Isolation of tumor cells using size and deformation

The isolation and analysis of circulating tumor cells (CTCs) from blood are the subject of intense research. Although tests to detect metastasis on a molecular level are available, progress has been hampered by a lack of tumor-specific markers and predictable DNA abnormalities. The main challenge in...

Full description

Saved in:
Bibliographic Details
Published inJournal of Chromatography A Vol. 1216; no. 47; pp. 8289 - 8295
Main Authors Mohamed, Hisham, Murray, Megan, Turner, James N., Caggana, Michele
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier B.V 20.11.2009
Amsterdam; New York: Elsevier
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The isolation and analysis of circulating tumor cells (CTCs) from blood are the subject of intense research. Although tests to detect metastasis on a molecular level are available, progress has been hampered by a lack of tumor-specific markers and predictable DNA abnormalities. The main challenge in this endeavor is the small number of available cells of interest, 1–2 per mL in whole blood. We have designed a micromachined device to fractionate whole blood using physical means to enrich for and/or isolate rare cells from peripheral circulation. It has arrays of four successively narrower channels, each consisting of a two-dimensional array of columns. Current devices have channels ranging in width from 20 to 5 μm, and in depth from 20 to 5 μm. Several optimizations resulting in the fabrication of a total of 10 derivative devices have been carried out; only two types are used in this study. Both have increasingly narrower gap widths between the columns along the flow axis with 20, 15, 10, and 5 μm spacing all on one device. The first 20 μm wide segment disperses the cell suspension and creates an evenly distributed flow over the entire device, whereas the others were designed to retain increasingly smaller cells. The channel depth is constant across the entire device, the first type was 10 μm deep and the second type is 20 μm deep. When cells from each of eight tumor cell lines were loaded into the device, all cancerous cells were isolated. In mixing experiments using human whole blood, we were able to fractionate cancer cells without interference from the blood cells. Additionally, either intact cells, or DNA, could be extracted for molecular analysis. The ultimate goal of this work is to characterize the cells on the molecular level to provide non-invasive methods to monitor patients, stage disease, and assess treatment efficacy. Furthermore, this work will use gene expression profiles to gain insights into metastasis.
AbstractList The isolation and analysis of circulating tumor cells (CTCs) from blood are the subject of intense research. Although tests to detect metastasis on a molecular level are available, progress has been hampered by a lack of tumor-specific markers and predictable DNA abnormalities. The main challenge in this endeavor is the small number of available cells of interest, 1-2 per mL in whole blood. We have designed a micromachined device to fractionate whole blood using physical means to enrich for and/or isolate rare cells from peripheral circulation. It has arrays of four successively narrower channels, each consisting of a two-dimensional array of columns. Current devices have channels ranging in width from 20 to 5 [micro]m, and in depth from 20 to 5 [micro]m. Several optimizations resulting in the fabrication of a total of 10 derivative devices have been carried out; only two types are used in this study. Both have increasingly narrower gap widths between the columns along the flow axis with 20, 15, 10, and 5 [micro]m spacing all on one device. The first 20 [micro]m wide segment disperses the cell suspension and creates an evenly distributed flow over the entire device, whereas the others were designed to retain increasingly smaller cells. The channel depth is constant across the entire device, the first type was 10 [micro]m deep and the second type is 20 [micro]m deep. When cells from each of eight tumor cell lines were loaded into the device, all cancerous cells were isolated. In mixing experiments using human whole blood, we were able to fractionate cancer cells without interference from the blood cells. Additionally, either intact cells, or DNA, could be extracted for molecular analysis. The ultimate goal of this work is to characterize the cells on the molecular level to provide non-invasive methods to monitor patients, stage disease, and assess treatment efficacy. Furthermore, this work will use gene expression profiles to gain insights into metastasis.
The isolation and analysis of circulating tumor cells (CTCs) from blood are the subject of intense research. Although tests to detect metastasis on a molecular level are available, progress has been hampered by a lack of tumor-specific markers and predictable DNA abnormalities. The main challenge in this endeavor is the small number of available cells of interest, 1-2 per mL in whole blood. We have designed a micromachined device to fractionate whole blood using physical means to enrich for and/or isolate rare cells from peripheral circulation. It has arrays of four successively narrower channels, each consisting of a two-dimensional array of columns. Current devices have channels ranging in width from 20 to 5μm, and in depth from 20 to 5μm. Several optimizations resulting in the fabrication of a total of 10 derivative devices have been carried out; only two types are used in this study. Both have increasingly narrower gap widths between the columns along the flow axis with 20, 15, 10, and 5μm spacing all on one device. The first 20μm wide segment disperses the cell suspension and creates an evenly distributed flow over the entire device, whereas the others were designed to retain increasingly smaller cells. The channel depth is constant across the entire device, the first type was 10μm deep and the second type is 20μm deep. When cells from each of eight tumor cell lines were loaded into the device, all cancerous cells were isolated. In mixing experiments using human whole blood, we were able to fractionate cancer cells without interference from the blood cells. Additionally, either intact cells, or DNA, could be extracted for molecular analysis. The ultimate goal of this work is to characterize the cells on the molecular level to provide non-invasive methods to monitor patients, stage disease, and assess treatment efficacy. Furthermore, this work will use gene expression profiles to gain insights into metastasis.
The isolation and analysis of circulating tumor cells (CTCs) from blood are the subject of intense research. Although tests to detect metastasis on a molecular level are available, progress has been hampered by a lack of tumor-specific markers and predictable DNA abnormalities. The main challenge in this endeavor is the small number of available cells of interest, 1-2 per mL in whole blood. We have designed a micromachined device to fractionate whole blood using physical means to enrich for and/or isolate rare cells from peripheral circulation. It has arrays of four successively narrower channels, each consisting of a two-dimensional array of columns. Current devices have channels ranging in width from 20 to 5 microm, and in depth from 20 to 5 microm. Several optimizations resulting in the fabrication of a total of 10 derivative devices have been carried out; only two types are used in this study. Both have increasingly narrower gap widths between the columns along the flow axis with 20, 15, 10, and 5 microm spacing all on one device. The first 20 microm wide segment disperses the cell suspension and creates an evenly distributed flow over the entire device, whereas the others were designed to retain increasingly smaller cells. The channel depth is constant across the entire device, the first type was 10 microm deep and the second type is 20 microm deep. When cells from each of eight tumor cell lines were loaded into the device, all cancerous cells were isolated. In mixing experiments using human whole blood, we were able to fractionate cancer cells without interference from the blood cells. Additionally, either intact cells, or DNA, could be extracted for molecular analysis. The ultimate goal of this work is to characterize the cells on the molecular level to provide non-invasive methods to monitor patients, stage disease, and assess treatment efficacy. Furthermore, this work will use gene expression profiles to gain insights into metastasis.
The isolation and analysis of circulating tumor cells (CTCs) from blood are the subject of intense research. Although tests to detect metastasis on a molecular level are available, progress has been hampered by a lack of tumor-specific markers and predictable DNA abnormalities. The main challenge in this endeavor is the small number of available cells of interest, 1–2 per mL in whole blood. We have designed a micromachined device to fractionate whole blood using physical means to enrich for and/or isolate rare cells from peripheral circulation. It has arrays of four successively narrower channels, each consisting of a two-dimensional array of columns. Current devices have channels ranging in width from 20 to 5 μm, and in depth from 20 to 5 μm. Several optimizations resulting in the fabrication of a total of 10 derivative devices have been carried out; only two types are used in this study. Both have increasingly narrower gap widths between the columns along the flow axis with 20, 15, 10, and 5 μm spacing all on one device. The first 20 μm wide segment disperses the cell suspension and creates an evenly distributed flow over the entire device, whereas the others were designed to retain increasingly smaller cells. The channel depth is constant across the entire device, the first type was 10 μm deep and the second type is 20 μm deep. When cells from each of eight tumor cell lines were loaded into the device, all cancerous cells were isolated. In mixing experiments using human whole blood, we were able to fractionate cancer cells without interference from the blood cells. Additionally, either intact cells, or DNA, could be extracted for molecular analysis. The ultimate goal of this work is to characterize the cells on the molecular level to provide non-invasive methods to monitor patients, stage disease, and assess treatment efficacy. Furthermore, this work will use gene expression profiles to gain insights into metastasis.
Author Mohamed, Hisham
Murray, Megan
Turner, James N.
Caggana, Michele
Author_xml – sequence: 1
  givenname: Hisham
  surname: Mohamed
  fullname: Mohamed, Hisham
  email: mhisham70@yahoo.com
  organization: Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
– sequence: 2
  givenname: Megan
  surname: Murray
  fullname: Murray, Megan
  organization: Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
– sequence: 3
  givenname: James N.
  surname: Turner
  fullname: Turner, James N.
  organization: Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
– sequence: 4
  givenname: Michele
  surname: Caggana
  fullname: Caggana, Michele
  organization: Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22099256$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19497576$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1TAQRi1URG8Lb4DabCqxSRj_x10goQpKpUosoGvLsZ3iqyRu7QSJPj2-zW0XLCpWsznfzKc5R-hgipNH6D2GBgMWH7eN_ZXiaBoCoBrgDVDxCm1wK2lNpWwP0AaA4FoJSQ_RUc5bACxBkjfoECumJJdig-hVjoOZQ5yq2FfzMsZUWT8MuVpymG6rHB58ZSZXOd_HND6Sb9Hr3gzZv9vPY3Tz9cvPi2_19ffLq4vP17XlTM5120lmne8okUK13EjBSd9BSzrnpQFsZesxlpZR51jpZsECa4lgtLdWdoQeow_r3rsU7xefZz2GvCtnJh-XrLFohcRCcPUfKOVACBdQ0JM9unSjd_ouhdGkP_rpJwU42wMmWzP0yUw25GeOEFCqbCrc-crZFHNOvtc2zI8PmpMJg8agd6L0Vq-i9E6UBq6LqBJm_4Sfe7wcO11jvYna3KbS6-YHAUxLoohWrBCfVsIXM7-DTzrb4CfrXUjeztrF8PKJvx5btWY
CODEN JOCRAM
CitedBy_id crossref_primary_10_1021_acs_langmuir_0c03613
crossref_primary_10_1002_advs_202405853
crossref_primary_10_1115_1_4040986
crossref_primary_10_1039_c2lc40065k
crossref_primary_10_1103_PhysRevE_90_012705
crossref_primary_10_3390_s20071875
crossref_primary_10_1039_c3lc00009e
crossref_primary_10_1371_journal_pone_0223193
crossref_primary_10_1039_c2lc21045b
crossref_primary_10_1063_5_0050801
crossref_primary_10_1039_C9NR03040A
crossref_primary_10_1002_adbi_201900164
crossref_primary_10_1039_c3lc00052d
crossref_primary_10_1002_nano_202200158
crossref_primary_10_1039_C7LC00294G
crossref_primary_10_1063_1_4916645
crossref_primary_10_1007_s10544_010_9481_7
crossref_primary_10_1063_1_4922081
crossref_primary_10_3390_ijms232112872
crossref_primary_10_3390_mi11050531
crossref_primary_10_1021_ac200550d
crossref_primary_10_1063_1_4774068
crossref_primary_10_1021_ac101222x
crossref_primary_10_1016_j_onano_2025_100233
crossref_primary_10_1002_smll_201202317
crossref_primary_10_1007_s00162_020_00534_y
crossref_primary_10_1039_C7AN01979C
crossref_primary_10_1002_pros_22845
crossref_primary_10_1016_j_chroma_2022_463268
crossref_primary_10_1115_1_4030420
crossref_primary_10_1002_adma_201805344
crossref_primary_10_1093_annonc_mdu018
crossref_primary_10_1038_nprot_2014_044
crossref_primary_10_1039_C3LC51107C
crossref_primary_10_1063_5_0025391
crossref_primary_10_1093_rb_rbad016
crossref_primary_10_1142_S0217984915300100
crossref_primary_10_1016_j_snb_2018_08_063
crossref_primary_10_1002_bit_26787
crossref_primary_10_1016_j_bios_2011_07_048
crossref_primary_10_3390_cells8060553
crossref_primary_10_1021_acs_analchem_6b01475
crossref_primary_10_1021_nn305616k
crossref_primary_10_1016_j_jchromb_2016_06_016
crossref_primary_10_3390_mi2030319
crossref_primary_10_1586_14737159_2015_1094379
crossref_primary_10_1016_j_talanta_2024_127025
crossref_primary_10_1002_anie_201601984
crossref_primary_10_3892_ol_2019_10118
crossref_primary_10_1371_journal_pone_0075901
crossref_primary_10_1002_adma_201601643
crossref_primary_10_1021_ac3011704
crossref_primary_10_1002_ijc_30007
crossref_primary_10_1016_j_bios_2012_06_016
crossref_primary_10_1073_pnas_1209893109
crossref_primary_10_1063_1_4737936
crossref_primary_10_3390_s150306789
crossref_primary_10_1039_C6LC01527A
crossref_primary_10_1039_C7AN01965C
crossref_primary_10_1021_acscombsci_0c00157
crossref_primary_10_1002_smll_201403658
crossref_primary_10_1016_j_sna_2012_08_020
crossref_primary_10_1146_annurev_bioeng_071114_040818
crossref_primary_10_1002_ange_201302278
crossref_primary_10_1371_journal_pone_0251052
crossref_primary_10_1016_j_jtice_2018_02_010
crossref_primary_10_1007_s10404_017_1986_4
crossref_primary_10_1002_ange_201601984
crossref_primary_10_1007_s40430_020_02482_4
crossref_primary_10_1063_1_4788914
crossref_primary_10_1039_c2lc40354d
crossref_primary_10_1039_C4LC00301B
crossref_primary_10_1083_jcb_201010021
crossref_primary_10_1016_j_addr_2013_09_003
crossref_primary_10_18632_oncotarget_1683
crossref_primary_10_1039_c3lc90136j
crossref_primary_10_3390_biomedicines9091111
crossref_primary_10_1002_biot_201700066
crossref_primary_10_1002_cyto_a_21086
crossref_primary_10_1002_elps_201000139
crossref_primary_10_1007_s10404_018_2053_5
crossref_primary_10_1039_c2lc21174b
crossref_primary_10_1039_C4LC00306C
crossref_primary_10_1002_anie_201302278
crossref_primary_10_13070_mm_en_7_2271
crossref_primary_10_1016_j_snr_2025_100304
crossref_primary_10_3390_bios5010098
crossref_primary_10_1038_srep09445
crossref_primary_10_1021_ac2022844
crossref_primary_10_1039_c0lc00633e
crossref_primary_10_3390_mi13020152
crossref_primary_10_2217_nnm_14_94
crossref_primary_10_1002_ijc_29679
crossref_primary_10_1063_1_4972794
crossref_primary_10_1248_bpb_b17_00776
crossref_primary_10_1007_s13206_014_8107_1
crossref_primary_10_1039_c2lc41376k
crossref_primary_10_3390_fluids7100333
crossref_primary_10_1007_s10337_013_2413_y
crossref_primary_10_1007_s10544_017_0202_3
crossref_primary_10_1063_1_5072769
crossref_primary_10_1007_s11517_010_0611_4
crossref_primary_10_1007_s12010_019_03199_4
crossref_primary_10_1080_09500340_2022_2044081
crossref_primary_10_3390_mi11040412
crossref_primary_10_1002_smll_201903899
crossref_primary_10_1039_c1lc20092e
crossref_primary_10_1103_PhysRevE_94_062613
crossref_primary_10_1002_elps_201200417
crossref_primary_10_1016_j_chroma_2024_465126
crossref_primary_10_1016_j_pbiomolbio_2022_12_005
crossref_primary_10_3892_ijo_2016_3747
crossref_primary_10_1016_j_chroma_2014_12_037
crossref_primary_10_1021_ac401472y
crossref_primary_10_1038_srep01259
crossref_primary_10_1177_2211068213494391
crossref_primary_10_1007_s10555_023_10124_z
crossref_primary_10_1039_D3LC00678F
crossref_primary_10_1016_j_ebiom_2019_07_044
crossref_primary_10_1016_j_nantod_2020_101004
crossref_primary_10_1021_ac303336f
crossref_primary_10_1039_C3LC51384J
crossref_primary_10_1063_1_4789750
crossref_primary_10_1016_j_jsamd_2019_01_006
crossref_primary_10_1158_2159_8290_CD_13_1014
crossref_primary_10_1016_j_mam_2019_07_008
crossref_primary_10_1021_ac101866p
crossref_primary_10_1103_PhysRevE_99_022607
crossref_primary_10_1021_acs_analchem_8b01134
crossref_primary_10_1039_C7NR08032H
crossref_primary_10_1371_journal_pone_0222289
crossref_primary_10_1007_s12195_011_0209_4
crossref_primary_10_1038_s41416_022_01768_9
crossref_primary_10_1186_1471_2407_12_540
crossref_primary_10_1007_s12032_016_0875_0
crossref_primary_10_1016_j_biopha_2024_117726
crossref_primary_10_1016_j_biotechadv_2013_08_016
crossref_primary_10_1021_acs_analchem_6b01324
crossref_primary_10_1016_j_bios_2013_07_044
crossref_primary_10_1021_acsbiomaterials_8b01335
crossref_primary_10_3389_fonc_2021_681130
crossref_primary_10_3748_wjg_v23_i31_5650
crossref_primary_10_1016_j_aohep_2020_03_008
crossref_primary_10_1039_c0lc00345j
crossref_primary_10_1364_OE_25_016739
crossref_primary_10_15252_embj_2020106123
crossref_primary_10_1016_j_ijmultiphaseflow_2012_07_004
crossref_primary_10_1115_1_4034369
crossref_primary_10_1016_j_jmoldx_2012_09_004
crossref_primary_10_1080_15422119_2017_1320763
Cites_doi 10.1054/bjoc.2000.1417
10.1136/gut.40.4.512
10.1016/j.bios.2006.01.024
10.1111/j.1399-0039.1974.tb00252.x
10.1007/s004390050181
10.1021/ac049863r
10.1126/science.1094567
10.1023/A:1009955200029
10.1016/S0016-5085(99)70175-7
10.1016/j.humpath.2003.08.026
10.1016/S0140-6736(00)03312-2
10.1109/TNB.2004.837903
10.1021/ac0520083
10.1002/jcb.240490406
10.1039/b512576f
10.1021/ac049037i
10.1021/ar010110q
10.1002/1522-2683(200110)22:18<3883::AID-ELPS3883>3.0.CO;2-4
10.1109/28.585856
10.1023/B:BREA.0000036787.59816.01
10.1038/sj.bjc.6600741
10.1002/pros.2990250505
10.1097/00019606-199906000-00001
10.1186/bcr308
10.1038/nature06385
10.1038/bjc.1985.24
10.1007/s11912-008-0022-y
ContentType Journal Article
Conference Proceeding
Copyright 2009 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7UA
C1K
F1W
H97
L.G
7S9
L.6
DOI 10.1016/j.chroma.2009.05.036
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3778
EndPage 8295
ExternalDocumentID 19497576
22099256
10_1016_j_chroma_2009_05_036
US201301696794
S0021967309007791
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
AAYJJ
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMU
HVGLF
HZ~
H~9
IH2
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
UQL
VH1
WH7
WUQ
XFK
XPP
YK3
ZGI
ZKB
ZMT
ZXP
~02
~G-
~KM
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7UA
C1K
F1W
H97
L.G
7S9
L.6
ID FETCH-LOGICAL-c547t-8b74cdeb3276985a7652fb082bde7a01c78e117c43dd4001c0c0482643fcc7b23
IEDL.DBID .~1
ISSN 0021-9673
IngestDate Fri Jul 11 10:53:04 EDT 2025
Fri Jul 11 15:32:37 EDT 2025
Thu Jan 02 22:12:08 EST 2025
Wed Apr 02 07:24:02 EDT 2025
Tue Jul 01 00:46:17 EDT 2025
Thu Apr 24 22:59:22 EDT 2025
Wed Dec 27 19:13:54 EST 2023
Fri Feb 23 02:33:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords Cell sorting
Biochips
Rare cells
Cancer
Human
Biological fluid
Cell sorter
Biochip
System on a chip
Metastasis
Whole blood
Separation method
Biosensor
Isolation
Miniaturization
Detection
Tumor cell
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c547t-8b74cdeb3276985a7652fb082bde7a01c78e117c43dd4001c0c0482643fcc7b23
Notes http://dx.doi.org/10.1016/j.chroma.2009.05.036
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19497576
PQID 1635022560
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_1686716659
proquest_miscellaneous_1635022560
pubmed_primary_19497576
pascalfrancis_primary_22099256
crossref_citationtrail_10_1016_j_chroma_2009_05_036
crossref_primary_10_1016_j_chroma_2009_05_036
fao_agris_US201301696794
elsevier_sciencedirect_doi_10_1016_j_chroma_2009_05_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-20
PublicationDateYYYYMMDD 2009-11-20
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-20
  day: 20
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Journal of Chromatography A
PublicationTitleAlternate J Chromatogr A
PublicationYear 2009
Publisher Elsevier B.V
Amsterdam; New York: Elsevier
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Amsterdam; New York: Elsevier
– name: Elsevier
References Spizzo, Gastl, Wolf, Gunsilius, Steurer, Fong, Amberger, Margreiter, Obrist (bib16) 2003; 88
Nagrath, Sequist, Maheswaran, Bell, Irima, Ulkus, Smith, Kwak, Digumarthy, Muzikansky, Eyan, Balis, Tompkins, Haber, Toner (bib21) 2007; 450
Ghossein, Osman, Bhattacharya, Ferrara, Fazzari, Cordon-Cardo, Scher (bib12) 1999; 8
Braun, Harbeck (bib1) 2001; 3
Yamada, Nakashima, Seki (bib23) 2004; 76
Bertazza, Mocellin, Nitti (bib9) 2008; 10
Gastl, Spizzo, Obrist, Dunser, Mikuz (bib15) 2000; 356
Smeland, Funderud, Kvalheim, Guadernack, Rasumssen, Rusten, Wang, Tindle, Blomhoff, Egeland (bib19) 1992; 6
Shevkoplyas, Yoshida, Munn, Bitensky (bib22) 2005; 77
Went, Lugli, Meier, Bundi, Mirlacher, Sauter, Dirnhofer (bib14) 2004; 35
Ashworth (bib4) 1869; 14
Spizzo, Went, Dirnhofer, Obrist, Simon, Spichtin, Maurer, Metzger, Castelberg, Bart, Stopatschinskaya, Kochli, Haas, Mross, Zuber, Dietrich, Bischoff, Mirlacher, Sauter, Gastl (bib17) 2004; 89
Han, Han, Frazier (bib26) 2006; 21
Pantel, Muller, Auer, Nusser, Harbeck, Braun (bib2) 2003; 9
Zhang, Zippe, Van Lente, Klein, Gupta (bib7) 1997; 3
O'Sullivan, Sheehan, Clarke, Stuart, Kelly, Kiely, Walsh, Collins, Shanahan (bib10) 1999; 116
Ghossein, Rosai (bib5) 1998; 3
Yamada, Seki (bib24) 2006; 78
Wachtel, Sammons, Manley, Wachtel, Twitty, Utermohlen, Phillips, Shulman, Taron, Muller, Koeppen, Ruffalo, Addis, Porreco, Murata-Collins, Parker, McGavran (bib28) 1996; 98
Applegate, Squier, Vestad, Oakey, Marr, Bado, Dugan, Said (bib25) 2006; 6
O'Sullivan, Collins, Kelly, Morgan, Madden, Shanahan (bib11) 1997; 40
Rinker-Schaeffer, Partin, Isaacs, Coffey, Isaacs (bib31) 1994; 25
Gascoyne, Wang, Huang, Becker (bib29) 1997; 33
Mohamed, McCurdy, Szarowski, Duva, Turner, Caggana (bib33) 2004; 3
McDonald, Whitesides (bib34) 2002; 35
Ghossein, Bhattacharya, Rosai (bib8) 1999; 5
Boyum (bib27) 1974; 4
Berger, Castelino, Huang, Shah, Austin (bib20) 2001; 22
Huang, Cox, Austin, Sturm (bib18) 2004; 304
De Gasperis, Yang, Becker, Gascoyne, Wang (bib30) 1999; 2
Edwards (bib3) 1985; 51
Cell Search Circulating Tumor Cell Kit manual, 1–8.
Pienta, Coffey (bib32) 1992; 49
McIntyre, Spreckley, Clarke, Anderson, Clarke, George (bib6) 2000; 83
Han (10.1016/j.chroma.2009.05.036_bib26) 2006; 21
Applegate (10.1016/j.chroma.2009.05.036_bib25) 2006; 6
O'Sullivan (10.1016/j.chroma.2009.05.036_bib11) 1997; 40
Gascoyne (10.1016/j.chroma.2009.05.036_bib29) 1997; 33
Rinker-Schaeffer (10.1016/j.chroma.2009.05.036_bib31) 1994; 25
Mohamed (10.1016/j.chroma.2009.05.036_bib33) 2004; 3
Yamada (10.1016/j.chroma.2009.05.036_bib23) 2004; 76
Gastl (10.1016/j.chroma.2009.05.036_bib15) 2000; 356
Pienta (10.1016/j.chroma.2009.05.036_bib32) 1992; 49
Braun (10.1016/j.chroma.2009.05.036_bib1) 2001; 3
Ghossein (10.1016/j.chroma.2009.05.036_bib12) 1999; 8
Pantel (10.1016/j.chroma.2009.05.036_bib2) 2003; 9
Spizzo (10.1016/j.chroma.2009.05.036_bib17) 2004; 89
Yamada (10.1016/j.chroma.2009.05.036_bib24) 2006; 78
Ghossein (10.1016/j.chroma.2009.05.036_bib5) 1998; 3
Spizzo (10.1016/j.chroma.2009.05.036_bib16) 2003; 88
Nagrath (10.1016/j.chroma.2009.05.036_bib21) 2007; 450
Wachtel (10.1016/j.chroma.2009.05.036_bib28) 1996; 98
Berger (10.1016/j.chroma.2009.05.036_bib20) 2001; 22
McIntyre (10.1016/j.chroma.2009.05.036_bib6) 2000; 83
Shevkoplyas (10.1016/j.chroma.2009.05.036_bib22) 2005; 77
Bertazza (10.1016/j.chroma.2009.05.036_bib9) 2008; 10
McDonald (10.1016/j.chroma.2009.05.036_bib34) 2002; 35
10.1016/j.chroma.2009.05.036_bib13
Went (10.1016/j.chroma.2009.05.036_bib14) 2004; 35
Huang (10.1016/j.chroma.2009.05.036_bib18) 2004; 304
Ghossein (10.1016/j.chroma.2009.05.036_bib8) 1999; 5
Zhang (10.1016/j.chroma.2009.05.036_bib7) 1997; 3
Ashworth (10.1016/j.chroma.2009.05.036_bib4) 1869; 14
Boyum (10.1016/j.chroma.2009.05.036_bib27) 1974; 4
Edwards (10.1016/j.chroma.2009.05.036_bib3) 1985; 51
O'Sullivan (10.1016/j.chroma.2009.05.036_bib10) 1999; 116
De Gasperis (10.1016/j.chroma.2009.05.036_bib30) 1999; 2
Smeland (10.1016/j.chroma.2009.05.036_bib19) 1992; 6
References_xml – volume: 83
  start-page: 992
  year: 2000
  ident: bib6
  publication-title: Br. J. Cancer
– reference: Cell Search Circulating Tumor Cell Kit manual, 1–8.
– volume: 3
  start-page: 285
  year: 2001
  ident: bib1
  publication-title: Breast Cancer Res.
– volume: 25
  start-page: 249
  year: 1994
  ident: bib31
  publication-title: Prostate
– volume: 78
  start-page: 1357
  year: 2006
  ident: bib24
  publication-title: Anal. Chem.
– volume: 51
  start-page: 149
  year: 1985
  ident: bib3
  publication-title: Br. J. Cancer
– volume: 35
  start-page: 491
  year: 2002
  ident: bib34
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 137
  year: 2008
  ident: bib9
  publication-title: Curr. Oncol. Rep.
– volume: 33
  start-page: 670
  year: 1997
  ident: bib29
  publication-title: IEEE Trans. Ind. Appl.
– volume: 49
  start-page: 357
  year: 1992
  ident: bib32
  publication-title: J. Cell Biochem.
– volume: 356
  start-page: 1981
  year: 2000
  ident: bib15
  publication-title: Lancet
– volume: 6
  start-page: 422
  year: 2006
  ident: bib25
  publication-title: Lab Chip
– volume: 14
  start-page: 146
  year: 1869
  ident: bib4
  publication-title: Aust. Med. J.
– volume: 98
  start-page: 162
  year: 1996
  ident: bib28
  publication-title: Hum. Genet.
– volume: 3
  start-page: 251
  year: 2004
  ident: bib33
  publication-title: IEEE Trans. NanoBio. Sci.
– volume: 76
  start-page: 5465
  year: 2004
  ident: bib23
  publication-title: Anal. Chem.
– volume: 77
  start-page: 933
  year: 2005
  ident: bib22
  publication-title: Anal. Chem.
– volume: 304
  start-page: 987
  year: 2004
  ident: bib18
  publication-title: Science
– volume: 21
  start-page: 1907
  year: 2006
  ident: bib26
  publication-title: Biosens. Bioelectron.
– volume: 9
  start-page: 6326
  year: 2003
  ident: bib2
  publication-title: Clin. Cancer Res.
– volume: 35
  start-page: 122
  year: 2004
  ident: bib14
  publication-title: Hum. Pathol.
– volume: 450
  start-page: 1235
  year: 2007
  ident: bib21
  publication-title: Nature
– volume: 89
  start-page: 207
  year: 2004
  ident: bib17
  publication-title: Breast Cancer Res. Tr.
– volume: 6
  start-page: 845
  year: 1992
  ident: bib19
  publication-title: Leukemia
– volume: 8
  start-page: 59
  year: 1999
  ident: bib12
  publication-title: Diagn. Mol. Pathol.
– volume: 2
  start-page: 41
  year: 1999
  ident: bib30
  publication-title: Biomed. Microdevices
– volume: 88
  start-page: 574
  year: 2003
  ident: bib16
  publication-title: Br. J. Cancer
– volume: 22
  start-page: 3883
  year: 2001
  ident: bib20
  publication-title: Electrophoresis
– volume: 3
  start-page: 1215
  year: 1997
  ident: bib7
  publication-title: Clin. Cancer Res.
– volume: 4
  start-page: 269
  year: 1974
  ident: bib27
  publication-title: Tissue Antigens
– volume: 40
  start-page: 512
  year: 1997
  ident: bib11
  publication-title: Gut
– volume: 5
  start-page: 1950
  year: 1999
  ident: bib8
  publication-title: Clin. Cancer Res.
– volume: 3
  start-page: 233
  year: 1998
  ident: bib5
  publication-title: Anat. Pathol.
– volume: 116
  start-page: 543
  year: 1999
  ident: bib10
  publication-title: Gastroenterology
– volume: 83
  start-page: 992
  year: 2000
  ident: 10.1016/j.chroma.2009.05.036_bib6
  publication-title: Br. J. Cancer
  doi: 10.1054/bjoc.2000.1417
– volume: 40
  start-page: 512
  year: 1997
  ident: 10.1016/j.chroma.2009.05.036_bib11
  publication-title: Gut
  doi: 10.1136/gut.40.4.512
– volume: 21
  start-page: 1907
  year: 2006
  ident: 10.1016/j.chroma.2009.05.036_bib26
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2006.01.024
– volume: 4
  start-page: 269
  year: 1974
  ident: 10.1016/j.chroma.2009.05.036_bib27
  publication-title: Tissue Antigens
  doi: 10.1111/j.1399-0039.1974.tb00252.x
– volume: 98
  start-page: 162
  year: 1996
  ident: 10.1016/j.chroma.2009.05.036_bib28
  publication-title: Hum. Genet.
  doi: 10.1007/s004390050181
– volume: 76
  start-page: 5465
  year: 2004
  ident: 10.1016/j.chroma.2009.05.036_bib23
  publication-title: Anal. Chem.
  doi: 10.1021/ac049863r
– volume: 304
  start-page: 987
  year: 2004
  ident: 10.1016/j.chroma.2009.05.036_bib18
  publication-title: Science
  doi: 10.1126/science.1094567
– volume: 2
  start-page: 41
  year: 1999
  ident: 10.1016/j.chroma.2009.05.036_bib30
  publication-title: Biomed. Microdevices
  doi: 10.1023/A:1009955200029
– volume: 116
  start-page: 543
  year: 1999
  ident: 10.1016/j.chroma.2009.05.036_bib10
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(99)70175-7
– volume: 35
  start-page: 122
  year: 2004
  ident: 10.1016/j.chroma.2009.05.036_bib14
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2003.08.026
– volume: 14
  start-page: 146
  year: 1869
  ident: 10.1016/j.chroma.2009.05.036_bib4
  publication-title: Aust. Med. J.
– volume: 356
  start-page: 1981
  year: 2000
  ident: 10.1016/j.chroma.2009.05.036_bib15
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)03312-2
– volume: 3
  start-page: 251
  year: 2004
  ident: 10.1016/j.chroma.2009.05.036_bib33
  publication-title: IEEE Trans. NanoBio. Sci.
  doi: 10.1109/TNB.2004.837903
– volume: 78
  start-page: 1357
  year: 2006
  ident: 10.1016/j.chroma.2009.05.036_bib24
  publication-title: Anal. Chem.
  doi: 10.1021/ac0520083
– volume: 49
  start-page: 357
  year: 1992
  ident: 10.1016/j.chroma.2009.05.036_bib32
  publication-title: J. Cell Biochem.
  doi: 10.1002/jcb.240490406
– volume: 6
  start-page: 422
  year: 2006
  ident: 10.1016/j.chroma.2009.05.036_bib25
  publication-title: Lab Chip
  doi: 10.1039/b512576f
– volume: 77
  start-page: 933
  year: 2005
  ident: 10.1016/j.chroma.2009.05.036_bib22
  publication-title: Anal. Chem.
  doi: 10.1021/ac049037i
– volume: 35
  start-page: 491
  year: 2002
  ident: 10.1016/j.chroma.2009.05.036_bib34
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar010110q
– volume: 22
  start-page: 3883
  year: 2001
  ident: 10.1016/j.chroma.2009.05.036_bib20
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200110)22:18<3883::AID-ELPS3883>3.0.CO;2-4
– volume: 5
  start-page: 1950
  year: 1999
  ident: 10.1016/j.chroma.2009.05.036_bib8
  publication-title: Clin. Cancer Res.
– volume: 3
  start-page: 1215
  year: 1997
  ident: 10.1016/j.chroma.2009.05.036_bib7
  publication-title: Clin. Cancer Res.
– volume: 33
  start-page: 670
  year: 1997
  ident: 10.1016/j.chroma.2009.05.036_bib29
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.585856
– volume: 89
  start-page: 207
  year: 2004
  ident: 10.1016/j.chroma.2009.05.036_bib17
  publication-title: Breast Cancer Res. Tr.
  doi: 10.1023/B:BREA.0000036787.59816.01
– ident: 10.1016/j.chroma.2009.05.036_bib13
– volume: 88
  start-page: 574
  year: 2003
  ident: 10.1016/j.chroma.2009.05.036_bib16
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6600741
– volume: 25
  start-page: 249
  year: 1994
  ident: 10.1016/j.chroma.2009.05.036_bib31
  publication-title: Prostate
  doi: 10.1002/pros.2990250505
– volume: 3
  start-page: 233
  year: 1998
  ident: 10.1016/j.chroma.2009.05.036_bib5
  publication-title: Anat. Pathol.
– volume: 8
  start-page: 59
  year: 1999
  ident: 10.1016/j.chroma.2009.05.036_bib12
  publication-title: Diagn. Mol. Pathol.
  doi: 10.1097/00019606-199906000-00001
– volume: 3
  start-page: 285
  year: 2001
  ident: 10.1016/j.chroma.2009.05.036_bib1
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr308
– volume: 6
  start-page: 845
  year: 1992
  ident: 10.1016/j.chroma.2009.05.036_bib19
  publication-title: Leukemia
– volume: 450
  start-page: 1235
  year: 2007
  ident: 10.1016/j.chroma.2009.05.036_bib21
  publication-title: Nature
  doi: 10.1038/nature06385
– volume: 51
  start-page: 149
  year: 1985
  ident: 10.1016/j.chroma.2009.05.036_bib3
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1985.24
– volume: 10
  start-page: 137
  year: 2008
  ident: 10.1016/j.chroma.2009.05.036_bib9
  publication-title: Curr. Oncol. Rep.
  doi: 10.1007/s11912-008-0022-y
– volume: 9
  start-page: 6326
  year: 2003
  ident: 10.1016/j.chroma.2009.05.036_bib2
  publication-title: Clin. Cancer Res.
SSID ssj0017072
ssj0029838
Score 2.4018168
Snippet The isolation and analysis of circulating tumor cells (CTCs) from blood are the subject of intense research. Although tests to detect metastasis on a molecular...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8289
SubjectTerms Biochips
Biological and medical sciences
Biosensors
Biotechnology
blood cells
Cancer
Cell Line, Tumor
Cell Separation - instrumentation
Cell Separation - methods
Cell Shape
Cell Size
Cell sorting
chromatography
deformation
DNA
Fundamental and applied biological sciences. Psychology
gene expression
General aspects
Humans
Medical sciences
metastasis
Methods. Procedures. Technologies
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
mixing
neoplasm cells
Neoplasms - blood
Neoplasms - pathology
Neoplastic Cells, Circulating - pathology
patients
Rare cells
Tumors
Various methods and equipments
Title Isolation of tumor cells using size and deformation
URI https://dx.doi.org/10.1016/j.chroma.2009.05.036
https://www.ncbi.nlm.nih.gov/pubmed/19497576
https://www.proquest.com/docview/1635022560
https://www.proquest.com/docview/1686716659
Volume 1216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH4q5QAXxN5QGBmJa2ic2HF8rEZUU0YdIWBEb5bjpQxqk2qWCwd-e5_jJKgSUIlTJCuW4rd-L34LwLtCeqONZSlzDAMU9HBp7TnHKKWqULUMIv4QKJ4tytmSfTzn53swHWphQlplb_ujTe-sdb9y1FPz6Hq1CjW-qG0lSqgMPWliBTsTQcrf_xrTPKjIxNhPKpdVEU1zyEvArUMtXZfwZb6v29iKSHbNPLuuzX_0Vfe8bkMSpd4gHX0cgPF3hNp5qpPH8KiHmOQ4nuIJ7LnmKTyYDpPdnkFxigLXcYS0nmx3V-2ahB_4GxKy4C_IZvXTEd1YYt1Y2_gclicfvk5naT88ITWciW1a1YIZi6FyLkpZcS1KnvsaHX5tndAZNaJylArDCmtRj6nJDCozwqPCGyPqvHgB-03buAMgXGcOSWYdNY55bRCkiSL31mtfViXLEigGMinTdxYPAy4u1ZBC9kNF4oahl1JlXCFxE0jHXdexs8Yd74uBA-qWhCg0_nfsPECGKX2BZlMtv-ThspaWyH_JEpjc4uL4JXkoKUY4mMDbga0KuRSYoRvX7jYKgSxHAISI8V_vhPaBZcllAi-jTPw-q2RSYLT36r_PdQgPu7stStHWvYb97Xrn3iBE2taTTgcmcP_4dD5bhOf887c5ri4-nd0AH6INUg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wEB4BPcClakuBdKGuxDUQJ17iY_VU9GiBS3kSN8vxAq9qE_SWSw_8dsbZKqS2SL1GthTP5m-SmW8AjgoVrLGOpcwzTFDwhkurwDlmKWWJrmUR8cdE8eJSTGfsyzW_3oDJ0AsTyyr72N_F9DZa909Oemme3M3nsccXvU2gharISRM72J8xdN84xuD4fqzzoDKTI6FUrsqii82xMAH3Ds10bcWXvV00HReRatk8W9rmP15Wm8E0sYrSLFGQoZuA8XeI2l5Vpy_geY8xyafuGC9hw9evYHsyjHbbheIMLa5VCWkCWa1_NgsSv-AvSSyDvyHL-S9PTO2I82Nz42uYnX6-mkzTfnpCajmTq7SsJLMOc-VcClVyIwXPQ4U3fuW8NBm1svSUSssK59CRqc0sejPioyJYK6u82IOtuqn9ARBuMo8ic55az4KxiNJkkQcXTBClYFkCxSAmbXtq8Tjh4oceasi-6064ceql0hnXKNwE0nHXXUet8cR6OWhAPzIRjdH_iZ0HqDBtbjBu6tm3PP6tpQL1r1gCh4-0OL5JHnuKEQ8m8HFQq0YtRWWY2jfrpUYkyxEBIWT815rIHygEVwnsdzbx-6yKKYnp3pv_PtcH2J5eXZzr87PLr29hp_3RRSkGvnewtVqs_XvES6vqsPWHB3bHDDE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Journal+of+chromatography&rft.atitle=Isolation+of+tumor+cells+using+size+and+deformation&rft.au=MOHAMED%2C+Hisham&rft.au=MURRAY%2C+Megan&rft.au=TURNER%2C+James+N&rft.au=CAGGANA%2C+Michele&rft.date=2009-11-20&rft.pub=Elsevier&rft.issn=0021-9673&rft.volume=1216&rft.issue=47&rft.spage=8289&rft.epage=8295&rft_id=info:doi/10.1016%2Fj.chroma.2009.05.036&rft.externalDBID=n%2Fa&rft.externalDocID=22099256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon