Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies

The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3−x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at de...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 54; no. 30; pp. 8768 - 8771
Main Authors Xu, Yang, Zhou, Min, Wang, Xin, Wang, Chengliang, Liang, Liying, Grote, Fabian, Wu, Minghong, Mi, Yan, Lei, Yong
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 20.07.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3−x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep‐discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na‐ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling‐induced solid‐electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g−1) and 179.3 mAh g−1 (1 A g−1) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems. The benefits of oxygen vacancies on sodium ion battery performance were demonstrated by using ultrathin Al2O3‐coated MoO3−x nanosheets as anodes. Owing to the increased electric conductivity and sodium ion diffusion coefficient as well as the reduced solid–electrolyte interphase at deep‐discharge conditions, the anodes exhibited high reversible capacity and great rate capability over long‐term cycling.
AbstractList The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO(3-x) nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep-discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na-ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling-induced solid-electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g(-1)) and 179.3 mAh g(-1) (1 A g(-1)) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems.
The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO sub(3-x) nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep-discharge conditions can be further promoted by an ultrathin Al sub(2)O sub(3) coating. A series of measurements show that the OVs increase the electric conductivity and Na-ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling-induced solid-electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50mAg super(-1)) and 179.3mAhg super(-1) (1Ag super(-1)) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems. The benefits of oxygen vacancies on sodium ion battery performance were demonstrated by using ultrathin Al sub(2)O sub(3)-coated MoO sub(3-x) nanosheets as anodes. Owing to the increased electric conductivity and sodium ion diffusion coefficient as well as the reduced solid-electrolyte interphase at deep-discharge conditions, the anodes exhibited high reversible capacity and great rate capability over long-term cycling.
The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO 3− x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep‐discharge conditions can be further promoted by an ultrathin Al 2 O 3 coating. A series of measurements show that the OVs increase the electric conductivity and Na‐ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling‐induced solid‐electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g −1 ) and 179.3 mAh g −1 (1 A g −1 ) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems.
The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3−x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep‐discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na‐ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling‐induced solid‐electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g−1) and 179.3 mAh g−1 (1 A g−1) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems. The benefits of oxygen vacancies on sodium ion battery performance were demonstrated by using ultrathin Al2O3‐coated MoO3−x nanosheets as anodes. Owing to the increased electric conductivity and sodium ion diffusion coefficient as well as the reduced solid–electrolyte interphase at deep‐discharge conditions, the anodes exhibited high reversible capacity and great rate capability over long‐term cycling.
The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3-x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep-discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na-ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling-induced solid-electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50mAg-1) and 179.3mAhg-1 (1Ag-1) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems.
Author Xu, Yang
Wang, Chengliang
Zhou, Min
Wang, Xin
Liang, Liying
Wu, Minghong
Lei, Yong
Grote, Fabian
Mi, Yan
Author_xml – sequence: 1
  givenname: Yang
  surname: Xu
  fullname: Xu, Yang
  organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany)
– sequence: 2
  givenname: Min
  surname: Zhou
  fullname: Zhou, Min
  organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany)
– sequence: 3
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: Institute of Nanochemistry and Nanobiology, School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444 (P.R. China)
– sequence: 4
  givenname: Chengliang
  surname: Wang
  fullname: Wang, Chengliang
  organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany)
– sequence: 5
  givenname: Liying
  surname: Liang
  fullname: Liang, Liying
  organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany)
– sequence: 6
  givenname: Fabian
  surname: Grote
  fullname: Grote, Fabian
  organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany)
– sequence: 7
  givenname: Minghong
  surname: Wu
  fullname: Wu, Minghong
  organization: Institute of Nanochemistry and Nanobiology, School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444 (P.R. China)
– sequence: 8
  givenname: Yan
  surname: Mi
  fullname: Mi, Yan
  organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany)
– sequence: 9
  givenname: Yong
  surname: Lei
  fullname: Lei, Yong
  email: yong.lei@tu-ilmenau.de
  organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26111350$$D View this record in MEDLINE/PubMed
BookMark eNqFkctr3DAQh0VJaR7ttcdi6KUXb_WyJB_TsEkXQhLoI9CLkORxq9SWUskm8X9fbzZZQiDkpAF934w0v320E2IAhN4TvCAY088meFhQTCrMuJSv0B6pKCmZlGxnrjljpVQV2UX7OV_NvFJYvEG7VBBCWIX30GoZ_pjgoIcwFLEtvsXGj32xiqH4YoYB0lRcQGpj6tdUsQzGdtAUdirOb6ffEIqfxs03HvJb9Lo1XYZ39-cB-nG8_H70tTw9P1kdHZ6WrppfWFpObFNz0ThDGcGt5azG2NmqUcrVhksrqWNWUE4tsWCsVcBt5RqDlXQNZQfo06bvdYr_RsiD7n120HUmQByzJpJzoSgT9cuoqIVSgigxox-foFdxTGH-yB01b5Xx9ewP99Roe2j0dfK9SZN-2OcMLDaASzHnBO0WIVivA9PrwPQ2sFngTwTnBzP4GIZkfPe8Vm-0G9_B9MIQfXi2Wj52y43r8wC3W9ekv1pIJit9eXaiKbuo60tC9C_2HxXbt2M
CODEN ACIEAY
CitedBy_id crossref_primary_10_1016_j_jpowsour_2023_232918
crossref_primary_10_1002_adma_201905923
crossref_primary_10_1016_j_ccr_2019_06_015
crossref_primary_10_1021_acsami_6b02576
crossref_primary_10_1016_j_ensm_2019_09_001
crossref_primary_10_1007_s10853_020_04788_z
crossref_primary_10_1039_D0NR07779H
crossref_primary_10_1016_j_electacta_2022_141746
crossref_primary_10_1016_j_jallcom_2024_175507
crossref_primary_10_1016_j_ssi_2023_116300
crossref_primary_10_1021_acs_inorgchem_4c04177
crossref_primary_10_1039_D1TA00831E
crossref_primary_10_1021_acsenergylett_9b00249
crossref_primary_10_1002_aenm_201600448
crossref_primary_10_1021_acsami_8b04026
crossref_primary_10_1002_inf2_12175
crossref_primary_10_1016_j_jallcom_2020_157994
crossref_primary_10_1002_adfm_202101081
crossref_primary_10_1002_aenm_201502514
crossref_primary_10_1021_acsnano_4c14724
crossref_primary_10_1021_acsnano_9b05865
crossref_primary_10_1039_C6TA08742F
crossref_primary_10_1016_j_fuel_2024_131295
crossref_primary_10_1002_ange_201803664
crossref_primary_10_1039_D2CE00432A
crossref_primary_10_1002_admi_201600730
crossref_primary_10_1002_smll_201802193
crossref_primary_10_1016_j_jcis_2018_08_002
crossref_primary_10_1039_D1EN00210D
crossref_primary_10_1016_j_cej_2022_137655
crossref_primary_10_1002_anie_202111826
crossref_primary_10_1039_C8TA12434E
crossref_primary_10_1021_acsaelm_9b00555
crossref_primary_10_1039_C7TA02742G
crossref_primary_10_1021_acsami_9b02102
crossref_primary_10_1103_PhysRevB_95_024115
crossref_primary_10_1016_j_ensm_2021_01_004
crossref_primary_10_1021_acsaem_1c01334
crossref_primary_10_1021_acs_nanolett_6b04951
crossref_primary_10_1002_eem2_12169
crossref_primary_10_1002_anie_201802672
crossref_primary_10_1039_C8TA01130C
crossref_primary_10_1016_j_nanoen_2018_01_026
crossref_primary_10_1021_acscatal_7b03177
crossref_primary_10_1007_s41918_022_00137_7
crossref_primary_10_1016_j_ensm_2018_06_027
crossref_primary_10_1016_j_mcat_2024_114336
crossref_primary_10_1016_j_matchemphys_2023_128865
crossref_primary_10_1002_aenm_202001537
crossref_primary_10_1021_acsami_6b06359
crossref_primary_10_1038_s41598_024_53154_5
crossref_primary_10_1002_adma_201906156
crossref_primary_10_1021_acs_chemrev_6b00558
crossref_primary_10_1111_jace_16962
crossref_primary_10_1016_j_nantod_2016_04_004
crossref_primary_10_1039_C8TA11440D
crossref_primary_10_1016_j_nanoen_2016_12_005
crossref_primary_10_1002_adfm_201504537
crossref_primary_10_1016_j_electacta_2017_09_120
crossref_primary_10_1016_j_jpowsour_2023_233228
crossref_primary_10_1002_adma_201700396
crossref_primary_10_1039_C6TA05025E
crossref_primary_10_1002_ente_201700634
crossref_primary_10_1016_j_electacta_2022_141804
crossref_primary_10_1039_C8NR06998K
crossref_primary_10_1002_aenm_202100408
crossref_primary_10_1016_j_mattod_2020_12_002
crossref_primary_10_1016_j_nanoen_2021_105784
crossref_primary_10_1016_j_pcrysgrow_2021_100533
crossref_primary_10_1002_smll_201703086
crossref_primary_10_1016_j_electacta_2017_04_103
crossref_primary_10_1002_adfm_201707433
crossref_primary_10_1002_admi_201600430
crossref_primary_10_1002_aenm_201600468
crossref_primary_10_1021_acsami_6b08549
crossref_primary_10_1002_cnl2_27
crossref_primary_10_1002_aenm_201600461
crossref_primary_10_1002_chem_201704284
crossref_primary_10_1016_j_jelechem_2023_117149
crossref_primary_10_1039_D0NR00801J
crossref_primary_10_1002_anie_201803664
crossref_primary_10_1007_s41918_020_00064_5
crossref_primary_10_1021_acsnano_8b06917
crossref_primary_10_1002_smll_202309112
crossref_primary_10_1002_cssc_201801860
crossref_primary_10_1016_j_gee_2024_03_005
crossref_primary_10_1016_j_jallcom_2022_166943
crossref_primary_10_1021_acs_chemmater_8b00765
crossref_primary_10_1039_D0NH00340A
crossref_primary_10_1021_acs_chemmater_4c02583
crossref_primary_10_1039_C7NR03431H
crossref_primary_10_1016_j_jcis_2019_10_013
crossref_primary_10_1002_adma_201603240
crossref_primary_10_1016_j_electacta_2017_03_157
crossref_primary_10_1039_C5QI00226E
crossref_primary_10_1002_adma_201805430
crossref_primary_10_1002_cssc_202000884
crossref_primary_10_1002_er_7277
crossref_primary_10_1016_j_snb_2020_128541
crossref_primary_10_1021_acssuschemeng_9b02157
crossref_primary_10_1039_D3QM01263H
crossref_primary_10_1021_acsnano_8b00168
crossref_primary_10_1038_s41378_020_00188_0
crossref_primary_10_1002_adma_202000380
crossref_primary_10_1039_C9CE01621J
crossref_primary_10_1088_1361_6463_ab8e79
crossref_primary_10_1016_j_cej_2021_131902
crossref_primary_10_1016_j_electacta_2020_137711
crossref_primary_10_1021_acsnano_8b08608
crossref_primary_10_1039_C7QM00048K
crossref_primary_10_1002_ange_201800479
crossref_primary_10_1021_acsaem_9b00566
crossref_primary_10_1002_aenm_201703082
crossref_primary_10_1016_j_mattod_2017_07_005
crossref_primary_10_1002_smll_201700129
crossref_primary_10_1039_C7TA01961K
crossref_primary_10_1016_j_jcis_2020_08_060
crossref_primary_10_1039_C8NJ03570A
crossref_primary_10_1002_adfm_201910043
crossref_primary_10_1039_C7TA03011H
crossref_primary_10_1002_anie_201900076
crossref_primary_10_1039_D3TA02787B
crossref_primary_10_1038_s41467_018_04190_z
crossref_primary_10_1039_C9DT02917F
crossref_primary_10_1142_S1793292022500400
crossref_primary_10_1021_acsnano_8b06020
crossref_primary_10_2139_ssrn_4120911
crossref_primary_10_1021_acsami_9b12858
crossref_primary_10_1002_smll_202003643
crossref_primary_10_1016_j_electacta_2017_06_022
crossref_primary_10_1039_D0TA08577D
crossref_primary_10_1002_adfm_201700856
crossref_primary_10_1039_C6TA02796B
crossref_primary_10_1016_j_electacta_2020_136996
crossref_primary_10_1016_j_jhazmat_2016_07_046
crossref_primary_10_1002_adfm_202311471
crossref_primary_10_1016_j_jpowsour_2020_227744
crossref_primary_10_1016_j_ensm_2016_04_001
crossref_primary_10_1039_C9TA04516C
crossref_primary_10_1007_s40843_021_1909_5
crossref_primary_10_1021_acs_chemmater_7b02193
crossref_primary_10_1016_j_ssi_2019_02_014
crossref_primary_10_1002_ange_201900076
crossref_primary_10_1002_asia_202000908
crossref_primary_10_1021_acsami_7b12248
crossref_primary_10_1002_adfm_201909546
crossref_primary_10_1007_s10853_022_07766_9
crossref_primary_10_1002_smll_201900020
crossref_primary_10_1007_s11426_021_1103_6
crossref_primary_10_1186_s11671_016_1783_0
crossref_primary_10_1039_C6TA04906K
crossref_primary_10_1002_adma_201601723
crossref_primary_10_1016_j_gee_2018_01_004
crossref_primary_10_1021_acsami_1c04200
crossref_primary_10_1088_2053_1591_aaa8c3
crossref_primary_10_30919_es_180318
crossref_primary_10_1002_ange_201802672
crossref_primary_10_1039_C9TA03051D
crossref_primary_10_3390_electrochem1020012
crossref_primary_10_1021_acsami_8b19288
crossref_primary_10_1021_acsanm_0c00614
crossref_primary_10_1149_2_0721713jes
crossref_primary_10_1088_1361_6528_aab120
crossref_primary_10_1016_j_cej_2020_126315
crossref_primary_10_1002_adfm_202106751
crossref_primary_10_1002_ange_202111826
crossref_primary_10_1016_j_ensm_2022_07_027
crossref_primary_10_1021_acsanm_0c03171
crossref_primary_10_1002_batt_202100157
crossref_primary_10_1016_j_nanoen_2018_11_063
crossref_primary_10_1016_j_nanoen_2017_06_005
crossref_primary_10_1021_acs_cgd_8b00894
crossref_primary_10_1016_j_ceramint_2021_03_256
crossref_primary_10_1016_j_jpcs_2023_111235
crossref_primary_10_1007_s10854_018_8955_x
crossref_primary_10_1039_C8QI00969D
crossref_primary_10_1002_anie_201800479
crossref_primary_10_1002_adfm_202110853
crossref_primary_10_1016_j_apsusc_2023_158638
Cites_doi 10.1126/science.1200448
10.1016/0167-2738(81)90076-X
10.1021/la300306v
10.1021/jacs.5b00336
10.1002/adfm.201301205
10.1149/2.jes111637
10.1021/la203712s
10.1002/adma.201304962
10.1038/nature01878
10.1126/science.1078962
10.1103/PhysRevB.70.045422
10.1039/c3ta12964k
10.1021/jp9825922
10.1038/srep01021
10.1039/c1ee01782a
10.1002/anie.201309759
10.1021/cm9023887
10.1039/c3cp52485j
10.1039/c2jm35125k
10.1039/b908025b
10.1002/adma.200903951
10.1021/cm402451h
10.1039/c3cc45254a
10.1002/smll.201303548
10.1021/cm2031009
10.1021/nl4035626
10.1039/C3TA14302C
10.1016/j.elecom.2013.02.020
10.1021/ja310347x
10.1021/cr500192f
10.1002/adma.201200397
10.1002/adfm.201200691
10.1002/ange.201309759
10.1039/C4CS00236A
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SP
7SR
7TB
8BQ
8FD
FR3
JG9
L7M
DOI 10.1002/anie.201503477
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed
Materials Research Database
CrossRef

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8771
ExternalDocumentID 3743148891
26111350
10_1002_anie_201503477
ANIE201503477
ark_67375_WNG_23P99W11_Z
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: European Research Council
  funderid: 240144
– fundername: BMBF
  funderid: 03Z1MN11
– fundername: Shanghai Thousand Talent Plan and Innovative Research Team
  funderid: IRT13078
– fundername: Volkswagen‐Stiftung
  funderid: I/83 984
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AAYCA
ABDBF
ABJNI
ACYXJ
AETEA
AEYWJ
AFWVQ
AGQPQ
AGYGG
ALVPJ
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SP
7SR
7TB
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c5477-b41bd946dca2310fb43900cb5d88c9a47b72c3b6242b1beabb8e4b5cda087cd23
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Fri Jul 11 10:40:59 EDT 2025
Fri Jul 11 04:54:51 EDT 2025
Fri Jul 25 10:27:00 EDT 2025
Thu Apr 03 07:08:25 EDT 2025
Tue Jul 01 03:26:56 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Wed Aug 20 07:25:22 EDT 2025
Wed Oct 30 09:50:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords alumina
nanomaterials
sodium ion batteries
molybdenum
oxygen vacancies
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5477-b41bd946dca2310fb43900cb5d88c9a47b72c3b6242b1beabb8e4b5cda087cd23
Notes Shanghai Thousand Talent Plan and Innovative Research Team - No. IRT13078
istex:8745267D800F42F57B44C695B2BC5847DFF938B5
BMBF - No. 03Z1MN11
ark:/67375/WNG-23P99W11-Z
ArticleID:ANIE201503477
European Research Council - No. 240144
Volkswagen-Stiftung - No. I/83 984
This work was financially supported by the European Research Council (ThreeDsurface: 240144), BMBF (ZIK-3DNanoDevice: 03Z1MN11), Volkswagen-Stiftung (Herstellung funktionaler Oberflächen: I/83 984), and the Shanghai Thousand Talent Plan and Innovative Research Team (No. IRT13078). We thank Mr. Yong Yan for his assistant of the XRD measurement. We also thank Dr. Xiaodong Zhang for his assistant of the XPS measurement.
This work was financially supported by the European Research Council (ThreeDsurface: 240144), BMBF (ZIK‐3DNanoDevice: 03Z1MN11), Volkswagen‐Stiftung (Herstellung funktionaler Oberflächen: I/83 984), and the Shanghai Thousand Talent Plan and Innovative Research Team (No. IRT13078). We thank Mr. Yong Yan for his assistant of the XRD measurement. We also thank Dr. Xiaodong Zhang for his assistant of the XPS measurement.
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26111350
PQID 1696152342
PQPubID 946352
PageCount 4
ParticipantIDs proquest_miscellaneous_1744682369
proquest_miscellaneous_1696886186
proquest_journals_1696152342
pubmed_primary_26111350
crossref_primary_10_1002_anie_201503477
crossref_citationtrail_10_1002_anie_201503477
wiley_primary_10_1002_anie_201503477_ANIE201503477
istex_primary_ark_67375_WNG_23P99W11_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 20, 2015
PublicationDateYYYYMMDD 2015-07-20
PublicationDate_xml – month: 07
  year: 2015
  text: July 20, 2015
  day: 20
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Y. Xu, E. M. Lotfabad, H. L. Wang, B. Farbod, Z. W. Xu, A. Kohandehghan, D. Mitlin, Chem. Commun. 2013, 49, 8973-8975.
P. V. Sushko, K. M. Rosso, J.-G. Zhang, J. Liu, M. L. Sushko, Adv. Funct. Mater. 2013, 23, 5530-5535
Angew. Chem. 2014, 126, 2954-2958.
L. Zheng, Y. Xu, D. Jin, Y. Xie, Chem. Mater. 2009, 21, 5681-5690.
X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746-750
M. V. Ganduglia-Pirovano, J. Sauer, Phys. Rev. B 2004, 70, 045422.
E. M. Lotfabad, P. Kalisvaart, A. Kohandehghan, K. Cui, M. Kupsta, B. Farbod, D. Mitlin, J. Mater. Chem. A 2014, 2, 2504-2516
Y. F. Sun, S. Gao, F. C. Lei, Y. Xie, Chem. Soc. Rev. 2015, 44, 623-636
M. D. Slater, D. H. Kim, E. Lee, C. S. Johnson, Adv. Funct. Mater. 2013, 23, 947-958
S. Hariharan, K. Saravanan, P. Balaya, Electrochem. Commun. 2013, 31, 5-9.
A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, J. Am. Chem. Soc. 2012, 134, 20805-20811
E. M. Lotfabad, P. Kalisvaart, K. Cui, A. Kohandehghan, M. Kupsta, B. Olsen, D. Mitlin, Phys. Chem. Chem. Phys. 2013, 15, 13646-13657
R. Schaub, E. Wahlström, A. Rønnau, E. Lægsgaard, I. Stensgaard, F. Besenbacher, Science 2003, 299, 377-379.
W. T. Bi, C. M. Ye, C. Xiao, W. Tong, X. D. Zhang, W. Shao, Y. Xie, Small 2014, 10, 2820-2825
Y. S. Jung, A. S. Cavanagh, L. A. Riley, S. H. Kang, A. C. Dillon, M. D. Groner, S. M. George, S. H. Lee, Adv. Mater. 2010, 22, 2172-2176.
C. L. Wang, Y. Xu, Y. G. Fang, M. Zhou, L. Y. Liang, S. Singh, H. P. Zhao, A. Schober, Y. Lei, J. Am. Chem. Soc. 2015, 137, 3124-3130.
A. L. Lipson, K. Puntambekar, D. J. Comstock, X. B. Meng, M. L. Geier, J. W. Elam, M. C. Hersam, Chem. Mater. 2014, 26, 935-940
V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, D. Aurbach, Langmuir 2012, 28, 6175-6184
H. T. Nguyen, M. R. Zamfir, L. D. Duong, Y. H. Lee, P. Bondavalli, D. Pribat, J. Mater. Chem. 2012, 22, 24618-24626
Y. A. Yang, Y. W. Cao, B. H. Loo, J. N. Yao, J. Phys. Chem. B 1998, 102, 9392-9396
V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, D. Aurbach, Langmuir 2012, 28, 965-976.
C. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller, Solid State Ionics 1981, 3-4, 165-169
H. F. Cheng, T. Kamegawa, K. Mori, H. Yamashita, Angew. Chem. Int. Ed. 2014, 53, 2910-2914
L. W. Ji, M. Gu, Y. Y. Shao, X. L. Li, M. H. Engelhard, B. W. Arey, W. Wang, Z. M. Nie, J. Xiao, C. M. Wang, J.-G. Zhang, J. Liu, Adv. Mater. 2014, 26, 2901-2908
X. G. Han, Y. Liu, Z. Jia, Y.-C. Chen, J. Y. Wan, N. Weadock, K. J. Gaskell, T. Li, L. B. Hu, Nano Lett. 2014, 14, 139-147.
S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. H. Ma, G. Ceder, Energy Environ. Sci. 2011, 4, 3680-3688
N. Yabuuchi, K. Kobota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636-11682
X. B. Meng, X. Q. Yang, X. L. Sun, Adv. Mater. 2012, 24, 3589-3615.
C. H. Ahn, J.-M. Triscone, J. Mannhart, Nature 2003, 424, 1015-1018.
X. Xia, J. R. Dahn, J. Electrochem. Soc. 2012, 159, A515-A519.
J.-Y. Shin, J. H. Joo, D. Samuelis, J. Maier, Chem. Mater. 2012, 24, 543-551.
A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, D. Mitlin, J. Mater. Chem. A 2013, 1, 12850-12861
J. Y. Gan, X. H. Lu, J. H. Wu, S. L. Xie, T. Zhai, M. H. Yu, Z. S. Zhang, Y. C. Mao, S. C. I. Wang, Y. Shen, Y. X. Tong, Sci. Rep. 2013, 3, 1021.
Y. G. Wang, H. M. Liu, K. X. Wang, H. Eiji, Y. R. Wang, H. S. Zhou, J. Mater. Chem. 2009, 19, 6789-6795.
2014 2014; 53 126
2013; 3
2009; 21
2013; 1
1981; 3–4
2013; 49
2013; 23
2014; 26
2011; 4
2003; 299
2014; 114
2011; 331
2010; 22
2013; 15
2004; 70
2012; 134
2003; 424
2014; 2
2015; 137
2015; 44
2013; 31
2014; 14
2012; 28
2012; 24
2012; 159
2009; 19
1998; 102
2012; 22
2014; 10
e_1_2_3_19_2
e_1_2_3_1_2
e_1_2_3_5_2
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_37_2
e_1_2_3_3_2
e_1_2_3_17_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_39_2
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_34_2
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_33_2
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_35_2
e_1_2_3_30_2
e_1_2_3_32_2
e_1_2_3_10_2
e_1_2_3_31_2
e_1_2_3_26_2
e_1_2_3_27_2
e_1_2_3_28_2
e_1_2_3_29_2
e_1_2_3_22_2
e_1_2_3_23_2
e_1_2_3_24_2
e_1_2_3_24_3
e_1_2_3_25_2
e_1_2_3_41_2
e_1_2_3_40_2
e_1_2_3_20_2
e_1_2_3_21_2
e_1_2_3_42_2
References_xml – reference: S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. H. Ma, G. Ceder, Energy Environ. Sci. 2011, 4, 3680-3688;
– reference: Y. G. Wang, H. M. Liu, K. X. Wang, H. Eiji, Y. R. Wang, H. S. Zhou, J. Mater. Chem. 2009, 19, 6789-6795.
– reference: C. H. Ahn, J.-M. Triscone, J. Mannhart, Nature 2003, 424, 1015-1018.
– reference: H. F. Cheng, T. Kamegawa, K. Mori, H. Yamashita, Angew. Chem. Int. Ed. 2014, 53, 2910-2914;
– reference: L. W. Ji, M. Gu, Y. Y. Shao, X. L. Li, M. H. Engelhard, B. W. Arey, W. Wang, Z. M. Nie, J. Xiao, C. M. Wang, J.-G. Zhang, J. Liu, Adv. Mater. 2014, 26, 2901-2908;
– reference: Y. Xu, E. M. Lotfabad, H. L. Wang, B. Farbod, Z. W. Xu, A. Kohandehghan, D. Mitlin, Chem. Commun. 2013, 49, 8973-8975.
– reference: Y. S. Jung, A. S. Cavanagh, L. A. Riley, S. H. Kang, A. C. Dillon, M. D. Groner, S. M. George, S. H. Lee, Adv. Mater. 2010, 22, 2172-2176.
– reference: J.-Y. Shin, J. H. Joo, D. Samuelis, J. Maier, Chem. Mater. 2012, 24, 543-551.
– reference: A. L. Lipson, K. Puntambekar, D. J. Comstock, X. B. Meng, M. L. Geier, J. W. Elam, M. C. Hersam, Chem. Mater. 2014, 26, 935-940;
– reference: J. Y. Gan, X. H. Lu, J. H. Wu, S. L. Xie, T. Zhai, M. H. Yu, Z. S. Zhang, Y. C. Mao, S. C. I. Wang, Y. Shen, Y. X. Tong, Sci. Rep. 2013, 3, 1021.
– reference: H. T. Nguyen, M. R. Zamfir, L. D. Duong, Y. H. Lee, P. Bondavalli, D. Pribat, J. Mater. Chem. 2012, 22, 24618-24626;
– reference: P. V. Sushko, K. M. Rosso, J.-G. Zhang, J. Liu, M. L. Sushko, Adv. Funct. Mater. 2013, 23, 5530-5535;
– reference: S. Hariharan, K. Saravanan, P. Balaya, Electrochem. Commun. 2013, 31, 5-9.
– reference: A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, J. Am. Chem. Soc. 2012, 134, 20805-20811;
– reference: Y. F. Sun, S. Gao, F. C. Lei, Y. Xie, Chem. Soc. Rev. 2015, 44, 623-636;
– reference: W. T. Bi, C. M. Ye, C. Xiao, W. Tong, X. D. Zhang, W. Shao, Y. Xie, Small 2014, 10, 2820-2825;
– reference: V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, D. Aurbach, Langmuir 2012, 28, 6175-6184;
– reference: A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, D. Mitlin, J. Mater. Chem. A 2013, 1, 12850-12861;
– reference: R. Schaub, E. Wahlström, A. Rønnau, E. Lægsgaard, I. Stensgaard, F. Besenbacher, Science 2003, 299, 377-379.
– reference: M. V. Ganduglia-Pirovano, J. Sauer, Phys. Rev. B 2004, 70, 045422.
– reference: E. M. Lotfabad, P. Kalisvaart, A. Kohandehghan, K. Cui, M. Kupsta, B. Farbod, D. Mitlin, J. Mater. Chem. A 2014, 2, 2504-2516;
– reference: X. B. Meng, X. Q. Yang, X. L. Sun, Adv. Mater. 2012, 24, 3589-3615.
– reference: V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, D. Aurbach, Langmuir 2012, 28, 965-976.
– reference: Y. A. Yang, Y. W. Cao, B. H. Loo, J. N. Yao, J. Phys. Chem. B 1998, 102, 9392-9396;
– reference: L. Zheng, Y. Xu, D. Jin, Y. Xie, Chem. Mater. 2009, 21, 5681-5690.
– reference: C. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller, Solid State Ionics 1981, 3-4, 165-169;
– reference: M. D. Slater, D. H. Kim, E. Lee, C. S. Johnson, Adv. Funct. Mater. 2013, 23, 947-958;
– reference: Angew. Chem. 2014, 126, 2954-2958.
– reference: X. G. Han, Y. Liu, Z. Jia, Y.-C. Chen, J. Y. Wan, N. Weadock, K. J. Gaskell, T. Li, L. B. Hu, Nano Lett. 2014, 14, 139-147.
– reference: X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746-750;
– reference: C. L. Wang, Y. Xu, Y. G. Fang, M. Zhou, L. Y. Liang, S. Singh, H. P. Zhao, A. Schober, Y. Lei, J. Am. Chem. Soc. 2015, 137, 3124-3130.
– reference: N. Yabuuchi, K. Kobota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636-11682;
– reference: X. Xia, J. R. Dahn, J. Electrochem. Soc. 2012, 159, A515-A519.
– reference: E. M. Lotfabad, P. Kalisvaart, K. Cui, A. Kohandehghan, M. Kupsta, B. Olsen, D. Mitlin, Phys. Chem. Chem. Phys. 2013, 15, 13646-13657;
– volume: 26
  start-page: 935
  year: 2014
  end-page: 940
  publication-title: Chem. Mater.
– volume: 14
  start-page: 139
  year: 2014
  end-page: 147
  publication-title: Nano Lett.
– volume: 31
  start-page: 5
  year: 2013
  end-page: 9
  publication-title: Electrochem. Commun.
– volume: 49
  start-page: 8973
  year: 2013
  end-page: 8975
  publication-title: Chem. Commun.
– volume: 22
  start-page: 24618
  year: 2012
  end-page: 24626
  publication-title: J. Mater. Chem.
– volume: 299
  start-page: 377
  year: 2003
  end-page: 379
  publication-title: Science
– volume: 331
  start-page: 746
  year: 2011
  end-page: 750
  publication-title: Science
– volume: 23
  start-page: 947
  year: 2013
  end-page: 958
  publication-title: Adv. Funct. Mater.
– volume: 70
  start-page: 045422
  year: 2004
  publication-title: Phys. Rev. B
– volume: 28
  start-page: 965
  year: 2012
  end-page: 976
  publication-title: Langmuir
– volume: 2
  start-page: 2504
  year: 2014
  end-page: 2516
  publication-title: J. Mater. Chem. A
– volume: 134
  start-page: 20805
  year: 2012
  end-page: 20811
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 2172
  year: 2010
  end-page: 2176
  publication-title: Adv. Mater.
– volume: 3–4
  start-page: 165
  year: 1981
  end-page: 169
  publication-title: Solid State Ionics
– volume: 24
  start-page: 3589
  year: 2012
  end-page: 3615
  publication-title: Adv. Mater.
– volume: 19
  start-page: 6789
  year: 2009
  end-page: 6795
  publication-title: J. Mater. Chem.
– volume: 24
  start-page: 543
  year: 2012
  end-page: 551
  publication-title: Chem. Mater.
– volume: 102
  start-page: 9392
  year: 1998
  end-page: 9396
  publication-title: J. Phys. Chem. B
– volume: 159
  start-page: 515
  year: 2012
  end-page: 519
  publication-title: J. Electrochem. Soc.
– volume: 23
  start-page: 5530
  year: 2013
  end-page: 5535
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 3680
  year: 2011
  end-page: 3688
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 3124
  year: 2015
  end-page: 3130
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1021
  year: 2013
  publication-title: Sci. Rep.
– volume: 1
  start-page: 12850
  year: 2013
  end-page: 12861
  publication-title: J. Mater. Chem. A
– volume: 53 126
  start-page: 2910 2954
  year: 2014 2014
  end-page: 2914 2958
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 623
  year: 2015
  end-page: 636
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 5681
  year: 2009
  end-page: 5690
  publication-title: Chem. Mater.
– volume: 114
  start-page: 11636
  year: 2014
  end-page: 11682
  publication-title: Chem. Rev.
– volume: 424
  start-page: 1015
  year: 2003
  end-page: 1018
  publication-title: Nature
– volume: 28
  start-page: 6175
  year: 2012
  end-page: 6184
  publication-title: Langmuir
– volume: 26
  start-page: 2901
  year: 2014
  end-page: 2908
  publication-title: Adv. Mater.
– volume: 15
  start-page: 13646
  year: 2013
  end-page: 13657
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 2820
  year: 2014
  end-page: 2825
  publication-title: Small
– ident: e_1_2_3_2_2
  doi: 10.1126/science.1200448
– ident: e_1_2_3_36_2
– ident: e_1_2_3_16_2
  doi: 10.1016/0167-2738(81)90076-X
– ident: e_1_2_3_33_2
  doi: 10.1021/la300306v
– ident: e_1_2_3_13_2
  doi: 10.1021/jacs.5b00336
– ident: e_1_2_3_8_2
  doi: 10.1002/adfm.201301205
– ident: e_1_2_3_21_2
  doi: 10.1149/2.jes111637
– ident: e_1_2_3_14_2
– ident: e_1_2_3_28_2
– ident: e_1_2_3_35_2
  doi: 10.1021/la203712s
– ident: e_1_2_3_25_2
– ident: e_1_2_3_34_2
  doi: 10.1002/adma.201304962
– ident: e_1_2_3_4_2
  doi: 10.1038/nature01878
– ident: e_1_2_3_10_2
– ident: e_1_2_3_5_2
  doi: 10.1126/science.1078962
– ident: e_1_2_3_6_2
  doi: 10.1103/PhysRevB.70.045422
– ident: e_1_2_3_19_2
– ident: e_1_2_3_41_2
  doi: 10.1039/c3ta12964k
– ident: e_1_2_3_26_2
  doi: 10.1021/jp9825922
– ident: e_1_2_3_30_2
  doi: 10.1038/srep01021
– ident: e_1_2_3_32_2
– ident: e_1_2_3_15_2
  doi: 10.1039/c1ee01782a
– ident: e_1_2_3_24_2
  doi: 10.1002/anie.201309759
– ident: e_1_2_3_1_2
– ident: e_1_2_3_27_2
  doi: 10.1021/cm9023887
– ident: e_1_2_3_37_2
  doi: 10.1039/c3cp52485j
– ident: e_1_2_3_38_2
  doi: 10.1039/c2jm35125k
– ident: e_1_2_3_7_2
– ident: e_1_2_3_31_2
  doi: 10.1039/b908025b
– ident: e_1_2_3_42_2
  doi: 10.1002/adma.200903951
– ident: e_1_2_3_40_2
  doi: 10.1021/cm402451h
– ident: e_1_2_3_17_2
  doi: 10.1039/c3cc45254a
– ident: e_1_2_3_29_2
  doi: 10.1002/smll.201303548
– ident: e_1_2_3_9_2
  doi: 10.1021/cm2031009
– ident: e_1_2_3_23_2
  doi: 10.1021/nl4035626
– ident: e_1_2_3_39_2
  doi: 10.1039/C3TA14302C
– ident: e_1_2_3_18_2
  doi: 10.1016/j.elecom.2013.02.020
– ident: e_1_2_3_20_2
  doi: 10.1021/ja310347x
– ident: e_1_2_3_11_2
  doi: 10.1021/cr500192f
– ident: e_1_2_3_22_2
  doi: 10.1002/adma.201200397
– ident: e_1_2_3_12_2
  doi: 10.1002/adfm.201200691
– ident: e_1_2_3_24_3
  doi: 10.1002/ange.201309759
– ident: e_1_2_3_3_2
  doi: 10.1039/C4CS00236A
SSID ssj0028806
Score 2.559886
Snippet The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8768
SubjectTerms alumina
Anodes
Coating
Diffusion coefficient
Electric batteries
Electrical conductivity
Energy storage
molybdenum
nanomaterials
Nanostructure
Oxygen
oxygen vacancies
Sodium
sodium ion batteries
Vacancies
Title Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies
URI https://api.istex.fr/ark:/67375/WNG-23P99W11-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201503477
https://www.ncbi.nlm.nih.gov/pubmed/26111350
https://www.proquest.com/docview/1696152342
https://www.proquest.com/docview/1696886186
https://www.proquest.com/docview/1744682369
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI_QeIAXxjeFbQoSgqdubT6a9nGabuyQOCZgbOIlipNUoLEW7e6kHX_94uba7RAfEry1qiMlsZ3Yrv0zIS-kV0pKVWOWuEqFL11ahXs4lQgcA4YX3GMc8u2kODgSb07kybUq_ogPMQTcUDO68xoV3MB05wo0FCuwMTVLZlwoLCfHhC20it4P-FEsCGcsL-I8xS70PWpjxnZWh6_cSjdxgy9-ZXKuWrDdFbS_Tkw_-Zh5cro9n8G2_fETruP_rO4uubO0T-luFKh75IZv7pNbe31buAdkPGq-oKRgVJG2Nf3Quq_zMzpuGxqxOhf08KoYgY662ixHYUHfXSyCtNJPxnYdgacPydH-6OPeQbrsx5BaGSaRgsjBVaJw1qBVWEMwZrLMgnRlaSsjFChmOWDFCeTgDUDpBUjrTFYq6xh_RNaatvFPCOWuzBUPzqC0taighlKaIpwf4D0vBOQJSXt-aLsEK8eeGd90hFlmGjdIDxuUkFcD_fcI0_Fbypcdewcyc36KyW1K6uPJa834YVUdB6foc0I2ev7rpV5PdV5UwQRkXLCEPB8-Bw7gbxbT-HYeacoS-xD8gUYFNxx7zVcJeRxla5hQ8GnznMssIayTkL8sSO9OxqPh7em_DHpGbuMzhqxZtkHWZudzvxlsrRlsdfp0Cc4aHOs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8oPOCL30IFdU2MPhXa_ei2jwQP7xROoiDGl01nu40EbA3cJRx_vTvtteSMH4k-tp1N9mNmd3Y68_sBvFBOa6V0SVniOpQuLcLMn8OhIuAYzEUiHMUh98fJ8Ei-_ay6bEKqhWnxIfqAG1lGs1-TgVNAeusaNZRKsCk3S0VCan0TlonWm-DzX3_oEaS4V8-2wEiIkHjoO9zGiG8ttl84l5Zpii9_5XQu-rDNIbR7B7Drfpt7cro5neCmvfoJ2fG_xncXbs9dVLbd6tQ9uOGq-7Cy0zHDPYDRoPpKykKBRVaX7GNdnEy_sVFdsRauc8YOrusR2KApzyoYztj7y5lXWPYptw0p8MVDONodHO4MwzklQ2iV70SIMsYik0lhc3IMS_T-TBRZVEWa2iyXGjW3AqnoBGN0OWLqJCpb5FGqbcHFI1iq6sqtARNFGmvh74PKljLDElOVJ34LQedEIjEOIOwWxNg5XjnRZpyZFmmZG5og009QAK96-e8tUsdvJV8269uL5eenlN-mlTkevzFcHGTZsb8XfQlgo1MAMzftCxMnmfcCuZA8gOf9Z78C9Kclr1w9bWXSlKgI_iCj_U2c6OazAFZb5eo75K-1cSxUFABvVOQvAzLb49Ggf3r8L42ewcrwcH_P7I3G79bhFr2nCDaPNmBpcj51T7zrNcGnjXH9AJ5dIQc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BK0FfuI9AASMheEqb-IiTx6rdpcuxrIDSqi-Wr6iokFTtrtTl1-NJNimLOCR4TDKWbM-MPTOZ-QbgmfBSCiFLzBKXMfe5i4twD8cCgWOMZhnzGId8O8529_irA3HwQxV_iw_RB9xQM5rzGhX8xJWbF6ChWIGNqVkiYVzKy7DKs6TA5g0773sAKRqks60vYizGNvQdbGNCN5fHL11Lq7jD57-yOZdN2OYOGl4H3c2-TT053phNzYb99hOw4_8s7wZcWxioZKuVqJtwyVe34Op21xfuNowG1RGKCoYVSV2SD7X7PPtKRnVFWrDOOZlcVCOQQVOc5YiZk3fn8yCu5JO2TUvgszuwNxx83N6NFw0ZYivCJGLDU-MKnjmr0SwsTbBmksQa4fLcFppLI6llBktOTGq8Nib33AjrdJJL6yi7CytVXfn7QJjLU8mCNyhsyQtTmlzoLBwgxnuWcZNGEHf8UHaBVo5NM76oFmeZKtwg1W9QBC96-pMWp-O3lM8b9vZk-vQYs9ukUPvjl4qySVHsB6_oMIL1jv9qodhnKs2KYANSxmkET_vPgQP4n0VXvp61NHmOjQj-QCODH47N5osI7rWy1U8oOLVpykQSAW0k5C8LUlvj0aB_evAvg57AlcnOUL0ZjV8_hDV8jeFrmqzDyvR05h8Fu2tqHjeq9R0TKR-2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+Sodium+Ion+Battery+Performance+Enabled+by+Oxygen+Vacancies&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Yang&rft.au=Zhou%2C+Min&rft.au=Wang%2C+Xin&rft.au=Wang%2C+Chengliang&rft.date=2015-07-20&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=30&rft.spage=8768&rft.epage=8771&rft_id=info:doi/10.1002%2Fanie.201503477&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201503477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon