversity. Here, T(3)-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T(3) directly regulates gene expression. Two, direct positively regulated T(3)-response genes encoding transcription factors were analyzed: thyroid hormone receptor β (TRβ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRβ) and differences in induction after T(3) treatment (lower for TRβ than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T(3) differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T(3) -responsive elements (higher for TRβ than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRβ than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T(3) responses.
The histone code, notably H3 methylation, contributes to the precise control of gene expression that underlies complex physiological T 3 responses. The diversity of thyroid hormone T 3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T 3 and its receptors on transcription does not reflect this diversity. Here, T 3 -dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T 3 directly regulates gene expression. Two, direct positively regulated T 3 -response genes encoding transcription factors were analyzed: thyroid hormone receptor β ( TR β) and TH/bZIP . Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TR β) and differences in induction after T 3 treatment (lower for TR β than for TH/bZIP ). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T 3 differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T 3 -responsive elements (higher for TR β than for TH/bZIP ), correlated with gene-specific modifications of H3K4 methylation (higher for TR β than for TH/bZIP ). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T 3 responses.
Abstract The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T3 and its receptors on transcription does not reflect this diversity. Here, T3-dependent amphibian metamorphosis was exploited to investigate, in an in vivo developmental context, how T3 directly regulates gene expression. Two, direct positively regulated T3-response genes encoding transcription factors were analyzed: thyroid hormone receptor β (TRβ) and TH/bZIP. Reverse transcription-real-time quantitative PCR analysis on Xenopus tropicalis tadpole brain and tail fin showed differences in expression levels in premetamorphic tadpoles (lower for TH/bZIP than for TRβ) and differences in induction after T3 treatment (lower for TRβ than for TH/bZIP). To dissect the mechanisms underlying these differences, chromatin immunoprecipitation was used. T3 differentially induced RNA polymerase II and histone tail acetylation as a function of transcriptional level. Gene-specific patterns of TR binding were found on the different T3 -responsive elements (higher for TRβ than for TH/bZIP), correlated with gene-specific modifications of H3K4 methylation (higher for TRβ than for TH/bZIP). Moreover, tissue-specific modifications of H3K27 were found (lower in brain than in tail fin). This first in vivo analysis of the association of histone modifications and TR binding/gene activation during vertebrate development for any nuclear receptor indicate that chromatin context of thyroid-responsive elements loci controls the capacity to bind TR through variations in histone H3K4 methylation, and that the histone code, notably H3, contributes to the fine tuning of gene expression that underlies complex physiological T3 responses.
Author Sachs, Laurent M.
Buisine, Nicolas
Jolivet, Pascale
Demeneix, Barbara A.
Bilesimo, Patrice
Alfama, Gladys
Mevel, Sebastien Le
Havis, Emmanuelle
Author_xml – sequence: 1
  givenname: Patrice
  surname: Bilesimo
  fullname: Bilesimo, Patrice
  organization: 2WatchFrog S.A. (P.B.), 91000 Evry, France
– sequence: 2
  givenname: Pascale
  surname: Jolivet
  fullname: Jolivet, Pascale
  organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France
– sequence: 3
  givenname: Gladys
  surname: Alfama
  fullname: Alfama, Gladys
  organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France
– sequence: 4
  givenname: Nicolas
  surname: Buisine
  fullname: Buisine, Nicolas
  organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France
– sequence: 5
  givenname: Sebastien Le
  surname: Mevel
  fullname: Mevel, Sebastien Le
  organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France
– sequence: 6
  givenname: Emmanuelle
  surname: Havis
  fullname: Havis, Emmanuelle
  organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France
– sequence: 7
  givenname: Barbara A.
  surname: Demeneix
  fullname: Demeneix, Barbara A.
  organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France
– sequence: 8
  givenname: Laurent M.
  surname: Sachs
  fullname: Sachs, Laurent M.
  email: sachs@mnhn.fr
  organization: 1Muséum National d'Histoire Naturelle (P.B., P.J., G.A., N.B., S.L.M., E.H., B.A.D., L.M.S.), Départment Régulation Développement et Diversité Moléculaire, Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique (CNRS), Evolution des régulations endocriniennes, 75231 Paris cedex 05, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21239616$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04027800$$DView record in HAL
BookMark eNqFksFrFDEUxoNU7LZ68yy5ieDUZJKZSS5C3bausKLU9RySzEs3MpuZTrKF_e_NdNeiheIpJO_3vnyP952go9AHQOg1JWe0pOTDBs5KQklBylo-QzMqOS-kpM0RmhEhRCEEkcfoJMZfhFBeCfoCHZe0ZLKm9Qz1Pwaw3nmLFz6mrIyXu-jzwfFXSOtdp5PvA_6uU4IxRHwBbqqurotPPrQ-3OC5HrT1aYd1aPGFdw5GCMnrBPk2gk14xfA1xKEPEeJL9NzpLsKrw3mKfl5druaLYvnt85f5-bKwFW9SIVtXSUFFUzlmNHCAbB3AsMoQo20rndaZcbUxljpOayqoNrnFGUMdY-wUfdzrDluzgdZmS6Pu1DD6jR53qtde_VsJfq1u-jtVcdowIrPAu73A-lHb4nyppjfCSdkIQu5oZt8ePhv72y3EpDY-Wug6HaDfRiVJQ6uyEvK_pOCC5eWU0wBv_h7gwcKf1WXg_R6wYx_jCO4BoURNyVAbUFMy1JSMjJeP8Ly0--Xm8X33VNPBbr8dnpK_Dx77DcjSyMk
CitedBy_id crossref_primary_10_1101_pdb_prot097725
crossref_primary_10_1210_endocr_bqae137
crossref_primary_10_1371_journal_pone_0137526
crossref_primary_10_1089_thy_2019_0366
crossref_primary_10_1210_en_2015_1190
crossref_primary_10_1016_j_bbagen_2012_06_003
crossref_primary_10_1038_cddis_2017_198
crossref_primary_10_3390_cells10092375
crossref_primary_10_3390_ijms232213715
crossref_primary_10_1016_j_bbagen_2012_04_020
crossref_primary_10_1016_j_gene_2014_02_030
crossref_primary_10_1186_2045_3701_4_73
crossref_primary_10_1186_2045_3701_3_43
crossref_primary_10_1210_me_2014_1349
crossref_primary_10_1210_endocr_bqab028
crossref_primary_10_1016_j_ygcen_2023_114349
crossref_primary_10_1016_j_mce_2024_112193
crossref_primary_10_1186_2045_3701_3_18
crossref_primary_10_1210_en_2014_1439
crossref_primary_10_1210_me_2013_1414
crossref_primary_10_1186_2045_3701_2_25
crossref_primary_10_1002_dvg_23000
crossref_primary_10_1371_journal_pone_0028658
crossref_primary_10_1007_s11154_016_9380_1
crossref_primary_10_1371_journal_pone_0086957
crossref_primary_10_1038_s41598_017_06679_x
crossref_primary_10_1210_en_2011_1736
crossref_primary_10_1093_toxsci_kfu012
crossref_primary_10_1186_1471_213X_14_5
crossref_primary_10_3389_fevo_2021_735487
crossref_primary_10_1096_fj_201700131R
crossref_primary_10_1210_en_2014_1554
crossref_primary_10_1016_j_cbpc_2011_03_006
crossref_primary_10_1210_en_2012_1308
crossref_primary_10_3389_fendo_2019_00194
crossref_primary_10_1210_en_2016_1558
crossref_primary_10_1016_j_ygcen_2020_113441
crossref_primary_10_1210_en_2016_1953
crossref_primary_10_1089_thy_2013_0109
crossref_primary_10_1186_2045_3701_2_42
crossref_primary_10_1074_jbc_M111_335661
crossref_primary_10_1016_j_bbrc_2015_09_132
crossref_primary_10_1016_j_ygcen_2018_11_012
crossref_primary_10_1210_en_2012_1463
Cites_doi 10.1038/sj.embor.embor908
10.1016/S0021-9258(17)31447-3
10.1016/j.devcel.2008.04.002
10.1016/j.cell.2004.12.012
10.1038/387016a0
10.1093/emboj/cdg219
10.1093/emboj/cdg326
10.1101/gad.1652908
10.1016/j.cell.2006.12.038
10.1210/en.2008-0751
10.1074/jbc.M509593200
10.1016/j.jmb.2007.06.079
10.1038/sj.embor.7400778
10.1074/jbc.M109.066084
10.1038/ng.545
10.1038/nrm1761
10.1074/jbc.M607411200
10.1073/pnas.260141297
10.1016/j.cell.2007.05.042
10.1210/mend.13.12.0383
10.1387/ijdb.082717ph
10.1126/science.1076997
10.1073/pnas.141226798
10.1016/j.cell.2006.02.041
10.1038/sj.embor.7400391
10.1038/emboj.2009.108
10.1016/j.devcel.2009.08.005
10.1128/MCB.25.1.324-335.2005
10.1242/dev.122.10.3173
10.1074/jbc.M500796200
10.1016/j.cell.2007.09.026
10.1128/MCB.02291-06
10.1101/gr.073080.107
10.1038/nature07829
10.1073/pnas.90.15.7322
10.1038/ncb1663
10.1073/pnas.191361698
10.1038/sj.emboj.7601356
10.1016/0092-8674(95)90199-X
10.1016/j.ydbio.2007.03.021
10.1158/0008-5472.CAN-04-0496
10.1016/j.molcel.2006.12.014
10.1038/47412
10.1038/nature04020
ContentType Journal Article
Copyright Copyright © 2011 by The Endocrine Society 2011
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2011 by The Endocrine Society 2011
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
F1W
H95
L.G
1XC
5PM
DOI 10.1210/me.2010-0269
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Nucleic Acids Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1944-9917
0888-8809
EndPage 237
ExternalDocumentID PMC5417309
oai_HAL_hal_04027800v1
21239616
10_1210_me_2010_0269
10.1210/me.2010-0269
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
.55
.XZ
123
18M
29M
2WC
34G
354
39C
3O-
4.4
5RS
5YH
8F7
AABZA
AACZT
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
ABJNI
ABNHQ
ABOCM
ABPPZ
ABPTD
ABXVV
ACGFO
ACGFS
ACUFI
ADBBV
ADGZP
ADIYS
ADQBN
ADVEK
AENEX
AETEA
AFFZL
AFOFC
AFOSN
AFXAL
AGINJ
AGUTN
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ATGXG
BAWUL
BAYMD
BCRHZ
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FLUFQ
FOEOM
GX1
H13
HF~
HZ~
H~9
IH2
KQ8
KSI
KSN
L7B
M5~
NOMLY
OAUYM
OBH
OFXIZ
OHH
OJZSN
OK1
OPAEJ
OVD
P2P
REU
ROX
ROZ
TEORI
TJX
TR2
VVN
W8F
WOQ
X7M
XOL
YBU
YOC
ZCA
ZY1
0R~
AAFWJ
AAYXX
ABDFA
ABEJV
ABGNP
ABVGC
ADVOB
AEMQT
AHMMS
ALXQX
CITATION
.GJ
08P
53G
AAKAS
ACFRR
ACUTJ
ACVCV
ADZCM
AFFNX
AGMDO
APJGH
AQKUS
ASAOO
ATDFG
CGR
CUY
CVF
ECM
EIF
MBLQV
MBTAY
NPM
WHG
X52
ZCG
ZGI
ZXP
7X8
7TM
F1W
H95
L.G
1XC
5PM
ID FETCH-LOGICAL-c547t-9df5981875f3bae4ee145eeb35b0bacd9faa9dff6bbc1f416181ab598fbb1f333
ISSN 0888-8809
1944-9917
IngestDate Thu Aug 21 14:12:53 EDT 2025
Fri May 09 12:26:59 EDT 2025
Fri Jul 11 03:43:16 EDT 2025
Fri Jul 11 00:05:01 EDT 2025
Mon Jul 21 05:46:05 EDT 2025
Tue Jul 01 01:47:53 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Wed Sep 11 05:00:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords TR-α | TR-β
Thyroid hormone
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c547t-9df5981875f3bae4ee145eeb35b0bacd9faa9dff6bbc1f416181ab598fbb1f333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1190-2934
0000-0003-0322-0618
0000-0001-5634-3174
0000-0002-7261-1973
0000-0003-4544-971X
OpenAccessLink https://academic.oup.com/mend/article-pdf/25/2/225/10721437/mend0225.pdf
PMID 21239616
PQID 848321223
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5417309
hal_primary_oai_HAL_hal_04027800v1
proquest_miscellaneous_907152589
proquest_miscellaneous_848321223
pubmed_primary_21239616
crossref_primary_10_1210_me_2010_0269
crossref_citationtrail_10_1210_me_2010_0269
oup_primary_10_1210_me_2010-0269
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chevy Chase, MD
PublicationTitle Molecular endocrinology (Baltimore, Md.)
PublicationTitleAlternate Mol Endocrinol
PublicationYear 2011
Publisher Oxford University Press
Endocrine Society
Publisher_xml – name: Oxford University Press
– name: Endocrine Society
References Kroll (2019041122282999600_B47) 1996; 122
Sachs (2019041122282999600_B37) 2000; 97
Yu (2019041122282999600_B38) 2003; 22
Schreiber (2019041122282999600_B14) 2001; 98
Brown (2019041122282999600_B6) 2007; 306
Swigut (2019041122282999600_B20) 2007; 131
Guenther (2019041122282999600_B30) 2007; 130
Akkers (2019041122282999600_B32) 2009; 17
Coen (2019041122282999600_B15) 2001; 98
Orford (2019041122282999600_B36) 2008; 14
Strahl (2019041122282999600_B2) 2000; 403
Bannister (2019041122282999600_B17) 2005; 280
Ruthenburg (2019041122282999600_B19) 2007; 25
de Luze (2019041122282999600_B44) 1993; 90
Wolffe (2019041122282999600_B3) 1997; 387
Havis (2019041122282999600_B16) 2006; 25
Hublitz (2019041122282999600_B21) 2009; 53
Andersen (2019041122282999600_B13) 2004; 64
Garcia-Bassets (2019041122282999600_B33) 2007; 128
Froidevaux (2019041122282999600_B46) 2006; 7
Ranjan (2019041122282999600_B11) 1994; 269
Stock (2019041122282999600_B31) 2007; 9
Sachs (2019041122282999600_B24) 2001; 8
Furlow (2019041122282999600_B12) 1999; 13
Cao (2019041122282999600_B25) 2002; 298
Bernstein (2019041122282999600_B28) 2006; 125
Huang (2019041122282999600_B4) 2003; 22
Forneris (2019041122282999600_B34) 2006; 281
Hartman (2019041122282999600_B40) 2005; 6
Heintzman (2019041122282999600_B41) 2009; 459
Yoon (2019041122282999600_B39) 2005; 25
Mangelsdorf (2019041122282999600_B1) 1995; 83
Havis (2019041122282999600_B10) 2003; 4
Wang (2019041122282999600_B7) 2008; 149
Buchholz (2019041122282999600_B9) 2005; 280
Pinskaya (2019041122282999600_B35) 2009; 28
Metzger (2019041122282999600_B22) 2005; 437
Yu (2019041122282999600_B29) 2008; 18
Nieuwkoop (2019041122282999600_B45) 1956
Martin (2019041122282999600_B18) 2005; 6
Gillespie (2019041122282999600_B27) 2007; 372
Das (2019041122282999600_B8) 2009; 284
Cloos (2019041122282999600_B26) 2008; 22
Shi (2019041122282999600_B5) 1999
Shi (2019041122282999600_B23) 2004; 119
He (2019041122282999600_B42) 2010; 42
Okitsu (2019041122282999600_B43) 2007; 27
18477461 - Dev Cell. 2008 May;14(5):798-809
17006540 - EMBO J. 2006 Oct 18;25(20):4943-51
11517345 - Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10739-44
8521507 - Cell. 1995 Dec 15;83(6):835-9
11427732 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7869-74
15832170 - EMBO Rep. 2005 May;6(5):445-51
15601853 - Mol Cell Biol. 2005 Jan;25(1):324-35
8898230 - Development. 1996 Oct;122(10):3173-83
19412890 - Int J Dev Biol. 2009;53(2-3):335-54
8346251 - Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7322-6
18562678 - Genome Res. 2008 Aug;18(8):1314-24
15760899 - J Biol Chem. 2005 May 6;280(18):17732-6
16987819 - J Biol Chem. 2006 Nov 17;281(46):35289-95
11078533 - Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13138-43
16261189 - Nat Rev Mol Cell Biol. 2005 Nov;6(11):838-49
17923085 - Cell. 2007 Oct 5;131(1):29-32
18451103 - Genes Dev. 2008 May 1;22(9):1115-40
17449026 - Dev Biol. 2007 Jun 1;306(1):20-33
18635662 - Endocrinology. 2008 Nov;149(11):5610-8
10598583 - Mol Endocrinol. 1999 Dec;13(12):2076-89
16079795 - Nature. 2005 Sep 15;437(7057):436-9
18037880 - Nat Cell Biol. 2007 Dec;9(12 ):1428-35
12840002 - EMBO J. 2003 Jul 1;22(13):3403-10
16236718 - J Biol Chem. 2005 Dec 16;280(50):41222-8
17663992 - J Mol Biol. 2007 Sep 14;372(2):298-316
15620353 - Cell. 2004 Dec 29;119(7):941-53
17242185 - Mol Cell Biol. 2007 Apr;27(7):2746-57
19758566 - Dev Cell. 2009 Sep;17(3):425-34
12351676 - Science. 2002 Nov 1;298(5595):1039-43
10638745 - Nature. 2000 Jan 6;403(6765):41-5
19407817 - EMBO J. 2009 Jun 17;28(12):1697-707
17632057 - Cell. 2007 Jul 13;130(1):77-88
19801647 - J Biol Chem. 2009 Dec 4;284(49):34167-78
16630819 - Cell. 2006 Apr 21;125(2):315-26
19295514 - Nature. 2009 May 7;459(7243):108-12
7929143 - J Biol Chem. 1994 Oct 7;269(40):24699-705
16936638 - EMBO Rep. 2006 Oct;7(10):1035-9
17218268 - Mol Cell. 2007 Jan 12;25(1):15-30
9139815 - Nature. 1997 May 1;387(6628):16-7
11712071 - Int J Mol Med. 2001 Dec;8(6):595-601
15289330 - Cancer Res. 2004 Aug 1;64(15):5245-50
20208536 - Nat Genet. 2010 Apr;42(4):343-7
12727881 - EMBO J. 2003 May 1;22(9):2146-55
12947412 - EMBO Rep. 2003 Sep;4(9):883-8
17289570 - Cell. 2007 Feb 9;128(3):505-18
References_xml – volume: 8
  start-page: 595
  year: 2001
  ident: 2019041122282999600_B24
  article-title: An essential role of histone deacetylases in postembryonic organ transformations in Xenopus laevis.
  publication-title: Int J Mol Med
– volume: 4
  start-page: 883
  year: 2003
  ident: 2019041122282999600_B10
  article-title: Metamorphic T3-response genes have specific co-regulator requirements.
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.embor908
– volume: 269
  start-page: 24699
  year: 1994
  ident: 2019041122282999600_B11
  article-title: Transcriptional repression of Xenopus TR β gene is mediated by a thyroid hormone response element located near the start site.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)31447-3
– volume: 14
  start-page: 798
  year: 2008
  ident: 2019041122282999600_B36
  article-title: Differential H3K4 methylation identifies developmentally poised hematopoietic genes.
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2008.04.002
– volume: 119
  start-page: 941
  year: 2004
  ident: 2019041122282999600_B23
  article-title: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.012
– volume: 387
  start-page: 16
  year: 1997
  ident: 2019041122282999600_B3
  article-title: Transcriptional control.
  publication-title: Sinful repression. Nature
  doi: 10.1038/387016a0
– year: 1956
  ident: 2019041122282999600_B45
  article-title: Normal table of Xenopus laevis (Daudin)
– volume: 22
  start-page: 2146
  year: 2003
  ident: 2019041122282999600_B4
  article-title: A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and mediator for transcription.
  publication-title: EMBO J
  doi: 10.1093/emboj/cdg219
– volume: 22
  start-page: 3403
  year: 2003
  ident: 2019041122282999600_B38
  article-title: A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation.
  publication-title: EMBO J
  doi: 10.1093/emboj/cdg326
– volume: 22
  start-page: 1115
  year: 2008
  ident: 2019041122282999600_B26
  article-title: Erasing the methyl mark : histone demethylases at the center of cellular differentiation and disease.
  publication-title: Genes Dev
  doi: 10.1101/gad.1652908
– volume: 128
  start-page: 505
  year: 2007
  ident: 2019041122282999600_B33
  article-title: Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.12.038
– volume: 149
  start-page: 5610
  year: 2008
  ident: 2019041122282999600_B7
  article-title: Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis.
  publication-title: Endocrinology
  doi: 10.1210/en.2008-0751
– volume: 280
  start-page: 41222
  year: 2005
  ident: 2019041122282999600_B9
  article-title: Gene-specific changes in promoter occupancy by thyroid hormone receptor during frog metamorphosis. Implications for developmental gene regulation.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M509593200
– volume: 372
  start-page: 298
  year: 2007
  ident: 2019041122282999600_B27
  article-title: Retinoid regulated association of transcriptional co-regulators and the Polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARβ(2), and Cyp26A1 in F9 embryonal carcinoma cells.
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.06.079
– volume: 7
  start-page: 1035
  year: 2006
  ident: 2019041122282999600_B46
  article-title: The co-chaperone XAP2 is required for activation of hypothalamic thyrotropin-releasing hormone transcription in vivo.
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7400778
– volume: 284
  start-page: 34167
  year: 2009
  ident: 2019041122282999600_B8
  article-title: Identification of direct thyroid hormone response genes reveals the earliest gene regulation programs during frog metamorphosis.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.066084
– volume: 42
  start-page: 343
  year: 2010
  ident: 2019041122282999600_B42
  article-title: Nucleosome dynamics define transcriptional enhancers.
  publication-title: Nat Genet
  doi: 10.1038/ng.545
– volume: 6
  start-page: 838
  year: 2005
  ident: 2019041122282999600_B18
  article-title: The diverse functions of histone lysine methylation.
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1761
– volume: 281
  start-page: 35289
  year: 2006
  ident: 2019041122282999600_B34
  article-title: A highly specific mechanism of histone H3–K4 recognition by histone demethylase LSD1.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M607411200
– volume: 97
  start-page: 13138
  year: 2000
  ident: 2019041122282999600_B37
  article-title: Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.260141297
– volume: 130
  start-page: 77
  year: 2007
  ident: 2019041122282999600_B30
  article-title: A chromatin landmark and transcription initiation at most promoters in human cells.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.042
– volume: 13
  start-page: 2076
  year: 1999
  ident: 2019041122282999600_B12
  article-title: In vitro and in vivo analysis of the regulation of a transcription factor gene by thyroid hormone during Xenopus laevis metamorphosis.
  publication-title: Mol Endocrinol
  doi: 10.1210/mend.13.12.0383
– volume: 53
  start-page: 335
  year: 2009
  ident: 2019041122282999600_B21
  article-title: Mechanisms of transcriptional repression by histone lysine methylation.
  publication-title: Int J Dev Biol
  doi: 10.1387/ijdb.082717ph
– volume: 298
  start-page: 1039
  year: 2002
  ident: 2019041122282999600_B25
  article-title: Role of histone H3 lysine 27 methylation in Polycomb-group silencing.
  publication-title: Science
  doi: 10.1126/science.1076997
– volume: 98
  start-page: 7869
  year: 2001
  ident: 2019041122282999600_B15
  article-title: Xenopus Bcl-X(L) selectively protects Rohon-Beard neurons from metamorphic degeneration.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.141226798
– volume: 125
  start-page: 315
  year: 2006
  ident: 2019041122282999600_B28
  article-title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.041
– volume: 6
  start-page: 445
  year: 2005
  ident: 2019041122282999600_B40
  article-title: The histone-binding code of nuclear receptor co-repressors matches the substrate specificity of histone deacetylase 3.
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7400391
– volume: 28
  start-page: 1697
  year: 2009
  ident: 2019041122282999600_B35
  article-title: H3 lysine 4 di- and tri-methylation deposited by cryptic transcription attenuates promoter activation.
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.108
– volume: 17
  start-page: 425
  year: 2009
  ident: 2019041122282999600_B32
  article-title: A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos.
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2009.08.005
– volume: 25
  start-page: 324
  year: 2005
  ident: 2019041122282999600_B39
  article-title: Reading and function of a histone code involved in targeting corepressor complexes for repression.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.25.1.324-335.2005
– volume: 122
  start-page: 3173
  year: 1996
  ident: 2019041122282999600_B47
  article-title: Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation.
  publication-title: Development
  doi: 10.1242/dev.122.10.3173
– volume: 280
  start-page: 17732
  year: 2005
  ident: 2019041122282999600_B17
  article-title: Spatial distribution of di- and tri-methy lysine 36 of histone H3 at active genes.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M500796200
– volume: 131
  start-page: 29
  year: 2007
  ident: 2019041122282999600_B20
  article-title: H3K27 demethylases, at long last.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.09.026
– volume: 27
  start-page: 2746
  year: 2007
  ident: 2019041122282999600_B43
  article-title: DNA methylation dictates histone H3K4 methylation.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.02291-06
– volume: 18
  start-page: 1314
  year: 2008
  ident: 2019041122282999600_B29
  article-title: Inferring causal relationships among different histone modifications and gene expression.
  publication-title: Genome Res
  doi: 10.1101/gr.073080.107
– volume: 459
  start-page: 108
  year: 2009
  ident: 2019041122282999600_B41
  article-title: Histone modifications at human enhancers reflect global cell-type-specific gene expression.
  publication-title: Nature
  doi: 10.1038/nature07829
– volume: 90
  start-page: 7322
  year: 1993
  ident: 2019041122282999600_B44
  article-title: Thyroid hormone-dependent transcriptional regulation of exogenous gene transferred into Xenopus tadpole muscle in vivo.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.90.15.7322
– volume: 9
  start-page: 1428
  year: 2007
  ident: 2019041122282999600_B31
  article-title: Ring-1 mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells.
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1663
– volume: 98
  start-page: 10739
  year: 2001
  ident: 2019041122282999600_B14
  article-title: Divers developmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.191361698
– volume: 25
  start-page: 4943
  year: 2006
  ident: 2019041122282999600_B16
  article-title: Unliganded thyroid hormone receptor is essential for Xenopus laevis eye development.
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601356
– volume: 83
  start-page: 835
  year: 1995
  ident: 2019041122282999600_B1
  article-title: The nuclear receptor family: the second decade.
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90199-X
– volume-title: Amphibian metamorphosis. From morphology to molecular biology
  year: 1999
  ident: 2019041122282999600_B5
– volume: 306
  start-page: 20
  year: 2007
  ident: 2019041122282999600_B6
  article-title: Amphibian metamorphosis.
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2007.03.021
– volume: 64
  start-page: 5245
  year: 2004
  ident: 2019041122282999600_B13
  article-title: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-0496
– volume: 25
  start-page: 15
  year: 2007
  ident: 2019041122282999600_B19
  article-title: Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.12.014
– volume: 403
  start-page: 41
  year: 2000
  ident: 2019041122282999600_B2
  article-title: The language of covalent histone modifications.
  publication-title: Nature
  doi: 10.1038/47412
– volume: 437
  start-page: 436
  year: 2005
  ident: 2019041122282999600_B22
  article-title: LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription.
  publication-title: Nature
  doi: 10.1038/nature04020
– reference: 18562678 - Genome Res. 2008 Aug;18(8):1314-24
– reference: 10598583 - Mol Endocrinol. 1999 Dec;13(12):2076-89
– reference: 17242185 - Mol Cell Biol. 2007 Apr;27(7):2746-57
– reference: 12727881 - EMBO J. 2003 May 1;22(9):2146-55
– reference: 16236718 - J Biol Chem. 2005 Dec 16;280(50):41222-8
– reference: 12947412 - EMBO Rep. 2003 Sep;4(9):883-8
– reference: 16630819 - Cell. 2006 Apr 21;125(2):315-26
– reference: 15760899 - J Biol Chem. 2005 May 6;280(18):17732-6
– reference: 8521507 - Cell. 1995 Dec 15;83(6):835-9
– reference: 16987819 - J Biol Chem. 2006 Nov 17;281(46):35289-95
– reference: 17218268 - Mol Cell. 2007 Jan 12;25(1):15-30
– reference: 19801647 - J Biol Chem. 2009 Dec 4;284(49):34167-78
– reference: 17923085 - Cell. 2007 Oct 5;131(1):29-32
– reference: 15289330 - Cancer Res. 2004 Aug 1;64(15):5245-50
– reference: 7929143 - J Biol Chem. 1994 Oct 7;269(40):24699-705
– reference: 20208536 - Nat Genet. 2010 Apr;42(4):343-7
– reference: 8898230 - Development. 1996 Oct;122(10):3173-83
– reference: 16261189 - Nat Rev Mol Cell Biol. 2005 Nov;6(11):838-49
– reference: 18635662 - Endocrinology. 2008 Nov;149(11):5610-8
– reference: 18477461 - Dev Cell. 2008 May;14(5):798-809
– reference: 11078533 - Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13138-43
– reference: 17632057 - Cell. 2007 Jul 13;130(1):77-88
– reference: 17449026 - Dev Biol. 2007 Jun 1;306(1):20-33
– reference: 18037880 - Nat Cell Biol. 2007 Dec;9(12 ):1428-35
– reference: 12840002 - EMBO J. 2003 Jul 1;22(13):3403-10
– reference: 15601853 - Mol Cell Biol. 2005 Jan;25(1):324-35
– reference: 11427732 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7869-74
– reference: 18451103 - Genes Dev. 2008 May 1;22(9):1115-40
– reference: 19407817 - EMBO J. 2009 Jun 17;28(12):1697-707
– reference: 17663992 - J Mol Biol. 2007 Sep 14;372(2):298-316
– reference: 12351676 - Science. 2002 Nov 1;298(5595):1039-43
– reference: 16079795 - Nature. 2005 Sep 15;437(7057):436-9
– reference: 17006540 - EMBO J. 2006 Oct 18;25(20):4943-51
– reference: 15620353 - Cell. 2004 Dec 29;119(7):941-53
– reference: 8346251 - Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7322-6
– reference: 9139815 - Nature. 1997 May 1;387(6628):16-7
– reference: 17289570 - Cell. 2007 Feb 9;128(3):505-18
– reference: 10638745 - Nature. 2000 Jan 6;403(6765):41-5
– reference: 11517345 - Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10739-44
– reference: 15832170 - EMBO Rep. 2005 May;6(5):445-51
– reference: 16936638 - EMBO Rep. 2006 Oct;7(10):1035-9
– reference: 19412890 - Int J Dev Biol. 2009;53(2-3):335-54
– reference: 19758566 - Dev Cell. 2009 Sep;17(3):425-34
– reference: 19295514 - Nature. 2009 May 7;459(7243):108-12
– reference: 11712071 - Int J Mol Med. 2001 Dec;8(6):595-601
SSID ssj0014581
Score 2.227041
Snippet Abstract The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action...
The diversity of thyroid hormone T(3) effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T(3)...
The diversity of thyroid hormone T3 effects in vivo makes their molecular analysis particularly challenging. Indeed, the current model of the action of T3 and...
The histone code, notably H3 methylation, contributes to the precise control of gene expression that underlies complex physiological T 3 responses. The...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 225
SubjectTerms Acetylation
Animals
Animals, Genetically Modified
Basic-Leucine Zipper Transcription Factors - genetics
Chromatin Immunoprecipitation
Gene Expression Regulation, Developmental
Histones - genetics
Histones - metabolism
Larva - genetics
Life Sciences
Methylation
Original Research
Polymerase Chain Reaction
Promoter Regions, Genetic
RNA Polymerase II - metabolism
Thyroid Hormone Receptors beta - genetics
Thyroid Hormone Receptors beta - metabolism
Transcription, Genetic
Triiodothyronine - metabolism
Xenopus
Xenopus tropicalis
Title Specific Histone Lysine 4 Methylation Patterns Define TR-Binding Capacity and Differentiate Direct T3 Responses
URI https://www.ncbi.nlm.nih.gov/pubmed/21239616
https://www.proquest.com/docview/848321223
https://www.proquest.com/docview/907152589
https://hal.science/hal-04027800
https://pubmed.ncbi.nlm.nih.gov/PMC5417309
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbZLZReSrvbR_pClLaX4FDZlh0fk2W3YUm2UBzIzUi2xBoSpzROIb31n3fGkh27bejjYoKlyMbf59HMeB6EvMlC5bmCg20iM-74Qeo5krmhw5gKMg5vWFD1OpzfBNOFf73ky17vezu7pJTD9Ntv80r-B1U4B7hiluw_INssCifgN-ALR0AYjn-FcdU8XuepKfYB6uJsj2HsA38wVwCACXPDKvzo9duCbNE4Gn9yJrlJZrmArTJFPbwKSLa9UuCdL5WVhYPYQw8_htHaYMO6-1PdVnegimwDosf451FhnYhVmdfxu_Ns2HI2TEAGbWHM6K7YHKDh1fVmBYLXxAyLLTDnwMWVFutKx_2wEtn-4Nff5dvcOGQrPouOCwN9sk04SC3pRg4Ikqgtlk0-tKWf25axdsRs166pGfPLTgCmLMC3VkPzud81DWG6BbdvPiZXi9ksiS-X8Qm544KlUeWLL5soIebzqs9tc4c2dwITn9prd7Sak1uMqe3kS7bMlp-jb1vqTPyA3Ld2CB0bUj0kPVWckfNxIcrNek_f0SoyuIL0jNyd2wCMc7KpKUct5aihHPVpi3K0phw1lKMHytGachQoRzuUo4ZyNPZoQ7lHZHF1GV9MHduzw0m5H5ZOlGkegRIYcu1JoXyl4BEqJT0u30uRZpEWAuboQMqUabSuR0xI-IuWkmnP8x6T0wLu_imhqMy6TINBjy43JiNvxF0vC32Yr9JI9cmgfuZJagvaY1-VVYKGLSCUrFWCCCWIUJ-8bWZ_NoVcjsx7DfA1U7D6-nQ8S_Ac7HduCAbWV9YnFNA9to5j1qE19AlIbPwMJwq12W2TkY_dwUAtPz4lAsWfu3wEqzwxZGmuhapmFLCgT8IOjTp33B0p8tuqbjz3Gezn0bM_X_Y5uXd4T1-Q0_LLTr0E5buUr6rX4weRYtsO
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+Histone+Lysine+4+Methylation+Patterns+Define+TR-Binding+Capacity+and+Differentiate+Direct+T3+Responses&rft.jtitle=Molecular+endocrinology+%28Baltimore%2C+Md.%29&rft.au=Bilesimo%2C+Patrice&rft.au=Jolivet%2C+Pascale&rft.au=Alfama%2C+Gladys&rft.au=Buisine%2C+Nicolas&rft.date=2011-02-01&rft.issn=0888-8809&rft.volume=25&rft.issue=2&rft.spage=225&rft.epage=237&rft_id=info:doi/10.1210%2Fme.2010-0269&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8809&client=summon