Real-time measurement and correction of both B0 changes and subject motion in diffusion tensor imaging using a double volumetric navigated (DvNav) sequence

Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur t...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 126; pp. 60 - 71
Main Authors Alhamud, A., Taylor, Paul A., van der Kouwe, Andre J.W., Meintjes, Ernesta M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2016
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur throughout the DTI acquisition due to several factors (including heating of the iron shim coils or subject motion), cause significant signal distortions that result in warped diffusion tensor (DT) parameter estimates. In this work we introduce a novel technique to simultaneously measure, report and correct in real time subject motion and changes in B0 field homogeneity, both in and through the imaging plane. This is achieved using double volumetric navigators (DvNav), i.e. a pair of 3D EPI acquisitions, interleaved with the DTI pulse sequence. Changes in the B0 field are evaluated in terms of zero-order (frequency) and first-order (linear gradients) shim. The ability of the DvNav to accurately estimate the shim parameters was first validated in a water phantom. Two healthy subjects were scanned both in the presence and absence of motion using standard, motion corrected (single navigator, vNav), and DvNav DTI sequences. The difference in performance between the proposed 3D EPI field maps and the standard 3D gradient echo field maps of the MRI scanner was also evaluated in a phantom and two healthy subjects. The DvNav sequence was shown to accurately measure and correct changes in B0 following manual adjustments of the scanner's central frequency and the linear shim gradients. Compared to other methods, the DvNav produced DTI results that showed greater spatial overlap with anatomical references, particularly in scans with subject motion. This is largely due to the ability of the DvNav system to correct shim changes and subject motion between each volume acquisition, thus reducing shear distortion.
AbstractList Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur throughout the DTI acquisition due to several factors (including heating of the iron shim coils or subject motion), cause significant signal distortions that result in warped diffusion tensor (DT) parameter estimates. In this work we introduce a novel technique to simultaneously measure, report and correct in real time subject motion and changes in B0 field homogeneity, both in and through the imaging plane. This is achieved using double volumetric navigators (DvNav), i.e. a pair of 3D EPI acquisitions, interleaved with the DTI pulse sequence. Changes in the B0 field are evaluated in terms of zero-order (frequency) and first-order (linear gradients) shim. The ability of the DvNav to accurately estimate the shim parameters was first validated in a water phantom. Two healthy subjects were scanned both in the presence and absence of motion using standard, motion corrected (single navigator, vNav), and DvNav DTI sequences. The difference in performance between the proposed 3D EPI field maps and the standard 3D gradient echo field maps of the MRI scanner was also evaluated in a phantom and two healthy subjects. The DvNav sequence was shown to accurately measure and correct changes in B0 following manual adjustments of the scanner's central frequency and the linear shim gradients. Compared to other methods, the DvNav produced DTI results that showed greater spatial overlap with anatomical references, particularly in scans with subject motion. This is largely due to the ability of the DvNav system to correct shim changes and subject motion between each volume acquisition, thus reducing shear distortion.
Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur throughout the DTI acquisition due to several factors (including heating of the iron shim coils or subject motion), cause significant signal distortions that result in warped diffusion tensor (DT) parameter estimates. In this work we introduce a novel technique to simultaneously measure, report and correct in real time subject motion and changes in B0 field homogeneity, both in and through the imaging plane. This is achieved using double volumetric navigators (DvNav), i.e. a pair of 3D EPI acquisitions, interleaved with the DTI pulse sequence. Changes in the B0 field are evaluated in terms of zero-order (frequency) and first-order (linear gradients) shim. The ability of the DvNav to accurately estimate the shim parameters was first validated in a water phantom. Two healthy subjects were scanned both in the presence and absence of motion using standard, motion corrected (single navigator, vNav), and DvNav DTI sequences. The difference in performance between the proposed 3D EPI field maps and the standard 3D gradient echo field maps of the MRI scanner was also evaluated in a phantom and two healthy subjects. The DvNav sequence was shown to accurately measure and correct changes in B0 following manual adjustments of the scanner’s central frequency and the linear shim gradients. Compared to other methods, the DvNav produced DTI results that showed greater spatial overlap with anatomical references, particularly in scans with subject motion. This is largely due to the ability of the DvNav system to correct shim changes and subject motion between each volume acquisition, thus reducing shear distortion.
Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur throughout the DTI acquisition due to several factors (including heating of the iron shim coils or subject motion), cause significant signal distortions that result in warped diffusion tensor (DT) parameter estimates. In this work we introduce a novel technique to simultaneously measure, report and correct in real time subject motion and changes in B0 field homogeneity, both in and through the imaging plane. This is achieved using double volumetric navigators (DvNav), i.e. a pair of 3D EPI acquisitions, interleaved with the DTI pulse sequence. Changes in the B0 field are evaluated in terms of zero-order (frequency) and first-order (linear gradients) shim. The ability of the DvNav to accurately estimate the shim parameters was first validated in a water phantom. Two healthy subjects were scanned both in the presence and absence of motion using standard, motion corrected (single navigator, vNav), and DvNav DTI sequences. The difference in performance between the proposed 3D EPI field maps and the standard 3D gradient echo field maps of the MRI scanner was also evaluated in a phantom and two healthy subjects. The DvNav sequence was shown to accurately measure and correct changes in B0 following manual adjustments of the scanner's central frequency and the linear shim gradients. Compared to other methods, the DvNav produced DTI results that showed greater spatial overlap with anatomical references, particularly in scans with subject motion. This is largely due to the ability of the DvNav system to correct shim changes and subject motion between each volume acquisition, thus reducing shear distortion.Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur throughout the DTI acquisition due to several factors (including heating of the iron shim coils or subject motion), cause significant signal distortions that result in warped diffusion tensor (DT) parameter estimates. In this work we introduce a novel technique to simultaneously measure, report and correct in real time subject motion and changes in B0 field homogeneity, both in and through the imaging plane. This is achieved using double volumetric navigators (DvNav), i.e. a pair of 3D EPI acquisitions, interleaved with the DTI pulse sequence. Changes in the B0 field are evaluated in terms of zero-order (frequency) and first-order (linear gradients) shim. The ability of the DvNav to accurately estimate the shim parameters was first validated in a water phantom. Two healthy subjects were scanned both in the presence and absence of motion using standard, motion corrected (single navigator, vNav), and DvNav DTI sequences. The difference in performance between the proposed 3D EPI field maps and the standard 3D gradient echo field maps of the MRI scanner was also evaluated in a phantom and two healthy subjects. The DvNav sequence was shown to accurately measure and correct changes in B0 following manual adjustments of the scanner's central frequency and the linear shim gradients. Compared to other methods, the DvNav produced DTI results that showed greater spatial overlap with anatomical references, particularly in scans with subject motion. This is largely due to the ability of the DvNav system to correct shim changes and subject motion between each volume acquisition, thus reducing shear distortion.
Author Alhamud, A.
van der Kouwe, Andre J.W.
Meintjes, Ernesta M.
Taylor, Paul A.
AuthorAffiliation 3 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
4 Department of Radiology, Harvard Medical School, Brookline, MA, USA
1 MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, South Africa
2 African Institute for Mathematical Sciences (AIMS), South Africa
AuthorAffiliation_xml – name: 4 Department of Radiology, Harvard Medical School, Brookline, MA, USA
– name: 3 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
– name: 2 African Institute for Mathematical Sciences (AIMS), South Africa
– name: 1 MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, South Africa
Author_xml – sequence: 1
  givenname: A.
  surname: Alhamud
  fullname: Alhamud, A.
  email: alkk1973@gmail.com
  organization: MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, South Africa
– sequence: 2
  givenname: Paul A.
  surname: Taylor
  fullname: Taylor, Paul A.
  organization: MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, South Africa
– sequence: 3
  givenname: Andre J.W.
  surname: van der Kouwe
  fullname: van der Kouwe, Andre J.W.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
– sequence: 4
  givenname: Ernesta M.
  surname: Meintjes
  fullname: Meintjes, Ernesta M.
  organization: MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, South Africa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26584865$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1TAUjFARfcAvIEtsyiLBjuPY3iBoaQGpAgnB2nKck1xfErvYSaR-Cz-L0weFu7obP-eMx3PmODtw3kGWIYILgkn9Zls4mIO3o-6hKDFhBSEFLssn2RHBkuWS8fJgXTOaC0LkYXYc4xZjLEklnmWHZc1EJWp2lP3-BnrIJzsCGkHHOcAIbkLatcj4EMBM1jvkO9T4aYPOMDIb7XqIt4g4N9uEQKO_RVmHWtt1c1w3E7joA1olWtejdJhGjVo_NwOgxQ_zCFOwBjm92F5P0KLTD8sXvbxGEX7N4Aw8z552eojw4n4-yX5cXnw__5Rfff34-fz9VW5Yxae8BKqh67TsWIsrQQQ1HHdEaqh4bSQtW01rDCCEobxJlshOVMxU0hCdDOH0JHt7x3s9NyO0JhkQ9KCuQxIfbpTXVv1_4-xG9X5RFaeUySoRnN4TBJ-kx0mNNhoYBu3Az1ERXjPJhZDlPlBS8VIQlqCvdqBbPweXnFhRJSWM01X8y3_F_1X90OLH35ngYwzQKWMnvTYs_cUOimC1Zkpt1WOm1JopRYhKmUoEYofg4Y09Ss_uSiG1b7EQVDR2bW1r12ip1tt9SN7tkJjBOmv08BNu9qP4A3TEBcs
CitedBy_id crossref_primary_10_1016_j_neuroimage_2017_08_025
crossref_primary_10_1016_j_neuroimage_2017_01_014
crossref_primary_10_1371_journal_pone_0185647
crossref_primary_10_1002_mrm_30385
crossref_primary_10_1002_mrm_27750
crossref_primary_10_1002_mrm_29255
crossref_primary_10_1093_psyrad_kkae013
crossref_primary_10_1002_ima_22218
crossref_primary_10_1016_j_neuroimage_2017_12_040
crossref_primary_10_1002_mrm_27339
crossref_primary_10_1002_mrm_28505
crossref_primary_10_1016_j_neuroimage_2018_09_039
crossref_primary_10_1002_mrm_27597
crossref_primary_10_1002_mrm_29976
crossref_primary_10_1016_j_neuroimage_2020_117286
crossref_primary_10_1002_mrm_27957
crossref_primary_10_1007_s10334_023_01076_0
crossref_primary_10_1088_1361_6560_abbc7f
crossref_primary_10_1002_mrm_29421
crossref_primary_10_1002_mrm_29202
crossref_primary_10_1002_mrm_30334
crossref_primary_10_1002_mrm_30038
crossref_primary_10_1002_mrm_29167
crossref_primary_10_1002_mrm_28076
crossref_primary_10_1002_mrm_29967
crossref_primary_10_1002_mrm_28555
crossref_primary_10_1002_nbm_4822
crossref_primary_10_1016_j_mri_2020_01_002
crossref_primary_10_1162_imag_a_00039
crossref_primary_10_1016_j_neuroimage_2018_02_041
crossref_primary_10_1016_j_mri_2016_06_006
crossref_primary_10_1002_hbm_23318
Cites_doi 10.1002/mrm.20936
10.1016/j.neubiorev.2013.04.008
10.1002/mrm.22837
10.1148/radiol.2222010492
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2011.07.004
10.1002/mrm.10354
10.1523/JNEUROSCI.4184-11.2011
10.1002/mrm.1910380114
10.1016/j.biopsych.2008.10.015
10.1148/radiol.2221010626
10.1007/s10334-006-0050-2
10.1002/mrm.20695
10.1002/mrm.22787
10.1002/mrm.24824
10.1002/mrm.10259
10.1002/mrm.22805
10.1016/j.nicl.2014.11.019
10.1002/mrm.10184
10.1038/nn1075
10.1088/0031-9155/57/18/5715
10.1002/(SICI)1099-1492(199910)12:6<335::AID-NBM581>3.0.CO;2-A
10.1016/j.mri.2008.03.005
10.1016/S0006-3495(94)80775-1
10.1002/mrm.20642
10.1016/j.neuroimage.2007.12.025
10.1016/j.neuroimage.2009.11.044
10.1109/42.836368
10.1109/42.896788
10.1006/cbmr.1996.0014
10.1016/j.brainres.2010.09.051
10.1002/mrm.23314
10.1016/j.neuroimage.2012.02.054
10.1002/mrm.23228
10.1002/mrm.10065
10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1016/j.neuroimage.2007.08.025
10.1002/jmri.24678
10.2214/ajr.180.3.1800851
10.1002/jmri.20683
10.1148/radiol.2212001702
10.1016/j.neuroimage.2008.02.023
10.1002/mrm.10308
10.1002/mrm.1910340111
10.1002/mrm.24129
10.1002/mrm.10677
10.1002/mrm.10268
10.1016/j.neuroimage.2005.03.016
10.1016/S1053-8119(03)00336-7
10.1002/mrm.1910380316
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Feb 1, 2016
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Feb 1, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2015.11.022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE


MEDLINE - Academic
Engineering Research Database
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 71
ExternalDocumentID PMC4733594
3941560531
26584865
10_1016_j_neuroimage_2015_11_022
S1053811915010447
Genre Journal Article
Correction/Retraction
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: R21 AA017410
– fundername: NIMH NIH HHS
  grantid: R21 MH096559
– fundername: NICHD NIH HHS
  grantid: R01 HD071664
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c547t-2e3aeffa9f5d048183c70f19ae476c932da360ee88c37b0539f845c49c1a09173
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 17:37:11 EDT 2025
Fri Jul 11 06:12:43 EDT 2025
Mon Jul 21 09:31:53 EDT 2025
Wed Aug 13 09:04:05 EDT 2025
Mon Jul 21 05:22:28 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Tue Jul 01 03:01:45 EDT 2025
Fri Feb 23 02:25:07 EST 2024
Tue Aug 26 20:08:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Zero-order shim (frequency)
The first-order shim (linear gradients)
Diffusion tensor imaging (DTI)
Double volumetric navigators (DvNav)
Navigated diffusion sequence (vNav)
B0 correction
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c547t-2e3aeffa9f5d048183c70f19ae476c932da360ee88c37b0539f845c49c1a09173
Notes ObjectType-Correction/Retraction-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 26584865
PQID 1762315737
PQPubID 2031077
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4733594
proquest_miscellaneous_1765978892
proquest_miscellaneous_1761472815
proquest_journals_1762315737
pubmed_primary_26584865
crossref_citationtrail_10_1016_j_neuroimage_2015_11_022
crossref_primary_10_1016_j_neuroimage_2015_11_022
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_11_022
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_11_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2016
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Wedeen, Hagmann, Tseng, Reese, Weisskoff (bb0285) 2005; 54
Rohde, Barnett, Basser, Marenco, Pierpaoli (bb0215) 2004; 51
Benner, van der Kouwe, Kirsch, Sorensen (bb0050) 2006; 56
Bammer, Auer, Keeling, Augustin, Stables, Prokesch, Stollberger, Moseley, Fazekas (bb0035) 2002; 48
Foerster, Tomasi, Caparelli (bb0095) 2005; 54
Tuch, Reese, Wiegell, Makris, Belliveau, Wedeen (bb0270) 2002; 48
Behrens, Johansen-Berg, Woolrich, Smith, Wheeler-Kingshott, Boulby, Barker, Sillery, Sheehan, Ciccarelli (bb0045) 2003; 6
Engelbrecht, Scherer, Rassek, Witsack, Modder (bb0090) 2002; 222
Tisdall, Hess, Reuter, Meintjes, Fischl, van der Kouwe (bb0265) 2012; 68
Kober, Gruetter, Krueger (bb0145) 2012; 59
Le Bihan, Poupon, Amadon, Lethimonnier (bb0155) 2006; 24
Ward, Riederer, Jack (bb0280) 2002; 48
Hasan, Walimuni, Abid, Frye, Ewing-Cobbs, Wolinsky, Narayana (bb0100) 2011; 31
Snook, Paulson, Roy, Phillips, Beaulieu (bb0235) 2005; 26
Wu, Chang, Walker, Lemaitre, Barnett, Marenco, Pierpaoli (bb0290) 2008; 11
Aksoy, Forman, Straka, Skare, Holdsworth, Hornegger, Bammer (bb0005) 2011; 66
Taylor, Alhamud, van der Kouwe, Saleh, Laughton, Meintjes (bb0255) 2015
Staempfli, Reischauer, Jaermann, Valavanis, Kollias, Boesiger (bb0240) 2008; 39
Buonocore, Gao (bb0075) 1997; 38
Reese, Heid, Weisskoff, Wedeen (bb0210) 2003; 49
Pierpaoli, Walker, Irfanoglu, Barnett, Basser, Chang, Koay, Pajevic, Rohde, Sarlls (bb0195) 2010; 18
Benner, van der Kouwe, Sorensen (bb0055) 2011; 66
Jenkinson (bb0130) 2003; 49
Keating, Ernst (bb0140) 2012; 68
Kybic, Thévenaz, Nirkko, Unser (bb0150) 2000; 19
Jezzard, Balaban (bb0135) 1995; 34
Itahashi, Yamada, Nakamura, Watanabe, Yamagata, Jimbo, Shioda, Kuroda, Toriizuka, Kato (bb0125) 2015; 7
Pfeuffer, de Moortele, Ugurbil, Hu, Glover (bb0190) 2002; 47
Morrell, Spielman (bb0170) 1997; 38
Basser, Mattiello, LeBihan (bb0040) 1994; 66
Cox (bb0080) 1996; 29
Hess, Dylan, Andronesi, Meintjes, van der Kouwe (bb0105) 2011; 66
Miller, McKinstry, Philip, Mukherjee, Neil (bb0165) 2003; 180
Tao, Fletcher, Gerber, Whitaker (bb0250) 2009
Huang, Ceritoglu, Li, Qiu, Miller, van Zijl, Mori (bb0115) 2008; 26
Pruessmann, Weiger, Scheidegger, Boesiger (bb0200) 1999; 42
Schmithorst, Wilke, Dardzinski, Holland (bb0225) 2002; 222
Noriuchi, Kikuchi, Yoshiura, Kira, Shigeto, Hara, Tobimatsu, Kamio (bb0180) 2010; 1362
Bennett, Rypma (bb0060) 2013; 37
Ruthotto, Kugel, Olesch, Fischer, Modersitzki, Burger, Wolters (bb0220) 2012; 57
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (bb0230) 2004; 23
Alhamud, Taylor, Laughton, van der Kouwe, Meintjes (bb0015) 2015; 41
El-Sharkawy, Schär, Bottomley, Atalar (bb0085) 2006; 19
Assaf, Cohen (bb0030) 1999; 12
Bhat, Cauley, Tisdall, Witzel, Setsompop, van der Kouwe, Heberlein (bb0065) 2014
Mukherjee, Miller, Shimony, Conturo, Lee, Almli, McKinstry (bb0175) 2001; 221
Irfanoglu, Walker, Sarlls, Marenco, Pierpaoli (bb0120) 2012; 61
Holland, Kuperman, Dale (bb0110) 2010; 50
Alhamud, Hess, Tisdall, Meintjes, van der Kouwe (bb0010) 2011
Alhamud, Tisdall, Hess, Hasan, Meintjes, van der Kouwe (bb0020) 2012; 68
Andersson, Skare, Ashburner (bb0025) 2003; 20
Bhat, Tisdall, van der Kouwe, Feiweier, Heberlein (bb0070) 2012
Lee, Tan, Govenkar, Hancu (bb0160) 2014; 71
Qiu, Tan, Zhou, Khong (bb0205) 2008; 41
Studholme, Constable, Duncan (bb0245) 2000; 19
Thesen, Heid, Mueller, Schad (bb0260) 2000; 44
van der Kouwe, Benner, Salat, Fischl (bb0275) 2008; 40
Pavuluri, Yang, Kamineni, Passarotti, Srinivasan, Harral, Sweeney, Zhou (bb0185) 2009; 65
Kober (10.1016/j.neuroimage.2015.11.022_bb0145) 2012; 59
Lee (10.1016/j.neuroimage.2015.11.022_bb0160) 2014; 71
Reese (10.1016/j.neuroimage.2015.11.022_bb0210) 2003; 49
Ruthotto (10.1016/j.neuroimage.2015.11.022_bb0220) 2012; 57
Smith (10.1016/j.neuroimage.2015.11.022_bb0230) 2004; 23
Rohde (10.1016/j.neuroimage.2015.11.022_bb0215) 2004; 51
Ward (10.1016/j.neuroimage.2015.11.022_bb0280) 2002; 48
Wedeen (10.1016/j.neuroimage.2015.11.022_bb0285) 2005; 54
Bennett (10.1016/j.neuroimage.2015.11.022_bb0060) 2013; 37
Jenkinson (10.1016/j.neuroimage.2015.11.022_bb0130) 2003; 49
Holland (10.1016/j.neuroimage.2015.11.022_bb0110) 2010; 50
Snook (10.1016/j.neuroimage.2015.11.022_bb0235) 2005; 26
Miller (10.1016/j.neuroimage.2015.11.022_bb0165) 2003; 180
Andersson (10.1016/j.neuroimage.2015.11.022_bb0025) 2003; 20
Pierpaoli (10.1016/j.neuroimage.2015.11.022_bb0195) 2010; 18
Huang (10.1016/j.neuroimage.2015.11.022_bb0115) 2008; 26
Itahashi (10.1016/j.neuroimage.2015.11.022_bb0125) 2015; 7
Schmithorst (10.1016/j.neuroimage.2015.11.022_bb0225) 2002; 222
Taylor (10.1016/j.neuroimage.2015.11.022_bb0255) 2015
Assaf (10.1016/j.neuroimage.2015.11.022_bb0030) 1999; 12
Alhamud (10.1016/j.neuroimage.2015.11.022_bb0015) 2015; 41
Mukherjee (10.1016/j.neuroimage.2015.11.022_bb0175) 2001; 221
Cox (10.1016/j.neuroimage.2015.11.022_bb0080) 1996; 29
Wu (10.1016/j.neuroimage.2015.11.022_bb0290) 2008; 11
Alhamud (10.1016/j.neuroimage.2015.11.022_bb0020) 2012; 68
Basser (10.1016/j.neuroimage.2015.11.022_bb0040) 1994; 66
Behrens (10.1016/j.neuroimage.2015.11.022_bb0045) 2003; 6
Engelbrecht (10.1016/j.neuroimage.2015.11.022_bb0090) 2002; 222
Tuch (10.1016/j.neuroimage.2015.11.022_bb0270) 2002; 48
Irfanoglu (10.1016/j.neuroimage.2015.11.022_bb0120) 2012; 61
Le Bihan (10.1016/j.neuroimage.2015.11.022_bb0155) 2006; 24
El-Sharkawy (10.1016/j.neuroimage.2015.11.022_bb0085) 2006; 19
Buonocore (10.1016/j.neuroimage.2015.11.022_bb0075) 1997; 38
Benner (10.1016/j.neuroimage.2015.11.022_bb0050) 2006; 56
Jezzard (10.1016/j.neuroimage.2015.11.022_bb0135) 1995; 34
Bammer (10.1016/j.neuroimage.2015.11.022_bb0035) 2002; 48
Pfeuffer (10.1016/j.neuroimage.2015.11.022_bb0190) 2002; 47
Tao (10.1016/j.neuroimage.2015.11.022_bb0250) 2009
Morrell (10.1016/j.neuroimage.2015.11.022_bb0170) 1997; 38
Pruessmann (10.1016/j.neuroimage.2015.11.022_bb0200) 1999; 42
van der Kouwe (10.1016/j.neuroimage.2015.11.022_bb0275) 2008; 40
Keating (10.1016/j.neuroimage.2015.11.022_bb0140) 2012; 68
Pavuluri (10.1016/j.neuroimage.2015.11.022_bb0185) 2009; 65
Foerster (10.1016/j.neuroimage.2015.11.022_bb0095) 2005; 54
Bhat (10.1016/j.neuroimage.2015.11.022_bb0065) 2014
Thesen (10.1016/j.neuroimage.2015.11.022_bb0260) 2000; 44
Staempfli (10.1016/j.neuroimage.2015.11.022_bb0240) 2008; 39
Aksoy (10.1016/j.neuroimage.2015.11.022_bb0005) 2011; 66
Hess (10.1016/j.neuroimage.2015.11.022_bb0105) 2011; 66
Noriuchi (10.1016/j.neuroimage.2015.11.022_bb0180) 2010; 1362
Hasan (10.1016/j.neuroimage.2015.11.022_bb0100) 2011; 31
Qiu (10.1016/j.neuroimage.2015.11.022_bb0205) 2008; 41
Benner (10.1016/j.neuroimage.2015.11.022_bb0055) 2011; 66
Studholme (10.1016/j.neuroimage.2015.11.022_bb0245) 2000; 19
Bhat (10.1016/j.neuroimage.2015.11.022_bb0070) 2012
Alhamud (10.1016/j.neuroimage.2015.11.022_bb0010) 2011
Tisdall (10.1016/j.neuroimage.2015.11.022_bb0265) 2012; 68
Kybic (10.1016/j.neuroimage.2015.11.022_bb0150) 2000; 19
22246720 - Magn Reson Med. 2012 Oct;68(4):1097-108
16897692 - J Magn Reson Imaging. 2006 Sep;24(3):478-88
8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73
19027102 - Biol Psychiatry. 2009 Apr 1;65(7):586-93
12509838 - Magn Reson Med. 2003 Jan;49(1):193-7
9339449 - Magn Reson Med. 1997 Sep;38(3):477-83
23628742 - Neurosci Biobehav Rev. 2013 Aug;37(7):1201-10
18982621 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):321-9
12591710 - AJR Am J Roentgenol. 2003 Mar;180(3):851-9
21763773 - Neuroimage. 2012 Jan 2;59(1):389-98
15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
14568458 - Neuroimage. 2003 Oct;20(2):870-88
11810679 - Magn Reson Med. 2002 Feb;47(2):344-53
10516615 - NMR Biomed. 1999 Oct;12(6):335-44
23798360 - Magn Reson Med. 2014 May;71(5):1813-8
10975899 - Magn Reson Med. 2000 Sep;44(3):457-65
16767763 - Magn Reson Med. 2006 Jul;56(1):204-9
21695721 - Magn Reson Med. 2011 Jul;66(1):154-67
12417991 - Magn Reson Med. 2002 Nov;48(5):771-80
10542355 - Magn Reson Med. 1999 Nov;42(5):952-62
18395471 - Neuroimage. 2008 Jun;41(2):223-32
19694302 - Inf Process Med Imaging. 2009;21:664-75
22941943 - Phys Med Biol. 2012 Sep 21;57(18):5715-31
21432898 - Magn Reson Med. 2011 Aug;66(2):366-78
12808459 - Nat Neurosci. 2003 Jul;6(7):750-7
14705050 - Magn Reson Med. 2004 Jan;51(1):103-14
22213578 - Magn Reson Med. 2012 Aug;68(2):389-99
24935904 - J Magn Reson Imaging. 2015 May;41(5):1353-64
21381101 - Magn Reson Med. 2011 Aug;66(2):314-23
25610777 - Neuroimage Clin. 2015;7:155-69
22090508 - J Neurosci. 2011 Nov 16;31(46):16826-32
22401760 - Neuroimage. 2012 May 15;61(1):275-88
22851160 - Magn Reson Med. 2012 Nov;68(5):1339-45
12111940 - Magn Reson Med. 2002 Jul;48(1):128-36
15961051 - Neuroimage. 2005 Jul 15;26(4):1164-73
20858472 - Brain Res. 2010 Nov 29;1362:141-9
16215962 - Magn Reson Med. 2005 Nov;54(5):1261-7
11818607 - Radiology. 2002 Feb;222(2):410-8
18242102 - Neuroimage. 2008 Apr 1;40(2):559-69
11204849 - IEEE Trans Med Imaging. 2000 Nov;19(11):1115-27
12509835 - Magn Reson Med. 2003 Jan;49(1):177-82
17931889 - Neuroimage. 2008 Jan 1;39(1):119-26
12353272 - Magn Reson Med. 2002 Oct;48(4):577-82
16247738 - Magn Reson Med. 2005 Dec;54(6):1377-86
10784280 - IEEE Trans Med Imaging. 2000 Feb;19(2):80-93
18499384 - Magn Reson Imaging. 2008 Nov;26(9):1294-302
19944768 - Neuroimage. 2010 Mar;50(1):175-83
8130344 - Biophys J. 1994 Jan;66(1):259-67
9211384 - Magn Reson Med. 1997 Jul;38(1):89-100
11756728 - Radiology. 2002 Jan;222(1):212-8
11687675 - Radiology. 2001 Nov;221(2):349-58
7674900 - Magn Reson Med. 1995 Jul;34(1):65-73
17043837 - MAGMA. 2006 Nov;19(5):223-36
References_xml – volume: 47
  start-page: 344
  year: 2002
  end-page: 353
  ident: bb0190
  article-title: Correction of physiologically induced global off‐resonance effects in dynamic echo-planar and spiral functional imaging
  publication-title: Magn. Reson. Med.
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  ident: bb0080
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
– year: 2014
  ident: bb0065
  article-title: Prospective motion correction based on ultra-fast whole head navigators acquired with multi-band EPI
  publication-title: ISMRM Workshop on Motion Correction in MRI; July; Tromsø, Norway
– volume: 26
  start-page: 1294
  year: 2008
  end-page: 1302
  ident: bb0115
  article-title: Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping
  publication-title: Magn. Reson. Imaging
– volume: 65
  start-page: 586
  year: 2009
  end-page: 593
  ident: bb0185
  article-title: Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder
  publication-title: Biol. Psychiatry
– volume: 41
  start-page: 1353
  year: 2015
  end-page: 1364
  ident: bb0015
  article-title: Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction
  publication-title: J. Magn. Reson. Imaging
– volume: 222
  start-page: 212
  year: 2002
  end-page: 218
  ident: bb0225
  article-title: Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study
  publication-title: Radiology
– volume: 49
  start-page: 193
  year: 2003
  end-page: 197
  ident: bb0130
  article-title: Fast, automated, N-dimensional phase-unwrapping algorithm
  publication-title: Magn. Reson. Med.
– volume: 34
  start-page: 65
  year: 1995
  end-page: 73
  ident: bb0135
  article-title: Correction for geometric distortion in echo planar images from B0 field variations
  publication-title: Magn. Reson. Med.
– volume: 61
  start-page: 275
  year: 2012
  end-page: 288
  ident: bb0120
  article-title: Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results
  publication-title: Neuroimage
– volume: 26
  start-page: 1164
  year: 2005
  end-page: 1173
  ident: bb0235
  article-title: Diffusion tensor imaging of neurodevelopment in children and young adults
  publication-title: Neuroimage
– volume: 68
  start-page: 1339
  year: 2012
  end-page: 1345
  ident: bb0140
  article-title: Real-time dynamic frequency and shim correction for single-voxel magnetic resonance spectroscopy
  publication-title: Magn. Reson. Med.
– volume: 12
  start-page: 335
  year: 1999
  end-page: 344
  ident: bb0030
  article-title: Structural information in neuronal tissue as revealed by q-space diffusion NMR spectroscopy of metabolites in bovine optic nerve
  publication-title: NMR Biomed.
– volume: 54
  start-page: 1261
  year: 2005
  end-page: 1267
  ident: bb0095
  article-title: Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 41
  start-page: 223
  year: 2008
  end-page: 232
  ident: bb0205
  article-title: Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development
  publication-title: Neuroimage
– volume: 11
  start-page: 321
  year: 2008
  end-page: 329
  ident: bb0290
  article-title: Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework
  publication-title: Medical Image Computing and Computer-assisted Intervention
– volume: 57
  start-page: 5715
  year: 2012
  ident: bb0220
  article-title: Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images
  publication-title: Phys. Med. Biol.
– volume: 66
  start-page: 314
  year: 2011
  end-page: 323
  ident: bb0105
  article-title: Real‐time motion and B0 corrected single voxel spectroscopy using volumetric navigators
  publication-title: Magn. Reson. Med.
– year: 2012
  ident: bb0070
  article-title: EPI navigator based prospective motion correction technique for diffusion neuroimaging
  publication-title: Proceedings of the 19th Annual Meeting of ISMRM; May; Melbourne, Australia
– year: 2015
  ident: bb0255
  article-title: A comparison of combined acquisition and processing methods for DTI: a pediatric study
  publication-title: OHBM June; Hawaii, USA
– volume: 50
  start-page: 175
  year: 2010
  end-page: 183
  ident: bb0110
  article-title: Efficient correction of inhomogeneous static magnetic field-induced distortion in echo planar imaging
  publication-title: Neuroimage
– volume: 40
  start-page: 559
  year: 2008
  end-page: 569
  ident: bb0275
  article-title: Brain morphometry with multiecho MPRAGE
  publication-title: Neuroimage
– volume: 18
  start-page: 1597
  year: 2010
  ident: bb0195
  article-title: TORTOISE: an integrated software package for processing of diffusion MRI data
  publication-title: Book TORTOISE: An Integrated Software Package for Processing of Diffusion MRI Data
– volume: 180
  start-page: 851
  year: 2003
  end-page: 859
  ident: bb0165
  article-title: Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination
  publication-title: Am. J. Roentgenol.
– volume: 222
  start-page: 410
  year: 2002
  end-page: 418
  ident: bb0090
  article-title: Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases 1
  publication-title: Radiology
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bb0025
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– volume: 66
  start-page: 259
  year: 1994
  ident: bb0040
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
– volume: 39
  start-page: 119
  year: 2008
  end-page: 126
  ident: bb0240
  article-title: Combining fMRI and DTI: a framework for exploring the limits of fMRI-guided DTI fiber tracking and for verifying DTI-based fiber tractography results
  publication-title: Neuroimage
– volume: 44
  start-page: 457
  year: 2000
  end-page: 465
  ident: bb0260
  article-title: Prospective acquisition correction for head motion with image-based tracking for real-time fMRI
  publication-title: Magn. Reson. Med.
– volume: 6
  start-page: 750
  year: 2003
  end-page: 757
  ident: bb0045
  article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging
  publication-title: Nat. Neurosci.
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  ident: bb0200
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn. Reson. Med.
– volume: 59
  start-page: 389
  year: 2012
  end-page: 398
  ident: bb0145
  article-title: Prospective and retrospective motion correction in diffusion magnetic resonance imaging of the human brain
  publication-title: Neuroimage
– volume: 221
  start-page: 349
  year: 2001
  end-page: 358
  ident: bb0175
  article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging
  publication-title: Radiology
– volume: 19
  start-page: 223
  year: 2006
  end-page: 236
  ident: bb0085
  article-title: Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field
  publication-title: MAGMA
– volume: 54
  start-page: 1377
  year: 2005
  end-page: 1386
  ident: bb0285
  article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 48
  start-page: 771
  year: 2002
  end-page: 780
  ident: bb0280
  article-title: Real-time autoshimming for echo planar timecourse imaging
  publication-title: Magn. Reson. Med.
– volume: 68
  start-page: 1097
  year: 2012
  end-page: 1108
  ident: bb0020
  article-title: Volumetric navigators for real-time motion correction in diffusion tensor imaging
  publication-title: Magn. Reson. Med.
– volume: 37
  start-page: 1201
  year: 2013
  end-page: 1210
  ident: bb0060
  article-title: Advances in functional neuroanatomy: a review of combined DTI and fMRI studies in healthy younger and older adults
  publication-title: Neurosci. Biobehav. Rev.
– volume: 38
  start-page: 477
  year: 1997
  end-page: 483
  ident: bb0170
  article-title: Dynamic shimming for multi-slice magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 48
  start-page: 128
  year: 2002
  end-page: 136
  ident: bb0035
  article-title: Diffusion tensor imaging using single-shot SENSE-EPI
  publication-title: Magn. Reson. Med.
– volume: 51
  start-page: 103
  year: 2004
  end-page: 114
  ident: bb0215
  article-title: Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI
  publication-title: Magn. Reson. Med.
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bb0230
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 48
  start-page: 577
  year: 2002
  end-page: 582
  ident: bb0270
  article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity
  publication-title: Magn. Reson. Med.
– volume: 19
  start-page: 80
  year: 2000
  end-page: 93
  ident: bb0150
  article-title: Unwarping of unidirectionally distorted EPI images
  publication-title: IEEE Trans. Med. Imaging
– start-page: 664
  year: 2009
  end-page: 675
  ident: bb0250
  article-title: A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI
  publication-title: Information Processing in Medical Imaging
– year: 2011
  ident: bb0010
  article-title: Implementation of real time motion correction in diffusion tensor imaging
  publication-title: Proceedings of the 19th Annual Meeting of ISMRM; May; Montreal, Canada
– volume: 49
  start-page: 177
  year: 2003
  end-page: 182
  ident: bb0210
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn. Reson. Med.
– volume: 71
  start-page: 1813
  year: 2014
  end-page: 1818
  ident: bb0160
  article-title: Dynamic slice-dependent shim and center frequency update in 3
  publication-title: Magn. Reson. Med.
– volume: 7
  start-page: 155
  year: 2015
  end-page: 169
  ident: bb0125
  article-title: Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: a multimodal brain imaging study
  publication-title: NeuroImage: Clinical
– volume: 68
  start-page: 389
  year: 2012
  end-page: 399
  ident: bb0265
  article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI
  publication-title: Magn. Reson. Med.
– volume: 66
  start-page: 154
  year: 2011
  end-page: 167
  ident: bb0055
  article-title: Diffusion imaging with prospective motion correction and reacquisition
  publication-title: Magn. Reson. Med.
– volume: 24
  start-page: 478
  year: 2006
  end-page: 488
  ident: bb0155
  article-title: Artifacts and pitfalls in diffusion MRI
  publication-title: J. Magn. Reson. Imaging
– volume: 31
  start-page: 16826
  year: 2011
  end-page: 16832
  ident: bb0100
  article-title: Multimodal quantitative magnetic resonance imaging of thalamic development and aging across the human lifespan: implications to neurodegeneration in multiple sclerosis
  publication-title: J. Neurosci.
– volume: 19
  start-page: 1115
  year: 2000
  end-page: 1127
  ident: bb0245
  article-title: Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model
  publication-title: IEEE Trans. Med. Imaging
– volume: 56
  start-page: 204
  year: 2006
  end-page: 209
  ident: bb0050
  article-title: Real-time RF pulse adjustment for B0 drift correction
  publication-title: Magn. Reson. Med.
– volume: 1362
  start-page: 141
  year: 2010
  end-page: 149
  ident: bb0180
  article-title: Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder
  publication-title: Brain Res.
– volume: 38
  start-page: 89
  year: 1997
  end-page: 100
  ident: bb0075
  article-title: Ghost artifact reduction for echo planar imaging using image phase correction
  publication-title: Magn. Reson. Med.
– volume: 66
  start-page: 366
  year: 2011
  end-page: 378
  ident: bb0005
  article-title: Real-time optical motion correction for diffusion tensor imaging
  publication-title: Magn. Reson. Med.
– volume: 56
  start-page: 204
  year: 2006
  ident: 10.1016/j.neuroimage.2015.11.022_bb0050
  article-title: Real-time RF pulse adjustment for B0 drift correction
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20936
– volume: 37
  start-page: 1201
  year: 2013
  ident: 10.1016/j.neuroimage.2015.11.022_bb0060
  article-title: Advances in functional neuroanatomy: a review of combined DTI and fMRI studies in healthy younger and older adults
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2013.04.008
– volume: 66
  start-page: 154
  year: 2011
  ident: 10.1016/j.neuroimage.2015.11.022_bb0055
  article-title: Diffusion imaging with prospective motion correction and reacquisition
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22837
– volume: 18
  start-page: 1597
  year: 2010
  ident: 10.1016/j.neuroimage.2015.11.022_bb0195
  article-title: TORTOISE: an integrated software package for processing of diffusion MRI data
– volume: 222
  start-page: 410
  year: 2002
  ident: 10.1016/j.neuroimage.2015.11.022_bb0090
  article-title: Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases 1
  publication-title: Radiology
  doi: 10.1148/radiol.2222010492
– volume: 23
  start-page: S208
  year: 2004
  ident: 10.1016/j.neuroimage.2015.11.022_bb0230
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– year: 2015
  ident: 10.1016/j.neuroimage.2015.11.022_bb0255
  article-title: A comparison of combined acquisition and processing methods for DTI: a pediatric study
– volume: 11
  start-page: 321
  year: 2008
  ident: 10.1016/j.neuroimage.2015.11.022_bb0290
  article-title: Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework
– volume: 59
  start-page: 389
  year: 2012
  ident: 10.1016/j.neuroimage.2015.11.022_bb0145
  article-title: Prospective and retrospective motion correction in diffusion magnetic resonance imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.004
– volume: 49
  start-page: 193
  year: 2003
  ident: 10.1016/j.neuroimage.2015.11.022_bb0130
  article-title: Fast, automated, N-dimensional phase-unwrapping algorithm
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10354
– volume: 31
  start-page: 16826
  year: 2011
  ident: 10.1016/j.neuroimage.2015.11.022_bb0100
  article-title: Multimodal quantitative magnetic resonance imaging of thalamic development and aging across the human lifespan: implications to neurodegeneration in multiple sclerosis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4184-11.2011
– volume: 38
  start-page: 89
  year: 1997
  ident: 10.1016/j.neuroimage.2015.11.022_bb0075
  article-title: Ghost artifact reduction for echo planar imaging using image phase correction
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910380114
– volume: 65
  start-page: 586
  year: 2009
  ident: 10.1016/j.neuroimage.2015.11.022_bb0185
  article-title: Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2008.10.015
– start-page: 664
  year: 2009
  ident: 10.1016/j.neuroimage.2015.11.022_bb0250
  article-title: A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI
– volume: 222
  start-page: 212
  year: 2002
  ident: 10.1016/j.neuroimage.2015.11.022_bb0225
  article-title: Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study
  publication-title: Radiology
  doi: 10.1148/radiol.2221010626
– volume: 19
  start-page: 223
  year: 2006
  ident: 10.1016/j.neuroimage.2015.11.022_bb0085
  article-title: Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field
  publication-title: MAGMA
  doi: 10.1007/s10334-006-0050-2
– volume: 54
  start-page: 1261
  year: 2005
  ident: 10.1016/j.neuroimage.2015.11.022_bb0095
  article-title: Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20695
– volume: 66
  start-page: 366
  year: 2011
  ident: 10.1016/j.neuroimage.2015.11.022_bb0005
  article-title: Real-time optical motion correction for diffusion tensor imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22787
– volume: 71
  start-page: 1813
  year: 2014
  ident: 10.1016/j.neuroimage.2015.11.022_bb0160
  article-title: Dynamic slice-dependent shim and center frequency update in 3T breast diffusion weighted imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24824
– volume: 48
  start-page: 771
  year: 2002
  ident: 10.1016/j.neuroimage.2015.11.022_bb0280
  article-title: Real-time autoshimming for echo planar timecourse imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10259
– volume: 66
  start-page: 314
  year: 2011
  ident: 10.1016/j.neuroimage.2015.11.022_bb0105
  article-title: Real‐time motion and B0 corrected single voxel spectroscopy using volumetric navigators
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22805
– volume: 7
  start-page: 155
  year: 2015
  ident: 10.1016/j.neuroimage.2015.11.022_bb0125
  article-title: Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: a multimodal brain imaging study
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2014.11.019
– volume: 48
  start-page: 128
  year: 2002
  ident: 10.1016/j.neuroimage.2015.11.022_bb0035
  article-title: Diffusion tensor imaging using single-shot SENSE-EPI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10184
– year: 2014
  ident: 10.1016/j.neuroimage.2015.11.022_bb0065
  article-title: Prospective motion correction based on ultra-fast whole head navigators acquired with multi-band EPI
– volume: 6
  start-page: 750
  year: 2003
  ident: 10.1016/j.neuroimage.2015.11.022_bb0045
  article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1075
– volume: 57
  start-page: 5715
  year: 2012
  ident: 10.1016/j.neuroimage.2015.11.022_bb0220
  article-title: Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/18/5715
– volume: 12
  start-page: 335
  year: 1999
  ident: 10.1016/j.neuroimage.2015.11.022_bb0030
  article-title: Structural information in neuronal tissue as revealed by q-space diffusion NMR spectroscopy of metabolites in bovine optic nerve
  publication-title: NMR Biomed.
  doi: 10.1002/(SICI)1099-1492(199910)12:6<335::AID-NBM581>3.0.CO;2-A
– volume: 26
  start-page: 1294
  year: 2008
  ident: 10.1016/j.neuroimage.2015.11.022_bb0115
  article-title: Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.03.005
– volume: 66
  start-page: 259
  year: 1994
  ident: 10.1016/j.neuroimage.2015.11.022_bb0040
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80775-1
– volume: 54
  start-page: 1377
  year: 2005
  ident: 10.1016/j.neuroimage.2015.11.022_bb0285
  article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20642
– year: 2012
  ident: 10.1016/j.neuroimage.2015.11.022_bb0070
  article-title: EPI navigator based prospective motion correction technique for diffusion neuroimaging
– volume: 40
  start-page: 559
  year: 2008
  ident: 10.1016/j.neuroimage.2015.11.022_bb0275
  article-title: Brain morphometry with multiecho MPRAGE
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.12.025
– volume: 50
  start-page: 175
  year: 2010
  ident: 10.1016/j.neuroimage.2015.11.022_bb0110
  article-title: Efficient correction of inhomogeneous static magnetic field-induced distortion in echo planar imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.044
– volume: 19
  start-page: 80
  year: 2000
  ident: 10.1016/j.neuroimage.2015.11.022_bb0150
  article-title: Unwarping of unidirectionally distorted EPI images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.836368
– volume: 19
  start-page: 1115
  year: 2000
  ident: 10.1016/j.neuroimage.2015.11.022_bb0245
  article-title: Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.896788
– volume: 29
  start-page: 162
  year: 1996
  ident: 10.1016/j.neuroimage.2015.11.022_bb0080
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1996.0014
– volume: 1362
  start-page: 141
  year: 2010
  ident: 10.1016/j.neuroimage.2015.11.022_bb0180
  article-title: Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2010.09.051
– volume: 68
  start-page: 1097
  year: 2012
  ident: 10.1016/j.neuroimage.2015.11.022_bb0020
  article-title: Volumetric navigators for real-time motion correction in diffusion tensor imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23314
– volume: 61
  start-page: 275
  year: 2012
  ident: 10.1016/j.neuroimage.2015.11.022_bb0120
  article-title: Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.054
– year: 2011
  ident: 10.1016/j.neuroimage.2015.11.022_bb0010
  article-title: Implementation of real time motion correction in diffusion tensor imaging
– volume: 68
  start-page: 389
  year: 2012
  ident: 10.1016/j.neuroimage.2015.11.022_bb0265
  article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23228
– volume: 47
  start-page: 344
  year: 2002
  ident: 10.1016/j.neuroimage.2015.11.022_bb0190
  article-title: Correction of physiologically induced global off‐resonance effects in dynamic echo-planar and spiral functional imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10065
– volume: 44
  start-page: 457
  year: 2000
  ident: 10.1016/j.neuroimage.2015.11.022_bb0260
  article-title: Prospective acquisition correction for head motion with image-based tracking for real-time fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
– volume: 42
  start-page: 952
  year: 1999
  ident: 10.1016/j.neuroimage.2015.11.022_bb0200
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume: 39
  start-page: 119
  year: 2008
  ident: 10.1016/j.neuroimage.2015.11.022_bb0240
  article-title: Combining fMRI and DTI: a framework for exploring the limits of fMRI-guided DTI fiber tracking and for verifying DTI-based fiber tractography results
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.08.025
– volume: 41
  start-page: 1353
  year: 2015
  ident: 10.1016/j.neuroimage.2015.11.022_bb0015
  article-title: Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24678
– volume: 180
  start-page: 851
  year: 2003
  ident: 10.1016/j.neuroimage.2015.11.022_bb0165
  article-title: Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.180.3.1800851
– volume: 24
  start-page: 478
  year: 2006
  ident: 10.1016/j.neuroimage.2015.11.022_bb0155
  article-title: Artifacts and pitfalls in diffusion MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20683
– volume: 221
  start-page: 349
  year: 2001
  ident: 10.1016/j.neuroimage.2015.11.022_bb0175
  article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2212001702
– volume: 41
  start-page: 223
  year: 2008
  ident: 10.1016/j.neuroimage.2015.11.022_bb0205
  article-title: Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.023
– volume: 49
  start-page: 177
  year: 2003
  ident: 10.1016/j.neuroimage.2015.11.022_bb0210
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10308
– volume: 34
  start-page: 65
  year: 1995
  ident: 10.1016/j.neuroimage.2015.11.022_bb0135
  article-title: Correction for geometric distortion in echo planar images from B0 field variations
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340111
– volume: 68
  start-page: 1339
  year: 2012
  ident: 10.1016/j.neuroimage.2015.11.022_bb0140
  article-title: Real-time dynamic frequency and shim correction for single-voxel magnetic resonance spectroscopy
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24129
– volume: 51
  start-page: 103
  year: 2004
  ident: 10.1016/j.neuroimage.2015.11.022_bb0215
  article-title: Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10677
– volume: 48
  start-page: 577
  year: 2002
  ident: 10.1016/j.neuroimage.2015.11.022_bb0270
  article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10268
– volume: 26
  start-page: 1164
  year: 2005
  ident: 10.1016/j.neuroimage.2015.11.022_bb0235
  article-title: Diffusion tensor imaging of neurodevelopment in children and young adults
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.03.016
– volume: 20
  start-page: 870
  year: 2003
  ident: 10.1016/j.neuroimage.2015.11.022_bb0025
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 38
  start-page: 477
  year: 1997
  ident: 10.1016/j.neuroimage.2015.11.022_bb0170
  article-title: Dynamic shimming for multi-slice magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910380316
– reference: 12353272 - Magn Reson Med. 2002 Oct;48(4):577-82
– reference: 21381101 - Magn Reson Med. 2011 Aug;66(2):314-23
– reference: 11818607 - Radiology. 2002 Feb;222(2):410-8
– reference: 23628742 - Neurosci Biobehav Rev. 2013 Aug;37(7):1201-10
– reference: 7674900 - Magn Reson Med. 1995 Jul;34(1):65-73
– reference: 22246720 - Magn Reson Med. 2012 Oct;68(4):1097-108
– reference: 12417991 - Magn Reson Med. 2002 Nov;48(5):771-80
– reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73
– reference: 22851160 - Magn Reson Med. 2012 Nov;68(5):1339-45
– reference: 12509835 - Magn Reson Med. 2003 Jan;49(1):177-82
– reference: 18242102 - Neuroimage. 2008 Apr 1;40(2):559-69
– reference: 12591710 - AJR Am J Roentgenol. 2003 Mar;180(3):851-9
– reference: 18982621 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):321-9
– reference: 22401760 - Neuroimage. 2012 May 15;61(1):275-88
– reference: 10975899 - Magn Reson Med. 2000 Sep;44(3):457-65
– reference: 19944768 - Neuroimage. 2010 Mar;50(1):175-83
– reference: 12111940 - Magn Reson Med. 2002 Jul;48(1):128-36
– reference: 21432898 - Magn Reson Med. 2011 Aug;66(2):366-78
– reference: 11756728 - Radiology. 2002 Jan;222(1):212-8
– reference: 18499384 - Magn Reson Imaging. 2008 Nov;26(9):1294-302
– reference: 22213578 - Magn Reson Med. 2012 Aug;68(2):389-99
– reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
– reference: 16247738 - Magn Reson Med. 2005 Dec;54(6):1377-86
– reference: 15961051 - Neuroimage. 2005 Jul 15;26(4):1164-73
– reference: 11687675 - Radiology. 2001 Nov;221(2):349-58
– reference: 11204849 - IEEE Trans Med Imaging. 2000 Nov;19(11):1115-27
– reference: 10784280 - IEEE Trans Med Imaging. 2000 Feb;19(2):80-93
– reference: 14705050 - Magn Reson Med. 2004 Jan;51(1):103-14
– reference: 16897692 - J Magn Reson Imaging. 2006 Sep;24(3):478-88
– reference: 8130344 - Biophys J. 1994 Jan;66(1):259-67
– reference: 20858472 - Brain Res. 2010 Nov 29;1362:141-9
– reference: 12808459 - Nat Neurosci. 2003 Jul;6(7):750-7
– reference: 21695721 - Magn Reson Med. 2011 Jul;66(1):154-67
– reference: 17931889 - Neuroimage. 2008 Jan 1;39(1):119-26
– reference: 23798360 - Magn Reson Med. 2014 May;71(5):1813-8
– reference: 25610777 - Neuroimage Clin. 2015;7:155-69
– reference: 18395471 - Neuroimage. 2008 Jun;41(2):223-32
– reference: 22941943 - Phys Med Biol. 2012 Sep 21;57(18):5715-31
– reference: 9339449 - Magn Reson Med. 1997 Sep;38(3):477-83
– reference: 19027102 - Biol Psychiatry. 2009 Apr 1;65(7):586-93
– reference: 12509838 - Magn Reson Med. 2003 Jan;49(1):193-7
– reference: 9211384 - Magn Reson Med. 1997 Jul;38(1):89-100
– reference: 21763773 - Neuroimage. 2012 Jan 2;59(1):389-98
– reference: 10516615 - NMR Biomed. 1999 Oct;12(6):335-44
– reference: 19694302 - Inf Process Med Imaging. 2009;21:664-75
– reference: 16767763 - Magn Reson Med. 2006 Jul;56(1):204-9
– reference: 11810679 - Magn Reson Med. 2002 Feb;47(2):344-53
– reference: 10542355 - Magn Reson Med. 1999 Nov;42(5):952-62
– reference: 22090508 - J Neurosci. 2011 Nov 16;31(46):16826-32
– reference: 24935904 - J Magn Reson Imaging. 2015 May;41(5):1353-64
– reference: 14568458 - Neuroimage. 2003 Oct;20(2):870-88
– reference: 16215962 - Magn Reson Med. 2005 Nov;54(5):1261-7
– reference: 17043837 - MAGMA. 2006 Nov;19(5):223-36
SSID ssj0009148
Score 2.3447506
Snippet Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 60
SubjectTerms Acquisitions & mergers
Adult
B0 correction
Brain - anatomy & histology
Diffusion
Diffusion tensor imaging (DTI)
Diffusion Tensor Imaging - methods
Diffusion Tensor Imaging - standards
Double volumetric navigators (DvNav)
Echo-Planar Imaging - methods
Echo-Planar Imaging - standards
Humans
Male
Methods
Movement
Navigated diffusion sequence (vNav)
Studies
The first-order shim (linear gradients)
Zero-order shim (frequency)
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5VPVRcEJRXoKBB4gAHN7F31-sVp7ZQVUj0AFTqbbW2d8FVa1dNnCN_pH-2M_baISBQJC6REs8m8czsPNbfzDD2hiZXYZagoyT1aSRUkkbW8TKSs9QLiTrkyw7le5qenIlP5_J8ix0NtTAEqwy2v7fpnbUOn0wDN6fXVTX9ipEBuhvMNyTlFIIqyvGVtHz_5wrmoWPRl8NJHhF1QPP0GK-uZ2R1hTuXQF5yn_p5JsnfXNSfIejvSMpfXNPxA3Y_xJRw0P_th2zL1bts53N4av6I3X7BaDCiKfJwtToSBFuXUNBwjq60ARoPOYoNDmfQVwPPO4p5m9NRDfTjfqCqgWaqtHTIBoR-b26Abg09IBCG_jtYKJs2v3TQGz6aAAC1XVIrD1fC2w_LU7t8BwOE-zE7O_747egkCkMZokIKtYgSx63z3movS-o1k_FCzXysrUPeFxgNlpanM-eyrOAqR65rnwlZCF3EFoWh-BO2XTe1e4ZykBg9ONz2pdBUUYt2N3eYQGn6zlLKCVODHEwROpbT4IxLM0DTLsxKgoYkiAmNQQlOWDyuvO67dmywRg-iNkNVKtpRg65lg7Xvx7Vr2rvh6r1Bs0ywIHMTo5fisVRcTdjr8TLufXqgY2vXtB1NjNsri-U_aTBnzDKNP_O0V9aRJQmFn1lKjF5T45GAeo-vX6mrH10PcqE4l1o8_68bf8Hu4bsAgt9j24ub1r3EGG-Rv-o28R2YfFLs
  priority: 102
  providerName: Elsevier
Title Real-time measurement and correction of both B0 changes and subject motion in diffusion tensor imaging using a double volumetric navigated (DvNav) sequence
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915010447
https://dx.doi.org/10.1016/j.neuroimage.2015.11.022
https://www.ncbi.nlm.nih.gov/pubmed/26584865
https://www.proquest.com/docview/1762315737
https://www.proquest.com/docview/1761472815
https://www.proquest.com/docview/1765978892
https://pubmed.ncbi.nlm.nih.gov/PMC4733594
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyEuiDcLZTVIHODgsontOBYH1EKrBcQKVVTaW-TETlnUJqX7OPJH-LPMJE6Wgqj2tIeMdzeeh8f2N98w9oI6V-EuwfA4KRMudZxw64XjapSUUqENla5B-U6S8Yn8OFXTcOA2D7DKLiY2gdrVBZ2Rv47Qa0WktNBvL35w6hpFt6uhhcYW2yHqMoJ06alek-5Gsi2FU4KnKBCQPC2-q-GLnJ2j1xLAS-0Rl2cc_295-jf9_BtF-ceydHSH3Q75JOy3BnCX3fDVPXbzc7gxv89-HWMmyKmDPJyvjwPBVg4KaszRlDVAXUKOKoODEbSVwPNGYr7M6ZgG2lY_MKuA-qks6YANCPleXwK9Gq5-QPj5U7Dg6mV-5qENesT-D5VdEY2Hd_Dy_WpiV6-gg28_YCdHh1_fjXloyMALJfWCx15YX5bWlMoRz0wqCj0qI2O91EmBmaCzIhl5n6aF0DnOuilTqQppisiiMrR4yLaruvKPUQ8KMwePLu-koWpajLm5x82Toe90Sg2Y7vSQFYGtnJpmnGUdLO17ttZgRhrEzUyGGhywqB950TJ2bDDGdKrOuopUjKEZLisbjH3Tjw1ZS5uNbDh6t7OsLESPeba29QF73j9Gv6fLHFv5etnIROhaaaSulcH9Ypoa_JlHrbH2UxJT6pkmNNFXzLgXIN7xq0-q2beGf1xqIZSRT67_60_ZLXzPgHDfZduLy6V_hgncIh-yrb2f0bDx1SHb2f_waTzBz4PDyZfj39ZqS74
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKKwEXxD8LBQYJJDgYNrGdxEIIUdpqS9sVqlqpt-DEDixqk9LdLOJZeAeekZk42aUgqr30nHH-ZvzN2P5mhrGn1LkKVwmah1ERcRmHETdOWK76USEV2lBhG5bvMBocyA-H6nCJ_epyYYhW2WFiA9S2ymmP_FWAs1YEKhbx25NvnLpG0elq10LDm8W2-_Edl2zjN1vrqN9nYbi5sf9-wNuuAjxXMp7w0AnjisLoQlkqlpKIPO4XgTZOxlGO4Yw1Iuo7lyS5iDO0UV0kUuVS54FB5xoLvO8ltiJRCIFgZW1j-HFvXuY3kD75TgmeBIFuuUOeUdZUqBwdI04QpUy9pOqhYfg_h_hvwPs3b_MPR7h5nV1rI1h4503uBlty5U12ebc9o7_Ffu5h7MmpZz0czzcgwZQWcmoF0iRSQFVAhkYCa33wucfjRmJcZ7QxBL65EIxKoA4uNW3pAXHtq1OgT0N_C8TY_wwGbFVnRw48zFK_ASjNlAqHOAvP16dDM30BHWH8Nju4EGXdYctlVbp7qAeFsYpDkLFSU_4uonzmcLmm6Z5WqR6LOz2keVsfndp0HKUdEe5rOtdgShrE5VOKGuyxYDbyxNcIWWCM7lSddjmwiNopOrIFxr6ejW3jJB__LDh6tbOstMWrcTqfXT32ZHYZkYaOj0zpqrqRCXAyJ4E6VwZXqEmi8TF3vbHOfklIwW4S0Y8-Y8YzAap0fvZKOfrSVDyXsRBKy_vnv_pjdmWwv7uT7mwNtx-wq_jNLb9-lS1PTmv3EMPHSfaonbPAPl00TPwGZtyFYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKkSpeEHcWCgwSSPAQuo7tOBZCCFhWLYUVQlTaN-MkDt2qTUp3s4hv4U_4OmZy2aUgqn3pc-zcZubM2D4zw9gj6lyFqwQThFEeBVKHUeC8yALVj3KpUIfyrGb5jqLtPflurMZr7FeXC0O0yg4Ta6DOypT2yLc4Wq3gSgu9lbe0iI-D4cvjbwF1kKKT1q6dRqMiu_7Hd1y-TV_sDFDWj8Nw-Pbzm-2g7TAQpErqWRB64XyeO5OrjAqnxCLV_Zwb56WOUgxtMieivvdxnAqdoL6aPJYqlSblDh2tFnjfC-yiFoqTjemxXhb85bJJw1MiiDk3LYuo4ZbVtSonR4gYRC5Tz6iOaBj-zzX-G_r-zeD8wyUOr7DLbSwLrxrlu8rWfHGNbXxoT-uvs5-fMAoNqHs9HC23IsEVGaTUFKROqYAyhwTVBV73oclCntYjplVCW0TQtBmCSQHUy6WizT0g1n15AvRp6HmBuPtfwUFWVsmhhwZwqfMAFG5OJUR8Bk8G85GbP4WOOn6D7Z2LqG6y9aIs_G2Ug8KoxSPcZNJQJi_ifeJx4WbonplSPaY7Odi0rZRODTsObUeJO7BLCVqSIC6kLEqwx_hi5nFTLWSFOaYTte2yYRG_Lbq0FeY-X8xtI6YmElpx9manWbZFrqld2lmPPVxcRsyhgyRX-LKqx3A065irM8fgWjWODT7mVqOsi18SUtgbR_SjT6nxYgDVPD99pZjs17XPpRZCGXnn7Fd_wDYQHOz7ndHuXXYJP7kl2m-y9dlJ5e9hHDlL7tcGC-zLeSPEb-8-iDM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Measurement+and+Correction+of+Both+B0+Changes+and+Subject+Motion+in+Diffusion+Tensor+Imaging+Using+a+Double+Volumetric+Navigated+%28DvNav%29+Sequence&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Alhamud%2C+A.&rft.au=Taylor%2C+Paul+A.&rft.au=van+der+Kouwe%2C+A.J.W.&rft.au=Meintjes%2C+E.+M.&rft.date=2016-02-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=126&rft.spage=60&rft.epage=71&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.11.022&rft_id=info%3Apmid%2F26584865&rft.externalDocID=PMC4733594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon