A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching
Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and modera...
Saved in:
Published in | Nanophotonics (Berlin, Germany) Vol. 11; no. 5; pp. 1033 - 1040 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
01.02.2022
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta
) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta
cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions. |
---|---|
AbstractList | Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta
2
O
5
) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta
2
O
5
cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions. Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta2O5) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta2O5 cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions.Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta2O5) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta2O5 cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions. Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta2O5) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta2O5 cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions. Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta2O5) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta2O5 cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions. Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta ) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions. Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (Ta O ) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ∼980 nm. Experimental characterizations reveal the advantage of Ta O cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions. |
Author | Zhang, Haisu Wu, Rongbo Zhou, Junxia Fang, Zhiwei Liang, Youting Cheng, Ya Yin, Difeng Wang, Min Lin, Jintian Zhou, Yuan Yu, Jianping Liu, Zhaoxiang |
Author_xml | – sequence: 1 givenname: Youting surname: Liang fullname: Liang, Youting organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China – sequence: 2 givenname: Junxia surname: Zhou fullname: Zhou, Junxia organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China – sequence: 3 givenname: Zhaoxiang surname: Liu fullname: Liu, Zhaoxiang organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China – sequence: 4 givenname: Haisu orcidid: 0000-0001-7823-6257 surname: Zhang fullname: Zhang, Haisu email: hszhang@phy.ecnu.edu.cn organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China – sequence: 5 givenname: Zhiwei orcidid: 0000-0002-8047-1763 surname: Fang fullname: Fang, Zhiwei organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China – sequence: 6 givenname: Yuan surname: Zhou fullname: Zhou, Yuan organization: State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China – sequence: 7 givenname: Difeng surname: Yin fullname: Yin, Difeng organization: State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China – sequence: 8 givenname: Jintian surname: Lin fullname: Lin, Jintian organization: State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China – sequence: 9 givenname: Jianping surname: Yu fullname: Yu, Jianping organization: State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China – sequence: 10 givenname: Rongbo surname: Wu fullname: Wu, Rongbo organization: State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China – sequence: 11 givenname: Min surname: Wang fullname: Wang, Min organization: The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China – sequence: 12 givenname: Ya surname: Cheng fullname: Cheng, Ya email: ya.cheng@siom.ac.cn organization: Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39634477$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1TAQjFARLaV3TsgSFy4BO47j-ISqio9KlbjA2XLsdeLKsYOTtHo_pP8Xh_cobSXwxaPdmfHuel8WRyEGKIrXBL8njLAPQYU4DWWFK1JiTvmz4qQioirbhtRHD_BxcTbP1zgfISgRzYvimIqG1jXnJ8XdORpcP5S9cgFpr4wBg27VDfSrM4DUOHlnHSQUA4LUuXVEJk6ZswwulNb5EXmXcY4HFzu1ALKqS05nZNA6u9CjaYhL3FixT2oadkjNs5u3vB5gjOUIelAhSzyCRWff_lXx3Co_w9nhPi1-fP70_eJrefXty-XF-VWpWc2X3J1h0FqGcWOsqXAGnInaWo4xMdRybbuaGaiYaJQVLTW6NrQB0zSEV6DpaXG59zVRXcspuVGlnYzKyd-BmHqp0uK0B6k7W3d1W3ODVa2JFabLb2LMRMu0Apa9Pu69prUbwWgIS1L-kenjTHCD7OONJIRh0gqSHd4dHFL8ucK8yNHNGrxXAeI6S0rqhlWkEjhT3z6hXsc1hTwrWTWUcd7mr86sNw9Luq_lz_dnAt4TdIrznMDeUwiW25LJ_ZLJbcnktmRZ0jyRaLeoxcWtKef_JzzM51b5BZKBPq27DP5W_i9pHhDBlNJfzzTwtw |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2024_111616 crossref_primary_10_1364_OME_532439 crossref_primary_10_1080_23746149_2024_2360598 crossref_primary_10_1364_OL_497543 crossref_primary_10_1364_OL_512220 crossref_primary_10_1364_OPTCON_458622 crossref_primary_10_1088_1361_6463_ad7ff7 crossref_primary_10_1364_OE_555269 crossref_primary_10_1109_JLT_2023_3338229 crossref_primary_10_1364_OE_533433 crossref_primary_10_1364_OL_486117 crossref_primary_10_3788_COL202321_101901 crossref_primary_10_1364_OE_514318 crossref_primary_10_3788_AOS230994 crossref_primary_10_1002_lpor_202300306 crossref_primary_10_1021_acsphotonics_4c01433 crossref_primary_10_1002_lpor_202200059 crossref_primary_10_1080_23746149_2024_2322739 crossref_primary_10_3788_LOP232213 crossref_primary_10_1364_OL_504540 crossref_primary_10_1364_OE_503076 crossref_primary_10_1021_acsphotonics_4c01951 crossref_primary_10_1364_OL_511729 crossref_primary_10_1002_lpor_202400765 crossref_primary_10_1063_5_0137678 crossref_primary_10_3788_COL202422_041301 crossref_primary_10_7498_aps_74_20241243 crossref_primary_10_3390_ma17184453 crossref_primary_10_3390_app122211712 crossref_primary_10_35848_1347_4065_aca986 crossref_primary_10_1515_nanoph_2024_0020 crossref_primary_10_1007_s13369_023_08440_1 crossref_primary_10_3788_CJL231256 crossref_primary_10_3788_LOP241337 crossref_primary_10_1021_acsphotonics_4c00391 crossref_primary_10_3390_mi13060865 crossref_primary_10_3390_nano15010072 crossref_primary_10_1016_j_mtcomm_2023_106522 crossref_primary_10_1063_5_0232333 crossref_primary_10_1063_5_0233467 crossref_primary_10_1360_TB_2023_0860 crossref_primary_10_1021_acsphotonics_4c01466 crossref_primary_10_1002_adom_202400496 crossref_primary_10_1016_j_optlastec_2023_109908 crossref_primary_10_1103_PhysRevResearch_5_033206 |
Cites_doi | 10.1109/JSTQE.2014.2321279 10.1002/lpor.202100030 10.3788/COL202119.060008 10.1109/2944.577396 10.1364/JOSAB.27.000187 10.1038/nphoton.2013.273 10.1016/j.pquantelec.2015.12.001 10.1364/OL.430015 10.1002/lpor.201000015 10.1364/OL.442281 10.1109/3.303692 10.1364/OL.441167 10.1021/jp4011839 10.1002/que2.9 10.1063/1.1565697 10.1103/PhysRevA.100.033831 10.1364/OL.410608 10.3390/nano8110910 10.1002/lpor.201100035 10.1109/3.631259 10.1364/PRJ.395305 10.1364/OL.425178 10.1364/OE.22.025993 10.1364/OPTICA.6.001138 10.1038/s41467-019-08369-w 10.1063/1.1586469 10.1038/s41586-018-0551-y 10.1364/OL.420250 10.1002/adma.201101781 |
ContentType | Journal Article |
Copyright | 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston. 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
Copyright_xml | – notice: 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
DBID | AAYXX CITATION NPM 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1515/nanoph-2021-0737 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (New) Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2192-8614 |
EndPage | 1040 |
ExternalDocumentID | oai_doaj_org_article_cbf4b4847d0a4c1f9dbdfd005985cae5 PMC11501891 39634477 10_1515_nanoph_2021_0737 10_1515_nanoph_2021_07371151033 |
Genre | Journal Article |
GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV ADMLS AEJTT AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ HZ~ M48 O9- OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC QD8 RPM SA. SLJYH AAYXX CITATION 9-L AIKXB F-. IPNFZ NPM RIG ~Z8 7SP 7U5 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c547t-86d5e8f5006dfd205007594ff7001d3f7cfb45de2596af983dc4d36ed66172ec3 |
IEDL.DBID | M48 |
ISSN | 2192-8614 2192-8606 |
IngestDate | Wed Aug 27 01:02:57 EDT 2025 Thu Aug 21 18:35:32 EDT 2025 Fri Jul 11 06:43:27 EDT 2025 Fri Jul 25 21:18:06 EDT 2025 Wed Feb 19 02:03:16 EST 2025 Thu Apr 24 22:57:50 EDT 2025 Tue Jul 01 00:41:52 EDT 2025 Thu Jul 10 10:34:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | lithium niobate nanophotonics photolithography assisted chemomechanical etching integrated waveguide amplifier |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 2022 Youting Liang et al., published by De Gruyter, Berlin/Boston. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c547t-86d5e8f5006dfd205007594ff7001d3f7cfb45de2596af983dc4d36ed66172ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8047-1763 0000-0001-7823-6257 |
OpenAccessLink | https://doaj.org/article/cbf4b4847d0a4c1f9dbdfd005985cae5 |
PMID | 39634477 |
PQID | 2635778931 |
PQPubID | 2038884 |
PageCount | 08 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cbf4b4847d0a4c1f9dbdfd005985cae5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501891 proquest_miscellaneous_3146521290 proquest_journals_2635778931 pubmed_primary_39634477 crossref_primary_10_1515_nanoph_2021_0737 crossref_citationtrail_10_1515_nanoph_2021_0737 walterdegruyter_journals_10_1515_nanoph_2021_07371151033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Nanophotonics (Berlin, Germany) |
PublicationTitleAlternate | Nanophotonics |
PublicationYear | 2022 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2024072621255117760_j_nanoph-2021-0737_ref_020 2024072621255117760_j_nanoph-2021-0737_ref_006 2024072621255117760_j_nanoph-2021-0737_ref_028 2024072621255117760_j_nanoph-2021-0737_ref_005 2024072621255117760_j_nanoph-2021-0737_ref_027 2024072621255117760_j_nanoph-2021-0737_ref_004 2024072621255117760_j_nanoph-2021-0737_ref_026 2024072621255117760_j_nanoph-2021-0737_ref_003 2024072621255117760_j_nanoph-2021-0737_ref_025 2024072621255117760_j_nanoph-2021-0737_ref_002 2024072621255117760_j_nanoph-2021-0737_ref_024 2024072621255117760_j_nanoph-2021-0737_ref_001 2024072621255117760_j_nanoph-2021-0737_ref_023 2024072621255117760_j_nanoph-2021-0737_ref_022 2024072621255117760_j_nanoph-2021-0737_ref_021 2024072621255117760_j_nanoph-2021-0737_ref_009 2024072621255117760_j_nanoph-2021-0737_ref_008 2024072621255117760_j_nanoph-2021-0737_ref_007 2024072621255117760_j_nanoph-2021-0737_ref_029 2024072621255117760_j_nanoph-2021-0737_ref_031 2024072621255117760_j_nanoph-2021-0737_ref_030 2024072621255117760_j_nanoph-2021-0737_ref_017 2024072621255117760_j_nanoph-2021-0737_ref_016 2024072621255117760_j_nanoph-2021-0737_ref_015 2024072621255117760_j_nanoph-2021-0737_ref_014 2024072621255117760_j_nanoph-2021-0737_ref_013 2024072621255117760_j_nanoph-2021-0737_ref_012 2024072621255117760_j_nanoph-2021-0737_ref_011 2024072621255117760_j_nanoph-2021-0737_ref_010 2024072621255117760_j_nanoph-2021-0737_ref_019 2024072621255117760_j_nanoph-2021-0737_ref_018 |
References_xml | – ident: 2024072621255117760_j_nanoph-2021-0737_ref_024 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_006 doi: 10.1109/JSTQE.2014.2321279 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_022 doi: 10.1002/lpor.202100030 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_021 doi: 10.3788/COL202119.060008 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_027 doi: 10.1109/2944.577396 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_008 doi: 10.1364/JOSAB.27.000187 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_005 doi: 10.1038/nphoton.2013.273 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_002 doi: 10.1016/j.pquantelec.2015.12.001 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_016 doi: 10.1364/OL.430015 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_001 doi: 10.1002/lpor.201000015 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_018 doi: 10.1364/OL.442281 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_030 doi: 10.1109/3.303692 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_019 doi: 10.1364/OL.441167 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_009 doi: 10.1021/jp4011839 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_026 doi: 10.1002/que2.9 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_031 doi: 10.1063/1.1565697 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_010 doi: 10.1103/PhysRevA.100.033831 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_015 doi: 10.1364/OL.410608 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_025 doi: 10.3390/nano8110910 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_011 doi: 10.1002/lpor.201100035 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_023 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_028 doi: 10.1109/3.631259 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_014 doi: 10.1364/PRJ.395305 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_017 doi: 10.1364/OL.425178 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_004 doi: 10.1364/OE.22.025993 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_012 doi: 10.1364/OPTICA.6.001138 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_003 doi: 10.1038/s41467-019-08369-w – ident: 2024072621255117760_j_nanoph-2021-0737_ref_029 doi: 10.1063/1.1586469 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_013 doi: 10.1038/s41586-018-0551-y – ident: 2024072621255117760_j_nanoph-2021-0737_ref_020 doi: 10.1364/OL.420250 – ident: 2024072621255117760_j_nanoph-2021-0737_ref_007 doi: 10.1002/adma.201101781 |
SSID | ssj0000993196 |
Score | 2.4052851 |
Snippet | Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk... |
SourceID | doaj pubmedcentral proquest pubmed crossref walterdegruyter |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1033 |
SubjectTerms | Amplifiers Cladding Dubnium Erbium Etching High gain integrated waveguide amplifier Lithium lithium niobate nanophotonics Lithium niobates Photolithography photolithography assisted chemomechanical etching Power consumption Power management Semiconductor lasers Tantalum Tantalum oxides Thin films Waveguides |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wK5blQkJG4cLA2iZ04PhZEVSHBiUq9WY4fm6BdZ9VNqPgh_b_MJNlll-eFa2wrlucbzzeahwl5DVbBIDFgZRYqJmRumUl8xkwlCyeK0mUpFjh__FRcXIoPV_nV3lNfmBM2tgceD25uqyAqAXeoS4ywaVCucsFhzWSZW-OH7qVg8_acqS8j70FsTXFJsNnzaGK7rgEUGbjPEp8937NDQ7v-33HMX1Mlj2-GMLbzi-v-W7cNmw7W6Pw-OZ5oJD0bt39C7vj4gNybKCWdFHbzkNyeUWxIzBamidQu8Zpx9MZ89Yu-cZ4azCcPYBlpGykccNOvqGvXMKerm8hCs1xR4Ok1fo8NqH7naTDV8LQQTMKk-QVd122HWXT11P2aAh9H8DgKgFi1bOWxuhjBQBEjsOQRuTx___ndBZteYmA2F7JjZeFyX4YcVBQOP0tyZBpKhIBRa8eDtKESufPgSxUmqJI7KxwvvCuQIHnLH5Oj2Eb_lNCgssKBVylzo4SyQSXcK5vZ1BaBy9TNyHwrF22nNuX4WsZSo7sCktSjJDVKUqMkZ-TNbsV6bNHxl7lvUdS7edhce_gAkNMT5PS_IDcjp1ug6EnjNxqb-kgJ7C-dkVe7YdBVDMCY6Nt-ozmYJayVVsmMPBlxtdsJh5tQCAk7LA8Qd7DVw5HY1EM_cCT1aangx-VP4PyxvT8dCKxNE86f_Y9zeU7uZlgcMuS0n5Kj7rr3L4CyddXLQTu_A7GyRew priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXApb0gpyEhcOFibh53HCbWoVYVEhRCVeoscPzaRdp2wm1D1h_B_mcl6U5ZHr4mtOJ7PM5894xlC3oFVkEgMWB7bivFMKCZDEzNZZanmaa7jCC84f75Izy_5pytx5Q_c1j6scqsTR0WtW4Vn5DNMmpJlYF2jD913hlWj0LvqS2jcJ_uggnPYfO2fnF58-TqdsgD_QYxhhTmgMiwHuu59lWDHZ066tqsBKDFsqTMshf6bbRpT-P-Ld_4dPnlwPbq2tZmvhpt-60odLdTZI3LgqSU93mDhMbln3BPy0NNM6hfx-in5eUwxSTGby8ZRtUDVo-m1_GHmQ6MNlRhjbsFa0tZRmPRmWFLddtCmrxvHbLNYUuDuNT53DaiD3lArq7HcEDTCQPo57eq2x8i62mfEpsDREVCaAkiWLVsavHGMAKGIG-jyjFyenX77eM58dQamBM96mEstTG4FLFttdRwKZB8FtxY92TqxmbIVF9rA_iqVtsgTrbhOUqNTJE1GJc_JnmudeUmoLeJUw04zE7LghbJFmJhCxSpSqU2ySAdktpVLqXzqcqygsShxCwOSLDeSLFGSJUoyIO-nHt0mbccdbU9Q1FM7TLg9PmhX89Kv31JVllccTLkOJVeRLXQFf41Xd3OhpBEBOdoCpfRaYF3eYjYgb6fXsH7RKSOdaYd1mYCpwvvTRRiQFxtcTSNJQDtynsEI8x3E7Qx1941r6jFHOBL9KC_gw_kf4Lwd3v8mBPpGYZIc3v1Lr8iDGK-CjBHsR2SvXw3mNRC0vnrjV-EvHKE_Kw priority: 102 providerName: ProQuest |
Title | A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching |
URI | https://www.degruyter.com/doi/10.1515/nanoph-2021-0737 https://www.ncbi.nlm.nih.gov/pubmed/39634477 https://www.proquest.com/docview/2635778931 https://www.proquest.com/docview/3146521290 https://pubmed.ncbi.nlm.nih.gov/PMC11501891 https://doaj.org/article/cbf4b4847d0a4c1f9dbdfd005985cae5 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfY9sLL-IayURmJFx7C8mHHyQNCG1qZkDYhRKW9RY4_mkytU9p0Y38I_y93btqpUJB4TezE8f3O97vYd0fIG7AKEolBkMW2DJjgKpChiQNZilSzNNNxhAHO5xfp2ZB9vuSXd-HR3QTOt7p2WE9qOBu_-_H99gMo_HtfvSfiR066ZlqBvGPwjEUidsge2CWBanrekf2rJRdCvGG1OaA1QQaGqdu33PaQDTvl0_lv46B_HqXcv_Hb3NqMZovbdrWt6q3V4CHZ72gmPV7i4hG5Z9xj8qCjnLRT6PkT8vOYYsLiYCRrR9UYlyFNb-S1GS1qbajE8-YWLCdtHAUB1IsJ1TBBmrZV7QJbjycUeHyF110NS0NrqJWlLz0EjfBQ_YhOq6bFU3ZVlx2bAl9HcGkKgJk0wcRg9DGChSKGoMtTMhycfvt4FnSVGgLFmWhhLjU3meWgwtrqOOTIRHJmLe5q68QKZUvGtQFfK5U2zxKtmE5So1MkUEYlz8iua5x5QajN41SD1ym4zFmubB4mJlexilRqExHpHjlayaVQXRpzrKYxLtCdAUkWS0kWKMkCJdkjb9c9pssUHv9oe4KiXrfD5Nv-QjMbFZ0uF6q0rGRg1nUomYpsrkv4agzjzbiShvfI4QooxQrQBSb9EQLYYdQjr9e3QZdxg0Y60yzmRQJmC2Op87BHni9xtR5JAislYwJGmG0gbmOom3dcXfl84Uj6oyyHF2e_gfNueH-bEOgbhUny8j_m8IDcjzFGxB9tPyS77WxhXgFza8s-2ckGn_pk7-T04svXvv__0fdK2ve_2X4BxkhKSQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jc9MwFNaUcoBL2UuggJiBAwdNvMiLDgxTlpDS5dTO9CZkLbFnEjskDpn-EP4Gv5H3HDslLL31aku27PfpLXobIa9AKihUDFgauIzxJNJMeTZgKktiw-PUBD4mOB-fxMMz_uU8Ot8iP7tcGAyr7Hhiw6hNpfGMvI9FU5IEpKv_bvqNYdco9K52LTRWsDi0F0sw2eZvDz4CfV8HweDT6Ycha7sKMB3xpGZpbCKbugjgZpwJvAilpuDOoQfWhC7RLuORsWAXxMqJNDSamzC2JkZhb3UIz71BbvIwFLij0sHn9ZkOaFuIaOxnB4oTvMnrPKOgNfRLVVbTHGAZgAGfYOP13yRh0zDgX1ru38GaO8vGkW7saLa4qDvHbSMPB3fJTqvI0v0V8u6RLVveJ3dapZa2LGP-gPzYp1gSmY1UUVI9RkZn6FJ9t6NFYSxVGNHuQDbTqqRA4mIxoaaawpg6L0rmivGEgqWQ4_WyAOZTW-pU1jQ3gkEYtj-i07yqMY4vb-tvU7AIEL6GAiQnFZtYzG9GOFJEKUx5SM6uhWqPyHZZlfYxoU4EsQG7NomU4EI74YVW6ED7OnZh4pse6Xd0kbotlI79OsYSDSagpFxRUiIlJVKyR96sZ0xXRUKuGPseSb0eh-W9mwvVbCRbbiF15njGQXEwnuLad8Jk8NWYKJxGWtmoR_Y6oMiW58zl5Q7pkZfr28At0AWkSlst5jIEwYjZ2sLrkd0VrtYrATxj-UdYYbqBuI2lbt4pi7ypSI5mhZ8KeHH6Bzgvl_e_HwJzfS8Mn1z9SS_IreHp8ZE8Ojg5fEpuB5iE0sTO75Hterawz0A1rLPnzX6k5Ot1M4Bf8Ul6nw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWroS4LG8oLGAkLhyiJrFjJ8eyUMprQYKV9hY5fiSR2qRqE1b8EP4vM2kaKCwcuCYeZZKZ8XyOZz4T8gyygkJg4MWhyzwuI-0p34aeyqQwXMQmDLDB-cOpmJ_xt-fR-QE52fXCYFmlsfm6_dZsGVInptYt_igbuAYgA08qVdWrAkwcwmJYMjlZGXeFHAqRMD4ih9P5688fh18tAILQ0fpNysvE95JSx91_GeD8s27y6KLb0x4U_iU1zW6Qox5T0unWCW6SA1vdItd7fEn76N3cJt-nFNmJvVyVFdULnHMMvVBfbd6WxlKFxeUO0iStKwpfu2yX1NQrGNMUZeW5crGkANoLvF6VMA80ljqVdecMwSCsoM_pqqgbLKkreipsCuAcPclQ8I5l7S0tthqjZ1B0GBC5Q85mr76czL3-WAZPR1w2XixMZGMXQbwaZ0I_QtiRcOdwC9swJ7XLeGQsLKyEcknMjOaGCWsEoiWr2V0yqurK3ifUJaEwsMSUkUp4ol3iM5voUAdaOCYDMyaTnV1S3XOW49EZixTXLmDJdGvJFC2ZoiXH5Pkgsdrydfxj7As09TAOmba7C_U6T_vATXXmeMYhhxtfcR24xGTw1tizG0da2WhMjneOkvbhv0mR4UdKgILBmDwdbkPg4m6MqmzdblIGOQobpxN_TO5t_WrQhMG0yLkEDeM9j9tTdf9OVRYdOTgi_CBO4MHxb875U72_fRCQDXzGHvy_6BNy9dPLWfr-zem7h-RaiK0iXYX7MRk169Y-AgDXZI_7AP0BZoZI5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-gain+cladded+waveguide+amplifier+on+erbium+doped+thin-film+lithium+niobate+fabricated+using+photolithography+assisted+chemo-mechanical+etching&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Liang%2C+Youting&rft.au=Zhou%2C+Junxia&rft.au=Liu%2C+Zhaoxiang&rft.au=Zhang%2C+Haisu&rft.date=2022-02-01&rft.issn=2192-8614&rft.eissn=2192-8614&rft.volume=11&rft.issue=5&rft.spage=1033&rft.epage=1040&rft_id=info:doi/10.1515%2Fnanoph-2021-0737&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nanoph_2021_0737 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon |