Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis

Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2‐C‐methyl‐d‐erythritol 4‐phosphate (MEP) pathway. Here we develop a mathematica...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 206; no. 3; pp. 1075 - 1085
Main Authors Pokhilko, Alexandra, Bou‐Torrent, Jordi, Pulido, Pablo, Rodríguez‐Concepción, Manuel, Ebenhöh, Oliver
Format Journal Article
LanguageEnglish
Published England Academic Press 01.05.2015
New Phytologist Trust
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2‐C‐methyl‐d‐erythritol 4‐phosphate (MEP) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in Arabidopsis thaliana. We used both experimental and theoretical approaches to integrate mechanisms potentially involved in the diurnal control of the pathway. Our data show that flux through the MEP pathway is accelerated in light due to the photosynthesis‐dependent supply of metabolic substrates of the pathway and the transcriptional regulation of key biosynthetic genes by the circadian clock. We also demonstrate that feedback regulation of both the activity and the abundance of the first enzyme of the MEP pathway (1‐deoxy‐d‐xylulose 5‐phosphate synthase, DXS) by pathway products stabilizes the flux against changes in substrate supply and adjusts the flux according to product demand under normal growth conditions. These data illustrate the central relevance of photosynthesis, the circadian clock and feedback control of DXS for the diurnal regulation of the MEP pathway.
AbstractList Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2‐C‐methyl‐d‐erythritol 4‐phosphate (MEP) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in Arabidopsis thaliana. We used both experimental and theoretical approaches to integrate mechanisms potentially involved in the diurnal control of the pathway. Our data show that flux through the MEP pathway is accelerated in light due to the photosynthesis‐dependent supply of metabolic substrates of the pathway and the transcriptional regulation of key biosynthetic genes by the circadian clock. We also demonstrate that feedback regulation of both the activity and the abundance of the first enzyme of the MEP pathway (1‐deoxy‐d‐xylulose 5‐phosphate synthase, DXS) by pathway products stabilizes the flux against changes in substrate supply and adjusts the flux according to product demand under normal growth conditions. These data illustrate the central relevance of photosynthesis, the circadian clock and feedback control of DXS for the diurnal regulation of the MEP pathway.
Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in Arabidopsis thaliana. We used both experimental and theoretical approaches to integrate mechanisms potentially involved in the diurnal control of the pathway. Our data show that flux through the MEP pathway is accelerated in light due to the photosynthesis-dependent supply of metabolic substrates of the pathway and the transcriptional regulation of key biosynthetic genes by the circadian clock. We also demonstrate that feedback regulation of both the activity and the abundance of the first enzyme of the MEP pathway (1-deoxy-d-xylulose 5-phosphate synthase, DXS) by pathway products stabilizes the flux against changes in substrate supply and adjusts the flux according to product demand under normal growth conditions. These data illustrate the central relevance of photosynthesis, the circadian clock and feedback control of DXS for the diurnal regulation of the MEP pathway.
Summary Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in Arabidopsis thaliana. We used both experimental and theoretical approaches to integrate mechanisms potentially involved in the diurnal control of the pathway. Our data show that flux through the MEP pathway is accelerated in light due to the photosynthesis-dependent supply of metabolic substrates of the pathway and the transcriptional regulation of key biosynthetic genes by the circadian clock. We also demonstrate that feedback regulation of both the activity and the abundance of the first enzyme of the MEP pathway (1-deoxy-d-xylulose 5-phosphate synthase, DXS) by pathway products stabilizes the flux against changes in substrate supply and adjusts the flux according to product demand under normal growth conditions. These data illustrate the central relevance of photosynthesis, the circadian clock and feedback control of DXS for the diurnal regulation of the MEP pathway.
Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2‐ C ‐methyl‐ d ‐erythritol 4‐phosphate ( MEP ) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in Arabidopsis thaliana . We used both experimental and theoretical approaches to integrate mechanisms potentially involved in the diurnal control of the pathway. Our data show that flux through the MEP pathway is accelerated in light due to the photosynthesis‐dependent supply of metabolic substrates of the pathway and the transcriptional regulation of key biosynthetic genes by the circadian clock. We also demonstrate that feedback regulation of both the activity and the abundance of the first enzyme of the MEP pathway (1‐deoxy‐ d ‐xylulose 5‐phosphate synthase, DXS ) by pathway products stabilizes the flux against changes in substrate supply and adjusts the flux according to product demand under normal growth conditions. These data illustrate the central relevance of photosynthesis, the circadian clock and feedback control of DXS for the diurnal regulation of the MEP pathway.
Summary Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2‐C‐methyl‐d‐erythritol 4‐phosphate (MEP) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in Arabidopsis thaliana. We used both experimental and theoretical approaches to integrate mechanisms potentially involved in the diurnal control of the pathway. Our data show that flux through the MEP pathway is accelerated in light due to the photosynthesis‐dependent supply of metabolic substrates of the pathway and the transcriptional regulation of key biosynthetic genes by the circadian clock. We also demonstrate that feedback regulation of both the activity and the abundance of the first enzyme of the MEP pathway (1‐deoxy‐d‐xylulose 5‐phosphate synthase, DXS) by pathway products stabilizes the flux against changes in substrate supply and adjusts the flux according to product demand under normal growth conditions. These data illustrate the central relevance of photosynthesis, the circadian clock and feedback control of DXS for the diurnal regulation of the MEP pathway.
Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in Arabidopsis thaliana. We used both experimental and theoretical approaches to integrate mechanisms potentially involved in the diurnal control of the pathway. Our data show that flux through the MEP pathway is accelerated in light due to the photosynthesis-dependent supply of metabolic substrates of the pathway and the transcriptional regulation of key biosynthetic genes by the circadian clock. We also demonstrate that feedback regulation of both the activity and the abundance of the first enzyme of the MEP pathway (1-deoxy-D-xylulose 5-phosphate synthase, DXS) by pathway products stabilizes the flux against changes in substrate supply and adjusts the flux according to product demand under normal growth conditions. These data illustrate the central relevance of photosynthesis, the circadian clock and feedback control of DXS for the diurnal regulation of the MEP pathway.Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in Arabidopsis thaliana. We used both experimental and theoretical approaches to integrate mechanisms potentially involved in the diurnal control of the pathway. Our data show that flux through the MEP pathway is accelerated in light due to the photosynthesis-dependent supply of metabolic substrates of the pathway and the transcriptional regulation of key biosynthetic genes by the circadian clock. We also demonstrate that feedback regulation of both the activity and the abundance of the first enzyme of the MEP pathway (1-deoxy-D-xylulose 5-phosphate synthase, DXS) by pathway products stabilizes the flux against changes in substrate supply and adjusts the flux according to product demand under normal growth conditions. These data illustrate the central relevance of photosynthesis, the circadian clock and feedback control of DXS for the diurnal regulation of the MEP pathway.
Author Rodríguez‐Concepción, Manuel
Ebenhöh, Oliver
Bou‐Torrent, Jordi
Pokhilko, Alexandra
Pulido, Pablo
Author_xml – sequence: 1
  fullname: Pokhilko, Alexandra
– sequence: 2
  fullname: Bou‐Torrent, Jordi
– sequence: 3
  fullname: Pulido, Pablo
– sequence: 4
  fullname: Rodríguez‐Concepción, Manuel
– sequence: 5
  fullname: Ebenhöh, Oliver
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25598499$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFBX8AIrGhi0z9fiyrqrRILVRAJXaW4zgzHiVxaicazb_HnQeLChCWZUv3fufIPvcEHPWhdwC8RXCO8jrvh-UcEczkCzBDlKtSIiKOwAxCLEtO-c9jcJLSCkKoGMevwDFmTEmq1Ax8uzPj0nVm9Na0RRdq17a-XxShKXK9qP0U-9yIbjG1GQr9oXN3dV8MWbs2m8L3xUU0la_DkHx6DV42pk3uzf4-BQ-frn5c3pS3X68_X17clpZRIUvRYChYw6VlvCJVRTiRdYOEVRQTB6GtmWUGO2FyUeSzUVJSSCwShlLOySn4uPMdYnicXBp155PN7ze9C1PSiCvKIBLwf1BBYN6EZfTDM3QVthkkjRkiCiHB0b-o7IWUJJSpTL3bU1PVuVoP0XcmbvQh_gyc7wAbQ0rRNdr6cRvzGI1vNYL6acA6D1hvB5wVZ88UB9M_sXv3tW_d5u-g_nJ_c1DMd4pVGkP8rejdelhuxtCGhc9fxZBrkm3EU1rvd4LGBG0W0Sf98B1DxCBEUlBIyS_T1Mst
CitedBy_id crossref_primary_10_1016_j_gene_2023_147645
crossref_primary_10_1111_jipb_12725
crossref_primary_10_3389_fpls_2023_1132717
crossref_primary_10_3390_ijms20215411
crossref_primary_10_1016_j_jia_2023_02_020
crossref_primary_10_1016_j_cj_2023_02_001
crossref_primary_10_1039_c8pp00136g
crossref_primary_10_1016_j_tplants_2018_09_012
crossref_primary_10_1016_j_bbrc_2020_05_222
crossref_primary_10_1016_j_xplc_2022_100512
crossref_primary_10_1111_tpj_14071
crossref_primary_10_1016_j_plaphy_2024_108520
crossref_primary_10_1093_jxb_erx123
crossref_primary_10_1007_s10725_021_00784_8
crossref_primary_10_1016_j_plipres_2018_04_004
crossref_primary_10_1080_13102818_2017_1364978
crossref_primary_10_1111_pce_13624
crossref_primary_10_3389_fpls_2021_637976
crossref_primary_10_3389_fpls_2022_950945
crossref_primary_10_1186_s13068_020_01707_x
crossref_primary_10_1111_pce_14126
crossref_primary_10_1016_j_indcrop_2019_111926
crossref_primary_10_4155_fmc_2016_0239
crossref_primary_10_1016_j_plipres_2021_101128
crossref_primary_10_1007_s12042_020_09253_4
crossref_primary_10_1139_gen_2022_0084
crossref_primary_10_1093_plphys_kiad425
crossref_primary_10_1093_jxb_erab463
crossref_primary_10_1111_ppl_13051
crossref_primary_10_1186_s13036_015_0022_z
crossref_primary_10_1186_s12870_021_03179_z
crossref_primary_10_3389_fpls_2017_01869
crossref_primary_10_3390_genes7100078
crossref_primary_10_1371_journal_pgen_1007022
crossref_primary_10_1111_jipb_13076
crossref_primary_10_1016_j_bej_2022_108723
crossref_primary_10_3389_fpls_2017_02244
crossref_primary_10_3390_ijms22094588
crossref_primary_10_3390_ijms22158303
crossref_primary_10_3389_fpls_2017_00780
crossref_primary_10_1002_fsn3_4502
crossref_primary_10_3389_fpls_2016_01344
crossref_primary_10_1093_plphys_kiad458
crossref_primary_10_1007_s11103_016_0477_4
crossref_primary_10_3389_fpls_2021_721391
crossref_primary_10_1016_j_jplph_2024_154316
crossref_primary_10_1111_pce_12759
crossref_primary_10_1111_pce_12833
crossref_primary_10_3390_plants14030470
crossref_primary_10_1016_j_scitotenv_2023_164325
crossref_primary_10_1016_j_plantsci_2024_111983
crossref_primary_10_1016_j_foodchem_2021_129915
crossref_primary_10_1111_1365_2435_12947
crossref_primary_10_1093_jxb_ery441
crossref_primary_10_1016_j_plipres_2024_101287
crossref_primary_10_1111_pce_13490
crossref_primary_10_1371_journal_pgen_1005824
Cites_doi 10.1111/j.1365-3040.2012.02584.x
10.1039/C3NP70124G
10.1186/1752-0509-7-23
10.1038/msb.2012.6
10.1098/rsif.2013.0979
10.1104/pp.83.2.399
10.1105/tpc.104.028860
10.1016/j.tplants.2011.09.004
10.1104/pp.114.245191
10.1016/S0031-9422(00)97700-8
10.1073/pnas.0900952106
10.1016/j.febslet.2008.03.029
10.1104/pp.105.063743
10.1007/s11103-006-9051-9
10.1146/annurev.arplant.59.032607.092819
10.1126/science.1115581
10.1073/pnas.0407360102
10.1111/j.1365-313X.2007.03157.x
10.1104/pp.114.236018
10.1016/j.tplants.2008.09.003
10.1038/nature10250
10.1016/j.phytochem.2010.02.016
10.1093/mp/ssp100
10.1111/j.1365-313X.2009.03966.x
10.1016/j.ab.2012.11.031
10.1104/pp.104.058735
10.1016/j.atmosenv.2005.09.091
10.1111/j.1432-1033.1974.tb03319.x
10.1371/journal.pone.0047513
10.1039/C3MB70459A
10.1016/S0981-9428(02)01400-6
10.1371/journal.pone.0032387
10.1016/j.plipres.2011.12.001
10.1186/gb-2006-7-8-r76
10.1105/tpc.113.113001
10.1105/tpc.105.033035
10.1199/tab.0158
10.1021/cb300243w
10.1074/jbc.M113.464636
10.1371/journal.pone.0062467
10.1104/pp.105.073213
10.1111/j.1365-313X.2009.03902.x
10.1093/jxb/erp190
10.1186/gb-2008-9-8-r130
10.1146/annurev-arplant-050312-120116
10.1016/j.abb.2010.06.016
10.1016/j.cell.2012.04.038
10.1104/pp.109.152256
ContentType Journal Article
Copyright 2015 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Copyright © 2015 New Phytologist Trust
Copyright_xml – notice: 2015 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
– notice: Copyright © 2015 New Phytologist Trust
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.13258
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1085
ExternalDocumentID 3650059721
25598499
10_1111_nph_13258
NPH13258
newphytologist.206.3.1075
US201500187404
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union FP7's TiMet project
  funderid: 245143
– fundername: Spanish Dirección General de Investigación
  funderid: BIO2011‐23680
– fundername: Marie Curie ITN ‘AccliPhot’
  funderid: 316 427
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
24P
AEUQT
AFPWT
DOOOF
ESX
IPNFZ
JSODD
WRC
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5478-7f2075f68c56b3bb3638df17c9423e00cd5c5a2e7af1777aff988403c17a44663
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:38:40 EDT 2025
Fri Jul 11 14:13:13 EDT 2025
Sat Aug 23 13:18:41 EDT 2025
Fri Jul 25 10:27:39 EDT 2025
Wed Feb 19 02:28:49 EST 2025
Tue Jul 01 03:09:21 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Wed Jan 22 16:50:24 EST 2025
Sun Aug 24 12:10:39 EDT 2025
Thu Apr 03 09:40:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Arabidopsis thaliana
systems biology
mathematical modelling
isoprenoids
2-C-methyl-D-erythritol 4-phosphate (MEP) pathway
whole plant physiology
plant metabolism
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5478-7f2075f68c56b3bb3638df17c9423e00cd5c5a2e7af1777aff988403c17a44663
Notes http://dx.doi.org/10.1111/nph.13258
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25598499
PQID 1671983459
PQPubID 2026848
PageCount 11
ParticipantIDs proquest_miscellaneous_1694501706
proquest_miscellaneous_1673073035
proquest_journals_2513911761
proquest_journals_1671983459
pubmed_primary_25598499
crossref_citationtrail_10_1111_nph_13258
crossref_primary_10_1111_nph_13258
wiley_primary_10_1111_nph_13258_NPH13258
jstor_primary_newphytologist_206_3_1075
fao_agris_US201500187404
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2015
Publisher Academic Press
New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: Academic Press
– name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2011; 476
2013; 25
2010; 504
2009; 60
2005; 138
2013; 64
2005; 139
2013; 288
2008; 9
2006; 7
2008; 13
2007; 51
2013; 7
2011; 16
2013; 8
2012; 149
2008; 582
2012; 10
2012; 51
2013; 36
2006; 62
1974; 42
2006; 40
1987; 83
2005; 102
2002; 40
2013; 435
2006; 141
2010; 152
2005; 309
2010; 3
2014; 165
2012; 7
2005; 17
2009; 59
2014; 11
1983; 22
2012; 8
2014; 10
2014; 31
2009; 106
2010; 71
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 9
  start-page: R130
  year: 2008
  article-title: Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development
  publication-title: Genome Biology
– volume: 476
  start-page: 472
  year: 2011
  end-page: 475
  article-title: A plastidial sodium‐dependent pyruvate transporter
  publication-title: Nature
– volume: 106
  start-page: 7251
  year: 2009
  end-page: 7256
  article-title: Impact of clock‐associated pseudo‐response regulators in metabolic coordination
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 8
  start-page: 574
  year: 2012
  end-page: 587
  article-title: The clock gene circuit in includes a repressilator with additional feedback loops
  publication-title: Molecular Systems Biology
– volume: 42
  start-page: 97
  year: 1974
  end-page: 105
  article-title: A linear steady‐state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector
  publication-title: European Journal of Biochemistry
– volume: 40
  start-page: S138
  year: 2006
  end-page: S151
  article-title: Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves
  publication-title: Atmospheric Environment
– volume: 102
  start-page: 933
  year: 2005
  end-page: 938
  article-title: The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 152
  start-page: 2105
  year: 2010
  end-page: 2119
  article-title: Mathematical modeling‐guided evaluation of biochemical, developmental, environmental, and genotypic determinants of essential oil composition and yield in peppermint leaves
  publication-title: Plant Physiology
– volume: 7
  start-page: 23
  year: 2013
  article-title: Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs
  publication-title: BMC Systems Biology
– volume: 582
  start-page: 1437
  year: 2008
  end-page: 1443
  article-title: Dynamics of Cdc42 network embodies a Turing‐type mechanism of yeast cell polarity
  publication-title: FEBS Letters
– volume: 7
  start-page: e32387
  year: 2012
  article-title: Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO concentrations
  publication-title: PLoS ONE
– volume: 17
  start-page: 628
  year: 2005
  end-page: 643
  article-title: Characterization of the Arabidopsis mutant illustrates the importance of posttranscriptional regulation of the methyl‐ ‐erythritol 4‐phosphate pathway
  publication-title: Plant Cell
– volume: 59
  start-page: 826
  year: 2009
  end-page: 839
  article-title: Use of reverse‐phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations
  publication-title: Plant Journal
– volume: 165
  start-page: 1488
  year: 2014
  end-page: 1504
  article-title: Deoxyxylulose 5‐phosphate synthase controls flux through the methylerythritol 4‐phosphate pathway in Arabidopsis
  publication-title: Plant Physiology
– volume: 435
  start-page: 27
  year: 2013
  end-page: 34
  article-title: Measuring dimethylallyl diphosphate available for isoprene synthesis
  publication-title: Analytical Biochemistry
– volume: 288
  start-page: 16 926
  year: 2013
  end-page: 16 936
  article-title: Feedback inhibition of deoxy‐D‐xylulose‐5‐phosphate synthase regulates the methylerythritol 4‐phosphate pathway
  publication-title: Journal of Biological Chemistry
– volume: 504
  start-page: 118
  year: 2010
  end-page: 122
  article-title: Supply of precursors for carotenoid biosynthesis in plants
  publication-title: Archives of Biochemistry and Biophysics
– volume: 139
  start-page: 5
  year: 2005
  end-page: 17
  article-title: Genome‐wide identification and testing of superior reference genes for transcript normalization in Arabidopsis
  publication-title: Plant Physiology
– volume: 165
  start-page: 37
  year: 2014
  end-page: 51
  article-title: Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene
  publication-title: Plant Physiology
– volume: 71
  start-page: 918
  year: 2010
  end-page: 922
  article-title: Analysis of 1‐deoxy‐D‐xylulose 5‐phosphate synthase activity in grey poplar leaves using isotope ratio mass spectrometry
  publication-title: Phytochemistry
– volume: 141
  start-page: 721
  year: 2006
  end-page: 730
  article-title: Dimethylallyl diphosphate and geranyl diphosphate pools of plant species characterized by different isoprenoid emissions
  publication-title: Plant Physiology
– volume: 10
  start-page: 613
  year: 2014
  end-page: 627
  article-title: Adjustment of carbon fluxes to light conditions regulates the daily turnover of starch in plants: a computational model
  publication-title: Molecular BioSystems
– volume: 309
  start-page: 630
  year: 2005
  end-page: 633
  article-title: Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage
  publication-title: Science
– volume: 60
  start-page: 424
  year: 2009
  end-page: 435
  article-title: Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark‐grown Arabidopsis seedlings
  publication-title: Plant Journal
– volume: 149
  start-page: 1525
  year: 2012
  end-page: 1535
  article-title: Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress‐response genes
  publication-title: Cell
– volume: 64
  start-page: 665
  year: 2013
  end-page: 700
  article-title: Network analysis of the MVA and MEP pathways for isoprenoid synthesis
  publication-title: Annual Review of Plant Biology
– volume: 7
  start-page: 1702
  year: 2012
  end-page: 1710
  article-title: 2 ‐Methyl‐D‐erythritol 4‐phosphate enhances and sustains cyclodiphosphate synthase IspF activity
  publication-title: ACS Chemical Biology
– volume: 11
  start-page: 20130979
  year: 2014
  article-title: Regulatory principles and experimental approaches to the circadian control of starch turnover
  publication-title: Journal of the Royal Society, Interface
– volume: 83
  start-page: 399
  year: 1987
  end-page: 407
  article-title: Subcellular metabolite levels in spinach leaves: regulation of sucrose synthesis during diurnal alterations in photosynthetic partitioning
  publication-title: Plant Physiology
– volume: 40
  start-page: 697
  year: 2002
  end-page: 707
  article-title: Kinetics of antioxidative defence responses to photosensitisation in porphyrin‐accumulating tobacco plants
  publication-title: Plant Physiology and Biochemistry
– volume: 60
  start-page: 2933
  year: 2009
  end-page: 2943
  article-title: Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants
  publication-title: Journal of Experimental Botany
– volume: 51
  start-page: 95
  year: 2012
  end-page: 148
  article-title: A for two distinct pathways in the early steps of plant isoprenoid biosynthesis?
  publication-title: Progress in Lipid Research
– volume: 16
  start-page: 676
  year: 2011
  end-page: 683
  article-title: A quantitative comparison of Calvin‐Benson cycle models
  publication-title: Trends in Plant Science
– volume: 8
  start-page: e62467
  year: 2013
  article-title: Enzyme inhibitor studies reveal complex control of methyl‐ ‐erythritol 4‐phosphate (MEP) pathway enzyme expression in
  publication-title: PLoS ONE
– volume: 138
  start-page: 641
  year: 2005
  end-page: 653
  article-title: The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis
  publication-title: Plant Physiology
– volume: 31
  start-page: 1043
  year: 2014
  end-page: 1055
  article-title: Methylerythritol 4‐phosphate (MEP) pathway metabolic regulation
  publication-title: Natural Products Reports
– volume: 7
  start-page: R76
  year: 2006
  article-title: Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in rosettes
  publication-title: Genome Biology
– volume: 13
  start-page: 619
  year: 2008
  end-page: 623
  article-title: The plastidial MEP pathway: unified nomenclature and resources
  publication-title: Trends in Plant Science
– volume: 3
  start-page: 101
  year: 2010
  end-page: 112
  article-title: Pleiotropic regulatory locus 1 (PRL1) integrates the regulation of sugar responses with isoprenoid metabolism in
  publication-title: Molecular Plant
– volume: 22
  start-page: 2801
  year: 1983
  end-page: 2804
  article-title: Determination of phytyl diphosphate and geranylgeranyl diphosphate in etiolated oat seedlings
  publication-title: Phytochemistry
– volume: 10
  start-page: e0158
  year: 2012
  article-title: Carotenoid biosynthesis in Arabidopsis: a colorful pathway
  publication-title: Arabidopsis Book
– volume: 7
  start-page: e47513
  year: 2012
  article-title: Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production
  publication-title: PLoS ONE
– volume: 36
  start-page: 429
  year: 2013
  end-page: 437
  article-title: Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post‐illumination isoprene burst from leaves
  publication-title: Plant, Cell & Environment
– volume: 51
  start-page: 485
  year: 2007
  end-page: 499
  article-title: Transgenic, non‐isoprene emitting poplars don't like it hot
  publication-title: Plant Journal
– volume: 25
  start-page: 4183
  year: 2013
  end-page: 4194
  article-title: J‐protein J20 delivers the first enzyme of the plastidial isoprenoid pathway to protein quality control
  publication-title: Plant Cell
– volume: 62
  start-page: 683
  year: 2006
  end-page: 695
  article-title: Enhanced flux through the methylerythritol 4‐phosphate pathway in plants overexpressing deoxyxylulose 5‐phosphate reductoisomerase
  publication-title: Plant Molecular Biology
– volume: 17
  start-page: 1926
  year: 2005
  end-page: 1940
  article-title: Positive and negative factors confer phase‐specific circadian regulation of transcription in Arabidopsis
  publication-title: Plant Cell
– volume: 60
  start-page: 279
  year: 2009
  end-page: 304
  article-title: Environmental effects on spatial and temporal patterns of leaf and root growth
  publication-title: Annual Review of Plant Biology
– ident: e_1_2_5_30_1
  doi: 10.1111/j.1365-3040.2012.02584.x
– ident: e_1_2_5_4_1
  doi: 10.1039/C3NP70124G
– ident: e_1_2_5_36_1
  doi: 10.1186/1752-0509-7-23
– ident: e_1_2_5_34_1
  doi: 10.1038/msb.2012.6
– ident: e_1_2_5_42_1
  doi: 10.1098/rsif.2013.0979
– ident: e_1_2_5_18_1
  doi: 10.1104/pp.83.2.399
– ident: e_1_2_5_23_1
  doi: 10.1105/tpc.104.028860
– ident: e_1_2_5_2_1
  doi: 10.1016/j.tplants.2011.09.004
– ident: e_1_2_5_47_1
  doi: 10.1104/pp.114.245191
– ident: e_1_2_5_7_1
  doi: 10.1016/S0031-9422(00)97700-8
– ident: e_1_2_5_16_1
  doi: 10.1073/pnas.0900952106
– ident: e_1_2_5_22_1
  doi: 10.1016/j.febslet.2008.03.029
– ident: e_1_2_5_12_1
  doi: 10.1104/pp.105.063743
– ident: e_1_2_5_9_1
  doi: 10.1007/s11103-006-9051-9
– ident: e_1_2_5_45_1
  doi: 10.1146/annurev.arplant.59.032607.092819
– ident: e_1_2_5_13_1
  doi: 10.1126/science.1115581
– ident: e_1_2_5_14_1
  doi: 10.1073/pnas.0407360102
– ident: e_1_2_5_6_1
  doi: 10.1111/j.1365-313X.2007.03157.x
– ident: e_1_2_5_19_1
  doi: 10.1104/pp.114.236018
– ident: e_1_2_5_33_1
  doi: 10.1016/j.tplants.2008.09.003
– ident: e_1_2_5_17_1
  doi: 10.1038/nature10250
– ident: e_1_2_5_20_1
  doi: 10.1016/j.phytochem.2010.02.016
– ident: e_1_2_5_15_1
  doi: 10.1093/mp/ssp100
– ident: e_1_2_5_40_1
  doi: 10.1111/j.1365-313X.2009.03966.x
– ident: e_1_2_5_46_1
  doi: 10.1016/j.ab.2012.11.031
– ident: e_1_2_5_28_1
  doi: 10.1104/pp.104.058735
– ident: e_1_2_5_31_1
  doi: 10.1016/j.atmosenv.2005.09.091
– ident: e_1_2_5_26_1
  doi: 10.1111/j.1432-1033.1974.tb03319.x
– ident: e_1_2_5_49_1
  doi: 10.1371/journal.pone.0047513
– ident: e_1_2_5_35_1
  doi: 10.1039/C3MB70459A
– ident: e_1_2_5_29_1
  doi: 10.1016/S0981-9428(02)01400-6
– ident: e_1_2_5_43_1
  doi: 10.1371/journal.pone.0032387
– ident: e_1_2_5_27_1
  doi: 10.1016/j.plipres.2011.12.001
– ident: e_1_2_5_21_1
  doi: 10.1186/gb-2006-7-8-r76
– ident: e_1_2_5_37_1
  doi: 10.1105/tpc.113.113001
– ident: e_1_2_5_25_1
  doi: 10.1105/tpc.105.033035
– ident: e_1_2_5_41_1
  doi: 10.1199/tab.0158
– ident: e_1_2_5_8_1
  doi: 10.1021/cb300243w
– ident: e_1_2_5_5_1
  doi: 10.1074/jbc.M113.464636
– ident: e_1_2_5_24_1
  doi: 10.1371/journal.pone.0062467
– ident: e_1_2_5_32_1
  doi: 10.1104/pp.105.073213
– ident: e_1_2_5_3_1
  doi: 10.1111/j.1365-313X.2009.03902.x
– ident: e_1_2_5_10_1
  doi: 10.1093/jxb/erp190
– ident: e_1_2_5_11_1
  doi: 10.1186/gb-2008-9-8-r130
– ident: e_1_2_5_44_1
  doi: 10.1146/annurev-arplant-050312-120116
– ident: e_1_2_5_39_1
  doi: 10.1016/j.abb.2010.06.016
– ident: e_1_2_5_48_1
  doi: 10.1016/j.cell.2012.04.038
– ident: e_1_2_5_38_1
  doi: 10.1104/pp.109.152256
SSID ssj0009562
Score 2.4281464
Snippet Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated...
Summary Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols,...
Summary Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols,...
SourceID proquest
pubmed
crossref
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1075
SubjectTerms 2‐C‐methyl‐D‐erythritol 4‐phosphate (MEP) pathway
Arabidopsis - metabolism
Arabidopsis - radiation effects
Arabidopsis thaliana
Biological clocks
Carotenoids
Chlorophyll
Chloroplasts
Circadian Clocks
Circadian Rhythm
Circadian rhythms
Diurnal
Erythritol
Erythritol - analogs & derivatives
Erythritol - metabolism
Feedback
Feedback control
Fluctuations
Flux
Gene regulation
genes
Growth conditions
Hormones
isoprenoids
Mathematical analysis
mathematical modelling
Mathematical models
Metabolic Networks and Pathways
Model testing
Models, Biological
Phosphates
Photosynthesis
Plant metabolism
Quinones
Substrates
Sugar Phosphates - metabolism
systems biology
Terpenes
Tocopherols
Transcription
transcription (genetics)
whole plant physiology
Xylulose
Title Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis
URI https://www.jstor.org/stable/newphytologist.206.3.1075
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13258
https://www.ncbi.nlm.nih.gov/pubmed/25598499
https://www.proquest.com/docview/1671983459
https://www.proquest.com/docview/2513911761
https://www.proquest.com/docview/1673073035
https://www.proquest.com/docview/1694501706
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_Owwdf1PPrqqdUEfSly7b5arin87hjEfY4Thf2QQhJ2pyL0i63u8j51ztJ2nInq4gvpTSTkGZmkl_ayW8A3hJcJIyWBpGbERmVusyM1DQzY2NI7qpKh1Np0zM-mdGPczbfgcP-LEzkhxg-uHnPCPO1d3BtVjecvFl-HeFWivmDvj5WywOii-IG4S4vegZmTvm8YxXyUTxDzVtr0R2n2z4ocRvcvI1ew_Jz-gC-9B2PUSffRpu1Gdmfv3E6_uebPYT7HSxNj6Id7cFO3TyCux9ahI7Xj-FiOpC7olBInuNPsaetS_F5Wi1i7auY1x413ZdMT85Tn_P4h75OFw02r82iaperxeoJzE5PPh9Psi4ZQ2Y95VcmXIHowvHSMm4IKhIdt3K5sBIBWT0e24pZpotaaHwo8OpkiZtHYnOh_T9j8hR2m7ap9yGtaM0YodieNbSkrHQIQytpXEGJszlL4H2vFmU7pnKfMOO76ncsOEIqjFACbwbRZaTn2Ca0j7pV-hKnTTX7VPiPPDEXIU3gXVD4UBn3MmjeIXUwupkqxlwRbFFgpw56k1Cdm69UzkUuS0KZ3FqM2JHgYiJ4nsDroRj91_-U0U3dbkITYZol7G8ykrJAdJTAs2iNQ4cDwz5uW3HQgk39eRjU2fkk3Dz_d9EXcM8PV4zwPIDd9dWmfokobG1eBXf7BSXcKY8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aBhK8cIcFBgSEBC-pmviWSLxw2VRgraaxSn2ZLNuJoQIl1doKjV_PsZ1EGyoI8VJV8UXOudjfcezvALwguEhoVWhEbloktFB5ogtFEz3UmqS2LJW_lTae8NGUfpyx2Ra87u7CBH6IfsPNeYafr52Duw3pC15eL74OMJZi-TZccRm9HXP---PsAuUuzzoOZk75rOUVcud4-qaXVqNtq5ruWOImwHkZv_oF6OAmnHZDD-dOvg3WKz0wP39jdfzfd7sFN1pkGr8JpnQbtqr6Dlx92yB6PL8Lx-Oe3xUr-fw57iJ73NgYn8flPLQ-C6ntUdldyXj_KHZpj3-o83heY_dKz8tmsZwv78H0YP_k3Shp8zEkxrF-JcJmCDAszw3jmqAu0XdLmwpTICarhkNTMsNUVgmFDwX-2iLH-JGYVCj32Zjch526qatdiEtaMUYo9mc0zSnLLSLRstA2o8SalEXwqtOLNC1ZucuZ8V12QQtKSHoJRfC8r7oIDB2bKu2icqX6gjOnnH7O3D5PSEdII3jpNd43xnAGLdxnD0ZPk9mQS4I9ChzUXmcTsvX0pUy5SIucUFZsLEb4SHA9ETyN4FlfjC7svsuoumrWvgs_0xL2tzoFZZ7rKIIHwRz7AXuSfYxcUWjeqP4sBjk5Gvk_D_-96lO4NjoZH8rDD5NPj-C6E1048LkHO6uzdfUYQdlKP_G-9wuxey2r
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aBkK8cIcFBgSEBC-pkviSWDwBW1UurapBpT4gWbYTbxUoqdZWaPx6jp2LNlQQ4iWK4oucc7G_k9jfAXhBcJHQSmhEbjqLqFB5pIWikY61JoktCuVPpY0nfDSjH-ZsvgOvu7MwDT9E_8HNeYafr52DLwt7wcmr5ekAQymW78IVymPh8jYcHqcXGHd52lEwc8rnLa2Q28bTN720GO1aVXe7Erfhzcvw1a8_w5vwtRt5s-3k22Cz1gPz8zdSx_98tVtwo8Wl4ZvGkG7DTlndgatva8SO53fheNyzu2Ilnz3HHWMPaxvi87BYNK3PmsT2qOquZHw0DV3S4x_qPFxU2L3Si6JerharezAbHn15N4rabAyRcZxfUWZThBeW54ZxTVCT6LmFTTIjEJGVcWwKZphKy0zhwwyvVuQYPRKTZMr9NCb3Ya-qq3IfwoKWjBGK_RlNc8pyizi0ENqmlFiTsABedWqRpqUqdxkzvssuZEEJSS-hAJ73VZcNP8e2SvuoW6lOcN6Us8-p-8rTJCOkAbz0Cu8bYzCD9u1zB6OfyTTmkmCPGQ7qoDMJ2fr5SiY8S0ROKBNbixE8ElxNMp4E8KwvRgd2f2VUVdYb34WfZwn7Wx1BmWc6CuBBY439gD3FPsatKDRvU38Wg5xMR_7m4b9XfQrXpodD-en95OMjuO4k1-z2PIC99dmmfIyIbK2feM_7Bf1ZLFo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+modelling+of+the+diurnal+regulation+of+the+MEP+pathway+in+Arabidopsis&rft.jtitle=The+New+phytologist&rft.au=Pokhilko%2C+Alexandra&rft.au=Bou%E2%80%90Torrent%2C+Jordi&rft.au=Pulido%2C+Pablo&rft.au=Rodr%C3%ADguez%E2%80%90Concepci%C3%B3n%2C+Manuel&rft.date=2015-05-01&rft.pub=Academic+Press&rft.issn=0028-646X&rft.volume=206&rft.issue=3&rft.spage=1075&rft.epage=1085&rft_id=info:doi/10.1111%2Fnph.13258&rft.externalDocID=US201500187404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon