NMR Spectroscopy for Metabolomics Research
Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled with single-stage mass spectrometry (LC-MS))...
Saved in:
Published in | Metabolites Vol. 9; no. 7; p. 123 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.06.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled with single-stage mass spectrometry (LC-MS)). The relative ease of sample preparation, the ability to quantify metabolite levels, the high level of experimental reproducibility, and the inherently nondestructive nature of NMR spectroscopy have made it the preferred platform for long-term or large-scale clinical metabolomic studies. These advantages, however, are often outweighed by the fact that most other analytical techniques, including both LC-MS and GC-MS, are inherently more sensitive than NMR, with lower limits of detection typically being 10 to 100 times better. This review is intended to introduce readers to the field of NMR-based metabolomics and to highlight both the advantages and disadvantages of NMR spectroscopy for metabolomic studies. It will also explore some of the unique strengths of NMR-based metabolomics, particularly with regard to isotope selection/detection, mixture deconvolution via 2D spectroscopy, automation, and the ability to noninvasively analyze native tissue specimens. Finally, this review will highlight a number of emerging NMR techniques and technologies that are being used to strengthen its utility and overcome its inherent limitations in metabolomic applications. |
---|---|
AbstractList | Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled with single-stage mass spectrometry (LC-MS)). The relative ease of sample preparation, the ability to quantify metabolite levels, the high level of experimental reproducibility, and the inherently nondestructive nature of NMR spectroscopy have made it the preferred platform for long-term or large-scale clinical metabolomic studies. These advantages, however, are often outweighed by the fact that most other analytical techniques, including both LC-MS and GC-MS, are inherently more sensitive than NMR, with lower limits of detection typically being 10 to 100 times better. This review is intended to introduce readers to the field of NMR-based metabolomics and to highlight both the advantages and disadvantages of NMR spectroscopy for metabolomic studies. It will also explore some of the unique strengths of NMR-based metabolomics, particularly with regard to isotope selection/detection, mixture deconvolution via 2D spectroscopy, automation, and the ability to noninvasively analyze native tissue specimens. Finally, this review will highlight a number of emerging NMR techniques and technologies that are being used to strengthen its utility and overcome its inherent limitations in metabolomic applications. Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled with single-stage mass spectrometry (LC-MS)). The relative ease of sample preparation, the ability to quantify metabolite levels, the high level of experimental reproducibility, and the inherently nondestructive nature of NMR spectroscopy have made it the preferred platform for long-term or large-scale clinical metabolomic studies. These advantages, however, are often outweighed by the fact that most other analytical techniques, including both LC-MS and GC-MS, are inherently more sensitive than NMR, with lower limits of detection typically being 10 to 100 times better. This review is intended to introduce readers to the field of NMR-based metabolomics and to highlight both the advantages and disadvantages of NMR spectroscopy for metabolomic studies. It will also explore some of the unique strengths of NMR-based metabolomics, particularly with regard to isotope selection/detection, mixture deconvolution via 2D spectroscopy, automation, and the ability to noninvasively analyze native tissue specimens. Finally, this review will highlight a number of emerging NMR techniques and technologies that are being used to strengthen its utility and overcome its inherent limitations in metabolomic applications.Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled with single-stage mass spectrometry (LC-MS)). The relative ease of sample preparation, the ability to quantify metabolite levels, the high level of experimental reproducibility, and the inherently nondestructive nature of NMR spectroscopy have made it the preferred platform for long-term or large-scale clinical metabolomic studies. These advantages, however, are often outweighed by the fact that most other analytical techniques, including both LC-MS and GC-MS, are inherently more sensitive than NMR, with lower limits of detection typically being 10 to 100 times better. This review is intended to introduce readers to the field of NMR-based metabolomics and to highlight both the advantages and disadvantages of NMR spectroscopy for metabolomic studies. It will also explore some of the unique strengths of NMR-based metabolomics, particularly with regard to isotope selection/detection, mixture deconvolution via 2D spectroscopy, automation, and the ability to noninvasively analyze native tissue specimens. Finally, this review will highlight a number of emerging NMR techniques and technologies that are being used to strengthen its utility and overcome its inherent limitations in metabolomic applications. |
Author | Wishart, David S. Emwas, Abdul-Hamid McKay, Ryan T. Jaremko, Lukasz Tenori, Leonardo Gowda, G. A. Nagana Roy, Raja Raftery, Daniel Alahmari, Fatimah Jaremko, Mariusz Saccenti, Edoardo |
AuthorAffiliation | 2 Centre of Biomedical Research, Formerly, Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Uttar Pradesh 226014, India 4 Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy 7 Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA 1 Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia 6 Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA 5 Laboratory of Systems and Synthetic Biology Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands 3 Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada 9 Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-690 |
AuthorAffiliation_xml | – name: 4 Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy – name: 9 Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – name: 10 Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada – name: 5 Laboratory of Systems and Synthetic Biology Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands – name: 6 Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA – name: 2 Centre of Biomedical Research, Formerly, Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Uttar Pradesh 226014, India – name: 1 Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – name: 3 Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada – name: 8 Department of NanoMedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia – name: 7 Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA |
Author_xml | – sequence: 1 givenname: Abdul-Hamid orcidid: 0000-0002-9231-3850 surname: Emwas fullname: Emwas, Abdul-Hamid – sequence: 2 givenname: Raja orcidid: 0000-0003-0048-0772 surname: Roy fullname: Roy, Raja – sequence: 3 givenname: Ryan T. orcidid: 0000-0002-0255-159X surname: McKay fullname: McKay, Ryan T. – sequence: 4 givenname: Leonardo orcidid: 0000-0001-6438-059X surname: Tenori fullname: Tenori, Leonardo – sequence: 5 givenname: Edoardo orcidid: 0000-0001-8284-4829 surname: Saccenti fullname: Saccenti, Edoardo – sequence: 6 givenname: G. A. Nagana orcidid: 0000-0002-0544-7464 surname: Gowda fullname: Gowda, G. A. Nagana – sequence: 7 givenname: Daniel orcidid: 0000-0003-2467-8118 surname: Raftery fullname: Raftery, Daniel – sequence: 8 givenname: Fatimah surname: Alahmari fullname: Alahmari, Fatimah – sequence: 9 givenname: Lukasz surname: Jaremko fullname: Jaremko, Lukasz – sequence: 10 givenname: Mariusz surname: Jaremko fullname: Jaremko, Mariusz – sequence: 11 givenname: David S. orcidid: 0000-0002-3207-2434 surname: Wishart fullname: Wishart, David S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31252628$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctLHTEUh4NYqlWXbuWCm1IYzfuxEYrYVvABtl2HTOZEc5mZXJO5gv99o1fFK80m4eQ7Xw75fUGbYxoBoX2Cjxgz-HiAybXJYIUJZRtom1KiG2K02Xx33kJ7pcxxXRKLSn5GW4xQQSXV2-jb1eXN7PcC_JRT8WnxOAspzy6fvX0aoi-zGyjgsr_bRZ-C6wvsvew76O-Psz-nv5qL65_np98vGi-4mhrChAqd4tRgLDhmmAbvuHLKMS7bTnkugw4QDHAGtQxMupY53IF0nTCe7aDzlbdLbm4XOQ4uP9rkon0upHxrXZ6i78EqLrTyTCpNNTekbR1uFRhvMAlSSVpdJyvXYtkO0HkYp-z6Nen6zRjv7G16sFJqrKmsgq8vgpzul1AmO8Tioe_dCGlZLKUCS1JfVxU9_IDO0zKP9assFVxrohjBlTp4P9HbKK-RVICtAF8TKRmC9XFyU0xPA8beEmyfsrdr2deu5kPXq_j__D_WWK8d |
CitedBy_id | crossref_primary_10_3389_fmicb_2022_1040434 crossref_primary_10_3390_metabo13050611 crossref_primary_10_3390_ani12172194 crossref_primary_10_3233_JAD_201204 crossref_primary_10_1021_acs_analchem_2c00642 crossref_primary_10_1038_s41598_023_29617_6 crossref_primary_10_1002_aocs_12697 crossref_primary_10_1016_j_psj_2022_102275 crossref_primary_10_1021_acs_analchem_1c04360 crossref_primary_10_1021_acs_analchem_3c03449 crossref_primary_10_1186_s40104_021_00636_5 crossref_primary_10_1021_acs_analchem_2c00891 crossref_primary_10_3390_nu16234161 crossref_primary_10_1021_acsomega_3c01688 crossref_primary_10_1080_10408347_2024_2375314 crossref_primary_10_3390_metabo14050268 crossref_primary_10_1016_j_foodcont_2024_110817 crossref_primary_10_1021_acsomega_1c02362 crossref_primary_10_1016_j_jbc_2024_107746 crossref_primary_10_1016_j_trecan_2022_07_003 crossref_primary_10_1007_s11938_021_00347_w crossref_primary_10_1186_s13765_021_00598_2 crossref_primary_10_1016_j_hpb_2025_03_451 crossref_primary_10_1016_j_jmr_2022_107335 crossref_primary_10_1016_j_meegid_2024_105552 crossref_primary_10_3390_cells14060402 crossref_primary_10_3390_ijms25031414 crossref_primary_10_5194_mr_2_619_2021 crossref_primary_10_3390_metabo11050326 crossref_primary_10_1016_j_ab_2020_113692 crossref_primary_10_1016_j_aca_2020_11_020 crossref_primary_10_1038_s41598_019_56809_w crossref_primary_10_1038_s41598_022_22708_w crossref_primary_10_1002_hep_31676 crossref_primary_10_1021_acs_jproteome_0c00165 crossref_primary_10_1021_acs_joc_1c03127 crossref_primary_10_2174_1389450123666211221160632 crossref_primary_10_3389_fendo_2024_1409079 crossref_primary_10_1021_acs_jproteome_1c00914 crossref_primary_10_1016_j_envres_2022_114011 crossref_primary_10_3390_metabo14060291 crossref_primary_10_3390_polym16141999 crossref_primary_10_1002_mas_21704 crossref_primary_10_1002_ansa_202100055 crossref_primary_10_3390_foods10061249 crossref_primary_10_1016_j_ajcnut_2025_02_002 crossref_primary_10_3390_metabo11120883 crossref_primary_10_18231_j_ijpi_2023_037 crossref_primary_10_3389_fendo_2022_1037164 crossref_primary_10_3389_fphar_2023_1122175 crossref_primary_10_3390_ijms21186843 crossref_primary_10_3390_molecules28124872 crossref_primary_10_1186_s12906_023_04091_9 crossref_primary_10_1016_j_chemosphere_2022_134035 crossref_primary_10_1016_j_jchromb_2024_124214 crossref_primary_10_1016_j_pnmrs_2022_04_002 crossref_primary_10_1016_j_heliyon_2022_e08936 crossref_primary_10_1002_cplu_202200067 crossref_primary_10_3390_molecules25030713 crossref_primary_10_1002_pca_3070 crossref_primary_10_1155_2021_7155772 crossref_primary_10_1016_j_aca_2021_338298 crossref_primary_10_1016_j_bios_2023_115780 crossref_primary_10_3389_fpubh_2022_973000 crossref_primary_10_3390_biomedicines11071845 crossref_primary_10_1007_s00436_022_07673_7 crossref_primary_10_3389_fphar_2022_805782 crossref_primary_10_1016_j_ab_2024_115654 crossref_primary_10_3390_metabo12030227 crossref_primary_10_1021_jacsau_4c00220 crossref_primary_10_1093_pcmedi_pbad005 crossref_primary_10_3390_app12062824 crossref_primary_10_3390_metabo13050607 crossref_primary_10_3390_metabo11120891 crossref_primary_10_1016_j_envint_2021_106822 crossref_primary_10_1016_j_foodres_2024_115358 crossref_primary_10_1021_acs_analchem_3c03677 crossref_primary_10_1093_bib_bbab138 crossref_primary_10_3390_molecules25061444 crossref_primary_10_1039_D1MO00118C crossref_primary_10_31083_j_fbl2802039 crossref_primary_10_1016_j_fbio_2023_103217 crossref_primary_10_1016_j_foodres_2022_112441 crossref_primary_10_3390_biomedicines10061254 crossref_primary_10_1016_j_microc_2021_106816 crossref_primary_10_1016_j_tox_2024_153871 crossref_primary_10_1073_pnas_2307430121 crossref_primary_10_3390_metabo11120825 crossref_primary_10_35995_tmj20200208 crossref_primary_10_3390_biochem4020005 crossref_primary_10_3390_ijms252212459 crossref_primary_10_61229_mpj_v1i1_2 crossref_primary_10_1021_acsami_0c03404 crossref_primary_10_11569_wcjd_v32_i8_561 crossref_primary_10_1080_13102818_2021_2011413 crossref_primary_10_2174_1570159X21666230713094843 crossref_primary_10_1042_BSR20240249 crossref_primary_10_3390_metabo12040356 crossref_primary_10_1016_j_afres_2024_100628 crossref_primary_10_1016_j_fbio_2024_103648 crossref_primary_10_1002_pld3_616 crossref_primary_10_1016_j_fm_2024_104463 crossref_primary_10_3390_foods11060864 crossref_primary_10_1080_14789450_2019_1703679 crossref_primary_10_3389_fpls_2022_961447 crossref_primary_10_3390_metabo15010010 crossref_primary_10_1371_journal_pone_0247102 crossref_primary_10_3389_fphys_2022_858869 crossref_primary_10_1039_D4AY01109K crossref_primary_10_1016_j_suronc_2022_101851 crossref_primary_10_1039_D4NR02328E crossref_primary_10_1038_s41598_023_29234_3 crossref_primary_10_3390_metabo13020155 crossref_primary_10_3390_metabo13010122 crossref_primary_10_1186_s13068_020_01861_2 crossref_primary_10_1016_j_heliyon_2022_e09715 crossref_primary_10_3390_cells11203254 crossref_primary_10_38124_ijisrt_IJISRT24MAY842 crossref_primary_10_1021_acs_jproteome_0c00243 crossref_primary_10_1038_s42255_021_00419_2 crossref_primary_10_1371_journal_pone_0314053 crossref_primary_10_1016_j_trac_2020_115960 crossref_primary_10_3390_ijms22063220 crossref_primary_10_3390_foods12173240 crossref_primary_10_3390_metabo11010039 crossref_primary_10_1002_ansa_202000169 crossref_primary_10_3390_metabo12080678 crossref_primary_10_3390_ijms231810680 crossref_primary_10_1021_acs_analchem_3c03594 crossref_primary_10_1038_s41598_023_43056_3 crossref_primary_10_1007_s40200_023_01256_8 crossref_primary_10_3390_metabo12040333 crossref_primary_10_1039_D3MO00089C crossref_primary_10_1080_03602532_2022_2125987 crossref_primary_10_3389_fmicb_2022_1006946 crossref_primary_10_1016_j_tifs_2023_104311 crossref_primary_10_34172_jhp_2024_48269 crossref_primary_10_1111_1541_4337_13026 crossref_primary_10_1134_S0003683822010112 crossref_primary_10_3390_metabo14110593 crossref_primary_10_1007_s40279_021_01582_y crossref_primary_10_1021_acs_jafc_3c09362 crossref_primary_10_1111_jam_14845 crossref_primary_10_3390_foods11172707 crossref_primary_10_3390_jcm9113464 crossref_primary_10_1016_j_foodres_2020_109714 crossref_primary_10_1111_jvim_16298 crossref_primary_10_1186_s12934_024_02573_0 crossref_primary_10_3390_metabo12050370 crossref_primary_10_1093_ecco_jcc_jjac079 crossref_primary_10_3390_molecules30020290 crossref_primary_10_1016_j_cbi_2025_111449 crossref_primary_10_1002_jms_4658 crossref_primary_10_3390_molecules28155780 crossref_primary_10_5812_jjnpp_135038 crossref_primary_10_3390_metabo13070874 crossref_primary_10_3390_metabo13101097 crossref_primary_10_1016_j_biortech_2024_131732 crossref_primary_10_1080_19420889_2022_2082736 crossref_primary_10_1080_23144599_2024_2408189 crossref_primary_10_3390_molecules29245895 crossref_primary_10_3390_biomedicines12102389 crossref_primary_10_1080_17460441_2020_1722636 crossref_primary_10_3390_metabo11090609 crossref_primary_10_1016_j_jmgm_2025_108984 crossref_primary_10_1016_j_fbio_2024_105195 crossref_primary_10_3390_metabo13020246 crossref_primary_10_1002_nbm_5264 crossref_primary_10_1016_j_cca_2024_119842 crossref_primary_10_2478_aoas_2022_0002 crossref_primary_10_1007_s12031_023_02162_7 crossref_primary_10_3168_jds_2022_22681 crossref_primary_10_1021_acs_analchem_3c02756 crossref_primary_10_1038_s43586_023_00274_3 crossref_primary_10_1016_j_sajb_2023_12_019 crossref_primary_10_3390_nu12030806 crossref_primary_10_1002_ange_202302110 crossref_primary_10_3390_foods11111651 crossref_primary_10_1021_acs_chemrestox_3c00150 crossref_primary_10_1134_S1061934823090149 crossref_primary_10_1016_j_lfs_2023_122137 crossref_primary_10_3390_ijms24043291 crossref_primary_10_1016_j_brainres_2021_147704 crossref_primary_10_3389_fnut_2021_806744 crossref_primary_10_3390_ani12243500 crossref_primary_10_15420_aer_2022_33 crossref_primary_10_1038_s41598_020_77089_9 crossref_primary_10_1016_j_envint_2022_107678 crossref_primary_10_1080_14789450_2021_2012454 crossref_primary_10_1007_s10532_025_10118_4 crossref_primary_10_3390_jcm13175002 crossref_primary_10_1080_14789450_2021_1922278 crossref_primary_10_1002_mrc_5500 crossref_primary_10_1016_j_afres_2025_100770 crossref_primary_10_1021_acs_analchem_3c04946 crossref_primary_10_3390_molecules27154687 crossref_primary_10_1111_jwas_12782 crossref_primary_10_1159_000518489 crossref_primary_10_3390_foods13182937 crossref_primary_10_1016_j_jpba_2022_114885 crossref_primary_10_1016_j_rvsc_2023_105046 crossref_primary_10_1097_MOU_0000000000001052 crossref_primary_10_1021_acs_jpca_2c06858 crossref_primary_10_1002_mas_21773 crossref_primary_10_3390_ijms241713346 crossref_primary_10_3390_plants12112078 crossref_primary_10_3390_jcm10030548 crossref_primary_10_3390_metabo13020144 crossref_primary_10_1016_j_biotechadv_2020_107616 crossref_primary_10_3390_genes10121011 crossref_primary_10_3390_cancers15174221 crossref_primary_10_1021_acs_analchem_4c01652 crossref_primary_10_1186_s42269_022_00849_2 crossref_primary_10_3389_fimmu_2022_956670 crossref_primary_10_1016_j_msard_2024_106250 crossref_primary_10_1016_j_foodcont_2021_108141 crossref_primary_10_1007_s13562_024_00949_2 crossref_primary_10_1080_10408347_2022_2162810 crossref_primary_10_3322_caac_21670 crossref_primary_10_1038_s41392_023_01380_0 crossref_primary_10_1002_bies_202000052 crossref_primary_10_1159_000532117 crossref_primary_10_1016_j_jconrel_2023_08_056 crossref_primary_10_3390_metabo11010002 crossref_primary_10_1098_rsob_200092 crossref_primary_10_7759_cureus_74528 crossref_primary_10_1016_j_jep_2020_113179 crossref_primary_10_1017_S0007114520004870 crossref_primary_10_1016_j_csbj_2021_08_048 crossref_primary_10_3389_fphys_2020_532271 crossref_primary_10_3389_fneur_2021_792227 crossref_primary_10_3390_app11073039 crossref_primary_10_1007_s42452_023_05522_5 crossref_primary_10_1208_s12249_024_02851_5 crossref_primary_10_3389_fmolb_2024_1403844 crossref_primary_10_1016_j_fufo_2025_100576 crossref_primary_10_1016_j_bpc_2024_107351 crossref_primary_10_1002_acr_25420 crossref_primary_10_1002_vms3_1528 crossref_primary_10_1016_j_cmet_2024_11_007 crossref_primary_10_1159_000510211 crossref_primary_10_3390_agronomy11050824 crossref_primary_10_1248_cpb_c21_00180 crossref_primary_10_3389_fimmu_2024_1443440 crossref_primary_10_1021_acs_analchem_3c01109 crossref_primary_10_1186_s12859_022_04659_1 crossref_primary_10_1016_j_tig_2021_09_013 crossref_primary_10_1002_cbdv_202400258 crossref_primary_10_1016_j_foodres_2020_109683 crossref_primary_10_3390_nu16111620 crossref_primary_10_1007_s11306_021_01794_3 crossref_primary_10_1016_j_psj_2022_102352 crossref_primary_10_1016_j_biotechadv_2024_108447 crossref_primary_10_1021_acs_analchem_2c03323 crossref_primary_10_1515_dmpt_2022_0109 crossref_primary_10_3390_plants12020269 crossref_primary_10_1080_1354750X_2024_2438734 crossref_primary_10_1016_j_cofs_2021_04_005 crossref_primary_10_1016_j_soilbio_2024_109382 crossref_primary_10_3390_cells10051063 crossref_primary_10_1152_ajpcell_00316_2023 crossref_primary_10_1016_j_msard_2022_103672 crossref_primary_10_1159_000531444 crossref_primary_10_1098_rsfs_2022_0070 crossref_primary_10_3390_foods9101436 crossref_primary_10_1371_journal_pone_0287121 crossref_primary_10_3390_biomedicines10123091 crossref_primary_10_3390_v13020287 crossref_primary_10_1016_j_dib_2021_107774 crossref_primary_10_1016_j_tifs_2025_104889 crossref_primary_10_1021_acsestwater_4c00510 crossref_primary_10_3390_md21050262 crossref_primary_10_1016_j_clnesp_2024_10_148 crossref_primary_10_1016_j_teac_2021_e00130 crossref_primary_10_1016_j_tice_2021_101663 crossref_primary_10_3390_foods11213379 crossref_primary_10_1016_j_isci_2022_103761 crossref_primary_10_1021_acs_jchemed_2c00638 crossref_primary_10_3390_ijms241512275 crossref_primary_10_3390_jmse11112072 crossref_primary_10_3390_genes12101602 crossref_primary_10_3390_antibiotics11111604 crossref_primary_10_3390_metabo14090512 crossref_primary_10_3390_nu15132871 crossref_primary_10_3390_metabo13030352 crossref_primary_10_1016_j_bcp_2022_115405 crossref_primary_10_1002_elps_202300105 crossref_primary_10_1016_j_aca_2024_342722 crossref_primary_10_1270_jsbbs_21065 crossref_primary_10_1016_j_lfs_2024_123238 crossref_primary_10_3390_metabo12111066 crossref_primary_10_1016_j_jdent_2023_104645 crossref_primary_10_1016_j_foodchem_2021_131452 crossref_primary_10_1111_jre_12872 crossref_primary_10_1021_jacs_3c03937 crossref_primary_10_1038_s41598_021_84635_6 crossref_primary_10_1080_00032719_2021_2019758 crossref_primary_10_3390_ijms26062719 crossref_primary_10_1007_s11274_024_04242_1 crossref_primary_10_3390_molecules28134916 crossref_primary_10_1016_j_drudis_2023_103751 crossref_primary_10_1016_j_foodres_2022_112190 crossref_primary_10_1016_j_gtc_2023_12_008 crossref_primary_10_1016_j_bbagrm_2024_195058 crossref_primary_10_1007_s10072_020_04321_9 crossref_primary_10_1080_10408398_2023_2198605 crossref_primary_10_1002_imt2_73 crossref_primary_10_3390_nano11092385 crossref_primary_10_3390_metabo11030151 crossref_primary_10_1016_j_tjnut_2024_01_012 crossref_primary_10_1021_acs_jafc_0c05642 crossref_primary_10_1002_cti2_1318 crossref_primary_10_1039_D3SC01350B crossref_primary_10_3390_foods13040628 crossref_primary_10_1080_14740338_2024_2412235 crossref_primary_10_3390_metabo11030157 crossref_primary_10_1021_acs_analchem_3c02432 crossref_primary_10_5507_bp_2020_028 crossref_primary_10_1021_acs_jafc_2c04771 crossref_primary_10_1177_14690667231193555 crossref_primary_10_3233_ADR_230154 crossref_primary_10_1039_D1MO00017A crossref_primary_10_1016_j_trac_2024_117562 crossref_primary_10_26508_lsa_202302193 crossref_primary_10_1002_nadc_20204098850 crossref_primary_10_1039_D4AN01015A crossref_primary_10_17816_psaic1546 crossref_primary_10_3389_fmolb_2023_1308500 crossref_primary_10_1016_j_bpc_2023_107153 crossref_primary_10_1016_j_tma_2020_08_001 crossref_primary_10_3390_ijms21155439 crossref_primary_10_1038_s41598_023_34808_2 crossref_primary_10_1016_j_molstruc_2022_132419 crossref_primary_10_1016_j_bpc_2020_106462 crossref_primary_10_1021_acs_analchem_4c02688 crossref_primary_10_1039_D2LC00876A crossref_primary_10_1016_j_biotechadv_2020_107552 crossref_primary_10_1093_bioinformatics_btad593 crossref_primary_10_1016_j_pnmrs_2022_01_002 crossref_primary_10_1007_s11695_020_04774_z crossref_primary_10_1007_s00344_024_11574_7 crossref_primary_10_1002_cmdc_202300633 crossref_primary_10_1038_s41390_023_02464_x crossref_primary_10_3389_fnut_2024_1454364 crossref_primary_10_1016_j_csbj_2021_11_022 crossref_primary_10_1021_acs_jafc_0c02129 crossref_primary_10_3390_metabo13030320 crossref_primary_10_1039_D4RA03019B crossref_primary_10_1039_D5AN00074B crossref_primary_10_3390_molecules25215125 crossref_primary_10_1007_s11356_022_20506_5 crossref_primary_10_1080_01480545_2024_2346751 crossref_primary_10_3390_molecules25204597 crossref_primary_10_3389_fmolb_2022_882487 crossref_primary_10_1002_nbm_4686 crossref_primary_10_1007_s41666_021_00106_7 crossref_primary_10_1021_acs_analchem_9b03849 crossref_primary_10_3390_ijms242417302 crossref_primary_10_1002_pca_2896 crossref_primary_10_1016_j_bpc_2024_107306 crossref_primary_10_1002_mrc_5104 crossref_primary_10_1002_mrc_5106 crossref_primary_10_1039_D1RA03008F crossref_primary_10_3390_metabo11100685 crossref_primary_10_1039_D4OB00169A crossref_primary_10_1039_D3NR01977B crossref_primary_10_3390_app15010323 crossref_primary_10_3390_v14102194 crossref_primary_10_1080_10408347_2020_1823811 crossref_primary_10_3389_fmars_2022_813404 crossref_primary_10_3390_mi14122257 crossref_primary_10_3390_molecules27123653 crossref_primary_10_1016_j_jmsacl_2022_04_003 crossref_primary_10_1007_s11882_022_01056_9 crossref_primary_10_3390_molecules25173972 crossref_primary_10_3390_molecules27123650 crossref_primary_10_1021_acs_analchem_4c03200 crossref_primary_10_1021_acs_analchem_3c05057 crossref_primary_10_3389_fphar_2024_1353434 crossref_primary_10_1016_j_nbd_2024_106541 crossref_primary_10_1039_D1RA05626C crossref_primary_10_3390_metabo12010087 crossref_primary_10_1016_j_sjbs_2020_04_043 crossref_primary_10_1038_s41531_024_00713_2 crossref_primary_10_3389_fvets_2020_609391 crossref_primary_10_3390_metabo13030348 crossref_primary_10_1016_j_aca_2020_06_016 crossref_primary_10_1038_s41573_022_00477_5 crossref_primary_10_3390_metabo11080544 crossref_primary_10_3390_molecules25215128 crossref_primary_10_1039_D0SC01421D crossref_primary_10_1080_10408347_2022_2156770 crossref_primary_10_3390_polym15061414 crossref_primary_10_1021_acs_analchem_0c04056 crossref_primary_10_1080_09540105_2024_2423646 crossref_primary_10_1111_ppl_14270 crossref_primary_10_3390_ijms24032458 crossref_primary_10_3390_s22072592 crossref_primary_10_3390_biology11111570 crossref_primary_10_3390_biom11101456 crossref_primary_10_3390_jpm13111596 crossref_primary_10_3390_metabo11100661 crossref_primary_10_3390_metabo13121203 crossref_primary_10_1080_10408347_2025_2468926 crossref_primary_10_3390_metabo12010076 crossref_primary_10_3390_metabo11090570 crossref_primary_10_3389_fpls_2023_1166813 crossref_primary_10_1016_j_cbpc_2021_109004 crossref_primary_10_1111_jvim_16419 crossref_primary_10_3390_foods11192974 crossref_primary_10_1007_s11101_024_10048_8 crossref_primary_10_3390_molecules26040795 crossref_primary_10_1007_s11306_023_02027_5 crossref_primary_10_1016_j_cclet_2021_10_006 crossref_primary_10_1016_j_cmet_2021_11_005 crossref_primary_10_1007_s11306_020_01742_7 crossref_primary_10_1021_acschembio_1c00581 crossref_primary_10_1016_j_aquaculture_2023_739862 crossref_primary_10_1021_acs_analchem_3c03800 crossref_primary_10_1007_s10967_024_09760_8 crossref_primary_10_1016_j_foodres_2024_114910 crossref_primary_10_1016_j_trac_2021_116402 crossref_primary_10_1038_s41570_023_00476_z crossref_primary_10_1016_j_jep_2021_114618 crossref_primary_10_1093_ecco_jcc_jjaa227 crossref_primary_10_3389_fphar_2021_660938 crossref_primary_10_3390_ijms24021604 crossref_primary_10_1002_med_21883 crossref_primary_10_1080_15287394_2021_1967821 crossref_primary_10_1186_s13213_025_01793_y crossref_primary_10_1007_s11248_023_00347_9 crossref_primary_10_3390_ani11061669 crossref_primary_10_1021_acs_analchem_4c05632 crossref_primary_10_3390_ijms23084248 crossref_primary_10_1016_j_tiv_2024_105881 crossref_primary_10_1021_acs_analchem_1c01618 crossref_primary_10_1021_acs_jafc_3c05786 crossref_primary_10_1016_j_foodres_2020_109056 crossref_primary_10_1155_2022_5705637 crossref_primary_10_3390_metabo11090590 crossref_primary_10_1080_12298093_2022_2059889 crossref_primary_10_3389_fmicb_2021_681982 crossref_primary_10_3390_molecules29225221 crossref_primary_10_3390_metabo14080438 crossref_primary_10_1016_j_foodres_2020_110042 crossref_primary_10_3390_metabo12010015 crossref_primary_10_1016_j_bbadis_2025_167806 crossref_primary_10_3390_nutraceuticals4020013 crossref_primary_10_1016_j_tem_2023_01_005 crossref_primary_10_3390_metabo12010017 crossref_primary_10_1016_j_fitote_2022_105262 crossref_primary_10_1038_s41598_021_85600_z crossref_primary_10_1016_j_foodres_2020_110046 crossref_primary_10_1038_s44324_024_00028_z crossref_primary_10_3390_molecules25163738 crossref_primary_10_1117_1_JBO_29_S2_S22711 crossref_primary_10_1039_D3CC01455J crossref_primary_10_1016_j_scp_2021_100474 crossref_primary_10_1038_s41598_020_62485_y crossref_primary_10_1021_acs_analchem_9b03536 crossref_primary_10_1007_s11306_020_01743_6 crossref_primary_10_3389_fmed_2022_911861 crossref_primary_10_1002_nbm_4594 crossref_primary_10_3390_molecules26113285 crossref_primary_10_1111_pbr_13228 crossref_primary_10_1093_bioadv_vbae192 crossref_primary_10_1161_CIRCRESAHA_120_317979 crossref_primary_10_3389_fgene_2021_721556 crossref_primary_10_1186_s13765_021_00623_4 crossref_primary_10_1039_D2VA00207H crossref_primary_10_1021_acs_analchem_4c05530 crossref_primary_10_1016_j_jchromb_2021_122808 crossref_primary_10_1007_s13197_024_06107_9 crossref_primary_10_1039_D2SC06624F crossref_primary_10_1038_s41598_023_46490_5 crossref_primary_10_3168_jds_2022_23082 crossref_primary_10_1016_j_abb_2021_108987 crossref_primary_10_1515_revneuro_2021_0048 crossref_primary_10_1016_j_ymgme_2023_108115 crossref_primary_10_3390_ijms23105692 crossref_primary_10_3390_foods10092213 crossref_primary_10_1039_D1RE00217A crossref_primary_10_1007_s11306_023_02003_z crossref_primary_10_1002_jsfa_13418 crossref_primary_10_1016_j_bbadis_2021_166123 crossref_primary_10_1002_nbm_4853 crossref_primary_10_3390_metabo12070650 crossref_primary_10_1002_pmic_202200335 crossref_primary_10_1016_j_clce_2022_100017 crossref_primary_10_1021_acsnano_3c01176 crossref_primary_10_5194_mr_3_183_2022 crossref_primary_10_1080_10408347_2021_1901646 crossref_primary_10_1039_D3CP05556F crossref_primary_10_3390_ijms23031879 crossref_primary_10_3390_metabo15010050 crossref_primary_10_1039_D0AN00272K crossref_primary_10_3390_ijms24010348 crossref_primary_10_1016_j_jshs_2019_12_003 crossref_primary_10_1016_j_copbio_2022_102701 crossref_primary_10_1016_j_drudis_2022_02_018 crossref_primary_10_1021_acs_jproteome_2c00610 crossref_primary_10_1038_s41371_022_00769_8 crossref_primary_10_1186_s42269_024_01199_x crossref_primary_10_3390_metabo11070445 crossref_primary_10_1016_j_foodchem_2020_127339 crossref_primary_10_3390_ijms23084173 crossref_primary_10_1016_j_talanta_2025_127610 crossref_primary_10_1016_j_foodchem_2019_125914 crossref_primary_10_1021_acs_jproteome_0c00324 crossref_primary_10_1016_j_jprot_2021_104310 crossref_primary_10_1124_dmd_123_001074 crossref_primary_10_1016_j_jlr_2024_100618 crossref_primary_10_3390_ijms23158274 crossref_primary_10_1016_j_bbrep_2021_101087 crossref_primary_10_3390_magnetochemistry7090121 crossref_primary_10_1021_acsomega_4c04795 crossref_primary_10_1007_s13659_023_00406_y crossref_primary_10_1016_j_scitotenv_2023_161737 crossref_primary_10_14302_issn_2690_0904_ijoe_21_3966 crossref_primary_10_1016_j_heliyon_2024_e27527 crossref_primary_10_1021_acs_analchem_3c04485 crossref_primary_10_1016_j_toxac_2023_01_002 crossref_primary_10_1039_D2MO00168C crossref_primary_10_1016_j_tplants_2023_03_022 crossref_primary_10_1177_11772719211013352 crossref_primary_10_1016_j_foodchem_2020_127424 crossref_primary_10_1016_j_jcyt_2021_12_009 crossref_primary_10_1186_s12934_022_02013_x crossref_primary_10_1016_j_bbrc_2024_149778 crossref_primary_10_1016_j_plantsci_2023_111694 crossref_primary_10_3390_metabo11040206 crossref_primary_10_1007_s40572_024_00451_w crossref_primary_10_1016_j_csbj_2023_09_032 crossref_primary_10_3390_ijms22063010 crossref_primary_10_1039_D0AN00142B crossref_primary_10_3390_molecules28041763 crossref_primary_10_1039_D1RA01103K crossref_primary_10_1080_87559129_2024_2355271 crossref_primary_10_3389_fpls_2023_1192235 crossref_primary_10_1172_jci_insight_157013 crossref_primary_10_3389_fmolb_2021_676349 crossref_primary_10_1128_jcm_01522_22 crossref_primary_10_3390_magnetochemistry6020018 crossref_primary_10_1186_s13007_022_00854_6 crossref_primary_10_1111_1541_4337_12700 crossref_primary_10_3390_nu12020339 crossref_primary_10_1002_bies_202100030 crossref_primary_10_1002_bkcs_12083 crossref_primary_10_1038_s41380_020_0645_4 crossref_primary_10_1093_annweh_wxad018 crossref_primary_10_1002_cam4_7184 crossref_primary_10_1016_j_cca_2024_120020 crossref_primary_10_1016_j_sajb_2024_03_025 crossref_primary_10_1016_j_sajb_2019_10_013 crossref_primary_10_1021_acsomega_1c06891 crossref_primary_10_1007_s11101_024_10006_4 crossref_primary_10_3389_fpls_2024_1463666 crossref_primary_10_1021_acs_jproteome_1c00977 crossref_primary_10_3389_fmicb_2023_1035582 crossref_primary_10_1007_s00299_024_03247_2 crossref_primary_10_1016_j_jmb_2020_04_027 crossref_primary_10_1039_D3AY01681A crossref_primary_10_1111_obr_13825 crossref_primary_10_1007_s11306_023_02069_9 crossref_primary_10_3390_biom10060874 crossref_primary_10_1016_j_trac_2022_116883 crossref_primary_10_1007_s10068_024_01781_z crossref_primary_10_1016_j_jad_2022_12_020 crossref_primary_10_1002_eji_202048882 crossref_primary_10_1016_j_mattod_2023_01_018 crossref_primary_10_1139_bcb_2020_0543 crossref_primary_10_3390_biomedicines11030712 crossref_primary_10_1002_mc_23379 crossref_primary_10_1016_j_pnmrs_2022_09_001 crossref_primary_10_4155_bio_2021_0050 crossref_primary_10_3390_foods11010113 crossref_primary_10_1111_ijpo_12833 crossref_primary_10_3389_fcell_2021_669974 crossref_primary_10_1021_acsomega_3c06538 crossref_primary_10_1002_mrc_5392 crossref_primary_10_1016_j_ijbiomac_2022_09_009 crossref_primary_10_1071_FP23145 crossref_primary_10_1016_j_aca_2022_339528 crossref_primary_10_3389_fmolb_2021_698337 crossref_primary_10_1038_s41598_021_03553_9 crossref_primary_10_1088_1402_4896_ada595 crossref_primary_10_3390_metabo12060473 crossref_primary_10_3390_molecules28020792 crossref_primary_10_1007_s43188_022_00167_9 crossref_primary_10_3390_ph16020207 crossref_primary_10_3390_membranes10020033 crossref_primary_10_1021_acs_jproteome_0c00882 crossref_primary_10_1111_1462_2920_15945 crossref_primary_10_1007_s11306_024_02197_w crossref_primary_10_1002_anie_202302110 crossref_primary_10_1021_acs_analchem_4c05261 crossref_primary_10_1007_s00425_025_04646_9 crossref_primary_10_5851_kosfa_2022_e37 crossref_primary_10_1016_j_biopha_2021_111809 crossref_primary_10_3390_ph14101015 crossref_primary_10_1016_j_chemosphere_2020_127814 crossref_primary_10_1080_14789450_2020_1846524 crossref_primary_10_1021_acs_jproteome_2c00845 crossref_primary_10_22175_mmb_10854 crossref_primary_10_1016_j_chemolab_2022_104519 crossref_primary_10_1039_D4AY01225A crossref_primary_10_3390_metabo12100963 crossref_primary_10_1038_s41380_021_01269_w crossref_primary_10_3390_molecules26113311 crossref_primary_10_3389_fphar_2025_1449639 crossref_primary_10_1021_acs_jproteome_0c00510 crossref_primary_10_3390_ijms252111406 crossref_primary_10_3390_metabo14110633 crossref_primary_10_1007_s11306_025_02229_z crossref_primary_10_1016_j_trac_2024_118097 crossref_primary_10_1002_cbdv_202200667 crossref_primary_10_3390_app13010372 crossref_primary_10_1016_j_pnmrs_2021_08_001 crossref_primary_10_1016_j_anireprosci_2024_107539 crossref_primary_10_3390_jof8010028 crossref_primary_10_1016_j_arabjc_2024_106073 crossref_primary_10_1016_j_mex_2024_102695 crossref_primary_10_1016_j_trac_2022_116795 crossref_primary_10_1109_TNB_2020_2991577 crossref_primary_10_1002_nbm_4868 crossref_primary_10_1016_j_jacl_2023_06_004 crossref_primary_10_1016_j_plaphy_2022_09_002 crossref_primary_10_3390_metabo12100978 crossref_primary_10_1002_mrc_5240 crossref_primary_10_1016_j_virusres_2021_198610 crossref_primary_10_1021_acs_analchem_0c00967 crossref_primary_10_34067_KID_0000000000000129 crossref_primary_10_3389_fpsyt_2021_742856 crossref_primary_10_1039_D2SC02981B |
Cites_doi | 10.1021/ac801012y 10.1071/EN10084 10.1016/j.pnmrs.2014.09.001 10.1016/j.pnmrs.2017.11.003 10.4155/bio.13.348 10.1016/j.trac.2017.07.009 10.1021/ja1039715 10.1063/1.3254386 10.1016/0079-6565(91)80007-O 10.1016/j.watres.2014.04.020 10.1021/tx990210t 10.1016/j.nimb.2013.05.108 10.1016/j.taap.2009.11.019 10.1016/j.jfca.2018.01.018 10.1021/acs.jproteome.7b00325 10.1007/s00216-018-0961-6 10.1021/ac500966e 10.1093/nar/gks1065 10.1016/j.jallcom.2018.10.239 10.1038/ijo.2010.44 10.1016/j.memsci.2019.03.037 10.1371/journal.pone.0016957 10.1039/c000091d 10.3390/metabo7020025 10.1074/jbc.M113.498626 10.1593/neo.101102 10.1016/j.pharep.2014.06.010 10.1016/j.pnmrs.2016.02.001 10.1002/rcm.6571 10.1016/j.ajhg.2014.03.018 10.1007/s11306-009-0156-4 10.1016/0006-291X(90)90343-L 10.1016/0014-5793(74)80645-9 10.1006/jmbi.2000.3816 10.1002/nbm.953 10.1021/pr3008946 10.1016/j.trac.2018.10.036 10.1584/jpestics.31.245 10.1016/S0066-4103(08)00402-X 10.1080/10601320500205558 10.1002/mrc.4850 10.1016/j.jpba.2009.12.026 10.1002/mrc.3985 10.1021/ac9026934 10.1016/bs.mie.2015.04.006 10.1289/ehp.8454135 10.1021/pr900344m 10.1039/C4AN01663G 10.1016/j.ica.2019.01.019 10.1002/btpr.59 10.1039/C8SC00969D 10.1093/nar/gkv1042 10.1007/s00723-016-0846-9 10.1073/pnas.1733835100 10.1002/mrc.2521 10.1101/288993 10.1103/PhysRev.92.411 10.1016/j.jmr.2007.09.016 10.1021/ac8021168 10.1016/j.jmr.2012.02.018 10.1016/j.jmr.2007.01.017 10.1021/ac0484979 10.1016/S1359-6446(03)02749-1 10.1021/ac500979g 10.1021/ja407509z 10.1016/j.jmr.2013.10.018 10.1016/j.copbio.2016.10.010 10.1038/nprot.2009.237 10.1021/acs.jproteome.6b00002 10.1007/s11306-006-0042-2 10.1021/ac0510890 10.1016/j.jmr.2017.01.015 10.1007/s00723-008-0120-x 10.1021/acs.analchem.6b00906 10.1007/s10847-012-0183-z 10.1371/journal.pone.0132873 10.1021/ja2040865 10.1021/ja507201t 10.3389/fbioe.2015.00022 10.1007/s00216-019-01603-w 10.1016/j.jchromb.2015.10.014 10.1021/es034281x 10.1016/j.foodchem.2017.07.150 10.5414/CP201478 10.1038/s41598-019-43374-5 10.1007/s10858-015-9913-z 10.1002/jat.1387 10.1021/ac402390q 10.1371/journal.pone.0085732 10.1021/acs.analchem.7b04324 10.1371/journal.pone.0016641 10.1021/jp040280v 10.1016/j.jinorgbio.2005.10.002 10.1002/nbm.3005 10.1063/1.4747449 10.1007/978-94-007-4954-2_8 10.4155/bio.11.223 10.1007/s11306-013-0524-y 10.1002/mc.22694 10.1155/2017/6053879 10.1021/acs.jproteome.6b00125 10.1021/ja0350785 10.2174/1573405614666171212144417 10.1016/j.csbj.2016.02.005 10.1016/j.cell.2018.03.055 10.1016/j.jmr.2010.08.012 10.1039/b408064e 10.1007/978-1-61779-424-7_27 10.3390/metabo3030575 10.1016/j.envpol.2016.04.057 10.1093/aje/kwx016 10.1016/j.talanta.2016.05.031 10.5004/dwt.2017.0444 10.1002/elps.201500052 10.1021/np010444o 10.1186/1476-4598-12-121 10.1146/annurev-anchem-071213-020208 10.1039/C3CC49659G 10.1021/ac102097u 10.1021/acs.analchem.7b02795 10.1093/bioinformatics/bts308 10.1007/s10858-011-9488-2 10.1002/(SICI)1522-2594(199906)41:6<1108::AID-MRM6>3.0.CO;2-M 10.1039/c2cp22822j 10.1016/bs.mie.2015.09.037 10.1073/pnas.252644399 10.3389/fmicb.2018.02789 10.1093/nar/gkn810 10.1016/j.biotechadv.2013.05.002 10.1021/pr400702d 10.1039/C4MB00157E 10.1016/0006-291X(83)91226-3 10.1016/j.jmb.2007.06.012 10.1016/j.jpba.2015.07.035 10.1021/ja000005w 10.1063/1.1893983 10.1007/s10858-011-9483-7 10.1007/s10858-005-4425-x 10.1002/mrc.1824 10.1016/S0014-5793(98)00262-2 10.1371/journal.pone.0073076 10.1002/jat.1633 10.1002/anie.201108888 10.1007/s10059-012-0060-z 10.1016/0006-291X(80)90695-6 10.4062/biomolther.2011.19.1.038 10.1021/ac00101a004 10.1007/s00723-008-0121-9 10.1021/sc400126h 10.1002/mrc.2480 10.1007/s10858-013-9773-3 10.1016/0731-7085(93)80145-Q 10.1038/nprot.2007.376 10.1002/slct.201700718 10.1002/anie.201705506 10.1007/978-1-4939-2377-9_13 10.1007/978-1-4939-2377-9_8 10.1016/j.ab.2008.07.041 10.1002/asia.201800551 10.1111/jace.12407 10.1021/ja0608949 10.1002/mrm.1910110306 10.1002/anie.201002725 10.1021/ac902443k 10.1039/C5AN01810B 10.1016/j.foodchem.2017.03.142 10.1021/acs.analchem.8b04928 10.1007/s10334-008-0114-6 10.1007/s11306-015-0830-7 10.1038/srep42324 10.1073/pnas.95.24.14147 10.1016/j.cbi.2013.10.004 10.1038/nrm.2016.25 10.1039/C8AN00596F 10.1016/j.jchromb.2004.09.032 10.1016/j.aca.2012.05.049 10.1119/1.1937646 10.1002/nbm.3485 10.1002/anie.201304391 10.1021/ja101399q 10.1002/anie.201404111 10.1039/c002700f 10.1016/S0079-6417(08)60156-0 10.1093/nar/gkl923 10.1371/annotation/2c2f8fce-a5be-40a3-af8f-48f119b2c593 10.1016/j.jmr.2009.01.003 10.1039/C1CC16699A 10.1080/07391102.1985.10507626 10.1186/1471-2105-9-507 10.1016/j.bbrc.2003.09.092 10.1021/ac5025039 10.1007/s11306-018-1319-y 10.1007/s11426-008-0031-6 10.1038/s41467-017-01587-0 10.1016/S1090-7807(03)00036-3 10.1007/s11306-015-0789-4 10.1007/s11306-015-0794-7 10.3389/fpls.2018.00760 10.1016/j.phytol.2019.01.011 10.1002/1099-0534(2000)12:5<289::AID-CMR3>3.0.CO;2-W 10.1021/ac025691r 10.1002/(SICI)1099-0534(1999)11:3<165::AID-CMR4>3.0.CO;2-D 10.1007/s00216-013-6842-0 10.1007/s11306-017-1244-5 10.1016/j.copbio.2016.08.001 10.1055/s-0030-1270719 10.1038/ng.1054 10.1021/ac3033504 10.1002/mrc.3936 10.1016/j.chroma.2009.12.031 10.3748/wjg.v21.i24.7529 10.3892/etm.2013.1418 10.1016/j.jpba.2009.09.015 10.1021/tx0255774 10.1021/jacs.6b04784 10.1039/C4RA14660C 10.1021/ja970224q 10.1063/1.431994 10.1016/j.carbpol.2013.05.031 10.1039/c0sc00175a 10.1126/science.1168877 10.1002/mrc.4263 10.1016/j.pnmrs.2010.01.001 10.1007/s10858-011-9546-9 10.1002/anie.201305709 10.1016/S0014-5793(00)02307-3 10.1586/14737159.6.5.717 10.1016/j.trac.2012.02.007 10.1002/bmc.3014 10.1016/j.trac.2007.12.001 10.1016/j.jmr.2012.06.008 10.1006/jmre.1999.1983 10.1002/cmr.a.20223 10.1073/pnas.0704449104 10.1021/acs.jproteome.5b00885 10.1002/nbm.1940050506 10.1021/ac900539y 10.1021/ac401712a 10.1021/acs.analchem.8b04150 10.1021/pr800110a 10.1007/s11306-016-1055-0 10.1088/0034-4885/41/3/002 10.1007/s11306-013-0503-3 10.1093/nar/gkm957 10.1002/ange.201103789 10.1021/ac048630x 10.1007/s11306-018-1321-4 10.1016/S0965-1748(99)00053-3 10.1371/journal.pone.0159949 10.1007/s11306-012-0492-7 10.1016/j.aca.2017.05.011 10.1016/S0305-0491(00)00276-5 10.1002/anie.201001107 10.1016/j.copbio.2015.02.003 10.1021/ac071583z 10.1021/acs.analchem.6b01094 10.1021/acs.analchem.6b03382 10.1021/acs.energyfuels.8b00556 10.1016/j.pnmrs.2010.10.001 10.1016/0006-291X(77)91226-8 10.1016/j.chemolab.2013.07.007 10.1038/nbt0208-162 10.1016/j.pnmrs.2013.10.001 10.1021/jp508719n 10.1126/sciadv.1700341 10.1038/nrd.2016.32 10.1016/j.cca.2009.11.003 10.1002/pca.1186 10.1126/science.1167693 10.1016/j.talanta.2008.07.006 10.1006/jmre.1996.1063 10.1016/j.jacc.2017.12.006 10.1016/j.aca.2013.04.012 10.1007/978-1-4939-2377-9_7 10.1021/acs.energyfuels.5b01739 10.4155/fmc.09.54 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7QR 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/metabo9070123 |
DatabaseName | CrossRef PubMed Chemoreception Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Collection (ProQuest) Biological Sciences Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2218-1989 |
ExternalDocumentID | oai_doaj_org_article_74587c367828491bba0b7e9c901f6762 PMC6680826 31252628 10_3390_metabo9070123 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB 7QR 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c547t-1357fd742900540302fca47a7a346bd7c46f8fef9e43e7a7e36ab3a0de6ad59c3 |
IEDL.DBID | BENPR |
ISSN | 2218-1989 |
IngestDate | Wed Aug 27 01:31:10 EDT 2025 Thu Aug 21 13:58:09 EDT 2025 Fri Jul 11 09:08:29 EDT 2025 Fri Jul 25 12:09:47 EDT 2025 Mon Jul 21 06:06:35 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 Tue Jul 01 00:43:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | GC-MS LC-MS NMR analytical platform metabolomics MS sensitivity resolution |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c547t-1357fd742900540302fca47a7a346bd7c46f8fef9e43e7a7e36ab3a0de6ad59c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0255-159X 0000-0003-0048-0772 0000-0002-0544-7464 0000-0002-3207-2434 0000-0002-9231-3850 0000-0001-6438-059X 0000-0003-2467-8118 0000-0001-8284-4829 |
OpenAccessLink | https://www.proquest.com/docview/2548817310?pq-origsite=%requestingapplication% |
PMID | 31252628 |
PQID | 2548817310 |
PQPubID | 2032362 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_74587c367828491bba0b7e9c901f6762 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6680826 proquest_miscellaneous_2250612847 proquest_journals_2548817310 pubmed_primary_31252628 crossref_citationtrail_10_3390_metabo9070123 crossref_primary_10_3390_metabo9070123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190627 |
PublicationDateYYYYMMDD | 2019-06-27 |
PublicationDate_xml | – month: 6 year: 2019 text: 20190627 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Metabolites |
PublicationTitleAlternate | Metabolites |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhang (ref_27) 2008; 383 Alahmari (ref_174) 2019; 488 ref_258 ref_257 ref_139 Xu (ref_252) 2011; 77 ref_138 Wishart (ref_164) 2009; 37 Zangger (ref_239) 2015; 86–87 Cloarec (ref_87) 2005; 77 Adams (ref_218) 2009; 323 Kuhn (ref_216) 2013; Volume 338 Feliz (ref_229) 2006; 128 Ye (ref_46) 2009; 81 Kumar (ref_122) 1980; 95 Kazimierczuk (ref_151) 2009; 197 Yi (ref_157) 2000; 299 Watanabe (ref_277) 2015; 11 Lopez (ref_247) 2019; 9 Motta (ref_41) 2010; 82 Metallo (ref_212) 2015; Volume 561 Maher (ref_52) 2009; 1 Szultka (ref_16) 2014; 28 Cho (ref_9) 2009; 29 Lupulescu (ref_245) 2012; 218 Giraudeau (ref_30) 2014; 86 Cohen (ref_115) 1992; 5 Overhauser (ref_203) 1953; 92 Reineri (ref_222) 2010; 132 Aguilar (ref_242) 2011; 123 Kostidis (ref_54) 2017; 980 Wurtz (ref_72) 2017; 186 Sekiyama (ref_136) 2011; 83 Malmodin (ref_152) 2006; 44 Dallmann (ref_108) 2013; 52 Chu (ref_119) 2010; 207 Nagayama (ref_144) 1977; 78 Hansen (ref_111) 2017; 279 Guo (ref_4) 2013; 780 DeSilva (ref_116) 2009; 47 Lin (ref_37) 2017; 2017 Rehman (ref_45) 2017; 69 Kim (ref_20) 2013; 85 Pinto (ref_86) 2014; 94 Akrawi (ref_13) 2011; 5 Griffin (ref_188) 2000; 127 Yuk (ref_125) 2010; 7 Brennan (ref_59) 2014; 83 Aguilar (ref_126) 2014; 238 Dechent (ref_221) 2012; 14 Berjanskii (ref_112) 2013; 135 ref_73 Pettinari (ref_181) 2006; 100 Beckonert (ref_123) 2007; 2 Wang (ref_240) 2019; 91 Keifer (ref_133) 1999; 11 Qiu (ref_198) 2019; 581 Foroozandeh (ref_234) 2014; 136 Farag (ref_169) 2016; 15 Eddy (ref_177) 2013; 57 Dona (ref_49) 2016; 14 Schober (ref_287) 2018; 90 Roth (ref_227) 2010; 49 ref_269 Christensen (ref_213) 2014; 289 ref_80 Sandusky (ref_91) 2005; 77 Wang (ref_195) 2013; 12 Raji (ref_3) 2013; 27 Chen (ref_8) 2009; 17 Keun (ref_101) 2002; 15 Schanda (ref_162) 2005; 33 Barskiy (ref_224) 2016; 138 Jenner (ref_128) 1989; 11 Jameel (ref_44) 2018; 32 Wishart (ref_26) 2008; 27 Sansone (ref_288) 2012; 44 Zhang (ref_262) 2013; 51 Hong (ref_33) 2009; 47 Rohnisch (ref_67) 2018; 90 Hore (ref_77) 1983; 55 Molz (ref_15) 2014; 318 Grimes (ref_254) 2011; 49 Buescher (ref_95) 2015; 34 Saucedo (ref_143) 2019; 30 Shchepin (ref_286) 2017; 2 Zheng (ref_76) 2010; 56 Ciborowski (ref_1) 2012; 11 Merchak (ref_93) 2016; 156 Bernini (ref_163) 2009; 8 Viant (ref_263) 2003; 37 Corrias (ref_268) 2018; 14 Lan (ref_17) 2010; 1217 Aru (ref_170) 2017; 94 Tardivel (ref_70) 2017; 13 Jang (ref_34) 2016; 29 Cui (ref_69) 2008; 26 Korzhnev (ref_106) 2007; 372 Huber (ref_193) 2018; 90 (ref_89) 2015; Volume 1 Wang (ref_21) 2013; 128 Adams (ref_243) 2014; 50 Lindon (ref_64) 2000; 12 Tayyari (ref_105) 2013; 85 Hoult (ref_83) 1976; 21 Qiu (ref_253) 2016; 88 Aru (ref_272) 2018; 69 Vadla (ref_6) 2013; 9 Emwas (ref_28) 2015; 1277 ref_208 Viant (ref_156) 2003; 310 Phalaraksh (ref_150) 1999; 29 Aguilar (ref_238) 2012; 48 Smolinska (ref_261) 2012; 750 Kumar (ref_284) 2014; 66 Lown (ref_131) 1985; 2 Saude (ref_85) 2007; 3 Calvo (ref_35) 2015; 21 Abragam (ref_206) 1964; 4 Aue (ref_145) 1976; 64 Lin (ref_276) 2006; 31 Kovtunov (ref_215) 2018; 13 Emwas (ref_11) 2015; 1277 Fridlund (ref_200) 2003; 100 Johnson (ref_172) 2015; 3 Shrot (ref_154) 2003; 125 Schaub (ref_265) 2008; 24 Akrawi (ref_12) 2011; 49 Elbaz (ref_43) 2015; 29 Sahloul (ref_184) 2005; A42 Dunn (ref_278) 2011; 3 Blondel (ref_31) 2016; 214 Zacharias (ref_220) 2012; 134 Serkova (ref_53) 2006; 6 Mishima (ref_113) 2000; 122 Zheng (ref_19) 2010; 411 Shanaiah (ref_99) 2007; 104 Haner (ref_256) 2000; 143 Morvan (ref_186) 2002; 62 Sud (ref_289) 2016; 44 Lin (ref_36) 2014; 7 Bhattacharya (ref_226) 2007; 186 Bharti (ref_61) 2012; 35 Gueron (ref_75) 1991; 23 Emwas (ref_51) 2013; 9 Lewis (ref_161) 2007; 79 Lee (ref_158) 2012; 34 Markley (ref_56) 2017; 43 (ref_275) 2015; 36 Nicholson (ref_124) 1995; 67 Ludwig (ref_146) 2010; 21 Madhu (ref_185) 2016; 12 Sandusky (ref_120) 2005; 77 Yang (ref_148) 2008; 51 Kessenikh (ref_204) 1963; 5 Toya (ref_266) 2013; 31 Guo (ref_279) 2015; 5 Beger (ref_281) 2010; 243 Kurhanewicz (ref_211) 2011; 13 Jacomasso (ref_259) 2017; 7 Keun (ref_100) 2002; 74 Batool (ref_42) 2017; 49 Lamichhane (ref_273) 2018; 240 Abragam (ref_201) 1958; 246 Emwas (ref_209) 2008; 34 Li (ref_14) 2013; 206 Wishart (ref_165) 2007; 35 Frydman (ref_153) 2002; 99 Huang (ref_5) 2013; 405 Kruk (ref_57) 2017; 48 Kupce (ref_141) 2017; 56 Kiraly (ref_246) 2015; 62 Aguilar (ref_236) 2012; 51 Reynolds (ref_140) 2002; 65 Zangger (ref_241) 1997; 124 Campbell (ref_84) 1974; 49 Kono (ref_129) 2013; 97 Morris (ref_235) 2010; 132 Giraudeau (ref_74) 2015; 11 Freeman (ref_230) 2003; 163 Takis (ref_171) 2017; 8 Corcoran (ref_250) 2003; 8 Kuhn (ref_167) 2015; 53 ref_29 Tea (ref_135) 2012; 84 Shi (ref_280) 2016; 1026 Emwas (ref_58) 2018; 14 Gowda (ref_251) 2013; 3 Liu (ref_160) 2010; 1 Nishiyama (ref_192) 2015; 140 Kelman (ref_107) 2016; Volume 566 Feraud (ref_121) 2015; 11 Wong (ref_194) 2019; 411 Liang (ref_18) 2010; 51 Koito (ref_178) 2013; 76 Cacciatore (ref_197) 2013; 12 Sandusky (ref_90) 2011; 49 Alahmari (ref_175) 2019; 776 Canueto (ref_68) 2018; 14 Schatzlein (ref_103) 2018; 410 Kim (ref_214) 2016; 88 Kikuchi (ref_62) 2018; 104 Tayler (ref_228) 2013; 26 Yang (ref_189) 2004; 813 Zhang (ref_274) 2015; 115 Zwahlen (ref_110) 1997; 119 Liu (ref_24) 2010; 52 Paudel (ref_244) 2013; 52 Allard (ref_7) 2008; 80 Pervushin (ref_114) 1998; 95 Sokolenko (ref_81) 2013; 9 Doddrell (ref_92) 1982; 48 Foroozandeh (ref_233) 2014; 53 Wenckebach (ref_202) 2008; 34 Kovtunov (ref_217) 2014; 118 He (ref_22) 2012; 32 Wen (ref_282) 2011; 19 Carravetta (ref_223) 2005; 122 Simoes (ref_38) 2008; 21 Bornet (ref_210) 2016; 88 Jeong (ref_40) 2017; 3 Kaplan (ref_47) 1990; 169 ref_173 Griffin (ref_191) 2000; 486 Karaman (ref_71) 2016; 15 Heux (ref_104) 2017; 43 Liu (ref_2) 2014; 10 Mo (ref_82) 2008; 190 McKay (ref_79) 2011; 38 Simpson (ref_249) 2004; 129 Holmes (ref_63) 2000; 13 Zhang (ref_25) 2010; 135 Bonhomme (ref_183) 2014; 77 Macura (ref_132) 1983; 117 Holmes (ref_48) 2018; 71 Dona (ref_60) 2014; 86 Robertson (ref_159) 2011; 51 ref_283 Foxall (ref_147) 1993; 11 Diserens (ref_32) 2015; 140 ref_66 Bingol (ref_142) 2014; 86 Lutz (ref_149) 1998; 425 Pandey (ref_270) 2017; 56 Hao (ref_65) 2012; 28 Thurber (ref_205) 2012; 137 Ludwig (ref_232) 2010; 12 Emwas (ref_10) 2015; 1277 Tadanki (ref_255) 2012; 223 Webb (ref_78) 2009; Volume 66 Jang (ref_102) 2018; 173 Warren (ref_225) 2009; 323 Johnson (ref_267) 2016; 17 Wishart (ref_55) 2016; 15 Wishart (ref_168) 2013; 41 Zacharias (ref_260) 2017; 16 Chokkathukalam (ref_96) 2014; 6 Jackson (ref_180) 2013; 96 Adams (ref_219) 2009; 131 Richardson (ref_285) 2018; 143 Verma (ref_248) 2019; 57 Bouhrara (ref_179) 2013; 1 Hunt (ref_130) 1984; 54 ref_39 Dominguez (ref_109) 2011; 58 Kaufmann (ref_137) 2012; Volume 815 Schanda (ref_176) 2016; 96 Mannina (ref_127) 2008; 77 Giraudeau (ref_231) 2014; 7 Mattar (ref_118) 2004; 108 Garrod (ref_187) 1999; 41 Pang (ref_97) 2018; 9 Zhai (ref_199) 2018; 9 Giraudeau (ref_155) 2009; 81 Monleon (ref_196) 2008; 7 Ratai (ref_190) 2005; 18 Ulrich (ref_166) 2008; 36 Kim (ref_134) 2010; 5 Khan (ref_182) 2014; 59 Aguilar (ref_237) 2010; 49 Calvani (ref_23) 2010; 34 Emwas (ref_117) 2013; 51 Radjursoga (ref_271) 2017; 231 Emwas (ref_50) 2016; 15 Wushensky (ref_94) 2018; 9 Cakir (ref_264) 2009; 5 Fonville (ref_88) 2010; 82 Abragam (ref_207) 1978; 41 Atreya (ref_98) 2012; Volume 992 |
References_xml | – volume: 80 start-page: 8946 year: 2008 ident: ref_7 article-title: Comparing Capillary Electrophoresis—Mass Spectrometry Fingerprints of Urine Samples Obtained after Intake of Coffee, Tea, or Water publication-title: Anal. Chem. doi: 10.1021/ac801012y – volume: 7 start-page: 524 year: 2010 ident: ref_125 article-title: Comparison of 1-D and 2-D NMR techniques for screening earthworm responses to sub-lethal endosulfan exposure publication-title: Environ. Chem. doi: 10.1071/EN10084 – volume: 83 start-page: 42 year: 2014 ident: ref_59 article-title: NMR-based metabolomics: From sample preparation to applications in nutrition research publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2014.09.001 – volume: 104 start-page: 56 year: 2018 ident: ref_62 article-title: Environmental metabolomics with data science for investigating ecosystem homeostasis publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2017.11.003 – volume: 6 start-page: 511 year: 2014 ident: ref_96 article-title: Stable isotope- labeling studies in metabolomics: New insights into structure and dynamics of metabolic networks publication-title: Bioanalysis doi: 10.4155/bio.13.348 – volume: 94 start-page: 210 year: 2017 ident: ref_170 article-title: Quantification of lipoprotein profiles by nuclear magnetic resonance spectroscopy and multivariate data analysis publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2017.07.009 – volume: 132 start-page: 12770 year: 2010 ident: ref_235 article-title: True Chemical Shift Correlation Maps: A TOCSY Experiment with Pure Shifts in Both Dimensions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1039715 – volume: 131 start-page: 194505 year: 2009 ident: ref_219 article-title: A theoretical basis for spontaneous polarization transfer in non-hydrogenative parahydrogen-induced polarization publication-title: J. Chem. Phys. doi: 10.1063/1.3254386 – volume: 23 start-page: 135 year: 1991 ident: ref_75 article-title: Solvent Signal Suppression in NMR publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/0079-6565(91)80007-O – volume: 59 start-page: 271 year: 2014 ident: ref_182 article-title: How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes? publication-title: Water Res. doi: 10.1016/j.watres.2014.04.020 – volume: 13 start-page: 471 year: 2000 ident: ref_63 article-title: Chemometric models for toxicity classification based on NMR spectra of biofluids publication-title: Chem. Res. Toxicol. doi: 10.1021/tx990210t – volume: 318 start-page: 194 year: 2014 ident: ref_15 article-title: A metabolomics approach to evaluate the effects of shiitake mushroom (Lentinula edodes) treatment in undernourished young rats publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. doi: 10.1016/j.nimb.2013.05.108 – volume: 243 start-page: 154 year: 2010 ident: ref_281 article-title: Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2009.11.019 – volume: 69 start-page: 13 year: 2018 ident: ref_272 article-title: The foodome of bivalve molluscs: From hedonic eating to healthy diet publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2018.01.018 – volume: 16 start-page: 3596 year: 2017 ident: ref_260 article-title: Scale-Invariant Biomarker Discovery in Urine and Plasma Metabolite Fingerprints publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.7b00325 – volume: 410 start-page: 2793 year: 2018 ident: ref_103 article-title: Rapid two-dimensional ALSOFAST-HSQC experiment for metabolomics and fluxomics studies: Application to a C-13-enriched cancer cell model treated with gold nanoparticles publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-018-0961-6 – volume: 86 start-page: 5946 year: 2014 ident: ref_30 article-title: Evaluation of Fast 2D NMR for Metabolomics publication-title: Anal. Chem. doi: 10.1021/ac500966e – volume: 41 start-page: D801 year: 2013 ident: ref_168 article-title: HMDB 3.0-The Human Metabolome Database in 2013 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1065 – volume: 776 start-page: 1041 year: 2019 ident: ref_175 article-title: Layered copper thioaluminate K2Cu3AlS4: Synthesis, crystal structure, characterization and solid-state Al-27 and K-39 NMR studies publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.10.239 – volume: 34 start-page: 1095 year: 2010 ident: ref_23 article-title: Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype publication-title: Int. J. Obes. doi: 10.1038/ijo.2010.44 – volume: 581 start-page: 243 year: 2019 ident: ref_198 article-title: Amide versus amine ratio in the discrimination layer of reverse osmosis membrane by solid state N-15 NMR and DNP NMR publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.03.037 – ident: ref_258 doi: 10.1371/journal.pone.0016957 – volume: 135 start-page: 1490 year: 2010 ident: ref_25 article-title: Advances in NMR-based biofluid analysis and metabolite profiling publication-title: Analyst doi: 10.1039/c000091d – ident: ref_269 doi: 10.3390/metabo7020025 – volume: 21 start-page: 337 year: 1976 ident: ref_83 article-title: Solvent Peak Saturation with Single-Phase and Quadrature Fourier Transformation publication-title: J. Magn. Reson. – volume: 289 start-page: 2344 year: 2014 ident: ref_213 article-title: Non-invasive In-cell Determination of Free Cytosolic NAD(+)/NADH Ratios Using Hyperpolarized Glucose Show Large Variations in Metabolic Phenotypes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.498626 – volume: 13 start-page: 81 year: 2011 ident: ref_211 article-title: Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research publication-title: Neoplasia doi: 10.1593/neo.101102 – volume: 66 start-page: 956 year: 2014 ident: ref_284 article-title: Potential of metabolomics in preclinical and clinical drug development publication-title: Pharmacol. Rep. doi: 10.1016/j.pharep.2014.06.010 – volume: 96 start-page: 1 year: 2016 ident: ref_176 article-title: Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2016.02.001 – volume: 27 start-page: 1260 year: 2013 ident: ref_3 article-title: Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.6571 – volume: 94 start-page: 677 year: 2014 ident: ref_86 article-title: Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2014.03.018 – volume: 5 start-page: 318 year: 2009 ident: ref_264 article-title: Metabolic network discovery through reverse engineering of metabolome data publication-title: Metabolomics doi: 10.1007/s11306-009-0156-4 – volume: 169 start-page: 383 year: 1990 ident: ref_47 article-title: Information from combined 1H and 31P NMR studies of cell extracts: Differences in metabolism between drug-sensitive and drug-resistant MCF-7 human breast cancer cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(90)90343-L – volume: 49 start-page: 115 year: 1974 ident: ref_84 article-title: Pulsed NMR Methods for Observation and Assignment of Exchangeable Hydrogens—Application To Bacitracin publication-title: FEBS Lett. doi: 10.1016/0014-5793(74)80645-9 – volume: 299 start-page: 1341 year: 2000 ident: ref_157 article-title: NMR characterization of residual structure in the denatured state of protein L publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3816 – volume: 18 start-page: 242 year: 2005 ident: ref_190 article-title: Comparisons of brain metabolites observed by HRMAS 1H NMR of intact tissue and solution 1H NMR of tissue extracts in SIV-infected macaques publication-title: NMR Biomed. doi: 10.1002/nbm.953 – volume: 11 start-page: 6231 year: 2012 ident: ref_1 article-title: Combination of LC-MS-and GC-MS-based Metabolomics to Study the Effect of Ozonated Autohemotherapy on Human Blood publication-title: J. Proteome Res. doi: 10.1021/pr3008946 – ident: ref_29 doi: 10.1016/j.trac.2018.10.036 – volume: 31 start-page: 245 year: 2006 ident: ref_276 article-title: Metabolomics: Methodologies and applications in the environmental sciences publication-title: J. Pestic. Sci. doi: 10.1584/jpestics.31.245 – volume: Volume 66 start-page: 33 year: 2009 ident: ref_78 article-title: Recent Advances in Solvent Suppression for Solution NMR: A Practical Reference publication-title: Annual Reports on Nmr Spectroscopy doi: 10.1016/S0066-4103(08)00402-X – volume: A42 start-page: 1369 year: 2005 ident: ref_184 article-title: Ethyl acrylate-hydroxyethyl acrylate and hydroxyethyl acrylate-methacrylic acid: Reactivity ratio estimation from cross-linked polymer using high resolution magic angle spinning spectroscopy publication-title: J. Macromol. Sci. Pure Appl. Chem. doi: 10.1080/10601320500205558 – volume: 57 start-page: 304 year: 2019 ident: ref_248 article-title: Identification of metabolites in coriander seeds (Coriandrum Sativum L.) aided by ultrahigh resolution total correlation NMR spectroscopy publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.4850 – volume: 48 start-page: 323 year: 1982 ident: ref_92 article-title: Distortionless Enhancement of NMR Signals by Polarization Transfer publication-title: J. Magn. Reson. – volume: 52 start-page: 136 year: 2010 ident: ref_24 article-title: Metabonomics study of urine from Sprague-Dawley rats exposed to Huang-Yao-Zi using H-1 NMR spectroscopy publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2009.12.026 – volume: 51 start-page: 549 year: 2013 ident: ref_262 article-title: NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.3985 – volume: 82 start-page: 2405 year: 2010 ident: ref_41 article-title: Monitoring Real-Time Metabolism of Living Cells by Fast Two-Dimensional NMR Spectroscopy publication-title: Anal. Chem. doi: 10.1021/ac9026934 – volume: Volume 561 start-page: 73 year: 2015 ident: ref_212 article-title: Hyperpolarized C-13 Magnetic Resonance and Its Use in Metabolic Assessment of Cultured Cells and Perfused Organs publication-title: Metabolic Analysis Using Stable Isotopes doi: 10.1016/bs.mie.2015.04.006 – volume: 54 start-page: 135 year: 1984 ident: ref_130 article-title: NMR Analysis of the Structure and Metal Sequestering Properties of Metallothioneins publication-title: Environ. Health Perspect. doi: 10.1289/ehp.8454135 – volume: 8 start-page: 4264 year: 2009 ident: ref_163 article-title: Individual Human Phenotypes in Metabolic Space and Time publication-title: J. Proteome Res. doi: 10.1021/pr900344m – volume: 140 start-page: 272 year: 2015 ident: ref_32 article-title: Separation of small metabolites and lipids in spectra from biopsies by diffusion-weighted HR-MAS NMR: A feasibility study publication-title: Analyst doi: 10.1039/C4AN01663G – volume: 488 start-page: 145 year: 2019 ident: ref_174 article-title: Tris(ethylenediamine)nickel(II) thio-hydroxogermanate monohydrate: Synthesis, crystal structure, H-1 NMR, EPR, optical and magnetic properties publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2019.01.019 – volume: 24 start-page: 1402 year: 2008 ident: ref_265 article-title: In Vivo Dynamics of Glycolysis in Escherichia coli Shows Need for Growth-Rate Dependent Metabolome Analysis publication-title: Biotechnol. Prog. doi: 10.1002/btpr.59 – volume: 9 start-page: 4381 year: 2018 ident: ref_199 article-title: Diastereoisomers of L-proline-linked trityl-nitroxide biradicals: Synthesis and effect of chiral configurations on exchange interactions publication-title: Chem. Sci. doi: 10.1039/C8SC00969D – volume: 44 start-page: D463 year: 2016 ident: ref_289 article-title: Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1042 – volume: 48 start-page: 1 year: 2017 ident: ref_57 article-title: NMR Techniques in Metabolomic Studies: A Quick Overview on Examples of Utilization publication-title: Appl. Magn. Reson. doi: 10.1007/s00723-016-0846-9 – volume: 100 start-page: 10158 year: 2003 ident: ref_200 article-title: Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1733835100 – volume: 47 start-page: S47 year: 2009 ident: ref_33 article-title: Chemical shift calibration of H-1 MAS NMR liver tissue spectra exemplified using a study of glycine protection of galactosamine toxicity publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.2521 – ident: ref_73 doi: 10.1101/288993 – volume: 92 start-page: 411 year: 1953 ident: ref_203 article-title: Polarization of Nuclei in Metals publication-title: Phys. Rev. doi: 10.1103/PhysRev.92.411 – volume: 190 start-page: 1 year: 2008 ident: ref_82 article-title: Pre-SAT180, a simple and effective method for residual water suppression publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2007.09.016 – volume: 81 start-page: 479 year: 2009 ident: ref_155 article-title: Evaluation of Ultrafast 2D NMR for Quantitative Analysis publication-title: Anal. Chem. doi: 10.1021/ac8021168 – volume: 218 start-page: 141 year: 2012 ident: ref_245 article-title: Toward single-shot pure-shift solution 1H NMR by trains of BIRD-based homonuclear decoupling publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2012.02.018 – volume: 186 start-page: 150 year: 2007 ident: ref_226 article-title: Towards hyperpolarized (13)C-succinate imaging of brain cancer publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2007.01.017 – volume: 77 start-page: 2455 year: 2005 ident: ref_120 article-title: Use of selective TOCSY NMR experiments for quantifying minor components in complex mixtures: Application to the metabonomics of amino acids in honey publication-title: Anal. Chem. doi: 10.1021/ac0484979 – volume: 8 start-page: 624 year: 2003 ident: ref_250 article-title: LC-NMR-MS in drug discovery publication-title: Drug Discov. Today doi: 10.1016/S1359-6446(03)02749-1 – volume: 86 start-page: 5494 year: 2014 ident: ref_142 article-title: Customized Metabolomics Database for the Analysis of NMR 1H–1H TOCSY and 13C–1H HSQC-TOCSY Spectra of Complex Mixtures publication-title: Anal. Chem. doi: 10.1021/ac500979g – volume: 135 start-page: 14536 year: 2013 ident: ref_112 article-title: A Simple Method to Measure Protein Side-Chain Mobility Using NMR Chemical Shifts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407509z – volume: 238 start-page: 16 year: 2014 ident: ref_126 article-title: Suppressing exchange effects in diffusion-ordered NMR spectroscopy publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2013.10.018 – volume: 43 start-page: 104 year: 2017 ident: ref_104 article-title: Recent advances in high-throughput C-13-fluxomics publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.10.010 – volume: 5 start-page: 536 year: 2010 ident: ref_134 article-title: NMR-based metabolomic analysis of plants publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.237 – volume: 15 start-page: 1274 year: 2016 ident: ref_169 article-title: Soft Corals Biodiversity in the Egyptian Red Sea: A Comparative MS and NMR Metabolomics Approach of Wild and Aquarium Grown Species publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.6b00002 – volume: 3 start-page: 19 year: 2007 ident: ref_85 article-title: Urine stability for metabolomic studies: Effects of preparation and storage publication-title: Metabolomics doi: 10.1007/s11306-006-0042-2 – volume: 77 start-page: 7717 year: 2005 ident: ref_91 article-title: Use of semiselective TOCSY and the Pearson Correlation for the metabonomic analysis of biofluid mixtures: Application to urine publication-title: Anal. Chem. doi: 10.1021/ac0510890 – volume: 279 start-page: 91 year: 2017 ident: ref_111 article-title: Measurement of N-15 longitudinal relaxation rates in (NH4+)-N-15 spin systems to characterise rotational correlation times and chemical exchange publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2017.01.015 – volume: 34 start-page: 483 year: 2008 ident: ref_209 article-title: Determinants for optimal enhancement in ex situ DNP experiments publication-title: Appl. Magn. Reson. doi: 10.1007/s00723-008-0120-x – volume: 88 start-page: 11373 year: 2016 ident: ref_253 article-title: PlantMAT: A Metabolomics Tool for Predicting the Specialized Metabolic Potential of a System and for Large-Scale Metabolite Identifications publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b00906 – volume: 76 start-page: 143 year: 2013 ident: ref_178 article-title: Solid-state NMR and wide-angle X-ray diffraction study of hydrofluoroether/beta-cyclodextrin inclusion complex publication-title: J. Incl. Phenom. Macrocycl. Chem. doi: 10.1007/s10847-012-0183-z – ident: ref_66 doi: 10.1371/journal.pone.0132873 – volume: 134 start-page: 934 year: 2012 ident: ref_220 article-title: Real-time molecular imaging of tricarboxylic acid cycle metabolism in vivo by hyperpolarized 1-(13)C diethyl succinate publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2040865 – volume: 136 start-page: 11867 year: 2014 ident: ref_234 article-title: Ultrahigh-Resolution Total Correlation NMR Spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507201t – volume: 3 start-page: 10 year: 2015 ident: ref_172 article-title: Open-Access Metabolomics Databases for Natural Product Research: Present Capabilities and Future Potential publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2015.00022 – volume: 411 start-page: 1591 year: 2019 ident: ref_194 article-title: Simultaneous metabolic mapping of different anatomies by 1H HR-MAS chemical shift imaging publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-019-01603-w – volume: 1026 start-page: 204 year: 2016 ident: ref_280 article-title: Metabolomics and its application to the evaluation of the efficacy and toxicity of traditional Chinese herb medicines publication-title: J. Chromatogr. B Anal. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2015.10.014 – ident: ref_139 – volume: 37 start-page: 4982 year: 2003 ident: ref_263 article-title: NMR-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health publication-title: Environ. Sci. Technol. doi: 10.1021/es034281x – volume: 240 start-page: 514 year: 2018 ident: ref_273 article-title: H-1 HR-MAS NMR-based metabolomics analysis for dry-fermented sausage characterization publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.07.150 – volume: 49 start-page: 469 year: 2011 ident: ref_12 article-title: Solid state NMR and bioequivalence comparison of the pharmacokinetic parameters of two formulations of clindamycin publication-title: Int. J. Clin. Pharmacol. Ther. doi: 10.5414/CP201478 – volume: 9 start-page: 6900 year: 2019 ident: ref_247 article-title: Ultra-Clean Pure Shift 1H-NMR applied to metabolomics profiling publication-title: Sci. Rep. doi: 10.1038/s41598-019-43374-5 – volume: 49 start-page: 1327 year: 2017 ident: ref_42 article-title: Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl) pyridine-4-boronic Acid Pinacol Ester publication-title: Synth. Stuttg. – volume: 62 start-page: 43 year: 2015 ident: ref_246 article-title: Real-time pure shift 15N HSQC of proteins: A real improvement in resolution and sensitivity publication-title: J. Biomol. NMR doi: 10.1007/s10858-015-9913-z – volume: 29 start-page: 110 year: 2009 ident: ref_9 article-title: Metabolic significance of bisphenol A-induced oxidative stress in rat urine measured by liquid chromatography-mass spectrometry publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1387 – volume: 85 start-page: 11326 year: 2013 ident: ref_20 article-title: Pattern Recognition Analysis for Hepatotoxicity Induced by Acetaminophen Using Plasma and Urinary H-1 NMR-Based Metabolomics in Humans publication-title: Anal. Chem. doi: 10.1021/ac402390q – ident: ref_80 doi: 10.1371/journal.pone.0085732 – volume: 90 start-page: 2095 year: 2018 ident: ref_67 article-title: AQuA: An Automated Quantification Algorithm for High-Throughput NMR-Based Metabolomics and Its Application in Human Plasma publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b04324 – ident: ref_283 doi: 10.1371/journal.pone.0016641 – volume: 108 start-page: 11545 year: 2004 ident: ref_118 article-title: Spectroscopic studies of the intermediates in the conversion of 1,4,11,12-tetrahydro-9,10-anthraquinone to 9,10-anthraquinone by reaction with oxygen under basic conditions publication-title: J. Phys. Chem. A doi: 10.1021/jp040280v – volume: 100 start-page: 58 year: 2006 ident: ref_181 article-title: Synthesis, spectroscopy (IR, multinuclear NMR, ESI-MS), diffraction, density functional study and in vitro antiproliferative activity of pyrazole-beta-diketone dihalotin(IV) compounds on 5 melanoma cell lines publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2005.10.002 – volume: 26 start-page: 1696 year: 2013 ident: ref_228 article-title: Hyperpolarized singlet lifetimes of pyruvate in human blood and in the mouse publication-title: NMR Biomed. doi: 10.1002/nbm.3005 – volume: 137 start-page: 084508 year: 2012 ident: ref_205 article-title: Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: The importance of level crossings publication-title: J. Chem. Phys. doi: 10.1063/1.4747449 – volume: Volume 992 start-page: 147 year: 2012 ident: ref_98 article-title: Isotope Enhanced Approaches in Metabolomics publication-title: Isotope Labeling in Biomolecular NMR doi: 10.1007/978-94-007-4954-2_8 – volume: 3 start-page: 2205 year: 2011 ident: ref_278 article-title: Integration of metabolomics in heart disease and diabetes research: Current achievements and future outlook publication-title: Bioanalysis doi: 10.4155/bio.11.223 – volume: 9 start-page: 1048 year: 2013 ident: ref_51 article-title: NMR-based metabolomics in human disease diagnosis: Applications, limitations, and recommendations publication-title: Metabolomics doi: 10.1007/s11306-013-0524-y – volume: 56 start-page: 2355 year: 2017 ident: ref_270 article-title: Metabolomic signature of brain cancer publication-title: Mol. Carcinog. doi: 10.1002/mc.22694 – volume: 2017 start-page: 6053879 year: 2017 ident: ref_37 article-title: Cancer Metabolism and Tumor Heterogeneity: Imaging Perspectives Using MR Imaging and Spectroscopy publication-title: Contrast Media Mol. Imaging doi: 10.1155/2017/6053879 – volume: 15 start-page: 4188 year: 2016 ident: ref_71 article-title: Workflow for Integrated Processing of Multicohort Untargeted H-1 NMR Metabolomics Data in Large-Scale Metabolic Epidemiology publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.6b00125 – volume: 125 start-page: 11385 year: 2003 ident: ref_154 article-title: Single-scan NMR spectroscopy at arbitrary dimensions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0350785 – volume: 14 start-page: 887 year: 2018 ident: ref_268 article-title: Metabolomic and Imaging: A Literature Review publication-title: Curr. Med Imaging Rev. doi: 10.2174/1573405614666171212144417 – volume: 14 start-page: 135 year: 2016 ident: ref_49 article-title: A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2016.02.005 – volume: 173 start-page: 822 year: 2018 ident: ref_102 article-title: Metabolomics and Isotope Tracing publication-title: Cell doi: 10.1016/j.cell.2018.03.055 – volume: 207 start-page: 89 year: 2010 ident: ref_119 article-title: Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2010.08.012 – volume: 62 start-page: 1890 year: 2002 ident: ref_186 article-title: Melanoma tumors acquire a new phospholipid metabolism phenotype under cystemustine as revealed by high-resolution magic angle spinning proton nuclear magnetic resonance spectroscopy of intact tumor samples publication-title: Cancer Res. – volume: 5 start-page: 835 year: 1963 ident: ref_204 article-title: Dynamic polarization of nuclei during saturation of nonuniformly broadened electron paramagnetic resonance lines publication-title: Sov. Phys.-Solid State – volume: 129 start-page: 1216 year: 2004 ident: ref_249 article-title: The application of LC-NMR and LC-SPE-NMR to compositional studies of natural organic matter publication-title: Analyst doi: 10.1039/b408064e – volume: Volume 815 start-page: 363 year: 2012 ident: ref_137 article-title: Metabolite Analysis of Cannabis sativa L. by NMR Spectroscopy publication-title: Functional Genomics: Methods and Protocols doi: 10.1007/978-1-61779-424-7_27 – volume: 3 start-page: 575 year: 2013 ident: ref_251 article-title: Combining Hydrophilic Interaction Chromatography (HILIC) and Isotope Tagging for Off-Line LC-NMR Applications in Metabolite Analysis publication-title: Metabolites doi: 10.3390/metabo3030575 – volume: 214 start-page: 539 year: 2016 ident: ref_31 article-title: Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning H-1 NMR spectroscopy publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.04.057 – volume: 186 start-page: 1084 year: 2017 ident: ref_72 article-title: Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwx016 – volume: 156 start-page: 239 year: 2016 ident: ref_93 article-title: Precise and rapid isotopomic analysis by H-1-C-13 2D NMR: Application to triacylglycerol matrices publication-title: Talanta doi: 10.1016/j.talanta.2016.05.031 – volume: 69 start-page: 1 year: 2017 ident: ref_45 article-title: Advanced characterization of dissolved organic matter released by bloom-forming marine algae publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2017.0444 – volume: 36 start-page: 2348 year: 2015 ident: ref_275 article-title: Environmental metabolomics: Biological markers for metal toxicity publication-title: Electrophoresis doi: 10.1002/elps.201500052 – volume: 65 start-page: 221 year: 2002 ident: ref_140 article-title: Choosing the best pulse sequences, acquisition parameters, postacquisition processing strategies, and probes for natural product structure elucidation by NMR spectroscopy publication-title: J. Nat. Prod. doi: 10.1021/np010444o – volume: 12 start-page: 121 year: 2013 ident: ref_195 article-title: H-1 NMR-based metabolic profiling of human rectal cancer tissue publication-title: Mol. Cancer doi: 10.1186/1476-4598-12-121 – volume: 7 start-page: 129 year: 2014 ident: ref_231 article-title: Ultrafast 2D NMR: An emerging tool in analytical spectroscopy publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-071213-020208 – volume: 50 start-page: 2512 year: 2014 ident: ref_243 article-title: Diastereomeric ratio determination by high sensitivity band-selective pure shift NMR spectroscopy publication-title: Chem. Commun. doi: 10.1039/C3CC49659G – volume: 83 start-page: 719 year: 2011 ident: ref_136 article-title: Evaluation of a Semipolar Solvent System as a Step toward Heteronuclear Multidimensional NMR-Based Metabolomics for C-13-Labelled Bacteria, Plants, and Animals publication-title: Anal. Chem. doi: 10.1021/ac102097u – volume: 90 start-page: 649 year: 2018 ident: ref_287 article-title: nmRML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b02795 – volume: 28 start-page: 2088 year: 2012 ident: ref_65 article-title: BATMAN-an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts308 – volume: 49 start-page: 297 year: 2011 ident: ref_254 article-title: The application of micro-coil NMR probe technology to metabolomics of urine and serum publication-title: J. Biomol. NMR doi: 10.1007/s10858-011-9488-2 – volume: 41 start-page: 1108 year: 1999 ident: ref_187 article-title: High-resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199906)41:6<1108::AID-MRM6>3.0.CO;2-M – volume: 14 start-page: 2346 year: 2012 ident: ref_221 article-title: Proton magnetic resonance imaging with para-hydrogen induced polarization publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp22822j – volume: Volume 566 start-page: 3 year: 2016 ident: ref_107 article-title: Application of Natural Isotopic Abundance H-1-C-13- and H-1-N-15-Correlated Two-Dimensional NMR for Evaluation of the Structure of Protein Therapeutics publication-title: Isotope Labeling of Biomolecules—Applications doi: 10.1016/bs.mie.2015.09.037 – volume: 99 start-page: 15858 year: 2002 ident: ref_153 article-title: The acquisition of multidimensional NMR spectra within a single scan publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.252644399 – volume: 9 start-page: 2789 year: 2018 ident: ref_94 article-title: Flux Connections Between Gluconate Pathway, Glycolysis, and Pentose-Phosphate Pathway During Carbohydrate Metabolism in Bacillus megaterium QM B1551 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02789 – volume: 37 start-page: D603 year: 2009 ident: ref_164 article-title: HMDB: A knowledgebase for the human metabolome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn810 – volume: 31 start-page: 818 year: 2013 ident: ref_266 article-title: Flux analysis and metabolomics for systematic metabolic engineering of microorganisms publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.05.002 – volume: 12 start-page: 5723 year: 2013 ident: ref_197 article-title: Effects of Intra- and Post-Operative Ischemia on the Metabolic Profile of Clinical Liver Tissue Specimens Monitored by NMR publication-title: J. Proteome Res. doi: 10.1021/pr400702d – volume: 10 start-page: 2398 year: 2014 ident: ref_2 article-title: GC-MS based metabolomics identification of possible novel biomarkers for schizophrenia in peripheral blood mononuclear cells publication-title: Mol. Biosyst. doi: 10.1039/C4MB00157E – volume: 117 start-page: 486 year: 1983 ident: ref_132 article-title: Combined Use of Cosy and Double Quantum Two-Dimensional Nmr-Spectroscopy for Elucidation of Spin Systems in Polymyxin-B publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(83)91226-3 – volume: 372 start-page: 497 year: 2007 ident: ref_106 article-title: The folding pathway of an FF domain: Characterization of an on-pathway intermediate state under folding conditions by N-15, C-13(alpha) and C-13-methyl relaxation dispersion and H-1/(2) H-exchange NMR Spectroscopy publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.06.012 – volume: 115 start-page: 395 year: 2015 ident: ref_274 article-title: Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by H-1 NMR spectroscopy publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2015.07.035 – volume: 122 start-page: 5883 year: 2000 ident: ref_113 article-title: Intermolecular P-31-N-15 and P-31-H-1 scalar couplings across hydrogen bonds formed between a protein and a nucleotide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja000005w – volume: 122 start-page: 214505 year: 2005 ident: ref_223 article-title: Theory of long-lived nuclear spin states in solution nuclear magnetic resonance. I. Singlet states in low magnetic field publication-title: J. Chem. Phys. doi: 10.1063/1.1893983 – volume: 49 start-page: 281 year: 2011 ident: ref_90 article-title: Use of optimized 1D TOCSY NMR for improved quantitation and metabolomic analysis of biofluids publication-title: J. Biomol. NMR doi: 10.1007/s10858-011-9483-7 – volume: 33 start-page: 199 year: 2005 ident: ref_162 article-title: SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds publication-title: J. Biomol. NMR doi: 10.1007/s10858-005-4425-x – volume: 44 start-page: S185 year: 2006 ident: ref_152 article-title: Robust and versatile interpretation of spectra with coupled evolution periods using multi-way decomposition publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.1824 – volume: Volume 338 start-page: 123 year: 2013 ident: ref_216 article-title: Parahydrogen-Induced Polarization in Heterogeneous Catalytic Processes publication-title: Hyperpolarization Methods in NMR Spectroscopy – volume: 425 start-page: 345 year: 1998 ident: ref_149 article-title: Further assignment of resonances in H-1 NMR spectra of cerebrospinal fluid (CSF) publication-title: FEBS Lett. doi: 10.1016/S0014-5793(98)00262-2 – ident: ref_257 doi: 10.1371/journal.pone.0073076 – volume: 32 start-page: 88 year: 2012 ident: ref_22 article-title: NMR-based metabonomic approach on the toxicological effects of a Cimicifuga triterpenoid publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1633 – volume: 51 start-page: 6460 year: 2012 ident: ref_236 article-title: Decoupling Two-Dimensional NMR Spectroscopy in Both Dimensions: Pure Shift NOESY and COSY publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201108888 – volume: 34 start-page: 165 year: 2012 ident: ref_158 article-title: Structural characterization of an intrinsically unfolded mini-HBX protein from hepatitis B virus publication-title: Mol. Cells doi: 10.1007/s10059-012-0060-z – volume: 95 start-page: 1 year: 1980 ident: ref_122 article-title: A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(80)90695-6 – volume: 19 start-page: 38 year: 2011 ident: ref_282 article-title: Identification of Urinary Biomarkers Related to Cisplatin-Induced Acute Renal Toxicity Using NMR-Based Metabolomics publication-title: Biomol. Ther. doi: 10.4062/biomolther.2011.19.1.038 – volume: 67 start-page: 793 year: 1995 ident: ref_124 article-title: 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma publication-title: Anal. Chem. doi: 10.1021/ac00101a004 – volume: 34 start-page: 227 year: 2008 ident: ref_202 article-title: The Solid Effect publication-title: Appl. Magn. Reson. doi: 10.1007/s00723-008-0121-9 – volume: 1 start-page: 1192 year: 2013 ident: ref_179 article-title: Nitridated Fibrous Silica (KCC-1) as a Sustainable Solid Base Nanocatalyst publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc400126h – volume: 47 start-page: S74 year: 2009 ident: ref_116 article-title: Application of P-31 NMR spectroscopy and chemical derivatization for metabolite profiling of lipophilic compounds in human serum publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.2480 – volume: 57 start-page: 129 year: 2013 ident: ref_177 article-title: Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR publication-title: J. Biomol. NMR doi: 10.1007/s10858-013-9773-3 – volume: 11 start-page: 21 year: 1993 ident: ref_147 article-title: Analysis of biological fluids using 600 MHz proton NMR spectroscopy: Application of homonuclear two-dimension J-resolved spectroscopy to urine and blood plasma for spectral simplification and assignment publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/0731-7085(93)80145-Q – volume: 2 start-page: 2692 year: 2007 ident: ref_123 article-title: Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.376 – volume: 2 start-page: 4478 year: 2017 ident: ref_286 article-title: Robust Imidazole-N-15(2) Synthesis for High-Resolution Low-Field (0.05 T) (15)NHyperpolarized NMR Spectroscopy publication-title: Chemistryselect doi: 10.1002/slct.201700718 – volume: 56 start-page: 11779 year: 2017 ident: ref_141 article-title: NOAH: NMR Supersequences for Small Molecule Analysis and Structure Elucidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201705506 – volume: 1277 start-page: 161 year: 2015 ident: ref_28 article-title: The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2377-9_13 – volume: 1277 start-page: 91 year: 2015 ident: ref_11 article-title: Gas chromatography-mass spectrometry of biofluids and extracts publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2377-9_8 – volume: 383 start-page: 76 year: 2008 ident: ref_27 article-title: Correlative and quantitative H-1 NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats publication-title: Anal. Biochem. doi: 10.1016/j.ab.2008.07.041 – volume: 13 start-page: 1857 year: 2018 ident: ref_215 article-title: Hyperpolarized NMR Spectroscopy: D-DNP, PHIP, and SABRE Techniques publication-title: Chem. Asian J. doi: 10.1002/asia.201800551 – volume: 96 start-page: 2598 year: 2013 ident: ref_180 article-title: Material and Elastic Properties of Al-Tobermorite in Ancient Roman Seawater Concrete publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12407 – volume: 128 start-page: 7146 year: 2006 ident: ref_229 article-title: Fast 2D NMR Ligand Screening Using Hadamard Spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0608949 – volume: 11 start-page: 316 year: 1989 ident: ref_128 article-title: Two Dimensional correlated spectroscopy (COSY) publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910110306 – volume: 49 start-page: 8358 year: 2010 ident: ref_227 article-title: Continuous H-1 and C-13 Signal Enhancement in NMR Spectroscopy and MRI Using Parahydrogen and Hollow-Fiber Membranes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201002725 – volume: 82 start-page: 1811 year: 2010 ident: ref_88 article-title: Evaluation of Full-Resolution J-Resolved H-1 NMR Projections of Biofluids for Metabonomics Information Retrieval and Biomarker Identification publication-title: Anal. Chem. doi: 10.1021/ac902443k – volume: 140 start-page: 8097 year: 2015 ident: ref_192 article-title: High-resolution NMR-based metabolic detection of microgram biopsies using a 1 mm HR mu MAS probe publication-title: Analyst doi: 10.1039/C5AN01810B – volume: 231 start-page: 267 year: 2017 ident: ref_271 article-title: Metabolic profiles from two different breakfast meals characterized by H-1 NMR-based metabolomics publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.03.142 – volume: 91 start-page: 2304 year: 2019 ident: ref_240 article-title: Real-Time Pure Shift HSQC NMR for Untargeted Metabolomics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04928 – volume: 21 start-page: 237 year: 2008 ident: ref_38 article-title: Preliminary characterization of an experimental breast cancer cells brain metastasis mouse model by MRI/MRS publication-title: Magn. Reson. Mater. Phys. Biol. Med. doi: 10.1007/s10334-008-0114-6 – volume: 11 start-page: 1756 year: 2015 ident: ref_121 article-title: Statistical treatment of 2D NMR COSY spectra in metabolomics: Data preparation, clustering-based evaluation of the Metabolomic Informative Content and comparison with H-1-NMR publication-title: Metabolomics doi: 10.1007/s11306-015-0830-7 – volume: 7 start-page: 42324 year: 2017 ident: ref_259 article-title: NMR metabolic fingerprints of murine melanocyte and melanoma cell lines: Application to biomarker discovery publication-title: Sci. Rep. doi: 10.1038/srep42324 – volume: 95 start-page: 14147 year: 1998 ident: ref_114 article-title: NMR scaler couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation optimized spectroscopy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.24.14147 – volume: 206 start-page: 337 year: 2013 ident: ref_14 article-title: The toxicity of 3-chloropropane-1,2-dipalmitate in Wistar rats and a metabonomics analysis of rat urine by ultra-performance liquid chromatography-mass spectrometry publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2013.10.004 – volume: 55 start-page: 283 year: 1983 ident: ref_77 article-title: Solvent Suppression in Fourier-Transform Nuclear Magnetic-Resonance publication-title: J. Magn. Reson. – volume: 17 start-page: 451 year: 2016 ident: ref_267 article-title: Metabolomics: Beyond biomarkers and towards mechanisms publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.25 – volume: 143 start-page: 3442 year: 2018 ident: ref_285 article-title: SABRE hyperpolarization enables high-sensitivity H-1 and C-13 benchtop NMR spectroscopy publication-title: Analyst doi: 10.1039/C8AN00596F – volume: 813 start-page: 59 year: 2004 ident: ref_189 article-title: Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2004.09.032 – volume: 750 start-page: 82 year: 2012 ident: ref_261 article-title: NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.05.049 – ident: ref_208 doi: 10.1119/1.1937646 – volume: 29 start-page: 507 year: 2016 ident: ref_34 article-title: Investigation of relative metabolic changes in the organs and plasma of rats exposed to X-ray radiation using HR-MAS H-1 NMR and solution H-1 NMR publication-title: NMR Biomed. doi: 10.1002/nbm.3485 – volume: 52 start-page: 10487 year: 2013 ident: ref_108 article-title: Efficient Detection of Hydrogen Bonds in Dynamic Regions of RNA by Sensitivity-Optimized NMR Pulse Sequences publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201304391 – volume: 132 start-page: 7186 year: 2010 ident: ref_222 article-title: Para-hydrogenated Glucose Derivatives as Potential C-13-Hyperpolarized Probes for Magnetic Resonance Imaging publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101399q – volume: 53 start-page: 6990 year: 2014 ident: ref_233 article-title: Ultrahigh-resolution NMR spectroscopy publication-title: Angew. Chem. doi: 10.1002/anie.201404111 – volume: 12 start-page: 5868 year: 2010 ident: ref_232 article-title: Application of ex situ dynamic nuclear polarization in studying small molecules publication-title: Phys. Chem Chem Phys. doi: 10.1039/c002700f – volume: 4 start-page: 384 year: 1964 ident: ref_206 article-title: Chapter VIII Dynamic Polarization of Nuclear Targets publication-title: Prog. Low Temp. Phys. doi: 10.1016/S0079-6417(08)60156-0 – volume: 35 start-page: D521 year: 2007 ident: ref_165 article-title: HMDB: The human metabolome database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl923 – ident: ref_138 doi: 10.1371/annotation/2c2f8fce-a5be-40a3-af8f-48f119b2c593 – volume: 197 start-page: 219 year: 2009 ident: ref_151 article-title: Narrow peaks and high dimensionalities: Exploiting the advantages of random sampling publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2009.01.003 – volume: 48 start-page: 811 year: 2012 ident: ref_238 article-title: Spin echo NMR spectra without J modulation publication-title: Chem. Commun. doi: 10.1039/C1CC16699A – volume: 2 start-page: 1097 year: 1985 ident: ref_131 article-title: High-Field H-1-NMR Analysis of the 1-1 Intercalation Complex of the Antitumor Agent Mitoxantrone and the DNA Duplex D(Cpgpcpg) 2 publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.1985.10507626 – volume: 17 start-page: 28 year: 2009 ident: ref_8 article-title: Metabonomic Study with a High Performance Liquid Chromatography Coupling to a Triple Quadruple Mass Spectrometer to Identify Biomarkers from Urine of High-fat Fed and Streptozotocin Treated Rats publication-title: J. Food Drug Anal. – ident: ref_173 doi: 10.1186/1471-2105-9-507 – volume: 310 start-page: 943 year: 2003 ident: ref_156 article-title: Improved methods for the acquisition and interpretation of NMR metabolomic data publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2003.09.092 – volume: 86 start-page: 9887 year: 2014 ident: ref_60 article-title: Precision High-Throughput Proton NMR Spectroscopy of Human Urine, Serum, and Plasma for Large-Scale Metabolic Phenotyping publication-title: Anal. Chem. doi: 10.1021/ac5025039 – volume: 14 start-page: 24 year: 2018 ident: ref_68 article-title: rDolphin: A GUI R package for proficient automatic profiling of 1D H-1-NMR spectra of study datasets publication-title: Metabolomics doi: 10.1007/s11306-018-1319-y – volume: 51 start-page: 218 year: 2008 ident: ref_148 article-title: Analysis of human urine metabolites using SPE and NMR spectroscopy publication-title: Sci. China Ser. B Chem. doi: 10.1007/s11426-008-0031-6 – volume: 8 start-page: 1662 year: 2017 ident: ref_171 article-title: Deconvoluting interrelationships between concentrations and chemical shifts in urine provides a powerful analysis tool publication-title: Nat. Commun. doi: 10.1038/s41467-017-01587-0 – volume: 163 start-page: 56 year: 2003 ident: ref_230 article-title: Fast multi-dimensional Hadamard spectroscopy publication-title: J. Magn. Reson. doi: 10.1016/S1090-7807(03)00036-3 – volume: 11 start-page: 1302 year: 2015 ident: ref_277 article-title: Application of NMR-based metabolomics for environmental assessment in the Great Lakes using zebra mussel (Dreissena polymorpha) publication-title: Metabolomics doi: 10.1007/s11306-015-0789-4 – volume: 11 start-page: 1041 year: 2015 ident: ref_74 article-title: Optimizing water suppression for quantitative NMR-based metabolomics: A tutorial review publication-title: Metabolomics doi: 10.1007/s11306-015-0794-7 – volume: 9 start-page: 760 year: 2018 ident: ref_97 article-title: Metabolomics of Early Stage Plant Cell-Microbe Interaction Using Stable Isotope Labeling publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00760 – volume: 30 start-page: 62 year: 2019 ident: ref_143 article-title: Selective 1D-TOCSY and chemometrics to evaluate authenticity of Turnera diffusa and related botanical extracts publication-title: Phytochem. Lett. doi: 10.1016/j.phytol.2019.01.011 – volume: 12 start-page: 289 year: 2000 ident: ref_64 article-title: Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids publication-title: Concepts Magn. Reson. doi: 10.1002/1099-0534(2000)12:5<289::AID-CMR3>3.0.CO;2-W – volume: 74 start-page: 4588 year: 2002 ident: ref_100 article-title: Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies publication-title: Anal. Chem. doi: 10.1021/ac025691r – volume: 86–87 start-page: 1 year: 2015 ident: ref_239 article-title: Progress in Nuclear Magnetic Resonance Spectroscopy publication-title: Pure Shift NMR – volume: 11 start-page: 165 year: 1999 ident: ref_133 article-title: 90 degrees pulse width calibrations: How to read a pulse width array publication-title: Concepts Magn. Reson. doi: 10.1002/(SICI)1099-0534(1999)11:3<165::AID-CMR4>3.0.CO;2-D – volume: 405 start-page: 4811 year: 2013 ident: ref_5 article-title: Discovery of safety biomarkers for realgar in rat urine using UFLC-IT-TOF/MS and H-1 NMR based metabolomics publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-013-6842-0 – volume: 13 start-page: 109 year: 2017 ident: ref_70 article-title: ASICS: An automatic method for identification and quantification of metabolites in complex 1D H-1 NMR spectra publication-title: Metabolomics doi: 10.1007/s11306-017-1244-5 – volume: 43 start-page: 34 year: 2017 ident: ref_56 article-title: The future of NMR-based metabolomics publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.08.001 – volume: 77 start-page: 1139 year: 2011 ident: ref_252 article-title: Herbal Medicines and Infectious Diseases: Characterization by LC-SPE-NMR of Some Medicinal Plant Extracts Used against Malaria publication-title: Planta Med. doi: 10.1055/s-0030-1270719 – volume: 44 start-page: 121 year: 2012 ident: ref_288 article-title: Toward interoperable bioscience data publication-title: Nat. Genet. doi: 10.1038/ng.1054 – volume: 84 start-page: 10831 year: 2012 ident: ref_135 article-title: Fast Determination of Absolute Metabolite Concentrations by Spatially Encoded 2D NMR: Application to Breast Cancer Cell Extracts publication-title: Anal. Chem. doi: 10.1021/ac3033504 – volume: 51 start-page: 255 year: 2013 ident: ref_117 article-title: Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.3936 – volume: 1217 start-page: 1414 year: 2010 ident: ref_17 article-title: Simple quality assessment approach for herbal extracts using high performance liquid chromatography-UV based metabolomics platform publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2009.12.031 – volume: 21 start-page: 7529 year: 2015 ident: ref_35 article-title: Liver fat deposition and mitochondrial dysfunction in morbid obesity: An approach combining metabolomics with liver imaging and histology publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v21.i24.7529 – volume: 7 start-page: 451 year: 2014 ident: ref_36 article-title: Metabolic changes in acute cerebral infarction: Findings from proton magnetic resonance spectroscopic imaging publication-title: Exp. Ther. Med. doi: 10.3892/etm.2013.1418 – volume: 51 start-page: 565 year: 2010 ident: ref_18 article-title: Qualitative and quantitative analysis of traditional Chinese medicine Niu Huang Jie Du Pill using ultra performance liquid chromatography coupled with tunable UV detector and rapid resolution liquid chromatography coupled with time-of-flight tandem mass spectrometry publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2009.09.015 – volume: 15 start-page: 1380 year: 2002 ident: ref_101 article-title: Analytical reproducibility in 1H NMR-based metabonomic urinalysis publication-title: Chem. Res. Toxicol. doi: 10.1021/tx0255774 – volume: 138 start-page: 8080 year: 2016 ident: ref_224 article-title: Over 20% N-15 Hyperpolarization in Under One Minute for Metronidazole, an Antibiotic and Hypoxia Probe publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04784 – volume: 5 start-page: 27018 year: 2015 ident: ref_279 article-title: Chronic toxicity of crude ricinine in rats assessed by H-1 NMR metabolomics analysis publication-title: RSC Adv. doi: 10.1039/C4RA14660C – volume: 119 start-page: 6711 year: 1997 ident: ref_110 article-title: Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: Application to a bacteriophage lambda N-peptide/boxB RNA complex publication-title: J. Am. Chem. Soc. doi: 10.1021/ja970224q – volume: 64 start-page: 4226 year: 1976 ident: ref_145 article-title: Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy publication-title: J. Chem. Phys. doi: 10.1063/1.431994 – volume: 97 start-page: 384 year: 2013 ident: ref_129 article-title: (1)H and (13)C chemical shift assignment of the monomers that comprise carboxymethyl cellulose publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.05.031 – volume: 1 start-page: 258 year: 2010 ident: ref_160 article-title: Penetrative DNA intercalation and G-base selectivity of an organometallic tetrahydroanthracene Ru-II anticancer complex publication-title: Chem. Sci. doi: 10.1039/c0sc00175a – volume: 323 start-page: 1708 year: 2009 ident: ref_218 article-title: Reversible Interactions with para-Hydrogen Enhance NMR Sensitivity by Polarization Transfer publication-title: Science doi: 10.1126/science.1168877 – volume: 53 start-page: 582 year: 2015 ident: ref_167 article-title: Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2-a free in-house NMR database with integrated LIMS for academic service laboratories publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.4263 – volume: 56 start-page: 267 year: 2010 ident: ref_76 article-title: Solvent signal suppression in NMR publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2010.01.001 – volume: 51 start-page: 115 year: 2011 ident: ref_159 article-title: Visualizing the principal component of H-1, N-15-HSQC NMR spectral changes that reflect protein structural or functional properties: Application to troponin C publication-title: J. Biomol. Nmr doi: 10.1007/s10858-011-9546-9 – volume: Volume 1 start-page: 38 year: 2015 ident: ref_89 article-title: Theory and Applications of NMR-Based Metabolomics in Human Disease Diagnosis publication-title: Applications of NMR Spectroscopy – volume: 52 start-page: 11616 year: 2013 ident: ref_244 article-title: Simultaneously Enhancing Spectral Resolution and Sensitivity in Heteronuclear Correlation NMR Spectroscopy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201305709 – volume: 486 start-page: 225 year: 2000 ident: ref_191 article-title: The biochemical profile of rat testicular tissue as measured by magic angle spinning H-1 NMR spectroscopy publication-title: FEBS Lett. doi: 10.1016/S0014-5793(00)02307-3 – volume: 6 start-page: 717 year: 2006 ident: ref_53 article-title: Pattern recognition and biomarker validation using quantitative H-1-NMR-based metabolomics publication-title: Expert Rev. Mol. Diagn. doi: 10.1586/14737159.6.5.717 – volume: 35 start-page: 5 year: 2012 ident: ref_61 article-title: Quantitative H-1 NMR spectroscopy publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2012.02.007 – volume: 28 start-page: 255 year: 2014 ident: ref_16 article-title: Pharmacokinetic study of amoxicillin in human plasma by solid-phase microextraction followed by high-performance liquid chromatography-triple quadrupole mass spectrometry publication-title: Biomed. Chromatogr. doi: 10.1002/bmc.3014 – volume: 27 start-page: 228 year: 2008 ident: ref_26 article-title: Quantitative metabolomics using NMR publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2007.12.001 – volume: 223 start-page: 64 year: 2012 ident: ref_255 article-title: Double tuning a single input probe for heteronuclear NMR spectroscopy at low field publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2012.06.008 – volume: 143 start-page: 69 year: 2000 ident: ref_256 article-title: Small volume flow probe for automated direct-injection NMR analysis: Design and performance publication-title: J. Magn. Reson. doi: 10.1006/jmre.1999.1983 – volume: 38 start-page: 197 year: 2011 ident: ref_79 article-title: How the 1D-NOESY Suppresses Solvent Signal in Metabonomics NMR Spectroscopy: An Examination of the Pulse Sequence Components and Evolution publication-title: Concepts Magn. Reson. Part A doi: 10.1002/cmr.a.20223 – volume: 104 start-page: 11540 year: 2007 ident: ref_99 article-title: Class selection of amino acid metabolites in body fluids using chemical derivatization and their enhanced 13C NMR publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0704449104 – volume: 15 start-page: 360 year: 2016 ident: ref_50 article-title: Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.5b00885 – volume: 5 start-page: 226 year: 1992 ident: ref_115 article-title: Phospholipid metabolites as indicators of cancer cell function publication-title: NMR Biomed. doi: 10.1002/nbm.1940050506 – volume: 81 start-page: 4882 year: 2009 ident: ref_46 article-title: Chemoselective N-15 Tag for Sensitive and High-Resolution Nuclear Magnetic Resonance Profiling of the Carboxyl-Containing Metabolome publication-title: Anal. Chem. doi: 10.1021/ac900539y – volume: 85 start-page: 8715 year: 2013 ident: ref_105 article-title: N-15-Cholamine-A Smart Isotope Tag for Combining NMR- and MS-Based Metabolite Profiling publication-title: Anal. Chem. doi: 10.1021/ac401712a – volume: 90 start-page: 13736 year: 2018 ident: ref_193 article-title: HR-μMAS NMR-Based Metabolomics: Localized Metabolic Profiling of a Garlic Clove with μg Tissues publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04150 – volume: 7 start-page: 2882 year: 2008 ident: ref_196 article-title: Benign and atypical meningioma metabolic signatures by high-resolution magic-angle spinning molecular profiling publication-title: J. Proteome Res. doi: 10.1021/pr800110a – volume: 12 start-page: 120 year: 2016 ident: ref_185 article-title: Response of Degarelix treatment in human prostate cancer monitored by HR-MAS H-1 NMR spectroscopy publication-title: Metabolomics doi: 10.1007/s11306-016-1055-0 – volume: 41 start-page: 395 year: 1978 ident: ref_207 article-title: Principles of dynamic nuclear polarisation publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/41/3/002 – volume: 9 start-page: 887 year: 2013 ident: ref_81 article-title: Understanding the variability of compound quantification from targeted profiling metabolomics of 1D-H-1-NMR spectra in synthetic mixtures and urine with additional insights on choice of pulse sequences and robotic sampling publication-title: Metabolomics doi: 10.1007/s11306-013-0503-3 – volume: 36 start-page: D402 year: 2008 ident: ref_166 article-title: BioMagResBank publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm957 – volume: 123 start-page: 9890 year: 2011 ident: ref_242 article-title: Simple Proton Spectra from Complex Spin Systems: Pure Shift NMR Spectroscopy Using BIRD publication-title: Angew. Chem. doi: 10.1002/ange.201103789 – volume: 77 start-page: 1282 year: 2005 ident: ref_87 article-title: Statistical total correlation spectroscopy: An exploratory approach for latent biomarker identification from metabolic H-1 NMR data sets publication-title: Anal. Chem. doi: 10.1021/ac048630x – volume: 246 start-page: 2253 year: 1958 ident: ref_201 article-title: Une Nouvelle Methode de Polarisation Dynamique des Noyaux Atomiques Dans les Solides publication-title: C. R. Hebd. Seances Acad. Sci. – volume: 14 start-page: 31 year: 2018 ident: ref_58 article-title: Recommended strategies for spectral processing and post-processing of 1D H-1-NMR data of biofluids with a particular focus on urine publication-title: Metabolomics doi: 10.1007/s11306-018-1321-4 – volume: 29 start-page: 795 year: 1999 ident: ref_150 article-title: NMR spectroscopic studies on the haemolymph of the tobacco hornworm, Manduca sexta: Assignment of H-1 and C-13 NMR spectra publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/S0965-1748(99)00053-3 – volume: 5 start-page: 427 year: 2011 ident: ref_13 article-title: Bioequivalence assessment of two formulations of ibuprofen publication-title: Drug Des. Devel. – ident: ref_39 doi: 10.1371/journal.pone.0159949 – volume: 9 start-page: 623 year: 2013 ident: ref_6 article-title: Detection and characterization of N-alkyl diethanolamines and N-2-alkoxyethyl diethanolamines in milk by electrospray ionization mass spectrometry publication-title: Metabolomics doi: 10.1007/s11306-012-0492-7 – volume: 980 start-page: 1 year: 2017 ident: ref_54 article-title: Quantitative NMR analysis of intra-and extracellular metabolism of mammalian cells: A tutorial publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.05.011 – volume: 127 start-page: 357 year: 2000 ident: ref_188 article-title: NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the bank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens) and the laboratory rat publication-title: Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. doi: 10.1016/S0305-0491(00)00276-5 – volume: 49 start-page: 3901 year: 2010 ident: ref_237 article-title: Pure Shift 1H NMR: A Resolution of the Resolution Problem? publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201001107 – volume: 34 start-page: 189 year: 2015 ident: ref_95 article-title: A roadmap for interpreting C-13 metabolite labeling patterns from cells publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.02.003 – volume: 79 start-page: 9385 year: 2007 ident: ref_161 article-title: Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra publication-title: Anal. Chem. doi: 10.1021/ac071583z – volume: 88 start-page: 6179 year: 2016 ident: ref_210 article-title: Highly Repeatable Dissolution Dynamic Nuclear Polarization for Heteronuclear NMR Metabolomics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b01094 – volume: 88 start-page: 11178 year: 2016 ident: ref_214 article-title: Parallelized Ligand Screening Using Dissolution Dynamic Nuclear Polarization publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03382 – volume: 32 start-page: 6309 year: 2018 ident: ref_44 article-title: Predicting Octane Number Using Nuclear Magnetic Resonance Spectroscopy and Artificial Neural Networks publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b00556 – volume: 58 start-page: 1 year: 2011 ident: ref_109 article-title: Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2010.10.001 – volume: 78 start-page: 99 year: 1977 ident: ref_144 article-title: Two-dimensional J-resolved 1H n.m.r. spectroscopy for studies of biological macromolecules publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(77)91226-8 – volume: 128 start-page: 9 year: 2013 ident: ref_21 article-title: Coefficient of variation, signal-to-noise ratio, and effects of normalization in validation of biomarkers from NMR-based metabonomics studies publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.07.007 – volume: 26 start-page: 162 year: 2008 ident: ref_69 article-title: Metabolite identification via the Madison Metabolomics Consortium Database publication-title: Nat. Biotechnol. doi: 10.1038/nbt0208-162 – volume: 77 start-page: 1 year: 2014 ident: ref_183 article-title: Recent NMR developments applied to organic-inorganic materials publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2013.10.001 – volume: 118 start-page: 28234 year: 2014 ident: ref_217 article-title: Propane-d(6) Heterogeneously Hyperpolarized by Parahydrogen publication-title: J. Phys. Chem. C doi: 10.1021/jp508719n – volume: 3 start-page: e1700341 year: 2017 ident: ref_40 article-title: Real-time quantitative analysis of metabolic flux in live cells using a hyperpolarized micromagnetic resonance spectrometer publication-title: Sci. Adv. doi: 10.1126/sciadv.1700341 – volume: 15 start-page: 473 year: 2016 ident: ref_55 article-title: Emerging applications of metabolomics in drug discovery and precision medicine publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.32 – volume: 411 start-page: 204 year: 2010 ident: ref_19 article-title: Urinary metabonomic study on biochemical changes in chronic unpredictable mild stress model of depression publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2009.11.003 – volume: 21 start-page: 22 year: 2010 ident: ref_146 article-title: Two-dimensional J-resolved NMR spectroscopy: Review of a key methodology in the metabolomics toolbox publication-title: Phytochem. Anal. doi: 10.1002/pca.1186 – volume: 323 start-page: 1711 year: 2009 ident: ref_225 article-title: Increasing Hyperpolarized Spin Lifetimes Through True Singlet Eigenstates publication-title: Science doi: 10.1126/science.1167693 – volume: 77 start-page: 433 year: 2008 ident: ref_127 article-title: NMR metabolic profiling of organic and aqueous sea bass extracts: Implications in the discrimination of wild and cultured sea bass publication-title: Talanta doi: 10.1016/j.talanta.2008.07.006 – volume: 124 start-page: 486 year: 1997 ident: ref_241 article-title: Homonuclear Broadband-Decoupled NMR Spectra publication-title: J. Magn. Reson. doi: 10.1006/jmre.1996.1063 – volume: 71 start-page: 620 year: 2018 ident: ref_48 article-title: Lipids, Lipoproteins, and Metabolites and Risk of Myocardial Infarction and Stroke publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.12.006 – volume: 780 start-page: 55 year: 2013 ident: ref_4 article-title: An integrated strategy for in vivo metabolite profiling using high-resolution mass spectrometry based data processing techniques publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2013.04.012 – volume: 1277 start-page: 75 year: 2015 ident: ref_10 article-title: Sample collection and preparation of biofluids and extracts for gas chromatography-mass spectrometry publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2377-9_7 – volume: 29 start-page: 7825 year: 2015 ident: ref_43 article-title: TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b01739 – volume: 1 start-page: 737 year: 2009 ident: ref_52 article-title: H-1 NMR-based metabonomics for investigating diabetes publication-title: Future Med. Chem. doi: 10.4155/fmc.09.54 |
SSID | ssj0000605701 |
Score | 2.6258416 |
SecondaryResourceType | review_article |
Snippet | Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 123 |
SubjectTerms | analytical platform Automation Chromatography Gas chromatography GC-MS LC-MS Liquid chromatography Magnetic resonance spectroscopy Mass spectrometry Mass spectroscopy Metabolism Metabolites Metabolomics NMR Nuclear magnetic resonance resolution Review Scientific imaging sensitivity Software |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFH6IJy-izh_VKRVkB7Gsa9IkPU5xDGE7iIPdSpKmKGzdcNth_70vaTdWUbx4K0kIr-8l732vSb8HcBd2MkmjMA8IYuWAGkxQJLdrWSSMMx1HMrcnuoMh64_oyzge75T6snfCSnrgUnFtTmPBNUGfio406SglQ8VNojGO5Tib874Y83aSqdIHIw4JOyWpJsG8vj01S9QqpoIWRNSCkOPq_wlgfr8nuRN4ekdwWCFGv1tKegx7pjiBRrfAbHm69lu-u8PpPo434H44ePVtSfmlJamczdc-YlJ_4ISa2P-PF_7mqt0pjHrPb0_9oKqGEOiYclszPuZ5hpls4mAWCaNcS8oll4QylXFNWS5ykyeGEoPNhjCpiAwzw2QWJ5qcwX4xK8wF-LFEYMFkmBAlqc6UiBKBD7iXcRYRKw8eNupJdUUVbitWTFJMGaw205o2PWhth89LjozfBj5aXW8HWWpr14AGTyuDp38Z3IPmxlJptd8WKaa5QnQ4YlUPbrfduFPs8YcszGyFYxDtMReOPTgvDbuVhCDOi1gkPOA1k9dErfcUH--OjZvZ4iURu_yPd7uCAwRklhYiiHgT9pefK3ONoGepbtz6_gI5Kv2U priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58XLyIb-uLCuJBrHaTNGkPIiqKCOtBXPBWkjZVYe3quoL7751Ju6v1dStJWoZJpvN9TfoNwE7YyrVgYRFwxMqBsEhQtKK1HCdSySxiuqAd3fa1vOyIq7vo7lNSqHbg66_UjupJdfrdg_eX4TEG_BExTqTsh092gA5Dlkf4YBKmMSkpitF2jfSrlzICk7BVqWz-vKuRlZx4_2-I8_vByS-Z6GIOZmsI6Z9Ucz4PE7ZcgMWTEunz09Df9d2hTve1fBH2rts3PtWYH5BqZe956CNI9dvOqC79kPzqj87eLUHn4vz27DKoyyMEWSQUFZGPVJEjtU0c7uIhKzItlFaaC2lylQlZxIUtEiu4xWbLpTZch7mVOo-SjC_DVNkr7Sr4kUakIXWYcKNFlpuYJTFeYHDjU-LIeLA_ck-a1drhVMKimyKHIG-mDW96sDse_lyJZvw18JR8PR5EWteuode_T-vQSZWI0AyOWRVTadIyRodG2SRDJFPgemIebIxmKh2tnxR5bxy3FIJXD7bH3Rg6tB-iS9t7wzEI_6TLzx6sVBM7toQj8GOSxR6oxpQ3TG32lI8PTp5bUjUTJtf-N2sdZhB7kQJEwNQGTA36b3YT8c3AbLmV-wHvxvmM priority: 102 providerName: Scholars Portal |
Title | NMR Spectroscopy for Metabolomics Research |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31252628 https://www.proquest.com/docview/2548817310 https://www.proquest.com/docview/2250612847 https://pubmed.ncbi.nlm.nih.gov/PMC6680826 https://doaj.org/article/74587c367828491bba0b7e9c901f6762 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9wwDLY2eNnLBGNsBYY6CfGAqOglaZI-IZhACOlOCIHEW5Wk6TYJ2ht3PPDvsXO5bp02XqoqsSrLduLPTmoD7OWj2giWNxlHrJwJjwGKUWTLupRKuoKZhk50xxN5cSsu74q7mHCbxWuVyz0xbNR15yhHfoSBjNYjhWjkePoro65RdLoaW2i8hVXcgjUGX6unZ5Or6z7LkiMHKh8timtyjO-PHvwcpYshIYGJgTMKNfv_BTT_vi_5hwM6X4P3ETmmJwtVr8Mb336AjZMWo-aH53Q_DXc5Q5J8Aw4m4-uUWsvPqVhlN31OEZum48DUPf2HPEuXV-4-wu352c23iyx2RchcIRT1ji9UU2NEWwa4xXPWOCOUUYYLaWvlhGx045vSC-5x2HNpLDd57aWpi9LxTVhpu9Z_hrQwCDCkyUtujXC11azU-IKCxq_owiZwuBRP5WLJcOpccV9h6EDSrAbSTGC_J58uamX8j_CUZN0TUYnrMNA9fq_iiqmUKJANjs4UPWg5stbkVvnSIYBp0IxYAjtLTVVx3c2q31aSwNd-GlcMHYOY1ndPSIOoTwa3nMCnhWJ7TjjiPSaZTkANVD5gdTjT_vwRqnJLamLC5NbrbG3DO4RcVPghY2oHVuaPT_4Lwpq53Y22uxvSAvgcC_0CzSH5gg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXBJRHoECQoAdEVK_t2PEBoRZabWl3hapW6i21HQeQ2mTpboX2T_EbGTsPCAJuvUWOZY3n4fnGjxmAl2RUaE5JmTDEygl3GKBo6XU5U0IKm1Jd-hPdyVSMT_jH0_R0BX50b2H8tcpuTQwLdVFbv0e-hYFMlo0kopF3s2-JrxrlT1e7EhqNWhy45XcM2eZv9z-gfF9Rurd7_H6ctFUFEpty6Wuvp7IsMCJUAa4wQkurudRSMy5MIS0XZVa6UjnOHDY7JrRhmhRO6CJVluG4N2CN4-RwIVjb2Z1-Oup3dQjOWJJRk8yTMUW2LtwCpYkhqAcvA-cXagT8Ddj-eT_zN4e3dwdut0g13m5U6y6suOoerG9XGKVfLOPNONwdDZvy6_B6OjmKfSn7hU-OWc-WMWLheBKIOvfvnudxd8XvPpxcC78ewGpVV-4RxKlGQCM0UcxobguTUZXhBwoWR8lSE8Gbjj25bVOU-0oZ5zmGKp6b-YCbEWz23WdNbo5_ddzxvO47-ZTaoaG-_Jy3FppLniIZDJ03emw1MkYTI52yCJhKVFsawUYnqby183n-SysjeNH_Rgv1xy66cvUV9kGUKQIMiOBhI9ieEob4kgqaRSAHIh-QOvxTff0SsoALXzSFisf_J-s53BwfTw7zw_3pwRO4hXDPJ51IqNyA1cXllXuKkGphnrV6HMPZdZvOT5B2NS0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IKA8Ai0ECXpAROu1HTs5VKilXbWUXVUVlXpLbccBpDZZuluh_Wv9dR07DwgCbr1FtmVN5mF_Y49nAN6QUa44JUXEECtH3KKDoqTT5SQVUpiYqsLd6E6mYv-EfzqNT1fgun0L48Iq2zXRL9R5ZdwZ-RAdmSQZSUQjw6IJizjaHX-Y_YhcBSl309qW06hV5NAuf6L7Nt862EVZv6V0vPfl437UVBiITMylq8MeyyJH7zD10IURWhjFpZKKcaFzabgoksIWqeXMYrNlQmmmSG6FyuPUMJz3DqxK9IrIAFZ39qZHx90JD8G_l2RUJ_ZkLCXDC7tAyaI76oBMbyP09QL-BnL_jNX8bfMbP4D7DWoNt2s1ewgrtnwEa9sleuwXy3Az9HGk_oB-Dd5NJ8ehK2u_cIkyq9kyRFwcTjxR5-4N9Dxsw_0ew8mt8OsJDMqqtM8gjBWCG6FIyrTiJtcJTRP8QCHjLEmsA3jfsiczTbpyVzXjPEO3xXEz63EzgM1u-KzO0_GvgTuO190gl17bN1SXX7PGWjPJYySD4UaOu3c60loRLW1qEDwVqMI0gPVWUllj8_Psl4YG8LrrRmt1VzCqtNUVjkHEKTwkCOBpLdiOEoZYkwqaBCB7Iu-R2u8pv3_zGcGFK6BCxfP_k_UK7qLJZJ8Ppocv4B4iP5d_IqJyHQaLyyu7gehqoV82ahzC2W1bzg3CQjli |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NMR+Spectroscopy+for+Metabolomics+Research&rft.jtitle=Metabolites&rft.au=Abdul-Hamid%2C+Emwas&rft.au=Roy%2C+Raja&rft.au=McKay%2C+Ryan+T&rft.au=Tenori%2C+Leonardo&rft.date=2019-06-27&rft.pub=MDPI+AG&rft.eissn=2218-1989&rft.volume=9&rft.issue=7&rft.spage=123&rft_id=info:doi/10.3390%2Fmetabo9070123&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon |