Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies
The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3−x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at de...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 54; no. 30; pp. 8768 - 8771 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
20.07.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3−x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep‐discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na‐ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling‐induced solid‐electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g−1) and 179.3 mAh g−1 (1 A g−1) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems.
The benefits of oxygen vacancies on sodium ion battery performance were demonstrated by using ultrathin Al2O3‐coated MoO3−x nanosheets as anodes. Owing to the increased electric conductivity and sodium ion diffusion coefficient as well as the reduced solid–electrolyte interphase at deep‐discharge conditions, the anodes exhibited high reversible capacity and great rate capability over long‐term cycling. |
---|---|
AbstractList | The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO(3-x) nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep-discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na-ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling-induced solid-electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g(-1)) and 179.3 mAh g(-1) (1 A g(-1)) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems. The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO sub(3-x) nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep-discharge conditions can be further promoted by an ultrathin Al sub(2)O sub(3) coating. A series of measurements show that the OVs increase the electric conductivity and Na-ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling-induced solid-electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50mAg super(-1)) and 179.3mAhg super(-1) (1Ag super(-1)) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems. The benefits of oxygen vacancies on sodium ion battery performance were demonstrated by using ultrathin Al sub(2)O sub(3)-coated MoO sub(3-x) nanosheets as anodes. Owing to the increased electric conductivity and sodium ion diffusion coefficient as well as the reduced solid-electrolyte interphase at deep-discharge conditions, the anodes exhibited high reversible capacity and great rate capability over long-term cycling. The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO 3− x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep‐discharge conditions can be further promoted by an ultrathin Al 2 O 3 coating. A series of measurements show that the OVs increase the electric conductivity and Na‐ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling‐induced solid‐electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g −1 ) and 179.3 mAh g −1 (1 A g −1 ) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems. The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3−x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep‐discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na‐ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling‐induced solid‐electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g−1) and 179.3 mAh g−1 (1 A g−1) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems. The benefits of oxygen vacancies on sodium ion battery performance were demonstrated by using ultrathin Al2O3‐coated MoO3−x nanosheets as anodes. Owing to the increased electric conductivity and sodium ion diffusion coefficient as well as the reduced solid–electrolyte interphase at deep‐discharge conditions, the anodes exhibited high reversible capacity and great rate capability over long‐term cycling. The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3-x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep-discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na-ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling-induced solid-electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50mAg-1) and 179.3mAhg-1 (1Ag-1) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems. |
Author | Xu, Yang Wang, Chengliang Zhou, Min Wang, Xin Liang, Liying Wu, Minghong Lei, Yong Grote, Fabian Mi, Yan |
Author_xml | – sequence: 1 givenname: Yang surname: Xu fullname: Xu, Yang organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany) – sequence: 2 givenname: Min surname: Zhou fullname: Zhou, Min organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany) – sequence: 3 givenname: Xin surname: Wang fullname: Wang, Xin organization: Institute of Nanochemistry and Nanobiology, School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444 (P.R. China) – sequence: 4 givenname: Chengliang surname: Wang fullname: Wang, Chengliang organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany) – sequence: 5 givenname: Liying surname: Liang fullname: Liang, Liying organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany) – sequence: 6 givenname: Fabian surname: Grote fullname: Grote, Fabian organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany) – sequence: 7 givenname: Minghong surname: Wu fullname: Wu, Minghong organization: Institute of Nanochemistry and Nanobiology, School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444 (P.R. China) – sequence: 8 givenname: Yan surname: Mi fullname: Mi, Yan organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany) – sequence: 9 givenname: Yong surname: Lei fullname: Lei, Yong email: yong.lei@tu-ilmenau.de organization: Institute für Physics & IMN MacroNano (ZIK), Technische Universität Ilmenau, Prof-Schemidt-Strasse 26, 98693 Ilmenau (Germany) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26111350$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctr3DAQh0VJaR7ttcdi6KUXb_WyJB_TsEkXQhLoI9CLkORxq9SWUskm8X9fbzZZQiDkpAF934w0v320E2IAhN4TvCAY088meFhQTCrMuJSv0B6pKCmZlGxnrjljpVQV2UX7OV_NvFJYvEG7VBBCWIX30GoZ_pjgoIcwFLEtvsXGj32xiqH4YoYB0lRcQGpj6tdUsQzGdtAUdirOb6ffEIqfxs03HvJb9Lo1XYZ39-cB-nG8_H70tTw9P1kdHZ6WrppfWFpObFNz0ThDGcGt5azG2NmqUcrVhksrqWNWUE4tsWCsVcBt5RqDlXQNZQfo06bvdYr_RsiD7n120HUmQByzJpJzoSgT9cuoqIVSgigxox-foFdxTGH-yB01b5Xx9ewP99Roe2j0dfK9SZN-2OcMLDaASzHnBO0WIVivA9PrwPQ2sFngTwTnBzP4GIZkfPe8Vm-0G9_B9MIQfXi2Wj52y43r8wC3W9ekv1pIJit9eXaiKbuo60tC9C_2HxXbt2M |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2023_232918 crossref_primary_10_1002_adma_201905923 crossref_primary_10_1016_j_ccr_2019_06_015 crossref_primary_10_1021_acsami_6b02576 crossref_primary_10_1016_j_ensm_2019_09_001 crossref_primary_10_1007_s10853_020_04788_z crossref_primary_10_1039_D0NR07779H crossref_primary_10_1016_j_electacta_2022_141746 crossref_primary_10_1016_j_jallcom_2024_175507 crossref_primary_10_1016_j_ssi_2023_116300 crossref_primary_10_1021_acs_inorgchem_4c04177 crossref_primary_10_1039_D1TA00831E crossref_primary_10_1021_acsenergylett_9b00249 crossref_primary_10_1002_aenm_201600448 crossref_primary_10_1021_acsami_8b04026 crossref_primary_10_1002_inf2_12175 crossref_primary_10_1016_j_jallcom_2020_157994 crossref_primary_10_1002_adfm_202101081 crossref_primary_10_1002_aenm_201502514 crossref_primary_10_1021_acsnano_4c14724 crossref_primary_10_1021_acsnano_9b05865 crossref_primary_10_1039_C6TA08742F crossref_primary_10_1016_j_fuel_2024_131295 crossref_primary_10_1002_ange_201803664 crossref_primary_10_1039_D2CE00432A crossref_primary_10_1002_admi_201600730 crossref_primary_10_1002_smll_201802193 crossref_primary_10_1016_j_jcis_2018_08_002 crossref_primary_10_1039_D1EN00210D crossref_primary_10_1016_j_cej_2022_137655 crossref_primary_10_1002_anie_202111826 crossref_primary_10_1039_C8TA12434E crossref_primary_10_1021_acsaelm_9b00555 crossref_primary_10_1039_C7TA02742G crossref_primary_10_1021_acsami_9b02102 crossref_primary_10_1103_PhysRevB_95_024115 crossref_primary_10_1016_j_ensm_2021_01_004 crossref_primary_10_1021_acsaem_1c01334 crossref_primary_10_1021_acs_nanolett_6b04951 crossref_primary_10_1002_eem2_12169 crossref_primary_10_1002_anie_201802672 crossref_primary_10_1039_C8TA01130C crossref_primary_10_1016_j_nanoen_2018_01_026 crossref_primary_10_1021_acscatal_7b03177 crossref_primary_10_1007_s41918_022_00137_7 crossref_primary_10_1016_j_ensm_2018_06_027 crossref_primary_10_1016_j_mcat_2024_114336 crossref_primary_10_1016_j_matchemphys_2023_128865 crossref_primary_10_1002_aenm_202001537 crossref_primary_10_1021_acsami_6b06359 crossref_primary_10_1038_s41598_024_53154_5 crossref_primary_10_1002_adma_201906156 crossref_primary_10_1021_acs_chemrev_6b00558 crossref_primary_10_1111_jace_16962 crossref_primary_10_1016_j_nantod_2016_04_004 crossref_primary_10_1039_C8TA11440D crossref_primary_10_1016_j_nanoen_2016_12_005 crossref_primary_10_1002_adfm_201504537 crossref_primary_10_1016_j_electacta_2017_09_120 crossref_primary_10_1016_j_jpowsour_2023_233228 crossref_primary_10_1002_adma_201700396 crossref_primary_10_1039_C6TA05025E crossref_primary_10_1002_ente_201700634 crossref_primary_10_1016_j_electacta_2022_141804 crossref_primary_10_1039_C8NR06998K crossref_primary_10_1002_aenm_202100408 crossref_primary_10_1016_j_mattod_2020_12_002 crossref_primary_10_1016_j_nanoen_2021_105784 crossref_primary_10_1016_j_pcrysgrow_2021_100533 crossref_primary_10_1002_smll_201703086 crossref_primary_10_1016_j_electacta_2017_04_103 crossref_primary_10_1002_adfm_201707433 crossref_primary_10_1002_admi_201600430 crossref_primary_10_1002_aenm_201600468 crossref_primary_10_1021_acsami_6b08549 crossref_primary_10_1002_cnl2_27 crossref_primary_10_1002_aenm_201600461 crossref_primary_10_1002_chem_201704284 crossref_primary_10_1016_j_jelechem_2023_117149 crossref_primary_10_1039_D0NR00801J crossref_primary_10_1002_anie_201803664 crossref_primary_10_1007_s41918_020_00064_5 crossref_primary_10_1021_acsnano_8b06917 crossref_primary_10_1002_smll_202309112 crossref_primary_10_1002_cssc_201801860 crossref_primary_10_1016_j_gee_2024_03_005 crossref_primary_10_1016_j_jallcom_2022_166943 crossref_primary_10_1021_acs_chemmater_8b00765 crossref_primary_10_1039_D0NH00340A crossref_primary_10_1021_acs_chemmater_4c02583 crossref_primary_10_1039_C7NR03431H crossref_primary_10_1016_j_jcis_2019_10_013 crossref_primary_10_1002_adma_201603240 crossref_primary_10_1016_j_electacta_2017_03_157 crossref_primary_10_1039_C5QI00226E crossref_primary_10_1002_adma_201805430 crossref_primary_10_1002_cssc_202000884 crossref_primary_10_1002_er_7277 crossref_primary_10_1016_j_snb_2020_128541 crossref_primary_10_1021_acssuschemeng_9b02157 crossref_primary_10_1039_D3QM01263H crossref_primary_10_1021_acsnano_8b00168 crossref_primary_10_1038_s41378_020_00188_0 crossref_primary_10_1002_adma_202000380 crossref_primary_10_1039_C9CE01621J crossref_primary_10_1088_1361_6463_ab8e79 crossref_primary_10_1016_j_cej_2021_131902 crossref_primary_10_1016_j_electacta_2020_137711 crossref_primary_10_1021_acsnano_8b08608 crossref_primary_10_1039_C7QM00048K crossref_primary_10_1002_ange_201800479 crossref_primary_10_1021_acsaem_9b00566 crossref_primary_10_1002_aenm_201703082 crossref_primary_10_1016_j_mattod_2017_07_005 crossref_primary_10_1002_smll_201700129 crossref_primary_10_1039_C7TA01961K crossref_primary_10_1016_j_jcis_2020_08_060 crossref_primary_10_1039_C8NJ03570A crossref_primary_10_1002_adfm_201910043 crossref_primary_10_1039_C7TA03011H crossref_primary_10_1002_anie_201900076 crossref_primary_10_1039_D3TA02787B crossref_primary_10_1038_s41467_018_04190_z crossref_primary_10_1039_C9DT02917F crossref_primary_10_1142_S1793292022500400 crossref_primary_10_1021_acsnano_8b06020 crossref_primary_10_2139_ssrn_4120911 crossref_primary_10_1021_acsami_9b12858 crossref_primary_10_1002_smll_202003643 crossref_primary_10_1016_j_electacta_2017_06_022 crossref_primary_10_1039_D0TA08577D crossref_primary_10_1002_adfm_201700856 crossref_primary_10_1039_C6TA02796B crossref_primary_10_1016_j_electacta_2020_136996 crossref_primary_10_1016_j_jhazmat_2016_07_046 crossref_primary_10_1002_adfm_202311471 crossref_primary_10_1016_j_jpowsour_2020_227744 crossref_primary_10_1016_j_ensm_2016_04_001 crossref_primary_10_1039_C9TA04516C crossref_primary_10_1007_s40843_021_1909_5 crossref_primary_10_1021_acs_chemmater_7b02193 crossref_primary_10_1016_j_ssi_2019_02_014 crossref_primary_10_1002_ange_201900076 crossref_primary_10_1002_asia_202000908 crossref_primary_10_1021_acsami_7b12248 crossref_primary_10_1002_adfm_201909546 crossref_primary_10_1007_s10853_022_07766_9 crossref_primary_10_1002_smll_201900020 crossref_primary_10_1007_s11426_021_1103_6 crossref_primary_10_1186_s11671_016_1783_0 crossref_primary_10_1039_C6TA04906K crossref_primary_10_1002_adma_201601723 crossref_primary_10_1016_j_gee_2018_01_004 crossref_primary_10_1021_acsami_1c04200 crossref_primary_10_1088_2053_1591_aaa8c3 crossref_primary_10_30919_es_180318 crossref_primary_10_1002_ange_201802672 crossref_primary_10_1039_C9TA03051D crossref_primary_10_3390_electrochem1020012 crossref_primary_10_1021_acsami_8b19288 crossref_primary_10_1021_acsanm_0c00614 crossref_primary_10_1149_2_0721713jes crossref_primary_10_1088_1361_6528_aab120 crossref_primary_10_1016_j_cej_2020_126315 crossref_primary_10_1002_adfm_202106751 crossref_primary_10_1002_ange_202111826 crossref_primary_10_1016_j_ensm_2022_07_027 crossref_primary_10_1021_acsanm_0c03171 crossref_primary_10_1002_batt_202100157 crossref_primary_10_1016_j_nanoen_2018_11_063 crossref_primary_10_1016_j_nanoen_2017_06_005 crossref_primary_10_1021_acs_cgd_8b00894 crossref_primary_10_1016_j_ceramint_2021_03_256 crossref_primary_10_1016_j_jpcs_2023_111235 crossref_primary_10_1007_s10854_018_8955_x crossref_primary_10_1039_C8QI00969D crossref_primary_10_1002_anie_201800479 crossref_primary_10_1002_adfm_202110853 crossref_primary_10_1016_j_apsusc_2023_158638 |
Cites_doi | 10.1126/science.1200448 10.1016/0167-2738(81)90076-X 10.1021/la300306v 10.1021/jacs.5b00336 10.1002/adfm.201301205 10.1149/2.jes111637 10.1021/la203712s 10.1002/adma.201304962 10.1038/nature01878 10.1126/science.1078962 10.1103/PhysRevB.70.045422 10.1039/c3ta12964k 10.1021/jp9825922 10.1038/srep01021 10.1039/c1ee01782a 10.1002/anie.201309759 10.1021/cm9023887 10.1039/c3cp52485j 10.1039/c2jm35125k 10.1039/b908025b 10.1002/adma.200903951 10.1021/cm402451h 10.1039/c3cc45254a 10.1002/smll.201303548 10.1021/cm2031009 10.1021/nl4035626 10.1039/C3TA14302C 10.1016/j.elecom.2013.02.020 10.1021/ja310347x 10.1021/cr500192f 10.1002/adma.201200397 10.1002/adfm.201200691 10.1002/ange.201309759 10.1039/C4CS00236A |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7TM K9. 7X8 7SP 7SR 7TB 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1002/anie.201503477 |
DatabaseName | Istex CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed Materials Research Database CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8771 |
ExternalDocumentID | 3743148891 26111350 10_1002_anie_201503477 ANIE201503477 ark_67375_WNG_23P99W11_Z |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: European Research Council funderid: 240144 – fundername: BMBF funderid: 03Z1MN11 – fundername: Shanghai Thousand Talent Plan and Innovative Research Team funderid: IRT13078 – fundername: Volkswagen‐Stiftung funderid: I/83 984 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AAYCA ABDBF ABJNI ACYXJ AETEA AEYWJ AFWVQ AGQPQ AGYGG ALVPJ AAYXX CITATION NPM 7TM K9. 7X8 7SP 7SR 7TB 8BQ 8FD FR3 JG9 L7M |
ID | FETCH-LOGICAL-c5477-b41bd946dca2310fb43900cb5d88c9a47b72c3b6242b1beabb8e4b5cda087cd23 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Fri Jul 11 10:40:59 EDT 2025 Fri Jul 11 04:54:51 EDT 2025 Fri Jul 25 10:27:00 EDT 2025 Thu Apr 03 07:08:25 EDT 2025 Tue Jul 01 03:26:56 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 Wed Aug 20 07:25:22 EDT 2025 Wed Oct 30 09:50:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | alumina nanomaterials sodium ion batteries molybdenum oxygen vacancies |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5477-b41bd946dca2310fb43900cb5d88c9a47b72c3b6242b1beabb8e4b5cda087cd23 |
Notes | Shanghai Thousand Talent Plan and Innovative Research Team - No. IRT13078 istex:8745267D800F42F57B44C695B2BC5847DFF938B5 BMBF - No. 03Z1MN11 ark:/67375/WNG-23P99W11-Z ArticleID:ANIE201503477 European Research Council - No. 240144 Volkswagen-Stiftung - No. I/83 984 This work was financially supported by the European Research Council (ThreeDsurface: 240144), BMBF (ZIK-3DNanoDevice: 03Z1MN11), Volkswagen-Stiftung (Herstellung funktionaler Oberflächen: I/83 984), and the Shanghai Thousand Talent Plan and Innovative Research Team (No. IRT13078). We thank Mr. Yong Yan for his assistant of the XRD measurement. We also thank Dr. Xiaodong Zhang for his assistant of the XPS measurement. This work was financially supported by the European Research Council (ThreeDsurface: 240144), BMBF (ZIK‐3DNanoDevice: 03Z1MN11), Volkswagen‐Stiftung (Herstellung funktionaler Oberflächen: I/83 984), and the Shanghai Thousand Talent Plan and Innovative Research Team (No. IRT13078). We thank Mr. Yong Yan for his assistant of the XRD measurement. We also thank Dr. Xiaodong Zhang for his assistant of the XPS measurement. These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26111350 |
PQID | 1696152342 |
PQPubID | 946352 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1744682369 proquest_miscellaneous_1696886186 proquest_journals_1696152342 pubmed_primary_26111350 crossref_primary_10_1002_anie_201503477 crossref_citationtrail_10_1002_anie_201503477 wiley_primary_10_1002_anie_201503477_ANIE201503477 istex_primary_ark_67375_WNG_23P99W11_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 20, 2015 |
PublicationDateYYYYMMDD | 2015-07-20 |
PublicationDate_xml | – month: 07 year: 2015 text: July 20, 2015 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Y. Xu, E. M. Lotfabad, H. L. Wang, B. Farbod, Z. W. Xu, A. Kohandehghan, D. Mitlin, Chem. Commun. 2013, 49, 8973-8975. P. V. Sushko, K. M. Rosso, J.-G. Zhang, J. Liu, M. L. Sushko, Adv. Funct. Mater. 2013, 23, 5530-5535 Angew. Chem. 2014, 126, 2954-2958. L. Zheng, Y. Xu, D. Jin, Y. Xie, Chem. Mater. 2009, 21, 5681-5690. X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746-750 M. V. Ganduglia-Pirovano, J. Sauer, Phys. Rev. B 2004, 70, 045422. E. M. Lotfabad, P. Kalisvaart, A. Kohandehghan, K. Cui, M. Kupsta, B. Farbod, D. Mitlin, J. Mater. Chem. A 2014, 2, 2504-2516 Y. F. Sun, S. Gao, F. C. Lei, Y. Xie, Chem. Soc. Rev. 2015, 44, 623-636 M. D. Slater, D. H. Kim, E. Lee, C. S. Johnson, Adv. Funct. Mater. 2013, 23, 947-958 S. Hariharan, K. Saravanan, P. Balaya, Electrochem. Commun. 2013, 31, 5-9. A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, J. Am. Chem. Soc. 2012, 134, 20805-20811 E. M. Lotfabad, P. Kalisvaart, K. Cui, A. Kohandehghan, M. Kupsta, B. Olsen, D. Mitlin, Phys. Chem. Chem. Phys. 2013, 15, 13646-13657 R. Schaub, E. Wahlström, A. Rønnau, E. Lægsgaard, I. Stensgaard, F. Besenbacher, Science 2003, 299, 377-379. W. T. Bi, C. M. Ye, C. Xiao, W. Tong, X. D. Zhang, W. Shao, Y. Xie, Small 2014, 10, 2820-2825 Y. S. Jung, A. S. Cavanagh, L. A. Riley, S. H. Kang, A. C. Dillon, M. D. Groner, S. M. George, S. H. Lee, Adv. Mater. 2010, 22, 2172-2176. C. L. Wang, Y. Xu, Y. G. Fang, M. Zhou, L. Y. Liang, S. Singh, H. P. Zhao, A. Schober, Y. Lei, J. Am. Chem. Soc. 2015, 137, 3124-3130. A. L. Lipson, K. Puntambekar, D. J. Comstock, X. B. Meng, M. L. Geier, J. W. Elam, M. C. Hersam, Chem. Mater. 2014, 26, 935-940 V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, D. Aurbach, Langmuir 2012, 28, 6175-6184 H. T. Nguyen, M. R. Zamfir, L. D. Duong, Y. H. Lee, P. Bondavalli, D. Pribat, J. Mater. Chem. 2012, 22, 24618-24626 Y. A. Yang, Y. W. Cao, B. H. Loo, J. N. Yao, J. Phys. Chem. B 1998, 102, 9392-9396 V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, D. Aurbach, Langmuir 2012, 28, 965-976. C. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller, Solid State Ionics 1981, 3-4, 165-169 H. F. Cheng, T. Kamegawa, K. Mori, H. Yamashita, Angew. Chem. Int. Ed. 2014, 53, 2910-2914 L. W. Ji, M. Gu, Y. Y. Shao, X. L. Li, M. H. Engelhard, B. W. Arey, W. Wang, Z. M. Nie, J. Xiao, C. M. Wang, J.-G. Zhang, J. Liu, Adv. Mater. 2014, 26, 2901-2908 X. G. Han, Y. Liu, Z. Jia, Y.-C. Chen, J. Y. Wan, N. Weadock, K. J. Gaskell, T. Li, L. B. Hu, Nano Lett. 2014, 14, 139-147. S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. H. Ma, G. Ceder, Energy Environ. Sci. 2011, 4, 3680-3688 N. Yabuuchi, K. Kobota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636-11682 X. B. Meng, X. Q. Yang, X. L. Sun, Adv. Mater. 2012, 24, 3589-3615. C. H. Ahn, J.-M. Triscone, J. Mannhart, Nature 2003, 424, 1015-1018. X. Xia, J. R. Dahn, J. Electrochem. Soc. 2012, 159, A515-A519. J.-Y. Shin, J. H. Joo, D. Samuelis, J. Maier, Chem. Mater. 2012, 24, 543-551. A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, D. Mitlin, J. Mater. Chem. A 2013, 1, 12850-12861 J. Y. Gan, X. H. Lu, J. H. Wu, S. L. Xie, T. Zhai, M. H. Yu, Z. S. Zhang, Y. C. Mao, S. C. I. Wang, Y. Shen, Y. X. Tong, Sci. Rep. 2013, 3, 1021. Y. G. Wang, H. M. Liu, K. X. Wang, H. Eiji, Y. R. Wang, H. S. Zhou, J. Mater. Chem. 2009, 19, 6789-6795. 2014 2014; 53 126 2013; 3 2009; 21 2013; 1 1981; 3–4 2013; 49 2013; 23 2014; 26 2011; 4 2003; 299 2014; 114 2011; 331 2010; 22 2013; 15 2004; 70 2012; 134 2003; 424 2014; 2 2015; 137 2015; 44 2013; 31 2014; 14 2012; 28 2012; 24 2012; 159 2009; 19 1998; 102 2012; 22 2014; 10 e_1_2_3_19_2 e_1_2_3_1_2 e_1_2_3_5_2 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_37_2 e_1_2_3_3_2 e_1_2_3_17_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_39_2 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_34_2 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_33_2 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_35_2 e_1_2_3_30_2 e_1_2_3_32_2 e_1_2_3_10_2 e_1_2_3_31_2 e_1_2_3_26_2 e_1_2_3_27_2 e_1_2_3_28_2 e_1_2_3_29_2 e_1_2_3_22_2 e_1_2_3_23_2 e_1_2_3_24_2 e_1_2_3_24_3 e_1_2_3_25_2 e_1_2_3_41_2 e_1_2_3_40_2 e_1_2_3_20_2 e_1_2_3_21_2 e_1_2_3_42_2 |
References_xml | – reference: S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. H. Ma, G. Ceder, Energy Environ. Sci. 2011, 4, 3680-3688; – reference: Y. G. Wang, H. M. Liu, K. X. Wang, H. Eiji, Y. R. Wang, H. S. Zhou, J. Mater. Chem. 2009, 19, 6789-6795. – reference: C. H. Ahn, J.-M. Triscone, J. Mannhart, Nature 2003, 424, 1015-1018. – reference: H. F. Cheng, T. Kamegawa, K. Mori, H. Yamashita, Angew. Chem. Int. Ed. 2014, 53, 2910-2914; – reference: L. W. Ji, M. Gu, Y. Y. Shao, X. L. Li, M. H. Engelhard, B. W. Arey, W. Wang, Z. M. Nie, J. Xiao, C. M. Wang, J.-G. Zhang, J. Liu, Adv. Mater. 2014, 26, 2901-2908; – reference: Y. Xu, E. M. Lotfabad, H. L. Wang, B. Farbod, Z. W. Xu, A. Kohandehghan, D. Mitlin, Chem. Commun. 2013, 49, 8973-8975. – reference: Y. S. Jung, A. S. Cavanagh, L. A. Riley, S. H. Kang, A. C. Dillon, M. D. Groner, S. M. George, S. H. Lee, Adv. Mater. 2010, 22, 2172-2176. – reference: J.-Y. Shin, J. H. Joo, D. Samuelis, J. Maier, Chem. Mater. 2012, 24, 543-551. – reference: A. L. Lipson, K. Puntambekar, D. J. Comstock, X. B. Meng, M. L. Geier, J. W. Elam, M. C. Hersam, Chem. Mater. 2014, 26, 935-940; – reference: J. Y. Gan, X. H. Lu, J. H. Wu, S. L. Xie, T. Zhai, M. H. Yu, Z. S. Zhang, Y. C. Mao, S. C. I. Wang, Y. Shen, Y. X. Tong, Sci. Rep. 2013, 3, 1021. – reference: H. T. Nguyen, M. R. Zamfir, L. D. Duong, Y. H. Lee, P. Bondavalli, D. Pribat, J. Mater. Chem. 2012, 22, 24618-24626; – reference: P. V. Sushko, K. M. Rosso, J.-G. Zhang, J. Liu, M. L. Sushko, Adv. Funct. Mater. 2013, 23, 5530-5535; – reference: S. Hariharan, K. Saravanan, P. Balaya, Electrochem. Commun. 2013, 31, 5-9. – reference: A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, J. Am. Chem. Soc. 2012, 134, 20805-20811; – reference: Y. F. Sun, S. Gao, F. C. Lei, Y. Xie, Chem. Soc. Rev. 2015, 44, 623-636; – reference: W. T. Bi, C. M. Ye, C. Xiao, W. Tong, X. D. Zhang, W. Shao, Y. Xie, Small 2014, 10, 2820-2825; – reference: V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, D. Aurbach, Langmuir 2012, 28, 6175-6184; – reference: A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, D. Mitlin, J. Mater. Chem. A 2013, 1, 12850-12861; – reference: R. Schaub, E. Wahlström, A. Rønnau, E. Lægsgaard, I. Stensgaard, F. Besenbacher, Science 2003, 299, 377-379. – reference: M. V. Ganduglia-Pirovano, J. Sauer, Phys. Rev. B 2004, 70, 045422. – reference: E. M. Lotfabad, P. Kalisvaart, A. Kohandehghan, K. Cui, M. Kupsta, B. Farbod, D. Mitlin, J. Mater. Chem. A 2014, 2, 2504-2516; – reference: X. B. Meng, X. Q. Yang, X. L. Sun, Adv. Mater. 2012, 24, 3589-3615. – reference: V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, D. Aurbach, Langmuir 2012, 28, 965-976. – reference: Y. A. Yang, Y. W. Cao, B. H. Loo, J. N. Yao, J. Phys. Chem. B 1998, 102, 9392-9396; – reference: L. Zheng, Y. Xu, D. Jin, Y. Xie, Chem. Mater. 2009, 21, 5681-5690. – reference: C. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller, Solid State Ionics 1981, 3-4, 165-169; – reference: M. D. Slater, D. H. Kim, E. Lee, C. S. Johnson, Adv. Funct. Mater. 2013, 23, 947-958; – reference: Angew. Chem. 2014, 126, 2954-2958. – reference: X. G. Han, Y. Liu, Z. Jia, Y.-C. Chen, J. Y. Wan, N. Weadock, K. J. Gaskell, T. Li, L. B. Hu, Nano Lett. 2014, 14, 139-147. – reference: X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746-750; – reference: C. L. Wang, Y. Xu, Y. G. Fang, M. Zhou, L. Y. Liang, S. Singh, H. P. Zhao, A. Schober, Y. Lei, J. Am. Chem. Soc. 2015, 137, 3124-3130. – reference: N. Yabuuchi, K. Kobota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636-11682; – reference: X. Xia, J. R. Dahn, J. Electrochem. Soc. 2012, 159, A515-A519. – reference: E. M. Lotfabad, P. Kalisvaart, K. Cui, A. Kohandehghan, M. Kupsta, B. Olsen, D. Mitlin, Phys. Chem. Chem. Phys. 2013, 15, 13646-13657; – volume: 26 start-page: 935 year: 2014 end-page: 940 publication-title: Chem. Mater. – volume: 14 start-page: 139 year: 2014 end-page: 147 publication-title: Nano Lett. – volume: 31 start-page: 5 year: 2013 end-page: 9 publication-title: Electrochem. Commun. – volume: 49 start-page: 8973 year: 2013 end-page: 8975 publication-title: Chem. Commun. – volume: 22 start-page: 24618 year: 2012 end-page: 24626 publication-title: J. Mater. Chem. – volume: 299 start-page: 377 year: 2003 end-page: 379 publication-title: Science – volume: 331 start-page: 746 year: 2011 end-page: 750 publication-title: Science – volume: 23 start-page: 947 year: 2013 end-page: 958 publication-title: Adv. Funct. Mater. – volume: 70 start-page: 045422 year: 2004 publication-title: Phys. Rev. B – volume: 28 start-page: 965 year: 2012 end-page: 976 publication-title: Langmuir – volume: 2 start-page: 2504 year: 2014 end-page: 2516 publication-title: J. Mater. Chem. A – volume: 134 start-page: 20805 year: 2012 end-page: 20811 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 2172 year: 2010 end-page: 2176 publication-title: Adv. Mater. – volume: 3–4 start-page: 165 year: 1981 end-page: 169 publication-title: Solid State Ionics – volume: 24 start-page: 3589 year: 2012 end-page: 3615 publication-title: Adv. Mater. – volume: 19 start-page: 6789 year: 2009 end-page: 6795 publication-title: J. Mater. Chem. – volume: 24 start-page: 543 year: 2012 end-page: 551 publication-title: Chem. Mater. – volume: 102 start-page: 9392 year: 1998 end-page: 9396 publication-title: J. Phys. Chem. B – volume: 159 start-page: 515 year: 2012 end-page: 519 publication-title: J. Electrochem. Soc. – volume: 23 start-page: 5530 year: 2013 end-page: 5535 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 3680 year: 2011 end-page: 3688 publication-title: Energy Environ. Sci. – volume: 137 start-page: 3124 year: 2015 end-page: 3130 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1021 year: 2013 publication-title: Sci. Rep. – volume: 1 start-page: 12850 year: 2013 end-page: 12861 publication-title: J. Mater. Chem. A – volume: 53 126 start-page: 2910 2954 year: 2014 2014 end-page: 2914 2958 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 623 year: 2015 end-page: 636 publication-title: Chem. Soc. Rev. – volume: 21 start-page: 5681 year: 2009 end-page: 5690 publication-title: Chem. Mater. – volume: 114 start-page: 11636 year: 2014 end-page: 11682 publication-title: Chem. Rev. – volume: 424 start-page: 1015 year: 2003 end-page: 1018 publication-title: Nature – volume: 28 start-page: 6175 year: 2012 end-page: 6184 publication-title: Langmuir – volume: 26 start-page: 2901 year: 2014 end-page: 2908 publication-title: Adv. Mater. – volume: 15 start-page: 13646 year: 2013 end-page: 13657 publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 2820 year: 2014 end-page: 2825 publication-title: Small – ident: e_1_2_3_2_2 doi: 10.1126/science.1200448 – ident: e_1_2_3_36_2 – ident: e_1_2_3_16_2 doi: 10.1016/0167-2738(81)90076-X – ident: e_1_2_3_33_2 doi: 10.1021/la300306v – ident: e_1_2_3_13_2 doi: 10.1021/jacs.5b00336 – ident: e_1_2_3_8_2 doi: 10.1002/adfm.201301205 – ident: e_1_2_3_21_2 doi: 10.1149/2.jes111637 – ident: e_1_2_3_14_2 – ident: e_1_2_3_28_2 – ident: e_1_2_3_35_2 doi: 10.1021/la203712s – ident: e_1_2_3_25_2 – ident: e_1_2_3_34_2 doi: 10.1002/adma.201304962 – ident: e_1_2_3_4_2 doi: 10.1038/nature01878 – ident: e_1_2_3_10_2 – ident: e_1_2_3_5_2 doi: 10.1126/science.1078962 – ident: e_1_2_3_6_2 doi: 10.1103/PhysRevB.70.045422 – ident: e_1_2_3_19_2 – ident: e_1_2_3_41_2 doi: 10.1039/c3ta12964k – ident: e_1_2_3_26_2 doi: 10.1021/jp9825922 – ident: e_1_2_3_30_2 doi: 10.1038/srep01021 – ident: e_1_2_3_32_2 – ident: e_1_2_3_15_2 doi: 10.1039/c1ee01782a – ident: e_1_2_3_24_2 doi: 10.1002/anie.201309759 – ident: e_1_2_3_1_2 – ident: e_1_2_3_27_2 doi: 10.1021/cm9023887 – ident: e_1_2_3_37_2 doi: 10.1039/c3cp52485j – ident: e_1_2_3_38_2 doi: 10.1039/c2jm35125k – ident: e_1_2_3_7_2 – ident: e_1_2_3_31_2 doi: 10.1039/b908025b – ident: e_1_2_3_42_2 doi: 10.1002/adma.200903951 – ident: e_1_2_3_40_2 doi: 10.1021/cm402451h – ident: e_1_2_3_17_2 doi: 10.1039/c3cc45254a – ident: e_1_2_3_29_2 doi: 10.1002/smll.201303548 – ident: e_1_2_3_9_2 doi: 10.1021/cm2031009 – ident: e_1_2_3_23_2 doi: 10.1021/nl4035626 – ident: e_1_2_3_39_2 doi: 10.1039/C3TA14302C – ident: e_1_2_3_18_2 doi: 10.1016/j.elecom.2013.02.020 – ident: e_1_2_3_20_2 doi: 10.1021/ja310347x – ident: e_1_2_3_11_2 doi: 10.1021/cr500192f – ident: e_1_2_3_22_2 doi: 10.1002/adma.201200397 – ident: e_1_2_3_12_2 doi: 10.1002/adfm.201200691 – ident: e_1_2_3_24_3 doi: 10.1002/ange.201309759 – ident: e_1_2_3_3_2 doi: 10.1039/C4CS00236A |
SSID | ssj0028806 |
Score | 2.559886 |
Snippet | The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8768 |
SubjectTerms | alumina Anodes Coating Diffusion coefficient Electric batteries Electrical conductivity Energy storage molybdenum nanomaterials Nanostructure Oxygen oxygen vacancies Sodium sodium ion batteries Vacancies |
Title | Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies |
URI | https://api.istex.fr/ark:/67375/WNG-23P99W11-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201503477 https://www.ncbi.nlm.nih.gov/pubmed/26111350 https://www.proquest.com/docview/1696152342 https://www.proquest.com/docview/1696886186 https://www.proquest.com/docview/1744682369 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI_QeIAXxjeFbQoSgqdubT6a9nGabuyQOCZgbOIlipNUoLEW7e6kHX_94uba7RAfEry1qiMlsZ3Yrv0zIS-kV0pKVWOWuEqFL11ahXs4lQgcA4YX3GMc8u2kODgSb07kybUq_ogPMQTcUDO68xoV3MB05wo0FCuwMTVLZlwoLCfHhC20it4P-FEsCGcsL-I8xS70PWpjxnZWh6_cSjdxgy9-ZXKuWrDdFbS_Tkw_-Zh5cro9n8G2_fETruP_rO4uubO0T-luFKh75IZv7pNbe31buAdkPGq-oKRgVJG2Nf3Quq_zMzpuGxqxOhf08KoYgY662ixHYUHfXSyCtNJPxnYdgacPydH-6OPeQbrsx5BaGSaRgsjBVaJw1qBVWEMwZrLMgnRlaSsjFChmOWDFCeTgDUDpBUjrTFYq6xh_RNaatvFPCOWuzBUPzqC0taighlKaIpwf4D0vBOQJSXt-aLsEK8eeGd90hFlmGjdIDxuUkFcD_fcI0_Fbypcdewcyc36KyW1K6uPJa834YVUdB6foc0I2ev7rpV5PdV5UwQRkXLCEPB8-Bw7gbxbT-HYeacoS-xD8gUYFNxx7zVcJeRxla5hQ8GnznMssIayTkL8sSO9OxqPh7em_DHpGbuMzhqxZtkHWZudzvxlsrRlsdfp0Cc4aHOs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8oPOCL30IFdU2MPhXa_ei2jwQP7xROoiDGl01nu40EbA3cJRx_vTvtteSMH4k-tp1N9mNmd3Y68_sBvFBOa6V0SVniOpQuLcLMn8OhIuAYzEUiHMUh98fJ8Ei-_ay6bEKqhWnxIfqAG1lGs1-TgVNAeusaNZRKsCk3S0VCan0TlonWm-DzX3_oEaS4V8-2wEiIkHjoO9zGiG8ttl84l5Zpii9_5XQu-rDNIbR7B7Drfpt7cro5neCmvfoJ2fG_xncXbs9dVLbd6tQ9uOGq-7Cy0zHDPYDRoPpKykKBRVaX7GNdnEy_sVFdsRauc8YOrusR2KApzyoYztj7y5lXWPYptw0p8MVDONodHO4MwzklQ2iV70SIMsYik0lhc3IMS_T-TBRZVEWa2iyXGjW3AqnoBGN0OWLqJCpb5FGqbcHFI1iq6sqtARNFGmvh74PKljLDElOVJ34LQedEIjEOIOwWxNg5XjnRZpyZFmmZG5og009QAK96-e8tUsdvJV8269uL5eenlN-mlTkevzFcHGTZsb8XfQlgo1MAMzftCxMnmfcCuZA8gOf9Z78C9Kclr1w9bWXSlKgI_iCj_U2c6OazAFZb5eo75K-1cSxUFABvVOQvAzLb49Ggf3r8L42ewcrwcH_P7I3G79bhFr2nCDaPNmBpcj51T7zrNcGnjXH9AJ5dIQc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BK0FfuI9AASMheEqb-IiTx6rdpcuxrIDSqi-Wr6iokFTtrtTl1-NJNimLOCR4TDKWbM-MPTOZ-QbgmfBSCiFLzBKXMfe5i4twD8cCgWOMZhnzGId8O8529_irA3HwQxV_iw_RB9xQM5rzGhX8xJWbF6ChWIGNqVkiYVzKy7DKs6TA5g0773sAKRqks60vYizGNvQdbGNCN5fHL11Lq7jD57-yOZdN2OYOGl4H3c2-TT053phNzYb99hOw4_8s7wZcWxioZKuVqJtwyVe34Op21xfuNowG1RGKCoYVSV2SD7X7PPtKRnVFWrDOOZlcVCOQQVOc5YiZk3fn8yCu5JO2TUvgszuwNxx83N6NFw0ZYivCJGLDU-MKnjmr0SwsTbBmksQa4fLcFppLI6llBktOTGq8Nib33AjrdJJL6yi7CytVXfn7QJjLU8mCNyhsyQtTmlzoLBwgxnuWcZNGEHf8UHaBVo5NM76oFmeZKtwg1W9QBC96-pMWp-O3lM8b9vZk-vQYs9ukUPvjl4qySVHsB6_oMIL1jv9qodhnKs2KYANSxmkET_vPgQP4n0VXvp61NHmOjQj-QCODH47N5osI7rWy1U8oOLVpykQSAW0k5C8LUlvj0aB_evAvg57AlcnOUL0ZjV8_hDV8jeFrmqzDyvR05h8Fu2tqHjeq9R0TKR-2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+Sodium+Ion+Battery+Performance+Enabled+by+Oxygen+Vacancies&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Yang&rft.au=Zhou%2C+Min&rft.au=Wang%2C+Xin&rft.au=Wang%2C+Chengliang&rft.date=2015-07-20&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=30&rft.spage=8768&rft.epage=8771&rft_id=info:doi/10.1002%2Fanie.201503477&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201503477 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |