A Polyphosphate Kinase (PPK2) Widely Conserved in Bacteria
Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aerugino...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 99; no. 26; pp. 16678 - 16683 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.12.2002
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.262655199 |
Cover
Loading…
Abstract | Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa. In a null mutant of P. aeruginosa lacking ppk1, we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn2+over Mg2+, and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 (ppk2) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5′-end is 177 bp upstream of the annotated genome sequence of a "conserved hypothetical protein"; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa, in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces, and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report. |
---|---|
AbstractList | Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa. In a null mutant of P. aeruginosa lacking ppk1, we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn super(2+) over Mg super(2+), and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 (ppk2) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5'-end is 177 bp upstream of the annotated genome sequence of a "conserved hypothetical protein"; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa, in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces, and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report. Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa. In a null mutant of P. aeruginosa lacking ppk1, we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn2+ over Mg2+, and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 (ppk2) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5'-end is 177 bp upstream of the annotated genome sequence of a "conserved hypothetical protein"; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa, in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces, and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report.Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa. In a null mutant of P. aeruginosa lacking ppk1, we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn2+ over Mg2+, and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 (ppk2) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5'-end is 177 bp upstream of the annotated genome sequence of a "conserved hypothetical protein"; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa, in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces, and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report. Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli . PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa . In a null mutant of P. aeruginosa lacking ppk1 , we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn 2+ over Mg 2+ , and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 ( ppk2 ) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5′-end is 177 bp upstream of the annotated genome sequence of a “conserved hypothetical protein”; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa , in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces , and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report. Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa. In a null mutant of P. aeruginosa lacking ppk1, we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn2+ over Mg2+, and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 (ppk2) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5'-end is 177 bp upstream of the annotated genome sequence of a "conserved hypothetical protein"; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa, in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces, and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report. Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli . PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa . In a null mutant of P. aeruginosa lacking ppk1 , we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn 2+ over Mg 2+ , and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 ( ppk2 ) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5′-end is 177 bp upstream of the annotated genome sequence of a “conserved hypothetical protein”; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa , in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces , and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report. |
Author | Kornberg, Arthur Zhang, Haiyu Ishige, Kazuya |
AuthorAffiliation | Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307 |
AuthorAffiliation_xml | – name: Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307 |
Author_xml | – sequence: 1 givenname: Haiyu surname: Zhang fullname: Zhang, Haiyu – sequence: 2 givenname: Kazuya surname: Ishige fullname: Ishige, Kazuya – sequence: 3 givenname: Arthur surname: Kornberg fullname: Kornberg, Arthur |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12486232$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctvEzEQxi1URNOWKycEqx5QOWzwY9cPpB5KxEut1BxAHC2vM0scbdaL7a3If4-jpBFUAk6Wxr9v5pv5TtBR73tA6BnBU4IFezP0Jk4pp7yuiVKP0IRgRUpeKXyEJhhTUcqKVsfoJMYVxljVEj9Bx4RWklNGJ-jtVTH33WZY-jgsTYLi2uWOUFzM59f0dfHNLaDbFDPfRwh3sChcX7wzNkFw5gw9bk0X4en-PUVfP7z_MvtU3tx-_Dy7uiltXYlUCouBNm2rCOacN5Zhwym2tuU1rQwRquGiAQtUSqi54YIJQUlDapCSUdWwU3S56zuMzRoWFvoUTKeH4NYmbLQ3Tv_507ul_u7vNGGKYpb1r_b64H-MEJNeu2ih60wPfoxaUKGqfJv_giQbUjVVGTx_AK78GPp8BE1xnirzZhl68bvtg9_722eg2gE2-BgDtNq6ZJLz2y1cpwnW24j1NmJ9iDjLpg9kh85_E1zsjWzr97BSGdGEcyF1O3Zdgp8poy__jWbi-Y5YxeTDAWF5rlKC_QIJdcgO |
CitedBy_id | crossref_primary_10_3390_ijms25169093 crossref_primary_10_1021_bi2001455 crossref_primary_10_1111_jam_12733 crossref_primary_10_1016_j_scitotenv_2023_168952 crossref_primary_10_1007_s11084_021_09604_5 crossref_primary_10_1016_j_biortech_2022_127875 crossref_primary_10_1021_acscatal_1c02004 crossref_primary_10_1093_femsre_fuy037 crossref_primary_10_3390_biom14080937 crossref_primary_10_1016_j_abb_2016_07_011 crossref_primary_10_1016_j_jmb_2003_08_040 crossref_primary_10_3390_antiox11040685 crossref_primary_10_3390_ijms241813859 crossref_primary_10_1271_bbb_110277 crossref_primary_10_1080_07388551_2020_1826403 crossref_primary_10_1002_cbic_201800704 crossref_primary_10_1128_mBio_00039_13 crossref_primary_10_1111_j_1567_1364_2008_00420_x crossref_primary_10_1128_JB_186_15_5178_5181_2004 crossref_primary_10_1016_j_celrep_2018_02_104 crossref_primary_10_2478_s11756_013_0324_x crossref_primary_10_1007_s11274_020_02875_6 crossref_primary_10_1038_s41396_020_0729_9 crossref_primary_10_1007_s00284_024_03778_7 crossref_primary_10_1007_s10811_019_01831_8 crossref_primary_10_1007_s11008_005_0065_1 crossref_primary_10_3390_biomedicines10040913 crossref_primary_10_1016_j_algal_2021_102530 crossref_primary_10_1002_cbic_201900303 crossref_primary_10_1182_blood_2012_03_306605 crossref_primary_10_1016_j_tim_2021_02_002 crossref_primary_10_1111_cbdd_13439 crossref_primary_10_5650_oleoscience_18_233 crossref_primary_10_1111_nph_16129 crossref_primary_10_1128_ecosalplus_7_2_3 crossref_primary_10_2144_000112319 crossref_primary_10_1093_dnares_dss020 crossref_primary_10_1371_journal_pone_0304810 crossref_primary_10_1128_mBio_00592_21 crossref_primary_10_1016_j_jmb_2024_168651 crossref_primary_10_1016_j_cell_2020_01_006 crossref_primary_10_1074_jbc_REV118_002808 crossref_primary_10_1002_aic_17055 crossref_primary_10_1080_00380768_2022_2029220 crossref_primary_10_1128_AEM_00600_07 crossref_primary_10_1128_mBio_03175_19 crossref_primary_10_3389_fmed_2019_00076 crossref_primary_10_1002_jmr_2726 crossref_primary_10_1039_D0NP00004C crossref_primary_10_2142_biophysico_bppb_v20_0013 crossref_primary_10_1021_acs_jafc_3c09217 crossref_primary_10_1021_jacs_0c06335 crossref_primary_10_1016_j_ijfoodmicro_2015_12_014 crossref_primary_10_1111_j_1365_2818_2006_01597_x crossref_primary_10_1186_1756_0500_6_221 crossref_primary_10_1021_acscatal_8b03151 crossref_primary_10_1073_pnas_0506520102 crossref_primary_10_1002_cbic_201402550 crossref_primary_10_1128_JB_01037_07 crossref_primary_10_1186_1475_2859_12_50 crossref_primary_10_1007_s10522_008_9171_5 crossref_primary_10_1073_pnas_262655299 crossref_primary_10_1186_s43094_021_00196_5 crossref_primary_10_3389_fmicb_2018_00782 crossref_primary_10_1073_pnas_0609733104 crossref_primary_10_1042_BST20190328 crossref_primary_10_1016_j_jmb_2007_11_073 crossref_primary_10_1073_pnas_2309664121 crossref_primary_10_1186_s40659_015_0012_0 crossref_primary_10_1111_1574_6968_12098 crossref_primary_10_1016_j_bbrc_2022_07_090 crossref_primary_10_1111_j_1365_2958_2007_05814_x crossref_primary_10_1371_journal_ppat_1011400 crossref_primary_10_1016_j_bbapap_2021_140660 crossref_primary_10_1128_AEM_70_12_7404_7412_2004 crossref_primary_10_1093_jb_mvy112 crossref_primary_10_1016_j_algal_2023_103037 crossref_primary_10_26508_lsa_201900385 crossref_primary_10_1042_BA20060063 crossref_primary_10_3390_polym13071081 crossref_primary_10_1007_s00203_010_0600_x crossref_primary_10_3390_genes11101115 crossref_primary_10_1074_jbc_M506947200 crossref_primary_10_1371_journal_pone_0076428 crossref_primary_10_1007_s00210_011_0651_9 crossref_primary_10_1016_j_phrs_2020_105211 crossref_primary_10_1073_pnas_1710741115 crossref_primary_10_1016_j_jprot_2009_12_001 crossref_primary_10_1042_BSR20193325 crossref_primary_10_3389_fmicb_2017_02167 crossref_primary_10_1007_s00253_016_7883_z crossref_primary_10_1159_000515741 crossref_primary_10_3390_ijms23020670 crossref_primary_10_3389_fmicb_2023_1203805 crossref_primary_10_1042_BJ20070612 crossref_primary_10_1128_AEM_00399_18 crossref_primary_10_1042_BST20230483 crossref_primary_10_1038_s41467_020_17639_x crossref_primary_10_3389_fmicb_2021_764733 crossref_primary_10_1007_s10529_014_1566_6 crossref_primary_10_2174_1389450119666180801120231 crossref_primary_10_3389_fcimb_2016_00063 crossref_primary_10_1016_j_jbiosc_2017_04_013 crossref_primary_10_1002_cbic_202100596 crossref_primary_10_1042_BSR20150203 crossref_primary_10_1038_s41598_019_53168_4 crossref_primary_10_1002_prot_26780 crossref_primary_10_1111_febs_15120 crossref_primary_10_1074_jbc_M506426200 crossref_primary_10_3389_fpls_2024_1441626 crossref_primary_10_1007_s00438_016_1259_z crossref_primary_10_1002_bit_26454 crossref_primary_10_1016_j_jbiosc_2020_09_016 crossref_primary_10_1038_srep26900 crossref_primary_10_1128_JB_185_15_4519_4529_2003 crossref_primary_10_1186_s13068_023_02361_9 crossref_primary_10_1007_s11105_010_0187_z crossref_primary_10_1042_BST20240678 crossref_primary_10_1002_cctc_202100688 crossref_primary_10_1016_j_bej_2020_107487 crossref_primary_10_1128_AEM_03997_13 crossref_primary_10_1073_pnas_0807563105 crossref_primary_10_1111_jth_13580 crossref_primary_10_1146_annurev_biochem_74_082803_133013 crossref_primary_10_3390_jof7080626 crossref_primary_10_1039_b822549b crossref_primary_10_1128_mSystems_00453_19 crossref_primary_10_1186_1471_2180_10_7 crossref_primary_10_1093_femsle_fnad007 crossref_primary_10_1039_D0GC03830J crossref_primary_10_1534_g3_119_400123 crossref_primary_10_4161_viru_34348 crossref_primary_10_1007_s00284_006_0361_6 crossref_primary_10_1146_annurev_biochem_77_083007_093039 crossref_primary_10_1111_jeu_12093 crossref_primary_10_1016_j_mimet_2014_05_013 crossref_primary_10_1016_j_watres_2017_03_017 crossref_primary_10_1021_acs_est_0c03566 crossref_primary_10_1021_acs_est_3c03114 crossref_primary_10_1007_s00253_020_10706_9 crossref_primary_10_1016_j_jinorgbio_2004_08_004 crossref_primary_10_3390_life12020198 crossref_primary_10_1021_jacs_1c07990 crossref_primary_10_1016_j_eng_2024_09_002 crossref_primary_10_3389_fbioe_2019_00416 crossref_primary_10_1111_tpj_14642 crossref_primary_10_1007_s00294_020_01148_x crossref_primary_10_1128_JB_187_22_7687_7695_2005 crossref_primary_10_1128_JB_186_2_503_517_2004 crossref_primary_10_1080_09553002_2023_2241895 crossref_primary_10_1016_j_fbio_2023_103303 crossref_primary_10_1128_AEM_04168_14 crossref_primary_10_1016_j_watres_2024_122678 crossref_primary_10_1016_j_syapm_2024_126574 crossref_primary_10_1128_JB_187_5_1859_1865_2005 crossref_primary_10_1371_journal_ppat_1012413 crossref_primary_10_1016_j_femsle_2004_11_047 crossref_primary_10_1111_1462_2920_13063 crossref_primary_10_3762_bjoc_18_134 crossref_primary_10_1016_j_crmeth_2024_100814 crossref_primary_10_1134_S0006297906110010 crossref_primary_10_1016_j_jmb_2024_168504 crossref_primary_10_1073_pnas_0407787101 crossref_primary_10_1002_cbic_202400970 crossref_primary_10_3389_fbioe_2019_00153 crossref_primary_10_1016_j_femsle_2004_11_040 crossref_primary_10_1111_j_1365_2958_2009_06925_x crossref_primary_10_1128_AEM_01207_07 crossref_primary_10_1128_AEM_01719_16 crossref_primary_10_3390_proteomes7020016 crossref_primary_10_1055_a_1336_0526 crossref_primary_10_1016_j_bbagen_2017_01_007 crossref_primary_10_1016_j_tibs_2008_04_005 crossref_primary_10_1186_1475_2859_10_63 crossref_primary_10_1128_JB_00070_19 crossref_primary_10_1007_s11274_015_1983_2 crossref_primary_10_1073_pnas_0500023102 crossref_primary_10_1016_j_jbc_2023_104746 crossref_primary_10_1074_jbc_M406796200 |
Cites_doi | 10.1074/jbc.272.34.21240 10.1128/JB.180.7.1841-1847.1998 10.1073/pnas.94.21.11210 10.1016/0968-0004(90)90281-F 10.1038/35023079 10.1017/S0033583599003480 10.1146/annurev.biochem.68.1.89 10.1111/j.1399-3011.1985.tb02208.x 10.1128/JB.182.23.6687-6693.2000 10.1016/S0021-9258(19)38459-5 10.1073/pnas.060030097 10.1111/j.1365-2958.1996.tb02538.x 10.1016/0003-9861(82)90120-5 10.1046/j.1365-2958.1998.00887.x 10.1016/0378-1119(85)90120-9 10.1128/JB.182.1.225-227.2000 10.1128/JB.180.8.2186-2193.1998 10.1046/j.1365-2958.1998.01121.x 10.1073/pnas.170283397 10.1146/annurev.bi.57.070188.001315 10.1073/pnas.262655299 10.1006/bbrc.2001.4415 10.1046/j.1365-2958.1998.00702.x 10.1016/0006-291X(70)90918-6 10.1128/jb.178.5.1394-1400.1996 10.1016/0003-2697(77)90043-4 |
ContentType | Journal Article |
Copyright | Copyright 1993-2002 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 24, 2002 Copyright © 2002, The National Academy of Sciences 2002 |
Copyright_xml | – notice: Copyright 1993-2002 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 24, 2002 – notice: Copyright © 2002, The National Academy of Sciences 2002 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 F1W H95 H97 L.G 7X8 5PM |
DOI | 10.1073/pnas.262655199 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 16683 |
ExternalDocumentID | PMC139203 281405141 12486232 10_1073_pnas_262655199 99_26_16678 3073997 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AFDAS AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM OHM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 F1W H95 H97 L.G 7X8 5PM |
ID | FETCH-LOGICAL-c547t-7c0e2bff910666bc30a620ccf6524a179b67bece288e56a6737721b15e88329b3 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 14:11:06 EDT 2025 Fri Jul 11 01:24:41 EDT 2025 Fri Jul 11 04:13:26 EDT 2025 Thu Aug 21 15:45:28 EDT 2025 Wed Feb 19 02:08:41 EST 2025 Tue Jul 01 03:59:20 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Wed Nov 11 00:29:30 EST 2020 Thu May 30 08:53:48 EDT 2019 Thu May 29 08:41:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c547t-7c0e2bff910666bc30a620ccf6524a179b67bece288e56a6737721b15e88329b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 To whom correspondence should be addressed. E-mail: akornber@cmgm.stanford.edu. Data deposition: The sequence reported in this paper (ppk2) has been deposited in the GenBank database (accession no. ). Contributed by Arthur Kornberg |
PMID | 12486232 |
PQID | 201398524 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_262655199 proquest_journals_201398524 pubmed_primary_12486232 jstor_primary_3073997 crossref_primary_10_1073_pnas_262655199 pnas_primary_99_26_16678 proquest_miscellaneous_18839529 pnas_primary_99_26_16678_fulltext proquest_miscellaneous_72794000 pubmedcentral_primary_oai_pubmedcentral_nih_gov_139203 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-12-24 |
PublicationDateYYYYMMDD | 2002-12-24 |
PublicationDate_xml | – month: 12 year: 2002 text: 2002-12-24 day: 24 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2002 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 Kulaev I. S. (e_1_3_3_2_2) 1983; 15 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_16_2 doi: 10.1074/jbc.272.34.21240 – ident: e_1_3_3_29_2 – volume: 15 start-page: 731 year: 1983 ident: e_1_3_3_2_2 publication-title: Adv. Microbiol. – ident: e_1_3_3_7_2 doi: 10.1128/JB.180.7.1841-1847.1998 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.94.21.11210 – ident: e_1_3_3_23_2 doi: 10.1016/0968-0004(90)90281-F – ident: e_1_3_3_21_2 doi: 10.1038/35023079 – ident: e_1_3_3_22_2 doi: 10.1017/S0033583599003480 – ident: e_1_3_3_1_2 – ident: e_1_3_3_8_2 doi: 10.1146/annurev.biochem.68.1.89 – ident: e_1_3_3_20_2 doi: 10.1111/j.1399-3011.1985.tb02208.x – ident: e_1_3_3_11_2 doi: 10.1128/JB.182.23.6687-6693.2000 – ident: e_1_3_3_13_2 doi: 10.1016/S0021-9258(19)38459-5 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.060030097 – ident: e_1_3_3_24_2 doi: 10.1111/j.1365-2958.1996.tb02538.x – ident: e_1_3_3_25_2 doi: 10.1016/0003-9861(82)90120-5 – ident: e_1_3_3_28_2 doi: 10.1046/j.1365-2958.1998.00887.x – ident: e_1_3_3_17_2 doi: 10.1016/0378-1119(85)90120-9 – ident: e_1_3_3_9_2 doi: 10.1128/JB.182.1.225-227.2000 – ident: e_1_3_3_6_2 doi: 10.1128/JB.180.8.2186-2193.1998 – ident: e_1_3_3_27_2 doi: 10.1046/j.1365-2958.1998.01121.x – ident: e_1_3_3_12_2 doi: 10.1073/pnas.170283397 – ident: e_1_3_3_3_2 doi: 10.1146/annurev.bi.57.070188.001315 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.262655299 – ident: e_1_3_3_15_2 doi: 10.1006/bbrc.2001.4415 – ident: e_1_3_3_26_2 doi: 10.1046/j.1365-2958.1998.00702.x – ident: e_1_3_3_19_2 doi: 10.1016/0006-291X(70)90918-6 – ident: e_1_3_3_4_2 doi: 10.1128/jb.178.5.1394-1400.1996 – ident: e_1_3_3_18_2 doi: 10.1016/0003-2697(77)90043-4 |
SSID | ssj0009580 |
Score | 2.1866043 |
Snippet | Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16678 |
SubjectTerms | Amino Acid Sequence Amino acids ATP Bacteria Base Sequence Biochemistry Biological Sciences Cloning, Molecular Conserved Sequence Cyanophyta Diphosphates E coli Enzymes Escherichia coli Genomes Manganese - pharmacology Microorganisms Molecular Sequence Data Phosphates Phosphotransferases (Phosphate Group Acceptor) - chemistry Phosphotransferases (Phosphate Group Acceptor) - genetics Phosphotransferases (Phosphate Group Acceptor) - isolation & purification Polymers Polyphosphates ppk2 gene Proteins Pseudomonas aeruginosa Pseudomonas aeruginosa - enzymology Rhizobium Streptomyces |
Title | A Polyphosphate Kinase (PPK2) Widely Conserved in Bacteria |
URI | https://www.jstor.org/stable/3073997 http://www.pnas.org/content/99/26/16678.abstract https://www.ncbi.nlm.nih.gov/pubmed/12486232 https://www.proquest.com/docview/201398524 https://www.proquest.com/docview/18839529 https://www.proquest.com/docview/72794000 https://pubmed.ncbi.nlm.nih.gov/PMC139203 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMRgsjI8gIbEpypa4jmPzViGgMFH1YZP6FtmZQysgrdpGqPsn-Jc5x46bjFUCHhpVzjVO7i734Z5_h9BrHoNXExEJmRRRSAqmQoZlGhIe86Qg4PPqXWlfRnR4ST5Pkkmv96tVtVSt5Wl-feu-kv-RKoyBXPUu2X-QrLsoDMB3kC8cQcJw_CsZD3SPhc1iOl8tphAzBt9mJTglHTSOx-dYJ_w_NYrVRteW69VXpYGWAmkAmkU7Lh07P7ZqqgZGzTLhYLvpxFqCVRAG49G2hfFQzDZVUK89OwMurquNCD6tprOvLa1aT6tlcD5flg5Zq1lxqJuf4O2KY2d6N3HbyGJwfMT-Qhm7CmFJSInpDNoYXtMZySoYbpvRmFLT2OcPAw8WSXclBm6eYsjFIN4zV2lJe_GjFjcELpCt2cXTDs72Df_nqhI5zzDN6rnvoLsY8g5t6T9O4haKMzN7muwTNiigaf-se0sai9bO3wl4TM2rBtIF8tuSmpu1ua1g5-IBum-zFH9gVG4f9VT5EO03QvCPLVj5ySP0duB3dNA3Ougfaw088Y3--U7__FnpN_p3gC4_vL94NwxtP44wT0i6DtM8UlgWBUSYkPTKvB8JiqM8L2iCiQDLLmkKJkFhxlRChe6ABCyUcaIY-A0u-4_RXjkv1SHyaaJEnFBGCvhwQRmTHOM0FlcsLUh-5aGwYVqWW7B63TPle1YXTaT9TDMwc_z20BtHvzAwLTspD2oZODLt5DhPPXRYEzbDLWXw0Ktdp7LClmh56KiRZWYtBEyq8ysGzPHQS3cWzLf-T06Ual6tshhYwxPMd1NAgsHB0UYeemI0Y_uAVsM8RDs64wg0dHz3TDmb1hDycF846j_d_cxH6N721X-G9tbLSj2H8HstX9SvxG9O2tVt |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+polyphosphate+kinase+%28PPK2%29+widely+conserved+in+bacteria&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Haiyu+Zhang&rft.au=Kazuya+Ishige&rft.au=Arthur+Kornberg&rft.date=2002-12-24&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=99&rft.issue=26&rft.spage=16678&rft_id=info:doi/10.1073%2Fpnas.262655199&rft_id=info%3Apmid%2F12486232&rft.externalDBID=n%2Fa&rft.externalDocID=99_26_16678 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F99%2F26.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F99%2F26.cover.gif |