A Polyphosphate Kinase (PPK2) Widely Conserved in Bacteria

Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aerugino...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 99; no. 26; pp. 16678 - 16683
Main Authors Zhang, Haiyu, Ishige, Kazuya, Kornberg, Arthur
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.12.2002
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
DOI10.1073/pnas.262655199

Cover

Loading…
Abstract Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa. In a null mutant of P. aeruginosa lacking ppk1, we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn2+over Mg2+, and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 (ppk2) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5′-end is 177 bp upstream of the annotated genome sequence of a "conserved hypothetical protein"; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa, in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces, and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report.
AbstractList Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa. In a null mutant of P. aeruginosa lacking ppk1, we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn super(2+) over Mg super(2+), and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 (ppk2) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5'-end is 177 bp upstream of the annotated genome sequence of a "conserved hypothetical protein"; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa, in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces, and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report.
Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa. In a null mutant of P. aeruginosa lacking ppk1, we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn2+ over Mg2+, and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 (ppk2) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5'-end is 177 bp upstream of the annotated genome sequence of a "conserved hypothetical protein"; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa, in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces, and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report.Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa. In a null mutant of P. aeruginosa lacking ppk1, we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn2+ over Mg2+, and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 (ppk2) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5'-end is 177 bp upstream of the annotated genome sequence of a "conserved hypothetical protein"; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa, in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces, and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report.
Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli . PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa . In a null mutant of P. aeruginosa lacking ppk1 , we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn 2+ over Mg 2+ , and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 ( ppk2 ) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5′-end is 177 bp upstream of the annotated genome sequence of a “conserved hypothetical protein”; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa , in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces , and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report.
Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa. In a null mutant of P. aeruginosa lacking ppk1, we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn2+ over Mg2+, and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 (ppk2) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5'-end is 177 bp upstream of the annotated genome sequence of a "conserved hypothetical protein"; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa, in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces, and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report.
Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli . PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa . In a null mutant of P. aeruginosa lacking ppk1 , we have discovered a previously uncharacterized PPK activity (designated PPK2) distinguished from PPK1 by the following: synthesis of poly P from GTP or ATP, a preference for Mn 2+ over Mg 2+ , and a stimulation by poly P. The reverse reaction, a poly P-driven nucleoside diphosphate kinase synthesis of GTP from GDP, is 75-fold greater than the forward reaction, poly P synthesis from GTP. The gene encoding PPK2 ( ppk2 ) was identified from the amino acid sequence of the protein purified near 1,000-fold, to homogeneity. The 5′-end is 177 bp upstream of the annotated genome sequence of a “conserved hypothetical protein”; ppk2 (1,074 bp) encodes a protein of 357 aa with a molecular mass of 40.8 kDa. Sequences homologous to PPK2 are present in two other proteins in P. aeruginosa , in two Archaea, and in 32 other bacteria (almost all with PPK1 as well); these include rhizobia, cyanobacteria, Streptomyces , and several pathogenic species. Distinctive features of the poly P-driven nucleoside diphosphate kinase activity and structural aspects of PPK2 are among the subjects of an accompanying report.
Author Kornberg, Arthur
Zhang, Haiyu
Ishige, Kazuya
AuthorAffiliation Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307
AuthorAffiliation_xml – name: Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307
Author_xml – sequence: 1
  givenname: Haiyu
  surname: Zhang
  fullname: Zhang, Haiyu
– sequence: 2
  givenname: Kazuya
  surname: Ishige
  fullname: Ishige, Kazuya
– sequence: 3
  givenname: Arthur
  surname: Kornberg
  fullname: Kornberg, Arthur
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12486232$$D View this record in MEDLINE/PubMed
BookMark eNqFkctvEzEQxi1URNOWKycEqx5QOWzwY9cPpB5KxEut1BxAHC2vM0scbdaL7a3If4-jpBFUAk6Wxr9v5pv5TtBR73tA6BnBU4IFezP0Jk4pp7yuiVKP0IRgRUpeKXyEJhhTUcqKVsfoJMYVxljVEj9Bx4RWklNGJ-jtVTH33WZY-jgsTYLi2uWOUFzM59f0dfHNLaDbFDPfRwh3sChcX7wzNkFw5gw9bk0X4en-PUVfP7z_MvtU3tx-_Dy7uiltXYlUCouBNm2rCOacN5Zhwym2tuU1rQwRquGiAQtUSqi54YIJQUlDapCSUdWwU3S56zuMzRoWFvoUTKeH4NYmbLQ3Tv_507ul_u7vNGGKYpb1r_b64H-MEJNeu2ih60wPfoxaUKGqfJv_giQbUjVVGTx_AK78GPp8BE1xnirzZhl68bvtg9_722eg2gE2-BgDtNq6ZJLz2y1cpwnW24j1NmJ9iDjLpg9kh85_E1zsjWzr97BSGdGEcyF1O3Zdgp8poy__jWbi-Y5YxeTDAWF5rlKC_QIJdcgO
CitedBy_id crossref_primary_10_3390_ijms25169093
crossref_primary_10_1021_bi2001455
crossref_primary_10_1111_jam_12733
crossref_primary_10_1016_j_scitotenv_2023_168952
crossref_primary_10_1007_s11084_021_09604_5
crossref_primary_10_1016_j_biortech_2022_127875
crossref_primary_10_1021_acscatal_1c02004
crossref_primary_10_1093_femsre_fuy037
crossref_primary_10_3390_biom14080937
crossref_primary_10_1016_j_abb_2016_07_011
crossref_primary_10_1016_j_jmb_2003_08_040
crossref_primary_10_3390_antiox11040685
crossref_primary_10_3390_ijms241813859
crossref_primary_10_1271_bbb_110277
crossref_primary_10_1080_07388551_2020_1826403
crossref_primary_10_1002_cbic_201800704
crossref_primary_10_1128_mBio_00039_13
crossref_primary_10_1111_j_1567_1364_2008_00420_x
crossref_primary_10_1128_JB_186_15_5178_5181_2004
crossref_primary_10_1016_j_celrep_2018_02_104
crossref_primary_10_2478_s11756_013_0324_x
crossref_primary_10_1007_s11274_020_02875_6
crossref_primary_10_1038_s41396_020_0729_9
crossref_primary_10_1007_s00284_024_03778_7
crossref_primary_10_1007_s10811_019_01831_8
crossref_primary_10_1007_s11008_005_0065_1
crossref_primary_10_3390_biomedicines10040913
crossref_primary_10_1016_j_algal_2021_102530
crossref_primary_10_1002_cbic_201900303
crossref_primary_10_1182_blood_2012_03_306605
crossref_primary_10_1016_j_tim_2021_02_002
crossref_primary_10_1111_cbdd_13439
crossref_primary_10_5650_oleoscience_18_233
crossref_primary_10_1111_nph_16129
crossref_primary_10_1128_ecosalplus_7_2_3
crossref_primary_10_2144_000112319
crossref_primary_10_1093_dnares_dss020
crossref_primary_10_1371_journal_pone_0304810
crossref_primary_10_1128_mBio_00592_21
crossref_primary_10_1016_j_jmb_2024_168651
crossref_primary_10_1016_j_cell_2020_01_006
crossref_primary_10_1074_jbc_REV118_002808
crossref_primary_10_1002_aic_17055
crossref_primary_10_1080_00380768_2022_2029220
crossref_primary_10_1128_AEM_00600_07
crossref_primary_10_1128_mBio_03175_19
crossref_primary_10_3389_fmed_2019_00076
crossref_primary_10_1002_jmr_2726
crossref_primary_10_1039_D0NP00004C
crossref_primary_10_2142_biophysico_bppb_v20_0013
crossref_primary_10_1021_acs_jafc_3c09217
crossref_primary_10_1021_jacs_0c06335
crossref_primary_10_1016_j_ijfoodmicro_2015_12_014
crossref_primary_10_1111_j_1365_2818_2006_01597_x
crossref_primary_10_1186_1756_0500_6_221
crossref_primary_10_1021_acscatal_8b03151
crossref_primary_10_1073_pnas_0506520102
crossref_primary_10_1002_cbic_201402550
crossref_primary_10_1128_JB_01037_07
crossref_primary_10_1186_1475_2859_12_50
crossref_primary_10_1007_s10522_008_9171_5
crossref_primary_10_1073_pnas_262655299
crossref_primary_10_1186_s43094_021_00196_5
crossref_primary_10_3389_fmicb_2018_00782
crossref_primary_10_1073_pnas_0609733104
crossref_primary_10_1042_BST20190328
crossref_primary_10_1016_j_jmb_2007_11_073
crossref_primary_10_1073_pnas_2309664121
crossref_primary_10_1186_s40659_015_0012_0
crossref_primary_10_1111_1574_6968_12098
crossref_primary_10_1016_j_bbrc_2022_07_090
crossref_primary_10_1111_j_1365_2958_2007_05814_x
crossref_primary_10_1371_journal_ppat_1011400
crossref_primary_10_1016_j_bbapap_2021_140660
crossref_primary_10_1128_AEM_70_12_7404_7412_2004
crossref_primary_10_1093_jb_mvy112
crossref_primary_10_1016_j_algal_2023_103037
crossref_primary_10_26508_lsa_201900385
crossref_primary_10_1042_BA20060063
crossref_primary_10_3390_polym13071081
crossref_primary_10_1007_s00203_010_0600_x
crossref_primary_10_3390_genes11101115
crossref_primary_10_1074_jbc_M506947200
crossref_primary_10_1371_journal_pone_0076428
crossref_primary_10_1007_s00210_011_0651_9
crossref_primary_10_1016_j_phrs_2020_105211
crossref_primary_10_1073_pnas_1710741115
crossref_primary_10_1016_j_jprot_2009_12_001
crossref_primary_10_1042_BSR20193325
crossref_primary_10_3389_fmicb_2017_02167
crossref_primary_10_1007_s00253_016_7883_z
crossref_primary_10_1159_000515741
crossref_primary_10_3390_ijms23020670
crossref_primary_10_3389_fmicb_2023_1203805
crossref_primary_10_1042_BJ20070612
crossref_primary_10_1128_AEM_00399_18
crossref_primary_10_1042_BST20230483
crossref_primary_10_1038_s41467_020_17639_x
crossref_primary_10_3389_fmicb_2021_764733
crossref_primary_10_1007_s10529_014_1566_6
crossref_primary_10_2174_1389450119666180801120231
crossref_primary_10_3389_fcimb_2016_00063
crossref_primary_10_1016_j_jbiosc_2017_04_013
crossref_primary_10_1002_cbic_202100596
crossref_primary_10_1042_BSR20150203
crossref_primary_10_1038_s41598_019_53168_4
crossref_primary_10_1002_prot_26780
crossref_primary_10_1111_febs_15120
crossref_primary_10_1074_jbc_M506426200
crossref_primary_10_3389_fpls_2024_1441626
crossref_primary_10_1007_s00438_016_1259_z
crossref_primary_10_1002_bit_26454
crossref_primary_10_1016_j_jbiosc_2020_09_016
crossref_primary_10_1038_srep26900
crossref_primary_10_1128_JB_185_15_4519_4529_2003
crossref_primary_10_1186_s13068_023_02361_9
crossref_primary_10_1007_s11105_010_0187_z
crossref_primary_10_1042_BST20240678
crossref_primary_10_1002_cctc_202100688
crossref_primary_10_1016_j_bej_2020_107487
crossref_primary_10_1128_AEM_03997_13
crossref_primary_10_1073_pnas_0807563105
crossref_primary_10_1111_jth_13580
crossref_primary_10_1146_annurev_biochem_74_082803_133013
crossref_primary_10_3390_jof7080626
crossref_primary_10_1039_b822549b
crossref_primary_10_1128_mSystems_00453_19
crossref_primary_10_1186_1471_2180_10_7
crossref_primary_10_1093_femsle_fnad007
crossref_primary_10_1039_D0GC03830J
crossref_primary_10_1534_g3_119_400123
crossref_primary_10_4161_viru_34348
crossref_primary_10_1007_s00284_006_0361_6
crossref_primary_10_1146_annurev_biochem_77_083007_093039
crossref_primary_10_1111_jeu_12093
crossref_primary_10_1016_j_mimet_2014_05_013
crossref_primary_10_1016_j_watres_2017_03_017
crossref_primary_10_1021_acs_est_0c03566
crossref_primary_10_1021_acs_est_3c03114
crossref_primary_10_1007_s00253_020_10706_9
crossref_primary_10_1016_j_jinorgbio_2004_08_004
crossref_primary_10_3390_life12020198
crossref_primary_10_1021_jacs_1c07990
crossref_primary_10_1016_j_eng_2024_09_002
crossref_primary_10_3389_fbioe_2019_00416
crossref_primary_10_1111_tpj_14642
crossref_primary_10_1007_s00294_020_01148_x
crossref_primary_10_1128_JB_187_22_7687_7695_2005
crossref_primary_10_1128_JB_186_2_503_517_2004
crossref_primary_10_1080_09553002_2023_2241895
crossref_primary_10_1016_j_fbio_2023_103303
crossref_primary_10_1128_AEM_04168_14
crossref_primary_10_1016_j_watres_2024_122678
crossref_primary_10_1016_j_syapm_2024_126574
crossref_primary_10_1128_JB_187_5_1859_1865_2005
crossref_primary_10_1371_journal_ppat_1012413
crossref_primary_10_1016_j_femsle_2004_11_047
crossref_primary_10_1111_1462_2920_13063
crossref_primary_10_3762_bjoc_18_134
crossref_primary_10_1016_j_crmeth_2024_100814
crossref_primary_10_1134_S0006297906110010
crossref_primary_10_1016_j_jmb_2024_168504
crossref_primary_10_1073_pnas_0407787101
crossref_primary_10_1002_cbic_202400970
crossref_primary_10_3389_fbioe_2019_00153
crossref_primary_10_1016_j_femsle_2004_11_040
crossref_primary_10_1111_j_1365_2958_2009_06925_x
crossref_primary_10_1128_AEM_01207_07
crossref_primary_10_1128_AEM_01719_16
crossref_primary_10_3390_proteomes7020016
crossref_primary_10_1055_a_1336_0526
crossref_primary_10_1016_j_bbagen_2017_01_007
crossref_primary_10_1016_j_tibs_2008_04_005
crossref_primary_10_1186_1475_2859_10_63
crossref_primary_10_1128_JB_00070_19
crossref_primary_10_1007_s11274_015_1983_2
crossref_primary_10_1073_pnas_0500023102
crossref_primary_10_1016_j_jbc_2023_104746
crossref_primary_10_1074_jbc_M406796200
Cites_doi 10.1074/jbc.272.34.21240
10.1128/JB.180.7.1841-1847.1998
10.1073/pnas.94.21.11210
10.1016/0968-0004(90)90281-F
10.1038/35023079
10.1017/S0033583599003480
10.1146/annurev.biochem.68.1.89
10.1111/j.1399-3011.1985.tb02208.x
10.1128/JB.182.23.6687-6693.2000
10.1016/S0021-9258(19)38459-5
10.1073/pnas.060030097
10.1111/j.1365-2958.1996.tb02538.x
10.1016/0003-9861(82)90120-5
10.1046/j.1365-2958.1998.00887.x
10.1016/0378-1119(85)90120-9
10.1128/JB.182.1.225-227.2000
10.1128/JB.180.8.2186-2193.1998
10.1046/j.1365-2958.1998.01121.x
10.1073/pnas.170283397
10.1146/annurev.bi.57.070188.001315
10.1073/pnas.262655299
10.1006/bbrc.2001.4415
10.1046/j.1365-2958.1998.00702.x
10.1016/0006-291X(70)90918-6
10.1128/jb.178.5.1394-1400.1996
10.1016/0003-2697(77)90043-4
ContentType Journal Article
Copyright Copyright 1993-2002 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 24, 2002
Copyright © 2002, The National Academy of Sciences 2002
Copyright_xml – notice: Copyright 1993-2002 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 24, 2002
– notice: Copyright © 2002, The National Academy of Sciences 2002
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
F1W
H95
H97
L.G
7X8
5PM
DOI 10.1073/pnas.262655199
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
CrossRef
MEDLINE

Virology and AIDS Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 16683
ExternalDocumentID PMC139203
281405141
12486232
10_1073_pnas_262655199
99_26_16678
3073997
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
08R
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AFDAS
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
OHM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
F1W
H95
H97
L.G
7X8
5PM
ID FETCH-LOGICAL-c547t-7c0e2bff910666bc30a620ccf6524a179b67bece288e56a6737721b15e88329b3
ISSN 0027-8424
IngestDate Thu Aug 21 14:11:06 EDT 2025
Fri Jul 11 01:24:41 EDT 2025
Fri Jul 11 04:13:26 EDT 2025
Thu Aug 21 15:45:28 EDT 2025
Wed Feb 19 02:08:41 EST 2025
Tue Jul 01 03:59:20 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Wed Nov 11 00:29:30 EST 2020
Thu May 30 08:53:48 EDT 2019
Thu May 29 08:41:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c547t-7c0e2bff910666bc30a620ccf6524a179b67bece288e56a6737721b15e88329b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
To whom correspondence should be addressed. E-mail: akornber@cmgm.stanford.edu.
Data deposition: The sequence reported in this paper (ppk2) has been deposited in the GenBank database (accession no. ).
Contributed by Arthur Kornberg
PMID 12486232
PQID 201398524
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_262655199
proquest_journals_201398524
pubmed_primary_12486232
jstor_primary_3073997
crossref_primary_10_1073_pnas_262655199
pnas_primary_99_26_16678
proquest_miscellaneous_18839529
pnas_primary_99_26_16678_fulltext
proquest_miscellaneous_72794000
pubmedcentral_primary_oai_pubmedcentral_nih_gov_139203
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-12-24
PublicationDateYYYYMMDD 2002-12-24
PublicationDate_xml – month: 12
  year: 2002
  text: 2002-12-24
  day: 24
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2002
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
Kulaev I. S. (e_1_3_3_2_2) 1983; 15
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_16_2
  doi: 10.1074/jbc.272.34.21240
– ident: e_1_3_3_29_2
– volume: 15
  start-page: 731
  year: 1983
  ident: e_1_3_3_2_2
  publication-title: Adv. Microbiol.
– ident: e_1_3_3_7_2
  doi: 10.1128/JB.180.7.1841-1847.1998
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.94.21.11210
– ident: e_1_3_3_23_2
  doi: 10.1016/0968-0004(90)90281-F
– ident: e_1_3_3_21_2
  doi: 10.1038/35023079
– ident: e_1_3_3_22_2
  doi: 10.1017/S0033583599003480
– ident: e_1_3_3_1_2
– ident: e_1_3_3_8_2
  doi: 10.1146/annurev.biochem.68.1.89
– ident: e_1_3_3_20_2
  doi: 10.1111/j.1399-3011.1985.tb02208.x
– ident: e_1_3_3_11_2
  doi: 10.1128/JB.182.23.6687-6693.2000
– ident: e_1_3_3_13_2
  doi: 10.1016/S0021-9258(19)38459-5
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.060030097
– ident: e_1_3_3_24_2
  doi: 10.1111/j.1365-2958.1996.tb02538.x
– ident: e_1_3_3_25_2
  doi: 10.1016/0003-9861(82)90120-5
– ident: e_1_3_3_28_2
  doi: 10.1046/j.1365-2958.1998.00887.x
– ident: e_1_3_3_17_2
  doi: 10.1016/0378-1119(85)90120-9
– ident: e_1_3_3_9_2
  doi: 10.1128/JB.182.1.225-227.2000
– ident: e_1_3_3_6_2
  doi: 10.1128/JB.180.8.2186-2193.1998
– ident: e_1_3_3_27_2
  doi: 10.1046/j.1365-2958.1998.01121.x
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.170283397
– ident: e_1_3_3_3_2
  doi: 10.1146/annurev.bi.57.070188.001315
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.262655299
– ident: e_1_3_3_15_2
  doi: 10.1006/bbrc.2001.4415
– ident: e_1_3_3_26_2
  doi: 10.1046/j.1365-2958.1998.00702.x
– ident: e_1_3_3_19_2
  doi: 10.1016/0006-291X(70)90918-6
– ident: e_1_3_3_4_2
  doi: 10.1128/jb.178.5.1394-1400.1996
– ident: e_1_3_3_18_2
  doi: 10.1016/0003-2697(77)90043-4
SSID ssj0009580
Score 2.1866043
Snippet Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16678
SubjectTerms Amino Acid Sequence
Amino acids
ATP
Bacteria
Base Sequence
Biochemistry
Biological Sciences
Cloning, Molecular
Conserved Sequence
Cyanophyta
Diphosphates
E coli
Enzymes
Escherichia coli
Genomes
Manganese - pharmacology
Microorganisms
Molecular Sequence Data
Phosphates
Phosphotransferases (Phosphate Group Acceptor) - chemistry
Phosphotransferases (Phosphate Group Acceptor) - genetics
Phosphotransferases (Phosphate Group Acceptor) - isolation & purification
Polymers
Polyphosphates
ppk2 gene
Proteins
Pseudomonas aeruginosa
Pseudomonas aeruginosa - enzymology
Rhizobium
Streptomyces
Title A Polyphosphate Kinase (PPK2) Widely Conserved in Bacteria
URI https://www.jstor.org/stable/3073997
http://www.pnas.org/content/99/26/16678.abstract
https://www.ncbi.nlm.nih.gov/pubmed/12486232
https://www.proquest.com/docview/201398524
https://www.proquest.com/docview/18839529
https://www.proquest.com/docview/72794000
https://pubmed.ncbi.nlm.nih.gov/PMC139203
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMRgsjI8gIbEpypa4jmPzViGgMFH1YZP6FtmZQysgrdpGqPsn-Jc5x46bjFUCHhpVzjVO7i734Z5_h9BrHoNXExEJmRRRSAqmQoZlGhIe86Qg4PPqXWlfRnR4ST5Pkkmv96tVtVSt5Wl-feu-kv-RKoyBXPUu2X-QrLsoDMB3kC8cQcJw_CsZD3SPhc1iOl8tphAzBt9mJTglHTSOx-dYJ_w_NYrVRteW69VXpYGWAmkAmkU7Lh07P7ZqqgZGzTLhYLvpxFqCVRAG49G2hfFQzDZVUK89OwMurquNCD6tprOvLa1aT6tlcD5flg5Zq1lxqJuf4O2KY2d6N3HbyGJwfMT-Qhm7CmFJSInpDNoYXtMZySoYbpvRmFLT2OcPAw8WSXclBm6eYsjFIN4zV2lJe_GjFjcELpCt2cXTDs72Df_nqhI5zzDN6rnvoLsY8g5t6T9O4haKMzN7muwTNiigaf-se0sai9bO3wl4TM2rBtIF8tuSmpu1ua1g5-IBum-zFH9gVG4f9VT5EO03QvCPLVj5ySP0duB3dNA3Ougfaw088Y3--U7__FnpN_p3gC4_vL94NwxtP44wT0i6DtM8UlgWBUSYkPTKvB8JiqM8L2iCiQDLLmkKJkFhxlRChe6ABCyUcaIY-A0u-4_RXjkv1SHyaaJEnFBGCvhwQRmTHOM0FlcsLUh-5aGwYVqWW7B63TPle1YXTaT9TDMwc_z20BtHvzAwLTspD2oZODLt5DhPPXRYEzbDLWXw0Ktdp7LClmh56KiRZWYtBEyq8ysGzPHQS3cWzLf-T06Ual6tshhYwxPMd1NAgsHB0UYeemI0Y_uAVsM8RDs64wg0dHz3TDmb1hDycF846j_d_cxH6N721X-G9tbLSj2H8HstX9SvxG9O2tVt
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+polyphosphate+kinase+%28PPK2%29+widely+conserved+in+bacteria&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Haiyu+Zhang&rft.au=Kazuya+Ishige&rft.au=Arthur+Kornberg&rft.date=2002-12-24&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=99&rft.issue=26&rft.spage=16678&rft_id=info:doi/10.1073%2Fpnas.262655199&rft_id=info%3Apmid%2F12486232&rft.externalDBID=n%2Fa&rft.externalDocID=99_26_16678
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F99%2F26.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F99%2F26.cover.gif