A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching

Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and modera...

Full description

Saved in:
Bibliographic Details
Published inNanophotonics (Berlin, Germany) Vol. 11; no. 5; pp. 1033 - 1040
Main Authors Liang, Youting, Zhou, Junxia, Liu, Zhaoxiang, Zhang, Haisu, Fang, Zhiwei, Zhou, Yuan, Yin, Difeng, Lin, Jintian, Yu, Jianping, Wu, Rongbo, Wang, Min, Cheng, Ya
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 01.02.2022
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta ) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions.
AbstractList Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta 2 O 5 ) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta 2 O 5 cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions.
Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta2O5) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta2O5 cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions.Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta2O5) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta2O5 cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions.
Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta2O5) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta2O5 cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions.
Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta2O5) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta2O5 cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions.
Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta ) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions.
Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta O ) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta O cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions.
Author Zhang, Haisu
Wu, Rongbo
Zhou, Junxia
Fang, Zhiwei
Liang, Youting
Cheng, Ya
Yin, Difeng
Wang, Min
Lin, Jintian
Zhou, Yuan
Yu, Jianping
Liu, Zhaoxiang
Author_xml – sequence: 1
  givenname: Youting
  surname: Liang
  fullname: Liang, Youting
  organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China
– sequence: 2
  givenname: Junxia
  surname: Zhou
  fullname: Zhou, Junxia
  organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China
– sequence: 3
  givenname: Zhaoxiang
  surname: Liu
  fullname: Liu, Zhaoxiang
  organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China
– sequence: 4
  givenname: Haisu
  orcidid: 0000-0001-7823-6257
  surname: Zhang
  fullname: Zhang, Haisu
  email: hszhang@phy.ecnu.edu.cn
  organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China
– sequence: 5
  givenname: Zhiwei
  orcidid: 0000-0002-8047-1763
  surname: Fang
  fullname: Fang, Zhiwei
  organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China
– sequence: 6
  givenname: Yuan
  surname: Zhou
  fullname: Zhou, Yuan
  organization: State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
– sequence: 7
  givenname: Difeng
  surname: Yin
  fullname: Yin, Difeng
  organization: State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
– sequence: 8
  givenname: Jintian
  surname: Lin
  fullname: Lin, Jintian
  organization: State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
– sequence: 9
  givenname: Jianping
  surname: Yu
  fullname: Yu, Jianping
  organization: State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
– sequence: 10
  givenname: Rongbo
  surname: Wu
  fullname: Wu, Rongbo
  organization: State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
– sequence: 11
  givenname: Min
  surname: Wang
  fullname: Wang, Min
  organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China
– sequence: 12
  givenname: Ya
  surname: Cheng
  fullname: Cheng, Ya
  email: ya.cheng@siom.ac.cn
  organization: Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39634477$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1TAQjFARLaV3TsgSFy4BO47j-ISqio9KlbjA2XLsdeLKsYOTtHo_pP8Xh_cobSXwxaPdmfHuel8WRyEGKIrXBL8njLAPQYU4DWWFK1JiTvmz4qQioirbhtRHD_BxcTbP1zgfISgRzYvimIqG1jXnJ8XdORpcP5S9cgFpr4wBg27VDfSrM4DUOHlnHSQUA4LUuXVEJk6ZswwulNb5EXmXcY4HFzu1ALKqS05nZNA6u9CjaYhL3FixT2oadkjNs5u3vB5gjOUIelAhSzyCRWff_lXx3Co_w9nhPi1-fP70_eJrefXty-XF-VWpWc2X3J1h0FqGcWOsqXAGnInaWo4xMdRybbuaGaiYaJQVLTW6NrQB0zSEV6DpaXG59zVRXcspuVGlnYzKyd-BmHqp0uK0B6k7W3d1W3ODVa2JFabLb2LMRMu0Apa9Pu69prUbwWgIS1L-kenjTHCD7OONJIRh0gqSHd4dHFL8ucK8yNHNGrxXAeI6S0rqhlWkEjhT3z6hXsc1hTwrWTWUcd7mr86sNw9Luq_lz_dnAt4TdIrznMDeUwiW25LJ_ZLJbcnktmRZ0jyRaLeoxcWtKef_JzzM51b5BZKBPq27DP5W_i9pHhDBlNJfzzTwtw
CitedBy_id crossref_primary_10_1016_j_optlastec_2024_111616
crossref_primary_10_1364_OME_532439
crossref_primary_10_1080_23746149_2024_2360598
crossref_primary_10_1364_OL_497543
crossref_primary_10_1364_OL_512220
crossref_primary_10_1364_OPTCON_458622
crossref_primary_10_1088_1361_6463_ad7ff7
crossref_primary_10_1364_OE_555269
crossref_primary_10_1109_JLT_2023_3338229
crossref_primary_10_1364_OE_533433
crossref_primary_10_1364_OL_486117
crossref_primary_10_3788_COL202321_101901
crossref_primary_10_1364_OE_514318
crossref_primary_10_3788_AOS230994
crossref_primary_10_1002_lpor_202300306
crossref_primary_10_1021_acsphotonics_4c01433
crossref_primary_10_1002_lpor_202200059
crossref_primary_10_1080_23746149_2024_2322739
crossref_primary_10_3788_LOP232213
crossref_primary_10_1364_OL_504540
crossref_primary_10_1364_OE_503076
crossref_primary_10_1021_acsphotonics_4c01951
crossref_primary_10_1364_OL_511729
crossref_primary_10_1002_lpor_202400765
crossref_primary_10_1063_5_0137678
crossref_primary_10_3788_COL202422_041301
crossref_primary_10_7498_aps_74_20241243
crossref_primary_10_3390_ma17184453
crossref_primary_10_3390_app122211712
crossref_primary_10_35848_1347_4065_aca986
crossref_primary_10_1515_nanoph_2024_0020
crossref_primary_10_1007_s13369_023_08440_1
crossref_primary_10_3788_CJL231256
crossref_primary_10_3788_LOP241337
crossref_primary_10_1021_acsphotonics_4c00391
crossref_primary_10_3390_mi13060865
crossref_primary_10_3390_nano15010072
crossref_primary_10_1016_j_mtcomm_2023_106522
crossref_primary_10_1063_5_0232333
crossref_primary_10_1063_5_0233467
crossref_primary_10_1360_TB_2023_0860
crossref_primary_10_1021_acsphotonics_4c01466
crossref_primary_10_1002_adom_202400496
crossref_primary_10_1016_j_optlastec_2023_109908
crossref_primary_10_1103_PhysRevResearch_5_033206
Cites_doi 10.1109/JSTQE.2014.2321279
10.1002/lpor.202100030
10.3788/COL202119.060008
10.1109/2944.577396
10.1364/JOSAB.27.000187
10.1038/nphoton.2013.273
10.1016/j.pquantelec.2015.12.001
10.1364/OL.430015
10.1002/lpor.201000015
10.1364/OL.442281
10.1109/3.303692
10.1364/OL.441167
10.1021/jp4011839
10.1002/que2.9
10.1063/1.1565697
10.1103/PhysRevA.100.033831
10.1364/OL.410608
10.3390/nano8110910
10.1002/lpor.201100035
10.1109/3.631259
10.1364/PRJ.395305
10.1364/OL.425178
10.1364/OE.22.025993
10.1364/OPTICA.6.001138
10.1038/s41467-019-08369-w
10.1063/1.1586469
10.1038/s41586-018-0551-y
10.1364/OL.420250
10.1002/adma.201101781
ContentType Journal Article
Copyright 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston.
2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Youting Liang et al., published by De Gruyter, Berlin/Boston 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
Copyright_xml – notice: 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1515/nanoph-2021-0737
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Publicly Available Content Database


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 1040
ExternalDocumentID oai_doaj_org_article_cbf4b4847d0a4c1f9dbdfd005985cae5
PMC11501891
39634477
10_1515_nanoph_2021_0737
10_1515_nanoph_2021_07371151033
Genre Journal Article
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
M48
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
QD8
RPM
SA.
SLJYH
AAYXX
CITATION
9-L
AIKXB
F-.
IPNFZ
NPM
RIG
~Z8
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c547t-86d5e8f5006dfd205007594ff7001d3f7cfb45de2596af983dc4d36ed66172ec3
IEDL.DBID M48
ISSN 2192-8614
2192-8606
IngestDate Wed Aug 27 01:02:57 EDT 2025
Thu Aug 21 18:35:32 EDT 2025
Fri Jul 11 06:43:27 EDT 2025
Fri Jul 25 21:18:06 EDT 2025
Wed Feb 19 02:03:16 EST 2025
Thu Apr 24 22:57:50 EDT 2025
Tue Jul 01 00:41:52 EDT 2025
Thu Jul 10 10:34:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords lithium niobate nanophotonics
photolithography assisted chemomechanical etching
integrated waveguide amplifier
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
2022 Youting Liang et al., published by De Gruyter, Berlin/Boston.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c547t-86d5e8f5006dfd205007594ff7001d3f7cfb45de2596af983dc4d36ed66172ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8047-1763
0000-0001-7823-6257
OpenAccessLink https://doaj.org/article/cbf4b4847d0a4c1f9dbdfd005985cae5
PMID 39634477
PQID 2635778931
PQPubID 2038884
PageCount 08
ParticipantIDs doaj_primary_oai_doaj_org_article_cbf4b4847d0a4c1f9dbdfd005985cae5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501891
proquest_miscellaneous_3146521290
proquest_journals_2635778931
pubmed_primary_39634477
crossref_primary_10_1515_nanoph_2021_0737
crossref_citationtrail_10_1515_nanoph_2021_0737
walterdegruyter_journals_10_1515_nanoph_2021_07371151033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationTitleAlternate Nanophotonics
PublicationYear 2022
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2024072621255117760_j_nanoph-2021-0737_ref_020
2024072621255117760_j_nanoph-2021-0737_ref_006
2024072621255117760_j_nanoph-2021-0737_ref_028
2024072621255117760_j_nanoph-2021-0737_ref_005
2024072621255117760_j_nanoph-2021-0737_ref_027
2024072621255117760_j_nanoph-2021-0737_ref_004
2024072621255117760_j_nanoph-2021-0737_ref_026
2024072621255117760_j_nanoph-2021-0737_ref_003
2024072621255117760_j_nanoph-2021-0737_ref_025
2024072621255117760_j_nanoph-2021-0737_ref_002
2024072621255117760_j_nanoph-2021-0737_ref_024
2024072621255117760_j_nanoph-2021-0737_ref_001
2024072621255117760_j_nanoph-2021-0737_ref_023
2024072621255117760_j_nanoph-2021-0737_ref_022
2024072621255117760_j_nanoph-2021-0737_ref_021
2024072621255117760_j_nanoph-2021-0737_ref_009
2024072621255117760_j_nanoph-2021-0737_ref_008
2024072621255117760_j_nanoph-2021-0737_ref_007
2024072621255117760_j_nanoph-2021-0737_ref_029
2024072621255117760_j_nanoph-2021-0737_ref_031
2024072621255117760_j_nanoph-2021-0737_ref_030
2024072621255117760_j_nanoph-2021-0737_ref_017
2024072621255117760_j_nanoph-2021-0737_ref_016
2024072621255117760_j_nanoph-2021-0737_ref_015
2024072621255117760_j_nanoph-2021-0737_ref_014
2024072621255117760_j_nanoph-2021-0737_ref_013
2024072621255117760_j_nanoph-2021-0737_ref_012
2024072621255117760_j_nanoph-2021-0737_ref_011
2024072621255117760_j_nanoph-2021-0737_ref_010
2024072621255117760_j_nanoph-2021-0737_ref_019
2024072621255117760_j_nanoph-2021-0737_ref_018
References_xml – ident: 2024072621255117760_j_nanoph-2021-0737_ref_024
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_006
  doi: 10.1109/JSTQE.2014.2321279
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_022
  doi: 10.1002/lpor.202100030
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_021
  doi: 10.3788/COL202119.060008
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_027
  doi: 10.1109/2944.577396
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_008
  doi: 10.1364/JOSAB.27.000187
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_005
  doi: 10.1038/nphoton.2013.273
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_002
  doi: 10.1016/j.pquantelec.2015.12.001
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_016
  doi: 10.1364/OL.430015
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_001
  doi: 10.1002/lpor.201000015
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_018
  doi: 10.1364/OL.442281
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_030
  doi: 10.1109/3.303692
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_019
  doi: 10.1364/OL.441167
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_009
  doi: 10.1021/jp4011839
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_026
  doi: 10.1002/que2.9
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_031
  doi: 10.1063/1.1565697
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_010
  doi: 10.1103/PhysRevA.100.033831
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_015
  doi: 10.1364/OL.410608
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_025
  doi: 10.3390/nano8110910
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_011
  doi: 10.1002/lpor.201100035
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_023
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_028
  doi: 10.1109/3.631259
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_014
  doi: 10.1364/PRJ.395305
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_017
  doi: 10.1364/OL.425178
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_004
  doi: 10.1364/OE.22.025993
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_012
  doi: 10.1364/OPTICA.6.001138
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_003
  doi: 10.1038/s41467-019-08369-w
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_029
  doi: 10.1063/1.1586469
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_013
  doi: 10.1038/s41586-018-0551-y
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_020
  doi: 10.1364/OL.420250
– ident: 2024072621255117760_j_nanoph-2021-0737_ref_007
  doi: 10.1002/adma.201101781
SSID ssj0000993196
Score 2.4052851
Snippet Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1033
SubjectTerms Amplifiers
Cladding
Dubnium
Erbium
Etching
High gain
integrated waveguide amplifier
Lithium
lithium niobate nanophotonics
Lithium niobates
Photolithography
photolithography assisted chemomechanical etching
Power consumption
Power management
Semiconductor lasers
Tantalum
Tantalum oxides
Thin films
Waveguides
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wK5blQkJG4cLA2iZ04PhZEVSHBiUq9WY4fm6BdZ9VNqPgh_b_MJNlll-eFa2wrlucbzzeahwl5DVbBIDFgZRYqJmRumUl8xkwlCyeK0mUpFjh__FRcXIoPV_nV3lNfmBM2tgceD25uqyAqAXeoS4ywaVCucsFhzWSZW-OH7qVg8_acqS8j70FsTXFJsNnzaGK7rgEUGbjPEp8937NDQ7v-33HMX1Mlj2-GMLbzi-v-W7cNmw7W6Pw-OZ5oJD0bt39C7vj4gNybKCWdFHbzkNyeUWxIzBamidQu8Zpx9MZ89Yu-cZ4azCcPYBlpGykccNOvqGvXMKerm8hCs1xR4Ok1fo8NqH7naTDV8LQQTMKk-QVd122HWXT11P2aAh9H8DgKgFi1bOWxuhjBQBEjsOQRuTx___ndBZteYmA2F7JjZeFyX4YcVBQOP0tyZBpKhIBRa8eDtKESufPgSxUmqJI7KxwvvCuQIHnLH5Oj2Eb_lNCgssKBVylzo4SyQSXcK5vZ1BaBy9TNyHwrF22nNuX4WsZSo7sCktSjJDVKUqMkZ-TNbsV6bNHxl7lvUdS7edhce_gAkNMT5PS_IDcjp1ug6EnjNxqb-kgJ7C-dkVe7YdBVDMCY6Nt-ozmYJayVVsmMPBlxtdsJh5tQCAk7LA8Qd7DVw5HY1EM_cCT1aangx-VP4PyxvT8dCKxNE86f_Y9zeU7uZlgcMuS0n5Kj7rr3L4CyddXLQTu_A7GyRew
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXApb0gpyEhcOFibh53HCbWoVYVEhRCVeoscPzaRdp2wm1D1h_B_mcl6U5ZHr4mtOJ7PM5894xlC3oFVkEgMWB7bivFMKCZDEzNZZanmaa7jCC84f75Izy_5pytx5Q_c1j6scqsTR0WtW4Vn5DNMmpJlYF2jD913hlWj0LvqS2jcJ_uggnPYfO2fnF58-TqdsgD_QYxhhTmgMiwHuu59lWDHZ066tqsBKDFsqTMshf6bbRpT-P-Ld_4dPnlwPbq2tZmvhpt-60odLdTZI3LgqSU93mDhMbln3BPy0NNM6hfx-in5eUwxSTGby8ZRtUDVo-m1_GHmQ6MNlRhjbsFa0tZRmPRmWFLddtCmrxvHbLNYUuDuNT53DaiD3lArq7HcEDTCQPo57eq2x8i62mfEpsDREVCaAkiWLVsavHGMAKGIG-jyjFyenX77eM58dQamBM96mEstTG4FLFttdRwKZB8FtxY92TqxmbIVF9rA_iqVtsgTrbhOUqNTJE1GJc_JnmudeUmoLeJUw04zE7LghbJFmJhCxSpSqU2ySAdktpVLqXzqcqygsShxCwOSLDeSLFGSJUoyIO-nHt0mbccdbU9Q1FM7TLg9PmhX89Kv31JVllccTLkOJVeRLXQFf41Xd3OhpBEBOdoCpfRaYF3eYjYgb6fXsH7RKSOdaYd1mYCpwvvTRRiQFxtcTSNJQDtynsEI8x3E7Qx1941r6jFHOBL9KC_gw_kf4Lwd3v8mBPpGYZIc3v1Lr8iDGK-CjBHsR2SvXw3mNRC0vnrjV-EvHKE_Kw
  priority: 102
  providerName: ProQuest
Title A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching
URI https://www.degruyter.com/doi/10.1515/nanoph-2021-0737
https://www.ncbi.nlm.nih.gov/pubmed/39634477
https://www.proquest.com/docview/2635778931
https://www.proquest.com/docview/3146521290
https://pubmed.ncbi.nlm.nih.gov/PMC11501891
https://doaj.org/article/cbf4b4847d0a4c1f9dbdfd005985cae5
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfY9sLL-IayURmJFx7C8mHHyQNCG1qZkDYhRKW9RY4_mkytU9p0Y38I_y93btqpUJB4TezE8f3O97vYd0fIG7AKEolBkMW2DJjgKpChiQNZilSzNNNxhAHO5xfp2ZB9vuSXd-HR3QTOt7p2WE9qOBu_-_H99gMo_HtfvSfiR066ZlqBvGPwjEUidsge2CWBanrekf2rJRdCvGG1OaA1QQaGqdu33PaQDTvl0_lv46B_HqXcv_Hb3NqMZovbdrWt6q3V4CHZ72gmPV7i4hG5Z9xj8qCjnLRT6PkT8vOYYsLiYCRrR9UYlyFNb-S1GS1qbajE8-YWLCdtHAUB1IsJ1TBBmrZV7QJbjycUeHyF110NS0NrqJWlLz0EjfBQ_YhOq6bFU3ZVlx2bAl9HcGkKgJk0wcRg9DGChSKGoMtTMhycfvt4FnSVGgLFmWhhLjU3meWgwtrqOOTIRHJmLe5q68QKZUvGtQFfK5U2zxKtmE5So1MkUEYlz8iua5x5QajN41SD1ym4zFmubB4mJlexilRqExHpHjlayaVQXRpzrKYxLtCdAUkWS0kWKMkCJdkjb9c9pssUHv9oe4KiXrfD5Nv-QjMbFZ0uF6q0rGRg1nUomYpsrkv4agzjzbiShvfI4QooxQrQBSb9EQLYYdQjr9e3QZdxg0Y60yzmRQJmC2Op87BHni9xtR5JAislYwJGmG0gbmOom3dcXfl84Uj6oyyHF2e_gfNueH-bEOgbhUny8j_m8IDcjzFGxB9tPyS77WxhXgFza8s-2ckGn_pk7-T04svXvv__0fdK2ve_2X4BxkhKSQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jc9MwFNaUcoBL2UuggJiBAwdNvMiLDgxTlpDS5dTO9CZkLbFnEjskDpn-EP4Gv5H3HDslLL31aku27PfpLXobIa9AKihUDFgauIzxJNJMeTZgKktiw-PUBD4mOB-fxMMz_uU8Ot8iP7tcGAyr7Hhiw6hNpfGMvI9FU5IEpKv_bvqNYdco9K52LTRWsDi0F0sw2eZvDz4CfV8HweDT6Ycha7sKMB3xpGZpbCKbugjgZpwJvAilpuDOoQfWhC7RLuORsWAXxMqJNDSamzC2JkZhb3UIz71BbvIwFLij0sHn9ZkOaFuIaOxnB4oTvMnrPKOgNfRLVVbTHGAZgAGfYOP13yRh0zDgX1ru38GaO8vGkW7saLa4qDvHbSMPB3fJTqvI0v0V8u6RLVveJ3dapZa2LGP-gPzYp1gSmY1UUVI9RkZn6FJ9t6NFYSxVGNHuQDbTqqRA4mIxoaaawpg6L0rmivGEgqWQ4_WyAOZTW-pU1jQ3gkEYtj-i07yqMY4vb-tvU7AIEL6GAiQnFZtYzG9GOFJEKUx5SM6uhWqPyHZZlfYxoU4EsQG7NomU4EI74YVW6ED7OnZh4pse6Xd0kbotlI79OsYSDSagpFxRUiIlJVKyR96sZ0xXRUKuGPseSb0eh-W9mwvVbCRbbiF15njGQXEwnuLad8Jk8NWYKJxGWtmoR_Y6oMiW58zl5Q7pkZfr28At0AWkSlst5jIEwYjZ2sLrkd0VrtYrATxj-UdYYbqBuI2lbt4pi7ypSI5mhZ8KeHH6Bzgvl_e_HwJzfS8Mn1z9SS_IreHp8ZE8Ojg5fEpuB5iE0sTO75Hterawz0A1rLPnzX6k5Ot1M4Bf8Ul6nw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWroS4LG8oLGAkLhyiJrFjJ8eyUMprQYKV9hY5fiSR2qRqE1b8EP4vM2kaKCwcuCYeZZKZ8XyOZz4T8gyygkJg4MWhyzwuI-0p34aeyqQwXMQmDLDB-cOpmJ_xt-fR-QE52fXCYFmlsfm6_dZsGVInptYt_igbuAYgA08qVdWrAkwcwmJYMjlZGXeFHAqRMD4ih9P5688fh18tAILQ0fpNysvE95JSx91_GeD8s27y6KLb0x4U_iU1zW6Qox5T0unWCW6SA1vdItd7fEn76N3cJt-nFNmJvVyVFdULnHMMvVBfbd6WxlKFxeUO0iStKwpfu2yX1NQrGNMUZeW5crGkANoLvF6VMA80ljqVdecMwSCsoM_pqqgbLKkreipsCuAcPclQ8I5l7S0tthqjZ1B0GBC5Q85mr76czL3-WAZPR1w2XixMZGMXQbwaZ0I_QtiRcOdwC9swJ7XLeGQsLKyEcknMjOaGCWsEoiWr2V0yqurK3ifUJaEwsMSUkUp4ol3iM5voUAdaOCYDMyaTnV1S3XOW49EZixTXLmDJdGvJFC2ZoiXH5Pkgsdrydfxj7As09TAOmba7C_U6T_vATXXmeMYhhxtfcR24xGTw1tizG0da2WhMjneOkvbhv0mR4UdKgILBmDwdbkPg4m6MqmzdblIGOQobpxN_TO5t_WrQhMG0yLkEDeM9j9tTdf9OVRYdOTgi_CBO4MHxb875U72_fRCQDXzGHvy_6BNy9dPLWfr-zem7h-RaiK0iXYX7MRk169Y-AgDXZI_7AP0BZoZI5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-gain+cladded+waveguide+amplifier+on+erbium+doped+thin-film+lithium+niobate+fabricated+using+photolithography+assisted+chemo-mechanical+etching&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Liang%2C+Youting&rft.au=Zhou%2C+Junxia&rft.au=Liu%2C+Zhaoxiang&rft.au=Zhang%2C+Haisu&rft.date=2022-02-01&rft.issn=2192-8614&rft.eissn=2192-8614&rft.volume=11&rft.issue=5&rft.spage=1033&rft.epage=1040&rft_id=info:doi/10.1515%2Fnanoph-2021-0737&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nanoph_2021_0737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon