Real-time measurement and correction of both B0 changes and subject motion in diffusion tensor imaging using a double volumetric navigated (DvNav) sequence
Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur t...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 126; pp. 60 - 71 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur throughout the DTI acquisition due to several factors (including heating of the iron shim coils or subject motion), cause significant signal distortions that result in warped diffusion tensor (DT) parameter estimates.
In this work we introduce a novel technique to simultaneously measure, report and correct in real time subject motion and changes in B0 field homogeneity, both in and through the imaging plane. This is achieved using double volumetric navigators (DvNav), i.e. a pair of 3D EPI acquisitions, interleaved with the DTI pulse sequence. Changes in the B0 field are evaluated in terms of zero-order (frequency) and first-order (linear gradients) shim. The ability of the DvNav to accurately estimate the shim parameters was first validated in a water phantom. Two healthy subjects were scanned both in the presence and absence of motion using standard, motion corrected (single navigator, vNav), and DvNav DTI sequences. The difference in performance between the proposed 3D EPI field maps and the standard 3D gradient echo field maps of the MRI scanner was also evaluated in a phantom and two healthy subjects. The DvNav sequence was shown to accurately measure and correct changes in B0 following manual adjustments of the scanner's central frequency and the linear shim gradients. Compared to other methods, the DvNav produced DTI results that showed greater spatial overlap with anatomical references, particularly in scans with subject motion. This is largely due to the ability of the DvNav system to correct shim changes and subject motion between each volume acquisition, thus reducing shear distortion. |
---|---|
AbstractList | Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur throughout the DTI acquisition due to several factors (including heating of the iron shim coils or subject motion), cause significant signal distortions that result in warped diffusion tensor (DT) parameter estimates. In this work we introduce a novel technique to simultaneously measure, report and correct in real time subject motion and changes in B0 field homogeneity, both in and through the imaging plane. This is achieved using double volumetric navigators (DvNav), i.e. a pair of 3D EPI acquisitions, interleaved with the DTI pulse sequence. Changes in the B0 field are evaluated in terms of zero-order (frequency) and first-order (linear gradients) shim. The ability of the DvNav to accurately estimate the shim parameters was first validated in a water phantom. Two healthy subjects were scanned both in the presence and absence of motion using standard, motion corrected (single navigator, vNav), and DvNav DTI sequences. The difference in performance between the proposed 3D EPI field maps and the standard 3D gradient echo field maps of the MRI scanner was also evaluated in a phantom and two healthy subjects. The DvNav sequence was shown to accurately measure and correct changes in B0 following manual adjustments of the scanner's central frequency and the linear shim gradients. Compared to other methods, the DvNav produced DTI results that showed greater spatial overlap with anatomical references, particularly in scans with subject motion. This is largely due to the ability of the DvNav system to correct shim changes and subject motion between each volume acquisition, thus reducing shear distortion. Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur throughout the DTI acquisition due to several factors (including heating of the iron shim coils or subject motion), cause significant signal distortions that result in warped diffusion tensor (DT) parameter estimates. In this work we introduce a novel technique to simultaneously measure, report and correct in real time subject motion and changes in B0 field homogeneity, both in and through the imaging plane. This is achieved using double volumetric navigators (DvNav), i.e. a pair of 3D EPI acquisitions, interleaved with the DTI pulse sequence. Changes in the B0 field are evaluated in terms of zero-order (frequency) and first-order (linear gradients) shim. The ability of the DvNav to accurately estimate the shim parameters was first validated in a water phantom. Two healthy subjects were scanned both in the presence and absence of motion using standard, motion corrected (single navigator, vNav), and DvNav DTI sequences. The difference in performance between the proposed 3D EPI field maps and the standard 3D gradient echo field maps of the MRI scanner was also evaluated in a phantom and two healthy subjects. The DvNav sequence was shown to accurately measure and correct changes in B0 following manual adjustments of the scanner’s central frequency and the linear shim gradients. Compared to other methods, the DvNav produced DTI results that showed greater spatial overlap with anatomical references, particularly in scans with subject motion. This is largely due to the ability of the DvNav system to correct shim changes and subject motion between each volume acquisition, thus reducing shear distortion. Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur throughout the DTI acquisition due to several factors (including heating of the iron shim coils or subject motion), cause significant signal distortions that result in warped diffusion tensor (DT) parameter estimates. In this work we introduce a novel technique to simultaneously measure, report and correct in real time subject motion and changes in B0 field homogeneity, both in and through the imaging plane. This is achieved using double volumetric navigators (DvNav), i.e. a pair of 3D EPI acquisitions, interleaved with the DTI pulse sequence. Changes in the B0 field are evaluated in terms of zero-order (frequency) and first-order (linear gradients) shim. The ability of the DvNav to accurately estimate the shim parameters was first validated in a water phantom. Two healthy subjects were scanned both in the presence and absence of motion using standard, motion corrected (single navigator, vNav), and DvNav DTI sequences. The difference in performance between the proposed 3D EPI field maps and the standard 3D gradient echo field maps of the MRI scanner was also evaluated in a phantom and two healthy subjects. The DvNav sequence was shown to accurately measure and correct changes in B0 following manual adjustments of the scanner's central frequency and the linear shim gradients. Compared to other methods, the DvNav produced DTI results that showed greater spatial overlap with anatomical references, particularly in scans with subject motion. This is largely due to the ability of the DvNav system to correct shim changes and subject motion between each volume acquisition, thus reducing shear distortion.Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The MRI scanner automatically performs a shimming process by acquiring a field map before the start of a DTI scan. Changes in B0, which can occur throughout the DTI acquisition due to several factors (including heating of the iron shim coils or subject motion), cause significant signal distortions that result in warped diffusion tensor (DT) parameter estimates. In this work we introduce a novel technique to simultaneously measure, report and correct in real time subject motion and changes in B0 field homogeneity, both in and through the imaging plane. This is achieved using double volumetric navigators (DvNav), i.e. a pair of 3D EPI acquisitions, interleaved with the DTI pulse sequence. Changes in the B0 field are evaluated in terms of zero-order (frequency) and first-order (linear gradients) shim. The ability of the DvNav to accurately estimate the shim parameters was first validated in a water phantom. Two healthy subjects were scanned both in the presence and absence of motion using standard, motion corrected (single navigator, vNav), and DvNav DTI sequences. The difference in performance between the proposed 3D EPI field maps and the standard 3D gradient echo field maps of the MRI scanner was also evaluated in a phantom and two healthy subjects. The DvNav sequence was shown to accurately measure and correct changes in B0 following manual adjustments of the scanner's central frequency and the linear shim gradients. Compared to other methods, the DvNav produced DTI results that showed greater spatial overlap with anatomical references, particularly in scans with subject motion. This is largely due to the ability of the DvNav system to correct shim changes and subject motion between each volume acquisition, thus reducing shear distortion. |
Author | Alhamud, A. van der Kouwe, Andre J.W. Meintjes, Ernesta M. Taylor, Paul A. |
AuthorAffiliation | 3 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA 4 Department of Radiology, Harvard Medical School, Brookline, MA, USA 1 MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, South Africa 2 African Institute for Mathematical Sciences (AIMS), South Africa |
AuthorAffiliation_xml | – name: 4 Department of Radiology, Harvard Medical School, Brookline, MA, USA – name: 3 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA – name: 2 African Institute for Mathematical Sciences (AIMS), South Africa – name: 1 MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, South Africa |
Author_xml | – sequence: 1 givenname: A. surname: Alhamud fullname: Alhamud, A. email: alkk1973@gmail.com organization: MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, South Africa – sequence: 2 givenname: Paul A. surname: Taylor fullname: Taylor, Paul A. organization: MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, South Africa – sequence: 3 givenname: Andre J.W. surname: van der Kouwe fullname: van der Kouwe, Andre J.W. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA – sequence: 4 givenname: Ernesta M. surname: Meintjes fullname: Meintjes, Ernesta M. organization: MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, South Africa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26584865$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUstu1TAUjFARfcAvIEtsyiLBjuPY3iBoaQGpAgnB2nKck1xfErvYSaR-Cz-L0weFu7obP-eMx3PmODtw3kGWIYILgkn9Zls4mIO3o-6hKDFhBSEFLssn2RHBkuWS8fJgXTOaC0LkYXYc4xZjLEklnmWHZc1EJWp2lP3-BnrIJzsCGkHHOcAIbkLatcj4EMBM1jvkO9T4aYPOMDIb7XqIt4g4N9uEQKO_RVmHWtt1c1w3E7joA1olWtejdJhGjVo_NwOgxQ_zCFOwBjm92F5P0KLTD8sXvbxGEX7N4Aw8z552eojw4n4-yX5cXnw__5Rfff34-fz9VW5Yxae8BKqh67TsWIsrQQQ1HHdEaqh4bSQtW01rDCCEobxJlshOVMxU0hCdDOH0JHt7x3s9NyO0JhkQ9KCuQxIfbpTXVv1_4-xG9X5RFaeUySoRnN4TBJ-kx0mNNhoYBu3Az1ERXjPJhZDlPlBS8VIQlqCvdqBbPweXnFhRJSWM01X8y3_F_1X90OLH35ngYwzQKWMnvTYs_cUOimC1Zkpt1WOm1JopRYhKmUoEYofg4Y09Ss_uSiG1b7EQVDR2bW1r12ip1tt9SN7tkJjBOmv08BNu9qP4A3TEBcs |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2017_08_025 crossref_primary_10_1016_j_neuroimage_2017_01_014 crossref_primary_10_1371_journal_pone_0185647 crossref_primary_10_1002_mrm_30385 crossref_primary_10_1002_mrm_27750 crossref_primary_10_1002_mrm_29255 crossref_primary_10_1093_psyrad_kkae013 crossref_primary_10_1002_ima_22218 crossref_primary_10_1016_j_neuroimage_2017_12_040 crossref_primary_10_1002_mrm_27339 crossref_primary_10_1002_mrm_28505 crossref_primary_10_1016_j_neuroimage_2018_09_039 crossref_primary_10_1002_mrm_27597 crossref_primary_10_1002_mrm_29976 crossref_primary_10_1016_j_neuroimage_2020_117286 crossref_primary_10_1002_mrm_27957 crossref_primary_10_1007_s10334_023_01076_0 crossref_primary_10_1088_1361_6560_abbc7f crossref_primary_10_1002_mrm_29421 crossref_primary_10_1002_mrm_29202 crossref_primary_10_1002_mrm_30334 crossref_primary_10_1002_mrm_30038 crossref_primary_10_1002_mrm_29167 crossref_primary_10_1002_mrm_28076 crossref_primary_10_1002_mrm_29967 crossref_primary_10_1002_mrm_28555 crossref_primary_10_1002_nbm_4822 crossref_primary_10_1016_j_mri_2020_01_002 crossref_primary_10_1162_imag_a_00039 crossref_primary_10_1016_j_neuroimage_2018_02_041 crossref_primary_10_1016_j_mri_2016_06_006 crossref_primary_10_1002_hbm_23318 |
Cites_doi | 10.1002/mrm.20936 10.1016/j.neubiorev.2013.04.008 10.1002/mrm.22837 10.1148/radiol.2222010492 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2011.07.004 10.1002/mrm.10354 10.1523/JNEUROSCI.4184-11.2011 10.1002/mrm.1910380114 10.1016/j.biopsych.2008.10.015 10.1148/radiol.2221010626 10.1007/s10334-006-0050-2 10.1002/mrm.20695 10.1002/mrm.22787 10.1002/mrm.24824 10.1002/mrm.10259 10.1002/mrm.22805 10.1016/j.nicl.2014.11.019 10.1002/mrm.10184 10.1038/nn1075 10.1088/0031-9155/57/18/5715 10.1002/(SICI)1099-1492(199910)12:6<335::AID-NBM581>3.0.CO;2-A 10.1016/j.mri.2008.03.005 10.1016/S0006-3495(94)80775-1 10.1002/mrm.20642 10.1016/j.neuroimage.2007.12.025 10.1016/j.neuroimage.2009.11.044 10.1109/42.836368 10.1109/42.896788 10.1006/cbmr.1996.0014 10.1016/j.brainres.2010.09.051 10.1002/mrm.23314 10.1016/j.neuroimage.2012.02.054 10.1002/mrm.23228 10.1002/mrm.10065 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1016/j.neuroimage.2007.08.025 10.1002/jmri.24678 10.2214/ajr.180.3.1800851 10.1002/jmri.20683 10.1148/radiol.2212001702 10.1016/j.neuroimage.2008.02.023 10.1002/mrm.10308 10.1002/mrm.1910340111 10.1002/mrm.24129 10.1002/mrm.10677 10.1002/mrm.10268 10.1016/j.neuroimage.2005.03.016 10.1016/S1053-8119(03)00336-7 10.1002/mrm.1910380316 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Feb 1, 2016 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Feb 1, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2015.11.022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 71 |
ExternalDocumentID | PMC4733594 3941560531 26584865 10_1016_j_neuroimage_2015_11_022 S1053811915010447 |
Genre | Journal Article Correction/Retraction |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: R21 AA017410 – fundername: NIMH NIH HHS grantid: R21 MH096559 – fundername: NICHD NIH HHS grantid: R01 HD071664 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c547t-2e3aeffa9f5d048183c70f19ae476c932da360ee88c37b0539f845c49c1a09173 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 17:37:11 EDT 2025 Fri Jul 11 06:12:43 EDT 2025 Mon Jul 21 09:31:53 EDT 2025 Wed Aug 13 09:04:05 EDT 2025 Mon Jul 21 05:22:28 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Tue Jul 01 03:01:45 EDT 2025 Fri Feb 23 02:25:07 EST 2024 Tue Aug 26 20:08:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Zero-order shim (frequency) The first-order shim (linear gradients) Diffusion tensor imaging (DTI) Double volumetric navigators (DvNav) Navigated diffusion sequence (vNav) B0 correction |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c547t-2e3aeffa9f5d048183c70f19ae476c932da360ee88c37b0539f845c49c1a09173 |
Notes | ObjectType-Correction/Retraction-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 26584865 |
PQID | 1762315737 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4733594 proquest_miscellaneous_1765978892 proquest_miscellaneous_1761472815 proquest_journals_1762315737 pubmed_primary_26584865 crossref_citationtrail_10_1016_j_neuroimage_2015_11_022 crossref_primary_10_1016_j_neuroimage_2015_11_022 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_11_022 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_11_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Wedeen, Hagmann, Tseng, Reese, Weisskoff (bb0285) 2005; 54 Rohde, Barnett, Basser, Marenco, Pierpaoli (bb0215) 2004; 51 Benner, van der Kouwe, Kirsch, Sorensen (bb0050) 2006; 56 Bammer, Auer, Keeling, Augustin, Stables, Prokesch, Stollberger, Moseley, Fazekas (bb0035) 2002; 48 Foerster, Tomasi, Caparelli (bb0095) 2005; 54 Tuch, Reese, Wiegell, Makris, Belliveau, Wedeen (bb0270) 2002; 48 Behrens, Johansen-Berg, Woolrich, Smith, Wheeler-Kingshott, Boulby, Barker, Sillery, Sheehan, Ciccarelli (bb0045) 2003; 6 Engelbrecht, Scherer, Rassek, Witsack, Modder (bb0090) 2002; 222 Tisdall, Hess, Reuter, Meintjes, Fischl, van der Kouwe (bb0265) 2012; 68 Kober, Gruetter, Krueger (bb0145) 2012; 59 Le Bihan, Poupon, Amadon, Lethimonnier (bb0155) 2006; 24 Ward, Riederer, Jack (bb0280) 2002; 48 Hasan, Walimuni, Abid, Frye, Ewing-Cobbs, Wolinsky, Narayana (bb0100) 2011; 31 Snook, Paulson, Roy, Phillips, Beaulieu (bb0235) 2005; 26 Wu, Chang, Walker, Lemaitre, Barnett, Marenco, Pierpaoli (bb0290) 2008; 11 Aksoy, Forman, Straka, Skare, Holdsworth, Hornegger, Bammer (bb0005) 2011; 66 Taylor, Alhamud, van der Kouwe, Saleh, Laughton, Meintjes (bb0255) 2015 Staempfli, Reischauer, Jaermann, Valavanis, Kollias, Boesiger (bb0240) 2008; 39 Buonocore, Gao (bb0075) 1997; 38 Reese, Heid, Weisskoff, Wedeen (bb0210) 2003; 49 Pierpaoli, Walker, Irfanoglu, Barnett, Basser, Chang, Koay, Pajevic, Rohde, Sarlls (bb0195) 2010; 18 Benner, van der Kouwe, Sorensen (bb0055) 2011; 66 Jenkinson (bb0130) 2003; 49 Keating, Ernst (bb0140) 2012; 68 Kybic, Thévenaz, Nirkko, Unser (bb0150) 2000; 19 Jezzard, Balaban (bb0135) 1995; 34 Itahashi, Yamada, Nakamura, Watanabe, Yamagata, Jimbo, Shioda, Kuroda, Toriizuka, Kato (bb0125) 2015; 7 Pfeuffer, de Moortele, Ugurbil, Hu, Glover (bb0190) 2002; 47 Morrell, Spielman (bb0170) 1997; 38 Basser, Mattiello, LeBihan (bb0040) 1994; 66 Cox (bb0080) 1996; 29 Hess, Dylan, Andronesi, Meintjes, van der Kouwe (bb0105) 2011; 66 Miller, McKinstry, Philip, Mukherjee, Neil (bb0165) 2003; 180 Tao, Fletcher, Gerber, Whitaker (bb0250) 2009 Huang, Ceritoglu, Li, Qiu, Miller, van Zijl, Mori (bb0115) 2008; 26 Pruessmann, Weiger, Scheidegger, Boesiger (bb0200) 1999; 42 Schmithorst, Wilke, Dardzinski, Holland (bb0225) 2002; 222 Noriuchi, Kikuchi, Yoshiura, Kira, Shigeto, Hara, Tobimatsu, Kamio (bb0180) 2010; 1362 Bennett, Rypma (bb0060) 2013; 37 Ruthotto, Kugel, Olesch, Fischer, Modersitzki, Burger, Wolters (bb0220) 2012; 57 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (bb0230) 2004; 23 Alhamud, Taylor, Laughton, van der Kouwe, Meintjes (bb0015) 2015; 41 El-Sharkawy, Schär, Bottomley, Atalar (bb0085) 2006; 19 Assaf, Cohen (bb0030) 1999; 12 Bhat, Cauley, Tisdall, Witzel, Setsompop, van der Kouwe, Heberlein (bb0065) 2014 Mukherjee, Miller, Shimony, Conturo, Lee, Almli, McKinstry (bb0175) 2001; 221 Irfanoglu, Walker, Sarlls, Marenco, Pierpaoli (bb0120) 2012; 61 Holland, Kuperman, Dale (bb0110) 2010; 50 Alhamud, Hess, Tisdall, Meintjes, van der Kouwe (bb0010) 2011 Alhamud, Tisdall, Hess, Hasan, Meintjes, van der Kouwe (bb0020) 2012; 68 Andersson, Skare, Ashburner (bb0025) 2003; 20 Bhat, Tisdall, van der Kouwe, Feiweier, Heberlein (bb0070) 2012 Lee, Tan, Govenkar, Hancu (bb0160) 2014; 71 Qiu, Tan, Zhou, Khong (bb0205) 2008; 41 Studholme, Constable, Duncan (bb0245) 2000; 19 Thesen, Heid, Mueller, Schad (bb0260) 2000; 44 van der Kouwe, Benner, Salat, Fischl (bb0275) 2008; 40 Pavuluri, Yang, Kamineni, Passarotti, Srinivasan, Harral, Sweeney, Zhou (bb0185) 2009; 65 Kober (10.1016/j.neuroimage.2015.11.022_bb0145) 2012; 59 Lee (10.1016/j.neuroimage.2015.11.022_bb0160) 2014; 71 Reese (10.1016/j.neuroimage.2015.11.022_bb0210) 2003; 49 Ruthotto (10.1016/j.neuroimage.2015.11.022_bb0220) 2012; 57 Smith (10.1016/j.neuroimage.2015.11.022_bb0230) 2004; 23 Rohde (10.1016/j.neuroimage.2015.11.022_bb0215) 2004; 51 Ward (10.1016/j.neuroimage.2015.11.022_bb0280) 2002; 48 Wedeen (10.1016/j.neuroimage.2015.11.022_bb0285) 2005; 54 Bennett (10.1016/j.neuroimage.2015.11.022_bb0060) 2013; 37 Jenkinson (10.1016/j.neuroimage.2015.11.022_bb0130) 2003; 49 Holland (10.1016/j.neuroimage.2015.11.022_bb0110) 2010; 50 Snook (10.1016/j.neuroimage.2015.11.022_bb0235) 2005; 26 Miller (10.1016/j.neuroimage.2015.11.022_bb0165) 2003; 180 Andersson (10.1016/j.neuroimage.2015.11.022_bb0025) 2003; 20 Pierpaoli (10.1016/j.neuroimage.2015.11.022_bb0195) 2010; 18 Huang (10.1016/j.neuroimage.2015.11.022_bb0115) 2008; 26 Itahashi (10.1016/j.neuroimage.2015.11.022_bb0125) 2015; 7 Schmithorst (10.1016/j.neuroimage.2015.11.022_bb0225) 2002; 222 Taylor (10.1016/j.neuroimage.2015.11.022_bb0255) 2015 Assaf (10.1016/j.neuroimage.2015.11.022_bb0030) 1999; 12 Alhamud (10.1016/j.neuroimage.2015.11.022_bb0015) 2015; 41 Mukherjee (10.1016/j.neuroimage.2015.11.022_bb0175) 2001; 221 Cox (10.1016/j.neuroimage.2015.11.022_bb0080) 1996; 29 Wu (10.1016/j.neuroimage.2015.11.022_bb0290) 2008; 11 Alhamud (10.1016/j.neuroimage.2015.11.022_bb0020) 2012; 68 Basser (10.1016/j.neuroimage.2015.11.022_bb0040) 1994; 66 Behrens (10.1016/j.neuroimage.2015.11.022_bb0045) 2003; 6 Engelbrecht (10.1016/j.neuroimage.2015.11.022_bb0090) 2002; 222 Tuch (10.1016/j.neuroimage.2015.11.022_bb0270) 2002; 48 Irfanoglu (10.1016/j.neuroimage.2015.11.022_bb0120) 2012; 61 Le Bihan (10.1016/j.neuroimage.2015.11.022_bb0155) 2006; 24 El-Sharkawy (10.1016/j.neuroimage.2015.11.022_bb0085) 2006; 19 Buonocore (10.1016/j.neuroimage.2015.11.022_bb0075) 1997; 38 Benner (10.1016/j.neuroimage.2015.11.022_bb0050) 2006; 56 Jezzard (10.1016/j.neuroimage.2015.11.022_bb0135) 1995; 34 Bammer (10.1016/j.neuroimage.2015.11.022_bb0035) 2002; 48 Pfeuffer (10.1016/j.neuroimage.2015.11.022_bb0190) 2002; 47 Tao (10.1016/j.neuroimage.2015.11.022_bb0250) 2009 Morrell (10.1016/j.neuroimage.2015.11.022_bb0170) 1997; 38 Pruessmann (10.1016/j.neuroimage.2015.11.022_bb0200) 1999; 42 van der Kouwe (10.1016/j.neuroimage.2015.11.022_bb0275) 2008; 40 Keating (10.1016/j.neuroimage.2015.11.022_bb0140) 2012; 68 Pavuluri (10.1016/j.neuroimage.2015.11.022_bb0185) 2009; 65 Foerster (10.1016/j.neuroimage.2015.11.022_bb0095) 2005; 54 Bhat (10.1016/j.neuroimage.2015.11.022_bb0065) 2014 Thesen (10.1016/j.neuroimage.2015.11.022_bb0260) 2000; 44 Staempfli (10.1016/j.neuroimage.2015.11.022_bb0240) 2008; 39 Aksoy (10.1016/j.neuroimage.2015.11.022_bb0005) 2011; 66 Hess (10.1016/j.neuroimage.2015.11.022_bb0105) 2011; 66 Noriuchi (10.1016/j.neuroimage.2015.11.022_bb0180) 2010; 1362 Hasan (10.1016/j.neuroimage.2015.11.022_bb0100) 2011; 31 Qiu (10.1016/j.neuroimage.2015.11.022_bb0205) 2008; 41 Benner (10.1016/j.neuroimage.2015.11.022_bb0055) 2011; 66 Studholme (10.1016/j.neuroimage.2015.11.022_bb0245) 2000; 19 Bhat (10.1016/j.neuroimage.2015.11.022_bb0070) 2012 Alhamud (10.1016/j.neuroimage.2015.11.022_bb0010) 2011 Tisdall (10.1016/j.neuroimage.2015.11.022_bb0265) 2012; 68 Kybic (10.1016/j.neuroimage.2015.11.022_bb0150) 2000; 19 22246720 - Magn Reson Med. 2012 Oct;68(4):1097-108 16897692 - J Magn Reson Imaging. 2006 Sep;24(3):478-88 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 19027102 - Biol Psychiatry. 2009 Apr 1;65(7):586-93 12509838 - Magn Reson Med. 2003 Jan;49(1):193-7 9339449 - Magn Reson Med. 1997 Sep;38(3):477-83 23628742 - Neurosci Biobehav Rev. 2013 Aug;37(7):1201-10 18982621 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):321-9 12591710 - AJR Am J Roentgenol. 2003 Mar;180(3):851-9 21763773 - Neuroimage. 2012 Jan 2;59(1):389-98 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 14568458 - Neuroimage. 2003 Oct;20(2):870-88 11810679 - Magn Reson Med. 2002 Feb;47(2):344-53 10516615 - NMR Biomed. 1999 Oct;12(6):335-44 23798360 - Magn Reson Med. 2014 May;71(5):1813-8 10975899 - Magn Reson Med. 2000 Sep;44(3):457-65 16767763 - Magn Reson Med. 2006 Jul;56(1):204-9 21695721 - Magn Reson Med. 2011 Jul;66(1):154-67 12417991 - Magn Reson Med. 2002 Nov;48(5):771-80 10542355 - Magn Reson Med. 1999 Nov;42(5):952-62 18395471 - Neuroimage. 2008 Jun;41(2):223-32 19694302 - Inf Process Med Imaging. 2009;21:664-75 22941943 - Phys Med Biol. 2012 Sep 21;57(18):5715-31 21432898 - Magn Reson Med. 2011 Aug;66(2):366-78 12808459 - Nat Neurosci. 2003 Jul;6(7):750-7 14705050 - Magn Reson Med. 2004 Jan;51(1):103-14 22213578 - Magn Reson Med. 2012 Aug;68(2):389-99 24935904 - J Magn Reson Imaging. 2015 May;41(5):1353-64 21381101 - Magn Reson Med. 2011 Aug;66(2):314-23 25610777 - Neuroimage Clin. 2015;7:155-69 22090508 - J Neurosci. 2011 Nov 16;31(46):16826-32 22401760 - Neuroimage. 2012 May 15;61(1):275-88 22851160 - Magn Reson Med. 2012 Nov;68(5):1339-45 12111940 - Magn Reson Med. 2002 Jul;48(1):128-36 15961051 - Neuroimage. 2005 Jul 15;26(4):1164-73 20858472 - Brain Res. 2010 Nov 29;1362:141-9 16215962 - Magn Reson Med. 2005 Nov;54(5):1261-7 11818607 - Radiology. 2002 Feb;222(2):410-8 18242102 - Neuroimage. 2008 Apr 1;40(2):559-69 11204849 - IEEE Trans Med Imaging. 2000 Nov;19(11):1115-27 12509835 - Magn Reson Med. 2003 Jan;49(1):177-82 17931889 - Neuroimage. 2008 Jan 1;39(1):119-26 12353272 - Magn Reson Med. 2002 Oct;48(4):577-82 16247738 - Magn Reson Med. 2005 Dec;54(6):1377-86 10784280 - IEEE Trans Med Imaging. 2000 Feb;19(2):80-93 18499384 - Magn Reson Imaging. 2008 Nov;26(9):1294-302 19944768 - Neuroimage. 2010 Mar;50(1):175-83 8130344 - Biophys J. 1994 Jan;66(1):259-67 9211384 - Magn Reson Med. 1997 Jul;38(1):89-100 11756728 - Radiology. 2002 Jan;222(1):212-8 11687675 - Radiology. 2001 Nov;221(2):349-58 7674900 - Magn Reson Med. 1995 Jul;34(1):65-73 17043837 - MAGMA. 2006 Nov;19(5):223-36 |
References_xml | – volume: 47 start-page: 344 year: 2002 end-page: 353 ident: bb0190 article-title: Correction of physiologically induced global off‐resonance effects in dynamic echo-planar and spiral functional imaging publication-title: Magn. Reson. Med. – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: bb0080 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. – year: 2014 ident: bb0065 article-title: Prospective motion correction based on ultra-fast whole head navigators acquired with multi-band EPI publication-title: ISMRM Workshop on Motion Correction in MRI; July; Tromsø, Norway – volume: 26 start-page: 1294 year: 2008 end-page: 1302 ident: bb0115 article-title: Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping publication-title: Magn. Reson. Imaging – volume: 65 start-page: 586 year: 2009 end-page: 593 ident: bb0185 article-title: Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder publication-title: Biol. Psychiatry – volume: 41 start-page: 1353 year: 2015 end-page: 1364 ident: bb0015 article-title: Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction publication-title: J. Magn. Reson. Imaging – volume: 222 start-page: 212 year: 2002 end-page: 218 ident: bb0225 article-title: Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study publication-title: Radiology – volume: 49 start-page: 193 year: 2003 end-page: 197 ident: bb0130 article-title: Fast, automated, N-dimensional phase-unwrapping algorithm publication-title: Magn. Reson. Med. – volume: 34 start-page: 65 year: 1995 end-page: 73 ident: bb0135 article-title: Correction for geometric distortion in echo planar images from B0 field variations publication-title: Magn. Reson. Med. – volume: 61 start-page: 275 year: 2012 end-page: 288 ident: bb0120 article-title: Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results publication-title: Neuroimage – volume: 26 start-page: 1164 year: 2005 end-page: 1173 ident: bb0235 article-title: Diffusion tensor imaging of neurodevelopment in children and young adults publication-title: Neuroimage – volume: 68 start-page: 1339 year: 2012 end-page: 1345 ident: bb0140 article-title: Real-time dynamic frequency and shim correction for single-voxel magnetic resonance spectroscopy publication-title: Magn. Reson. Med. – volume: 12 start-page: 335 year: 1999 end-page: 344 ident: bb0030 article-title: Structural information in neuronal tissue as revealed by q-space diffusion NMR spectroscopy of metabolites in bovine optic nerve publication-title: NMR Biomed. – volume: 54 start-page: 1261 year: 2005 end-page: 1267 ident: bb0095 article-title: Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging publication-title: Magn. Reson. Med. – volume: 41 start-page: 223 year: 2008 end-page: 232 ident: bb0205 article-title: Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development publication-title: Neuroimage – volume: 11 start-page: 321 year: 2008 end-page: 329 ident: bb0290 article-title: Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework publication-title: Medical Image Computing and Computer-assisted Intervention – volume: 57 start-page: 5715 year: 2012 ident: bb0220 article-title: Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images publication-title: Phys. Med. Biol. – volume: 66 start-page: 314 year: 2011 end-page: 323 ident: bb0105 article-title: Real‐time motion and B0 corrected single voxel spectroscopy using volumetric navigators publication-title: Magn. Reson. Med. – year: 2012 ident: bb0070 article-title: EPI navigator based prospective motion correction technique for diffusion neuroimaging publication-title: Proceedings of the 19th Annual Meeting of ISMRM; May; Melbourne, Australia – year: 2015 ident: bb0255 article-title: A comparison of combined acquisition and processing methods for DTI: a pediatric study publication-title: OHBM June; Hawaii, USA – volume: 50 start-page: 175 year: 2010 end-page: 183 ident: bb0110 article-title: Efficient correction of inhomogeneous static magnetic field-induced distortion in echo planar imaging publication-title: Neuroimage – volume: 40 start-page: 559 year: 2008 end-page: 569 ident: bb0275 article-title: Brain morphometry with multiecho MPRAGE publication-title: Neuroimage – volume: 18 start-page: 1597 year: 2010 ident: bb0195 article-title: TORTOISE: an integrated software package for processing of diffusion MRI data publication-title: Book TORTOISE: An Integrated Software Package for Processing of Diffusion MRI Data – volume: 180 start-page: 851 year: 2003 end-page: 859 ident: bb0165 article-title: Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination publication-title: Am. J. Roentgenol. – volume: 222 start-page: 410 year: 2002 end-page: 418 ident: bb0090 article-title: Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases 1 publication-title: Radiology – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: bb0025 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage – volume: 66 start-page: 259 year: 1994 ident: bb0040 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. – volume: 39 start-page: 119 year: 2008 end-page: 126 ident: bb0240 article-title: Combining fMRI and DTI: a framework for exploring the limits of fMRI-guided DTI fiber tracking and for verifying DTI-based fiber tractography results publication-title: Neuroimage – volume: 44 start-page: 457 year: 2000 end-page: 465 ident: bb0260 article-title: Prospective acquisition correction for head motion with image-based tracking for real-time fMRI publication-title: Magn. Reson. Med. – volume: 6 start-page: 750 year: 2003 end-page: 757 ident: bb0045 article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging publication-title: Nat. Neurosci. – volume: 42 start-page: 952 year: 1999 end-page: 962 ident: bb0200 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn. Reson. Med. – volume: 59 start-page: 389 year: 2012 end-page: 398 ident: bb0145 article-title: Prospective and retrospective motion correction in diffusion magnetic resonance imaging of the human brain publication-title: Neuroimage – volume: 221 start-page: 349 year: 2001 end-page: 358 ident: bb0175 article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging publication-title: Radiology – volume: 19 start-page: 223 year: 2006 end-page: 236 ident: bb0085 article-title: Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field publication-title: MAGMA – volume: 54 start-page: 1377 year: 2005 end-page: 1386 ident: bb0285 article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging publication-title: Magn. Reson. Med. – volume: 48 start-page: 771 year: 2002 end-page: 780 ident: bb0280 article-title: Real-time autoshimming for echo planar timecourse imaging publication-title: Magn. Reson. Med. – volume: 68 start-page: 1097 year: 2012 end-page: 1108 ident: bb0020 article-title: Volumetric navigators for real-time motion correction in diffusion tensor imaging publication-title: Magn. Reson. Med. – volume: 37 start-page: 1201 year: 2013 end-page: 1210 ident: bb0060 article-title: Advances in functional neuroanatomy: a review of combined DTI and fMRI studies in healthy younger and older adults publication-title: Neurosci. Biobehav. Rev. – volume: 38 start-page: 477 year: 1997 end-page: 483 ident: bb0170 article-title: Dynamic shimming for multi-slice magnetic resonance imaging publication-title: Magn. Reson. Med. – volume: 48 start-page: 128 year: 2002 end-page: 136 ident: bb0035 article-title: Diffusion tensor imaging using single-shot SENSE-EPI publication-title: Magn. Reson. Med. – volume: 51 start-page: 103 year: 2004 end-page: 114 ident: bb0215 article-title: Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI publication-title: Magn. Reson. Med. – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: bb0230 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 48 start-page: 577 year: 2002 end-page: 582 ident: bb0270 article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity publication-title: Magn. Reson. Med. – volume: 19 start-page: 80 year: 2000 end-page: 93 ident: bb0150 article-title: Unwarping of unidirectionally distorted EPI images publication-title: IEEE Trans. Med. Imaging – start-page: 664 year: 2009 end-page: 675 ident: bb0250 article-title: A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI publication-title: Information Processing in Medical Imaging – year: 2011 ident: bb0010 article-title: Implementation of real time motion correction in diffusion tensor imaging publication-title: Proceedings of the 19th Annual Meeting of ISMRM; May; Montreal, Canada – volume: 49 start-page: 177 year: 2003 end-page: 182 ident: bb0210 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn. Reson. Med. – volume: 71 start-page: 1813 year: 2014 end-page: 1818 ident: bb0160 article-title: Dynamic slice-dependent shim and center frequency update in 3 publication-title: Magn. Reson. Med. – volume: 7 start-page: 155 year: 2015 end-page: 169 ident: bb0125 article-title: Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: a multimodal brain imaging study publication-title: NeuroImage: Clinical – volume: 68 start-page: 389 year: 2012 end-page: 399 ident: bb0265 article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI publication-title: Magn. Reson. Med. – volume: 66 start-page: 154 year: 2011 end-page: 167 ident: bb0055 article-title: Diffusion imaging with prospective motion correction and reacquisition publication-title: Magn. Reson. Med. – volume: 24 start-page: 478 year: 2006 end-page: 488 ident: bb0155 article-title: Artifacts and pitfalls in diffusion MRI publication-title: J. Magn. Reson. Imaging – volume: 31 start-page: 16826 year: 2011 end-page: 16832 ident: bb0100 article-title: Multimodal quantitative magnetic resonance imaging of thalamic development and aging across the human lifespan: implications to neurodegeneration in multiple sclerosis publication-title: J. Neurosci. – volume: 19 start-page: 1115 year: 2000 end-page: 1127 ident: bb0245 article-title: Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model publication-title: IEEE Trans. Med. Imaging – volume: 56 start-page: 204 year: 2006 end-page: 209 ident: bb0050 article-title: Real-time RF pulse adjustment for B0 drift correction publication-title: Magn. Reson. Med. – volume: 1362 start-page: 141 year: 2010 end-page: 149 ident: bb0180 article-title: Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder publication-title: Brain Res. – volume: 38 start-page: 89 year: 1997 end-page: 100 ident: bb0075 article-title: Ghost artifact reduction for echo planar imaging using image phase correction publication-title: Magn. Reson. Med. – volume: 66 start-page: 366 year: 2011 end-page: 378 ident: bb0005 article-title: Real-time optical motion correction for diffusion tensor imaging publication-title: Magn. Reson. Med. – volume: 56 start-page: 204 year: 2006 ident: 10.1016/j.neuroimage.2015.11.022_bb0050 article-title: Real-time RF pulse adjustment for B0 drift correction publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20936 – volume: 37 start-page: 1201 year: 2013 ident: 10.1016/j.neuroimage.2015.11.022_bb0060 article-title: Advances in functional neuroanatomy: a review of combined DTI and fMRI studies in healthy younger and older adults publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2013.04.008 – volume: 66 start-page: 154 year: 2011 ident: 10.1016/j.neuroimage.2015.11.022_bb0055 article-title: Diffusion imaging with prospective motion correction and reacquisition publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22837 – volume: 18 start-page: 1597 year: 2010 ident: 10.1016/j.neuroimage.2015.11.022_bb0195 article-title: TORTOISE: an integrated software package for processing of diffusion MRI data – volume: 222 start-page: 410 year: 2002 ident: 10.1016/j.neuroimage.2015.11.022_bb0090 article-title: Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases 1 publication-title: Radiology doi: 10.1148/radiol.2222010492 – volume: 23 start-page: S208 year: 2004 ident: 10.1016/j.neuroimage.2015.11.022_bb0230 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – year: 2015 ident: 10.1016/j.neuroimage.2015.11.022_bb0255 article-title: A comparison of combined acquisition and processing methods for DTI: a pediatric study – volume: 11 start-page: 321 year: 2008 ident: 10.1016/j.neuroimage.2015.11.022_bb0290 article-title: Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework – volume: 59 start-page: 389 year: 2012 ident: 10.1016/j.neuroimage.2015.11.022_bb0145 article-title: Prospective and retrospective motion correction in diffusion magnetic resonance imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.004 – volume: 49 start-page: 193 year: 2003 ident: 10.1016/j.neuroimage.2015.11.022_bb0130 article-title: Fast, automated, N-dimensional phase-unwrapping algorithm publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10354 – volume: 31 start-page: 16826 year: 2011 ident: 10.1016/j.neuroimage.2015.11.022_bb0100 article-title: Multimodal quantitative magnetic resonance imaging of thalamic development and aging across the human lifespan: implications to neurodegeneration in multiple sclerosis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4184-11.2011 – volume: 38 start-page: 89 year: 1997 ident: 10.1016/j.neuroimage.2015.11.022_bb0075 article-title: Ghost artifact reduction for echo planar imaging using image phase correction publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380114 – volume: 65 start-page: 586 year: 2009 ident: 10.1016/j.neuroimage.2015.11.022_bb0185 article-title: Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2008.10.015 – start-page: 664 year: 2009 ident: 10.1016/j.neuroimage.2015.11.022_bb0250 article-title: A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI – volume: 222 start-page: 212 year: 2002 ident: 10.1016/j.neuroimage.2015.11.022_bb0225 article-title: Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study publication-title: Radiology doi: 10.1148/radiol.2221010626 – volume: 19 start-page: 223 year: 2006 ident: 10.1016/j.neuroimage.2015.11.022_bb0085 article-title: Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field publication-title: MAGMA doi: 10.1007/s10334-006-0050-2 – volume: 54 start-page: 1261 year: 2005 ident: 10.1016/j.neuroimage.2015.11.022_bb0095 article-title: Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20695 – volume: 66 start-page: 366 year: 2011 ident: 10.1016/j.neuroimage.2015.11.022_bb0005 article-title: Real-time optical motion correction for diffusion tensor imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22787 – volume: 71 start-page: 1813 year: 2014 ident: 10.1016/j.neuroimage.2015.11.022_bb0160 article-title: Dynamic slice-dependent shim and center frequency update in 3T breast diffusion weighted imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24824 – volume: 48 start-page: 771 year: 2002 ident: 10.1016/j.neuroimage.2015.11.022_bb0280 article-title: Real-time autoshimming for echo planar timecourse imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10259 – volume: 66 start-page: 314 year: 2011 ident: 10.1016/j.neuroimage.2015.11.022_bb0105 article-title: Real‐time motion and B0 corrected single voxel spectroscopy using volumetric navigators publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22805 – volume: 7 start-page: 155 year: 2015 ident: 10.1016/j.neuroimage.2015.11.022_bb0125 article-title: Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: a multimodal brain imaging study publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2014.11.019 – volume: 48 start-page: 128 year: 2002 ident: 10.1016/j.neuroimage.2015.11.022_bb0035 article-title: Diffusion tensor imaging using single-shot SENSE-EPI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10184 – year: 2014 ident: 10.1016/j.neuroimage.2015.11.022_bb0065 article-title: Prospective motion correction based on ultra-fast whole head navigators acquired with multi-band EPI – volume: 6 start-page: 750 year: 2003 ident: 10.1016/j.neuroimage.2015.11.022_bb0045 article-title: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging publication-title: Nat. Neurosci. doi: 10.1038/nn1075 – volume: 57 start-page: 5715 year: 2012 ident: 10.1016/j.neuroimage.2015.11.022_bb0220 article-title: Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/18/5715 – volume: 12 start-page: 335 year: 1999 ident: 10.1016/j.neuroimage.2015.11.022_bb0030 article-title: Structural information in neuronal tissue as revealed by q-space diffusion NMR spectroscopy of metabolites in bovine optic nerve publication-title: NMR Biomed. doi: 10.1002/(SICI)1099-1492(199910)12:6<335::AID-NBM581>3.0.CO;2-A – volume: 26 start-page: 1294 year: 2008 ident: 10.1016/j.neuroimage.2015.11.022_bb0115 article-title: Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2008.03.005 – volume: 66 start-page: 259 year: 1994 ident: 10.1016/j.neuroimage.2015.11.022_bb0040 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80775-1 – volume: 54 start-page: 1377 year: 2005 ident: 10.1016/j.neuroimage.2015.11.022_bb0285 article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20642 – year: 2012 ident: 10.1016/j.neuroimage.2015.11.022_bb0070 article-title: EPI navigator based prospective motion correction technique for diffusion neuroimaging – volume: 40 start-page: 559 year: 2008 ident: 10.1016/j.neuroimage.2015.11.022_bb0275 article-title: Brain morphometry with multiecho MPRAGE publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.025 – volume: 50 start-page: 175 year: 2010 ident: 10.1016/j.neuroimage.2015.11.022_bb0110 article-title: Efficient correction of inhomogeneous static magnetic field-induced distortion in echo planar imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.044 – volume: 19 start-page: 80 year: 2000 ident: 10.1016/j.neuroimage.2015.11.022_bb0150 article-title: Unwarping of unidirectionally distorted EPI images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.836368 – volume: 19 start-page: 1115 year: 2000 ident: 10.1016/j.neuroimage.2015.11.022_bb0245 article-title: Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.896788 – volume: 29 start-page: 162 year: 1996 ident: 10.1016/j.neuroimage.2015.11.022_bb0080 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 1362 start-page: 141 year: 2010 ident: 10.1016/j.neuroimage.2015.11.022_bb0180 article-title: Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder publication-title: Brain Res. doi: 10.1016/j.brainres.2010.09.051 – volume: 68 start-page: 1097 year: 2012 ident: 10.1016/j.neuroimage.2015.11.022_bb0020 article-title: Volumetric navigators for real-time motion correction in diffusion tensor imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23314 – volume: 61 start-page: 275 year: 2012 ident: 10.1016/j.neuroimage.2015.11.022_bb0120 article-title: Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.054 – year: 2011 ident: 10.1016/j.neuroimage.2015.11.022_bb0010 article-title: Implementation of real time motion correction in diffusion tensor imaging – volume: 68 start-page: 389 year: 2012 ident: 10.1016/j.neuroimage.2015.11.022_bb0265 article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23228 – volume: 47 start-page: 344 year: 2002 ident: 10.1016/j.neuroimage.2015.11.022_bb0190 article-title: Correction of physiologically induced global off‐resonance effects in dynamic echo-planar and spiral functional imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10065 – volume: 44 start-page: 457 year: 2000 ident: 10.1016/j.neuroimage.2015.11.022_bb0260 article-title: Prospective acquisition correction for head motion with image-based tracking for real-time fMRI publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R – volume: 42 start-page: 952 year: 1999 ident: 10.1016/j.neuroimage.2015.11.022_bb0200 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 39 start-page: 119 year: 2008 ident: 10.1016/j.neuroimage.2015.11.022_bb0240 article-title: Combining fMRI and DTI: a framework for exploring the limits of fMRI-guided DTI fiber tracking and for verifying DTI-based fiber tractography results publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.08.025 – volume: 41 start-page: 1353 year: 2015 ident: 10.1016/j.neuroimage.2015.11.022_bb0015 article-title: Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24678 – volume: 180 start-page: 851 year: 2003 ident: 10.1016/j.neuroimage.2015.11.022_bb0165 article-title: Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.180.3.1800851 – volume: 24 start-page: 478 year: 2006 ident: 10.1016/j.neuroimage.2015.11.022_bb0155 article-title: Artifacts and pitfalls in diffusion MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20683 – volume: 221 start-page: 349 year: 2001 ident: 10.1016/j.neuroimage.2015.11.022_bb0175 article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging publication-title: Radiology doi: 10.1148/radiol.2212001702 – volume: 41 start-page: 223 year: 2008 ident: 10.1016/j.neuroimage.2015.11.022_bb0205 article-title: Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.023 – volume: 49 start-page: 177 year: 2003 ident: 10.1016/j.neuroimage.2015.11.022_bb0210 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10308 – volume: 34 start-page: 65 year: 1995 ident: 10.1016/j.neuroimage.2015.11.022_bb0135 article-title: Correction for geometric distortion in echo planar images from B0 field variations publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340111 – volume: 68 start-page: 1339 year: 2012 ident: 10.1016/j.neuroimage.2015.11.022_bb0140 article-title: Real-time dynamic frequency and shim correction for single-voxel magnetic resonance spectroscopy publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24129 – volume: 51 start-page: 103 year: 2004 ident: 10.1016/j.neuroimage.2015.11.022_bb0215 article-title: Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10677 – volume: 48 start-page: 577 year: 2002 ident: 10.1016/j.neuroimage.2015.11.022_bb0270 article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10268 – volume: 26 start-page: 1164 year: 2005 ident: 10.1016/j.neuroimage.2015.11.022_bb0235 article-title: Diffusion tensor imaging of neurodevelopment in children and young adults publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.016 – volume: 20 start-page: 870 year: 2003 ident: 10.1016/j.neuroimage.2015.11.022_bb0025 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00336-7 – volume: 38 start-page: 477 year: 1997 ident: 10.1016/j.neuroimage.2015.11.022_bb0170 article-title: Dynamic shimming for multi-slice magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380316 – reference: 12353272 - Magn Reson Med. 2002 Oct;48(4):577-82 – reference: 21381101 - Magn Reson Med. 2011 Aug;66(2):314-23 – reference: 11818607 - Radiology. 2002 Feb;222(2):410-8 – reference: 23628742 - Neurosci Biobehav Rev. 2013 Aug;37(7):1201-10 – reference: 7674900 - Magn Reson Med. 1995 Jul;34(1):65-73 – reference: 22246720 - Magn Reson Med. 2012 Oct;68(4):1097-108 – reference: 12417991 - Magn Reson Med. 2002 Nov;48(5):771-80 – reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 – reference: 22851160 - Magn Reson Med. 2012 Nov;68(5):1339-45 – reference: 12509835 - Magn Reson Med. 2003 Jan;49(1):177-82 – reference: 18242102 - Neuroimage. 2008 Apr 1;40(2):559-69 – reference: 12591710 - AJR Am J Roentgenol. 2003 Mar;180(3):851-9 – reference: 18982621 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):321-9 – reference: 22401760 - Neuroimage. 2012 May 15;61(1):275-88 – reference: 10975899 - Magn Reson Med. 2000 Sep;44(3):457-65 – reference: 19944768 - Neuroimage. 2010 Mar;50(1):175-83 – reference: 12111940 - Magn Reson Med. 2002 Jul;48(1):128-36 – reference: 21432898 - Magn Reson Med. 2011 Aug;66(2):366-78 – reference: 11756728 - Radiology. 2002 Jan;222(1):212-8 – reference: 18499384 - Magn Reson Imaging. 2008 Nov;26(9):1294-302 – reference: 22213578 - Magn Reson Med. 2012 Aug;68(2):389-99 – reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 – reference: 16247738 - Magn Reson Med. 2005 Dec;54(6):1377-86 – reference: 15961051 - Neuroimage. 2005 Jul 15;26(4):1164-73 – reference: 11687675 - Radiology. 2001 Nov;221(2):349-58 – reference: 11204849 - IEEE Trans Med Imaging. 2000 Nov;19(11):1115-27 – reference: 10784280 - IEEE Trans Med Imaging. 2000 Feb;19(2):80-93 – reference: 14705050 - Magn Reson Med. 2004 Jan;51(1):103-14 – reference: 16897692 - J Magn Reson Imaging. 2006 Sep;24(3):478-88 – reference: 8130344 - Biophys J. 1994 Jan;66(1):259-67 – reference: 20858472 - Brain Res. 2010 Nov 29;1362:141-9 – reference: 12808459 - Nat Neurosci. 2003 Jul;6(7):750-7 – reference: 21695721 - Magn Reson Med. 2011 Jul;66(1):154-67 – reference: 17931889 - Neuroimage. 2008 Jan 1;39(1):119-26 – reference: 23798360 - Magn Reson Med. 2014 May;71(5):1813-8 – reference: 25610777 - Neuroimage Clin. 2015;7:155-69 – reference: 18395471 - Neuroimage. 2008 Jun;41(2):223-32 – reference: 22941943 - Phys Med Biol. 2012 Sep 21;57(18):5715-31 – reference: 9339449 - Magn Reson Med. 1997 Sep;38(3):477-83 – reference: 19027102 - Biol Psychiatry. 2009 Apr 1;65(7):586-93 – reference: 12509838 - Magn Reson Med. 2003 Jan;49(1):193-7 – reference: 9211384 - Magn Reson Med. 1997 Jul;38(1):89-100 – reference: 21763773 - Neuroimage. 2012 Jan 2;59(1):389-98 – reference: 10516615 - NMR Biomed. 1999 Oct;12(6):335-44 – reference: 19694302 - Inf Process Med Imaging. 2009;21:664-75 – reference: 16767763 - Magn Reson Med. 2006 Jul;56(1):204-9 – reference: 11810679 - Magn Reson Med. 2002 Feb;47(2):344-53 – reference: 10542355 - Magn Reson Med. 1999 Nov;42(5):952-62 – reference: 22090508 - J Neurosci. 2011 Nov 16;31(46):16826-32 – reference: 24935904 - J Magn Reson Imaging. 2015 May;41(5):1353-64 – reference: 14568458 - Neuroimage. 2003 Oct;20(2):870-88 – reference: 16215962 - Magn Reson Med. 2005 Nov;54(5):1261-7 – reference: 17043837 - MAGMA. 2006 Nov;19(5):223-36 |
SSID | ssj0009148 |
Score | 2.3447506 |
Snippet | Diffusion tensor imaging (DTI) requires a set of diffusion weighted measurements in order to acquire enough information to characterize local structure. The... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 60 |
SubjectTerms | Acquisitions & mergers Adult B0 correction Brain - anatomy & histology Diffusion Diffusion tensor imaging (DTI) Diffusion Tensor Imaging - methods Diffusion Tensor Imaging - standards Double volumetric navigators (DvNav) Echo-Planar Imaging - methods Echo-Planar Imaging - standards Humans Male Methods Movement Navigated diffusion sequence (vNav) Studies The first-order shim (linear gradients) Zero-order shim (frequency) |
SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5VPVRcEJRXoKBB4gAHN7F31-sVp7ZQVUj0AFTqbbW2d8FVa1dNnCN_pH-2M_baISBQJC6REs8m8czsPNbfzDD2hiZXYZagoyT1aSRUkkbW8TKSs9QLiTrkyw7le5qenIlP5_J8ix0NtTAEqwy2v7fpnbUOn0wDN6fXVTX9ipEBuhvMNyTlFIIqyvGVtHz_5wrmoWPRl8NJHhF1QPP0GK-uZ2R1hTuXQF5yn_p5JsnfXNSfIejvSMpfXNPxA3Y_xJRw0P_th2zL1bts53N4av6I3X7BaDCiKfJwtToSBFuXUNBwjq60ARoPOYoNDmfQVwPPO4p5m9NRDfTjfqCqgWaqtHTIBoR-b26Abg09IBCG_jtYKJs2v3TQGz6aAAC1XVIrD1fC2w_LU7t8BwOE-zE7O_747egkCkMZokIKtYgSx63z3movS-o1k_FCzXysrUPeFxgNlpanM-eyrOAqR65rnwlZCF3EFoWh-BO2XTe1e4ZykBg9ONz2pdBUUYt2N3eYQGn6zlLKCVODHEwROpbT4IxLM0DTLsxKgoYkiAmNQQlOWDyuvO67dmywRg-iNkNVKtpRg65lg7Xvx7Vr2rvh6r1Bs0ywIHMTo5fisVRcTdjr8TLufXqgY2vXtB1NjNsri-U_aTBnzDKNP_O0V9aRJQmFn1lKjF5T45GAeo-vX6mrH10PcqE4l1o8_68bf8Hu4bsAgt9j24ub1r3EGG-Rv-o28R2YfFLs priority: 102 providerName: Elsevier |
Title | Real-time measurement and correction of both B0 changes and subject motion in diffusion tensor imaging using a double volumetric navigated (DvNav) sequence |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915010447 https://dx.doi.org/10.1016/j.neuroimage.2015.11.022 https://www.ncbi.nlm.nih.gov/pubmed/26584865 https://www.proquest.com/docview/1762315737 https://www.proquest.com/docview/1761472815 https://www.proquest.com/docview/1765978892 https://pubmed.ncbi.nlm.nih.gov/PMC4733594 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyEuiDcLZTVIHODgsontOBYH1EKrBcQKVVTaW-TETlnUJqX7OPJH-LPMJE6Wgqj2tIeMdzeeh8f2N98w9oI6V-EuwfA4KRMudZxw64XjapSUUqENla5B-U6S8Yn8OFXTcOA2D7DKLiY2gdrVBZ2Rv47Qa0WktNBvL35w6hpFt6uhhcYW2yHqMoJ06alek-5Gsi2FU4KnKBCQPC2-q-GLnJ2j1xLAS-0Rl2cc_295-jf9_BtF-ceydHSH3Q75JOy3BnCX3fDVPXbzc7gxv89-HWMmyKmDPJyvjwPBVg4KaszRlDVAXUKOKoODEbSVwPNGYr7M6ZgG2lY_MKuA-qks6YANCPleXwK9Gq5-QPj5U7Dg6mV-5qENesT-D5VdEY2Hd_Dy_WpiV6-gg28_YCdHh1_fjXloyMALJfWCx15YX5bWlMoRz0wqCj0qI2O91EmBmaCzIhl5n6aF0DnOuilTqQppisiiMrR4yLaruvKPUQ8KMwePLu-koWpajLm5x82Toe90Sg2Y7vSQFYGtnJpmnGUdLO17ttZgRhrEzUyGGhywqB950TJ2bDDGdKrOuopUjKEZLisbjH3Tjw1ZS5uNbDh6t7OsLESPeba29QF73j9Gv6fLHFv5etnIROhaaaSulcH9Ypoa_JlHrbH2UxJT6pkmNNFXzLgXIN7xq0-q2beGf1xqIZSRT67_60_ZLXzPgHDfZduLy6V_hgncIh-yrb2f0bDx1SHb2f_waTzBz4PDyZfj39ZqS74 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKKwEXxD8LBQYJJDgYNrGdxEIIUdpqS9sVqlqpt-DEDixqk9LdLOJZeAeekZk42aUgqr30nHH-ZvzN2P5mhrGn1LkKVwmah1ERcRmHETdOWK76USEV2lBhG5bvMBocyA-H6nCJ_epyYYhW2WFiA9S2ymmP_FWAs1YEKhbx25NvnLpG0elq10LDm8W2-_Edl2zjN1vrqN9nYbi5sf9-wNuuAjxXMp7w0AnjisLoQlkqlpKIPO4XgTZOxlGO4Yw1Iuo7lyS5iDO0UV0kUuVS54FB5xoLvO8ltiJRCIFgZW1j-HFvXuY3kD75TgmeBIFuuUOeUdZUqBwdI04QpUy9pOqhYfg_h_hvwPs3b_MPR7h5nV1rI1h4503uBlty5U12ebc9o7_Ffu5h7MmpZz0czzcgwZQWcmoF0iRSQFVAhkYCa33wucfjRmJcZ7QxBL65EIxKoA4uNW3pAXHtq1OgT0N_C8TY_wwGbFVnRw48zFK_ASjNlAqHOAvP16dDM30BHWH8Nju4EGXdYctlVbp7qAeFsYpDkLFSU_4uonzmcLmm6Z5WqR6LOz2keVsfndp0HKUdEe5rOtdgShrE5VOKGuyxYDbyxNcIWWCM7lSddjmwiNopOrIFxr6ejW3jJB__LDh6tbOstMWrcTqfXT32ZHYZkYaOj0zpqrqRCXAyJ4E6VwZXqEmi8TF3vbHOfklIwW4S0Y8-Y8YzAap0fvZKOfrSVDyXsRBKy_vnv_pjdmWwv7uT7mwNtx-wq_jNLb9-lS1PTmv3EMPHSfaonbPAPl00TPwGZtyFYw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKkSpeEHcWCgwSSPAQuo7tOBZCCFhWLYUVQlTaN-MkDt2qTUp3s4hv4U_4OmZy2aUgqn3pc-zcZubM2D4zw9gj6lyFqwQThFEeBVKHUeC8yALVj3KpUIfyrGb5jqLtPflurMZr7FeXC0O0yg4Ta6DOypT2yLc4Wq3gSgu9lbe0iI-D4cvjbwF1kKKT1q6dRqMiu_7Hd1y-TV_sDFDWj8Nw-Pbzm-2g7TAQpErqWRB64XyeO5OrjAqnxCLV_Zwb56WOUgxtMieivvdxnAqdoL6aPJYqlSblDh2tFnjfC-yiFoqTjemxXhb85bJJw1MiiDk3LYuo4ZbVtSonR4gYRC5Tz6iOaBj-zzX-G_r-zeD8wyUOr7DLbSwLrxrlu8rWfHGNbXxoT-uvs5-fMAoNqHs9HC23IsEVGaTUFKROqYAyhwTVBV73oclCntYjplVCW0TQtBmCSQHUy6WizT0g1n15AvRp6HmBuPtfwUFWVsmhhwZwqfMAFG5OJUR8Bk8G85GbP4WOOn6D7Z2LqG6y9aIs_G2Ug8KoxSPcZNJQJi_ifeJx4WbonplSPaY7Odi0rZRODTsObUeJO7BLCVqSIC6kLEqwx_hi5nFTLWSFOaYTte2yYRG_Lbq0FeY-X8xtI6YmElpx9manWbZFrqld2lmPPVxcRsyhgyRX-LKqx3A065irM8fgWjWODT7mVqOsi18SUtgbR_SjT6nxYgDVPD99pZjs17XPpRZCGXnn7Fd_wDYQHOz7ndHuXXYJP7kl2m-y9dlJ5e9hHDlL7tcGC-zLeSPEb-8-iDM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Measurement+and+Correction+of+Both+B0+Changes+and+Subject+Motion+in+Diffusion+Tensor+Imaging+Using+a+Double+Volumetric+Navigated+%28DvNav%29+Sequence&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Alhamud%2C+A.&rft.au=Taylor%2C+Paul+A.&rft.au=van+der+Kouwe%2C+A.J.W.&rft.au=Meintjes%2C+E.+M.&rft.date=2016-02-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=126&rft.spage=60&rft.epage=71&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.11.022&rft_id=info%3Apmid%2F26584865&rft.externalDocID=PMC4733594 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |