Molecular dissection of plasmacytoid dendritic cell activation in vivo during a viral infection
Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors (TLRs) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle...
Saved in:
Published in | The EMBO journal Vol. 37; no. 19 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2018
Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors (TLRs) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN‐I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN‐I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that
in vivo
during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN‐I downstream of the TLR9‐to‐MyD88‐to‐IRF7 signaling pathway without requiring IFN‐I positive feedback, high IRF7 expression, or AP3‐driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN‐I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.
Synopsis
In vivo
production of IFN‐I by pDC requires TLR9‐to‐MyD88‐to‐IRF7 signaling both during MCMV infection and CpG injection but IFN‐I positive feedback and AP3 function only for CpG. Hence, distinct mechanisms tune pDC responses to TLR9 triggering by synthetic ligands versus a viral infection.
TLR, IFN‐I and IFN‐γ differentially contribute to pDC activation during MCMV infection, driving largely distinct gene expression programs.
During MCMV infection but not CpG injection, pDC can produce IFN‐I
in vivo
independently of IFN‐I positive feedback and AP3‐mediated routing.
IRF7 is necessary for IFN‐I production by pDC, but low amounts are sufficient to endow them with this function.
Cell‐intrinsic LFA‐1 functions and hence cell‐cell interactions promote pDC cytokine production both during MCMV infection and CpG injection, but their precise nature remains unknown.
Graphical Abstract
Physiological settings for studying activation of interferon‐producing pDCs reveal dispensability of high basal IRF7 expression and positive IFN‐I feedback signals previously implicated based on testing with synthetic ligands. |
---|---|
AbstractList | Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors (TLRs) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN‐I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN‐I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN‐I downstream of the TLR9‐to‐MyD88‐to‐IRF7 signaling pathway without requiring IFN‐I positive feedback, high IRF7 expression, or AP3‐driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN‐I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.
Synopsis
In vivo production of IFN‐I by pDC requires TLR9‐to‐MyD88‐to‐IRF7 signaling both during MCMV infection and CpG injection but IFN‐I positive feedback and AP3 function only for CpG. Hence, distinct mechanisms tune pDC responses to TLR9 triggering by synthetic ligands versus a viral infection.
TLR, IFN‐I and IFN‐γ differentially contribute to pDC activation during MCMV infection, driving largely distinct gene expression programs.
During MCMV infection but not CpG injection, pDC can produce IFN‐I in vivo independently of IFN‐I positive feedback and AP3‐mediated routing.
IRF7 is necessary for IFN‐I production by pDC, but low amounts are sufficient to endow them with this function.
Cell‐intrinsic LFA‐1 functions and hence cell‐cell interactions promote pDC cytokine production both during MCMV infection and CpG injection, but their precise nature remains unknown.
Physiological settings for studying activation of interferon‐producing pDCs reveal dispensability of high basal IRF7 expression and positive IFN‐I feedback signals previously implicated based on testing with synthetic ligands. Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors (TLRs) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN‐I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN‐I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN‐I downstream of the TLR9‐to‐MyD88‐to‐IRF7 signaling pathway without requiring IFN‐I positive feedback, high IRF7 expression, or AP3‐driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN‐I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection. Plasmacytoid dendritic cells ( pDC ) are the major source of type I interferons ( IFN ‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors ( TLR s) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA , respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP 3 is necessary to transport molecular complexes of TLR s, synthetic CpG DNA , and MyD88 into endosomal compartments allowing interferon regulatory factor 7 ( IRF 7) recruitment whose phosphorylation then initiates IFN ‐I production. High basal expression of IRF 7 by pDC and its further enhancement by positive IFN ‐I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus ( MCMV ) infection pDC produce high amounts of IFN ‐I downstream of the TLR 9‐to‐MyD88‐to‐ IRF 7 signaling pathway without requiring IFN ‐I positive feedback, high IRF 7 expression, or AP 3‐driven endosomal routing of TLR s. Hence, the current model of the molecular requirements for professional IFN ‐I production by pDC , established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection. Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like receptors (TLRs) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN-I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN-I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN-I downstream of the TLR9-to-MyD88-to-IRF7 signaling pathway without requiring IFN-I positive feedback, high IRF7 expression, or AP3-driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN-I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection. Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors (TLRs) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN‐I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN‐I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN‐I downstream of the TLR9‐to‐MyD88‐to‐IRF7 signaling pathway without requiring IFN‐I positive feedback, high IRF7 expression, or AP3‐driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN‐I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection. Synopsis In vivo production of IFN‐I by pDC requires TLR9‐to‐MyD88‐to‐IRF7 signaling both during MCMV infection and CpG injection but IFN‐I positive feedback and AP3 function only for CpG. Hence, distinct mechanisms tune pDC responses to TLR9 triggering by synthetic ligands versus a viral infection. TLR, IFN‐I and IFN‐γ differentially contribute to pDC activation during MCMV infection, driving largely distinct gene expression programs. During MCMV infection but not CpG injection, pDC can produce IFN‐I in vivo independently of IFN‐I positive feedback and AP3‐mediated routing. IRF7 is necessary for IFN‐I production by pDC, but low amounts are sufficient to endow them with this function. Cell‐intrinsic LFA‐1 functions and hence cell‐cell interactions promote pDC cytokine production both during MCMV infection and CpG injection, but their precise nature remains unknown. Graphical Abstract Physiological settings for studying activation of interferon‐producing pDCs reveal dispensability of high basal IRF7 expression and positive IFN‐I feedback signals previously implicated based on testing with synthetic ligands. Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like receptors (TLRs) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN-I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN-I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN-I downstream of the TLR9-to-MyD88-to-IRF7 signaling pathway without requiring IFN-I positive feedback, high IRF7 expression, or AP3-driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN-I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like receptors (TLRs) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN-I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN-I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN-I downstream of the TLR9-to-MyD88-to-IRF7 signaling pathway without requiring IFN-I positive feedback, high IRF7 expression, or AP3-driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN-I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection. |
Author | Chelbi, Rabie Pollet, Emeline Abbas, Abdenour Lawrence, Toby Pierre, Philippe Naciri, Karima Bessou, Gilles Tomasello, Elena Vu Manh, Thien‐Phong Fries, Anissa Dalod, Marc Gressier, Elise |
AuthorAffiliation | 3 Present address: Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Vic. Australia 1 Aix Marseille Univ CNRS INSERM CIML Centre d'Immunologie de Marseille‐Luminy Marseille France 2 Present address: Department of Dermatology University Hospital CHUV Lausanne Switzerland |
AuthorAffiliation_xml | – name: 2 Present address: Department of Dermatology University Hospital CHUV Lausanne Switzerland – name: 3 Present address: Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Vic. Australia – name: 1 Aix Marseille Univ CNRS INSERM CIML Centre d'Immunologie de Marseille‐Luminy Marseille France |
Author_xml | – sequence: 1 givenname: Elena surname: Tomasello fullname: Tomasello, Elena email: tomasell@ciml.univ-mrs.fr organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy – sequence: 2 givenname: Karima surname: Naciri fullname: Naciri, Karima organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy – sequence: 3 givenname: Rabie surname: Chelbi fullname: Chelbi, Rabie organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy – sequence: 4 givenname: Gilles surname: Bessou fullname: Bessou, Gilles organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy – sequence: 5 givenname: Anissa surname: Fries fullname: Fries, Anissa organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy, Department of Dermatology, University Hospital CHUV – sequence: 6 givenname: Elise surname: Gressier fullname: Gressier, Elise organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne – sequence: 7 givenname: Abdenour surname: Abbas fullname: Abbas, Abdenour organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy – sequence: 8 givenname: Emeline surname: Pollet fullname: Pollet, Emeline organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy – sequence: 9 givenname: Philippe orcidid: 0000-0003-0863-8255 surname: Pierre fullname: Pierre, Philippe organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy – sequence: 10 givenname: Toby surname: Lawrence fullname: Lawrence, Toby organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy – sequence: 11 givenname: Thien‐Phong surname: Vu Manh fullname: Vu Manh, Thien‐Phong organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy – sequence: 12 givenname: Marc orcidid: 0000-0002-6436-7966 surname: Dalod fullname: Dalod, Marc email: dalod@ciml.univ-mrs.fr organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30131424$$D View this record in MEDLINE/PubMed https://hal.science/hal-02117981$$DView record in HAL |
BookMark | eNqFks1u1DAUhS1URKeFNTsUiQ1dpPV1HCdhgVSqQkFTsYG1cWyn9Sixp3YSNG_TZ-HJcCZtKSNVrCxdf-fc3wO0Z53VCL0GfAw5ycmJ7urVMcFQVGWZsWdoAZThlOAi30MLTBikFMpqHx2EsMIY52UBL9B-hiEDSugC_bx0rZZDK3yiTAha9sbZxDXJuhWhE3LTO6MSpa3ypjcykbptExGpUWxJY3_fjmZ0iRq8sVeJSEbjRRvjzez1Ej1vRBv0q7v3EP34dP797CJdfvv85ex0mcqcFiwttC6pKKXKpCSalJiJKiO4AlrHkkkNdUGzShBQtMqV0EpDU0Wh1FDXOGPZIfow-66HutNKatvHOvjam074DXfC8H9_rLnmV27kDBiDjESDo9ngekd2cbrkUwwTmMYMI0T23V0y724GHXremTCNRljthsCnwkvICzahb3fQlRu8jaPg0Y_mrKC0jNSbx9U_5L9fVATyGZDeheB1w6XptyuIzZiWA-bbg-DTQfCHg4i6kx3dvfXTivez4pdp9eZ_OD-__Pj1sRjP4rCezkH7v90-le8PPRTaOQ |
CitedBy_id | crossref_primary_10_1126_sciimmunol_abc7302 crossref_primary_10_7554_eLife_78873 crossref_primary_10_7554_eLife_56882 crossref_primary_10_1016_j_heliyon_2024_e39176 crossref_primary_10_1186_s12863_021_00991_2 crossref_primary_10_3389_fimmu_2024_1360291 crossref_primary_10_3389_fimmu_2020_607442 crossref_primary_10_3389_fimmu_2021_672729 crossref_primary_10_7554_eLife_74072 crossref_primary_10_1002_eji_202149513 crossref_primary_10_1016_j_it_2021_07_004 crossref_primary_10_3389_fgene_2023_1207233 crossref_primary_10_3390_cells12111504 crossref_primary_10_1016_j_isci_2021_103059 crossref_primary_10_1038_s41590_023_01472_7 crossref_primary_10_3892_etm_2019_8161 crossref_primary_10_1016_j_isci_2021_102402 crossref_primary_10_1146_annurev_immunol_090122_041105 crossref_primary_10_3390_ijms22084190 crossref_primary_10_1038_s41590_023_01454_9 crossref_primary_10_3390_cells11193149 crossref_primary_10_1002_eji_202048566 crossref_primary_10_1155_2020_7418342 crossref_primary_10_1038_s41423_024_01167_5 crossref_primary_10_1038_s41467_024_55692_y crossref_primary_10_1016_j_immuni_2022_10_005 crossref_primary_10_1155_2019_7596786 crossref_primary_10_3390_ijms23137325 crossref_primary_10_3390_v12091039 crossref_primary_10_1016_j_celrep_2022_111260 crossref_primary_10_1002_cti2_1139 crossref_primary_10_1042_CS20210577 crossref_primary_10_4049_jimmunol_1900297 crossref_primary_10_1038_s41590_020_0731_4 crossref_primary_10_1016_j_molimm_2022_05_009 crossref_primary_10_1016_j_bbi_2021_04_018 crossref_primary_10_1016_j_immuni_2018_12_027 |
Cites_doi | 10.1016/j.bbrc.2006.01.122 10.1002/eji.200636767 10.1016/j.immuni.2015.03.003 10.1038/ni736 10.1016/j.immuni.2013.10.004 10.4049/jimmunol.1400215 10.4161/onci.24212 10.1084/jem.20011666 10.4049/jimmunol.175.10.6723 10.1126/science.1187029 10.1371/journal.ppat.0030123 10.1038/nature01783 10.1371/journal.ppat.1003648 10.1158/0008-5472.CAN-12-3058 10.1038/nature03308 10.1189/jlb.0912452 10.1128/JVI.01714-13 10.1089/jir.2013.0110 10.1084/jem.20041930 10.3389/fmicb.2016.00771 10.4049/jimmunol.170.9.4465 10.1038/nature04641 10.1182/blood-2008-03-143370 10.1016/j.immuni.2016.09.011 10.1016/S0014-5793(98)01514-2 10.1371/journal.ppat.1004897 10.1083/jcb.201501059 10.1002/embj.201488027 10.1038/35073080 10.1002/eji.200636745 10.1016/j.cell.2015.12.032 10.1186/gb-2008-9-1-r17 10.1016/j.immuni.2010.11.020 10.1073/pnas.1002301107 10.1172/JCI44960 10.1016/j.immuni.2017.01.003 10.1016/j.immuni.2016.06.006 10.1093/emboj/17.22.6660 10.4049/jimmunol.1303135 10.4049/jimmunol.1102038 10.1016/j.chom.2012.09.002 10.1038/11360 10.1038/nature03547 10.1016/j.immuni.2018.03.013 10.1126/science.284.5421.1835 10.1016/j.celrep.2016.09.055 10.4049/jimmunol.1402001 10.3389/fimmu.2014.00526 10.4049/jimmunol.0804315 10.4049/jimmunol.180.9.5799 10.1093/intimm/dxv062 10.1038/nature03464 10.1084/jem.20011672 10.1073/pnas.1014051107 10.1038/ni.3200 10.1038/s41467-017-01687-x 10.1080/08820130701715845 10.1371/journal.ppat.1003728 10.3389/fimmu.2015.00299 10.4049/jimmunol.175.6.4000 10.1002/eji.201243106 10.1182/blood-2005-07-2709 10.1371/journal.ppat.1004434 10.3389/fmicb.2014.00378 10.1084/jem.20021522 10.1038/nature04724 10.1074/jbc.M112.345405 10.1002/eji.201343806 10.1016/j.immuni.2004.06.007 10.1038/nri3865 10.1016/j.chom.2012.08.010 10.1126/scisignal.aan4144 10.1016/S0166-0934(00)00202-0 10.1093/intimm/dxm119 10.1182/blood-2008-06-162651 10.1074/jbc.M501289200 10.1016/j.immuni.2012.09.014 10.4049/jimmunol.166.4.2291 10.1182/blood-2015-06-650689 10.1016/S0092-8674(01)00599-2 10.4049/jimmunol.1003349 10.1073/pnas.0808537105 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license. 2018 EMBO Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license – notice: 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license. – notice: 2018 EMBO – notice: Attribution - NonCommercial - NoDerivatives |
DBID | C6C 24P AAYXX CITATION NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
DOI | 10.15252/embj.201798836 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Elena Tomasello et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | PMC6166132 oai_HAL_hal_02117981v1 30131424 10_15252_embj_201798836 EMBJ201798836 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche grantid: ANR‐10‐INSB‐04‐01; ANR‐15‐CE15‐0006‐01; ANR‐11‐LABEX‐0043; ANR‐10‐IDEX‐0001‐02; ANR‐11‐IDEX‐0001‐02 funderid: 10.13039/501100001665 – fundername: Fondation pour la Recherche Médicale grantid: DEQ20110421284 funderid: 10.13039/501100002915 – fundername: European Research Council under the European Community's Seventh Framework Programme grantid: 281225 funderid: 10.13039/100011102 – fundername: Fondation pour la Recherche Médicale funderid: DEQ20110421284 – fundername: Agence Nationale de la Recherche funderid: ANR‐10‐INSB‐04‐01; ANR‐15‐CE15‐0006‐01; ANR‐11‐LABEX‐0043; ANR‐10‐IDEX‐0001‐02; ANR‐11‐IDEX‐0001‐02 – fundername: European Research Council under the European Community's Seventh Framework Programme funderid: 281225 – fundername: Agence Nationale de la Recherche grantid: ANR‐10‐INSB‐04‐01; ANR‐15‐CE15‐0006‐01; ANR‐11‐LABEX‐0043; ANR‐10‐IDEX‐0001‐02; ANR‐11‐IDEX‐0001‐02 – fundername: Fondation pour la Recherche Médicale grantid: DEQ20110421284 – fundername: European Research Council under the European Community's Seventh Framework Programme grantid: 281225 |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI .55 3O- 4.4 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 AANHP AASML AAYXX ABUWG ABZEH ACBWZ ACKIV ACRPL ACYXJ ADNMO AEUYN AFKRA AGQPQ AI. ASPBG AVWKF AZQEC BBNVY BHPHI BKSAR BPHCQ BVXVI C1A CAG CCPQU CITATION COF D1J DWQXO FA8 FEDTE FYUFA GNUQQ GODZA GUQSH H13 HCIFZ HMCUK HVGLF H~9 LH4 LK8 LW6 M1P M2O M7P NAO PCBAR PHGZM PHGZT PQQKQ PROAC PSQYO RIG RNI RZO UKHRP VH1 WOQ X7M XSW Y6R YYP ZGI ZXP NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c5476-7ee84a8cd3cc2e2806a9320914b8712b1b7439a21d495daede1f9476ce1bb0363 |
IEDL.DBID | 24P |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:20:29 EDT 2025 Fri May 09 12:25:24 EDT 2025 Fri Jul 11 04:12:56 EDT 2025 Fri Jul 25 10:54:53 EDT 2025 Wed Feb 19 02:42:59 EST 2025 Tue Jul 01 02:06:03 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Wed Jan 22 16:29:24 EST 2025 Fri Feb 21 02:37:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | IRF7 plasmacytoid dendritic cells viral infection mouse cytomegalovirus type I interferons Virology & Host Pathogen Interaction Microbiology viral infection Subject Categories Immunology |
Language | English |
License | Attribution 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license. Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5476-7ee84a8cd3cc2e2806a9320914b8712b1b7439a21d495daede1f9476ce1bb0363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work These authors contributed equally to this work as senior authors |
ORCID | 0000-0003-0863-8255 0000-0002-6436-7966 0000-0002-0294-342X 0000-0003-0967-6122 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798836 |
PMID | 30131424 |
PQID | 2114567448 |
PQPubID | 35985 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6166132 hal_primary_oai_HAL_hal_02117981v1 proquest_miscellaneous_2091815761 proquest_journals_2114567448 pubmed_primary_30131424 crossref_citationtrail_10_15252_embj_201798836 crossref_primary_10_15252_embj_201798836 wiley_primary_10_15252_embj_201798836_EMBJ201798836 springer_journals_10_15252_embj_201798836 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 01 October 2018 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 01 October 2018 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: EMBO Press – name: John Wiley and Sons Inc |
References | Sato, Hata, Asagiri, Nakaya, Taniguchi, Tanaka (CR57) 1998; 441 Asselin‐Paturel, Brizard, Chemin, Boonstra, O'Garra, Vicari, Trinchieri (CR3) 2005; 201 Robbins, Walzer, Dembele, Thibault, Defays, Bessou, Xu, Vivier, Sellars, Pierre, Sharp, Chan, Kastner, Dalod (CR54) 2008; 9 Swiecki, Gilfillan, Vermi, Wang, Colonna (CR64) 2010; 33 Dalod, Salazar‐Mather, Malmgaard, Lewis, Asselin‐Paturel, Briere, Trinchieri, Biron (CR12) 2002; 195 Mostafavi, Yoshida, Moodley, LeBoite, Rothamel, Raj, Ye, Chevrier, Zhang, Feng, Lee, Casanova, Clark, Hegen, Telliez, Hacohen, De Jager, Regev, Mathis, Benoist (CR44) 2016; 164 Dreux, Garaigorta, Boyd, Decembre, Chung, Whitten‐Bauer, Wieland, Chisari (CR19) 2012; 12 Tomasello, Pollet, Vu Manh, Uze, Dalod (CR73) 2014; 5 O'Brien, Manches, Sabado, Baranda, Wang, Marie, Rolnitzky, Markowitz, Margolis, Levy, Bhardwaj (CR45) 2011; 121 Alexandre, Cocita, Ghilas, Dalod (CR1) 2014; 5 Sasai, Linehan, Iwasaki (CR56) 2010; 329 Puttur, Francozo, Solmaz, Bueno, Lindenberg, Gohmert, Swallow, Tufa, Jacobs, Lienenklaus, Kuhl, Borkner, Cicin‐Sain, Holzmann, Wagner, Berod, Sparwasser (CR52) 2016; 17 Tamoutounour, Guilliams, Montanana Sanchis, Liu, Terhorst, Malosse, Pollet, Ardouin, Luche, Sanchez, Dalod, Malissen, Henri (CR70) 2013; 39 Frenz, Graalmann, Detje, Doring, Grabski, Scheu, Kalinke (CR21) 2014; 193 Luche, Weber, Nageswara Rao, Blum, Fehling (CR39) 2007; 37 Brewitz, Eickhoff, Dahling, Quast, Bedoui, Kroczek, Kurts, Garbi, Barchet, Iannacone, Klauschen, Kolanus, Kaisho, Colonna, Germain, Kastenmuller (CR8) 2017; 46 Waterstrat, Liang, Swiderski, Shelton, Van Zant (CR76) 2010; 115 Hara, Nakamura, Matsui, Yamamoto, Nakahara, Suzuki‐Migishima, Yokoyama, Mishima, Saito, Okano, Mizushima (CR24) 2006; 441 Vu Manh, Alexandre, Baranek, Crozat, Dalod (CR74) 2013; 43 Hayashi, Taura, Iwasaki (CR25) 2018; 11 Hagberg, Berggren, Leonard, Weber, Bryceson, Alm, Eloranta, Ronnblom (CR23) 2011; 186 Swiecki, Colonna (CR67) 2015; 15 Zucchini, Bessou, Traub, Robbins, Uematsu, Akira, Alexopoulou, Dalod (CR82) 2008; 180 Hoshino, Sugiyama, Matsumoto, Tanaka, Saito, Hemmi, Ohara, Akira, Kaisho (CR31) 2006; 440 Kumagai, Kumar, Koyama, Kawai, Takeuchi, Akira (CR37) 2009; 182 Baratin, Foray, Demaria, Habbeddine, Pollet, Maurizio, Verthuy, Davanture, Azukizawa, Flores‐Langarica, Dalod, Lawrence (CR5) 2015; 42 Henault, Martinez, Riggs, Tian, Mehta, Clarke, Sasai, Latz, Brinkmann, Iwasaki, Coyle, Kolbeck, Green, Sanjuan (CR27) 2012; 37 Dalod, Chelbi, Malissen, Lawrence (CR14) 2014; 33 Prandini, Salvi, Colombo, Moratto, Lorenzi, Vermi, De Francesco, Notarangelo, Porta, Plebani, Facchetti, Sozzani, Badolato (CR50) 2016; 127 Takaoka, Yanai, Kondo, Duncan, Negishi, Mizutani, Kano, Honda, Ohba, Mak, Taniguchi (CR69) 2005; 434 Garcia‐Nicolas, Auray, Sautter, Rappe, McCullough, Ruggli, Summerfield (CR22) 2016; 7 Prakash, Levy (CR49) 2006; 342 Blasius, Arnold, Georgel, Rutschmann, Xia, Lin, Ross, Li, Smart, Beutler (CR7) 2010; 107 Kim, Kaiser, Beier, Bechheim, Guenthner‐Biller, Ablasser, Berger, Endres, Hartmann, Hornung (CR35) 2014; 44 Vu Manh, Elhmouzi‐Younes, Urien, Ruscanu, Jouneau, Bourge, Moroldo, Foucras, Salmon, Marty, Quere, Bertho, Boudinot, Dalod, Schwartz‐Cornil (CR75) 2015; 6 Yin, Dai, Deng, Sheikh, Natalia, Shih, Lewis‐Antes, Amrute, Garrigues, Doyle, Donnelly, Kotenko, Fitzgerald‐Bocarsly (CR79) 2012; 189 Robbins, Bessou, Cornillon, Zucchini, Rupp, Ruzsics, Sacher, Tomasello, Vivier, Koszinowski, Dalod (CR53) 2007; 3 Malleret, Maneglier, Karlsson, Lebon, Nascimbeni, Perie, Brochard, Delache, Calvo, Andrieu, Spreux‐Varoquaux, Hosmalin, Le Grand, Vaslin (CR41) 2008; 112 Takahashi, Asabe, Wieland, Garaigorta, Gastaminza, Isogawa, Chisari (CR68) 2010; 107 Cella, Jarrossay, Facchetti, Alebardi, Nakajima, Lanzavecchia, Colonna (CR10) 1999; 5 Delale, Paquin, Asselin‐Paturel, Dalod, Brizard, Bates, Kastner, Chan, Akira, Vicari, Biron, Trinchieri, Briere (CR17) 2005; 175 Ohto, Ishida, Shibata, Sato, Miyake, Shimizu (CR46) 2018; 48 Dalod, Hamilton, Salomon, Salazar‐Mather, Henry, Hamilton, Biron (CR13) 2003; 197 Fonteneau, Guillerme, Tangy, Gregoire (CR20) 2013; 2 Terawaki, Camosseto, Prete, Wenger, Papadopoulos, Rondeau, Combes, Rodriguez Rodrigues, Vu Manh, Fallet, English, Santamaria, Soares, Weil, Hammad, Desjardins, Gorvel, Santos, Gatti, Pierre (CR72) 2015; 210 Diebold, Montoya, Unger, Alexopoulou, Roy, Haswell, Al‐Shamkhani, Flavell, Borrow, Reis e Sousa (CR18) 2003; 424 Kerkmann, Rothenfusser, Hornung, Towarowski, Wagner, Sarris, Giese, Endres, Hartmann (CR34) 2003; 170 Wu, Sanin, Everts, Chen, Qiu, Buck, Patterson, Smith, Chang, Liu, Artyomov, Pearce, Cella, Pearce (CR78) 2016; 44 Scheu, Dresing, Locksley (CR58) 2008; 105 Wieland, Takahashi, Boyd, Whitten‐Bauer, Ngo, de la Torre, Chisari (CR77) 2014; 88 Kadowaki, Antonenko, Liu (CR33) 2001; 166 Megjugorac, Jacobs, Izaguirre, George, Gupta, Fitzgerald‐Bocarsly (CR43) 2007; 36 Henry, Schmader, Brown, Miller, Howell, Daley, Hamilton (CR28) 2000; 89 Hemont, Neel, Heslan, Braudeau, Josien (CR26) 2013; 93 Strobl, Bubic, Bruns, Steinborn, Lajko, Kolbe, Karaghiosoff, Kalinke, Jonjic, Muller (CR63) 2005; 175 Pauls, Shpiro, Peggie, Young, Sorcek, Tan, Choi, Cohen (CR47) 2012; 287 Swiecki, Wang, Riboldi, Kim, Dzutsev, Gilfillan, Vermi, Ruedl, Trinchieri, Colonna (CR66) 2014; 192 Swiecki, Wang, Gilfillan, Colonna (CR65) 2013; 9 Zhang, Ohto, Shibata, Krayukhina, Taoka, Yamauchi, Tanji, Isobe, Uchiyama, Miyake, Shimizu (CR80) 2016; 45 Schmitz, Heit, Guggemoos, Krug, Mages, Schiemann, Adler, Drexler, Haas, Lang, Wagner (CR60) 2007; 37 Zucchini, Bessou, Robbins, Chasson, Raper, Crocker, Dalod (CR81) 2008; 20 Decembre, Assil, Hillaire, Dejnirattisai, Mongkolsapaya, Screaton, Davidson, Dreux (CR15) 2014; 10 Honda, Ohba, Yanai, Negishi, Mizutani, Takaoka, Taya, Taniguchi (CR29) 2005; 434 Marie, Durbin, Levy (CR42) 1998; 17 Honda, Yanai, Negishi, Asagiri, Sato, Mizutani, Shimada, Ohba, Takaoka, Yoshida, Taniguchi (CR30) 2005; 434 Baranek, Manh, Alexandre, Maqbool, Cabeza, Tomasello, Crozat, Bessou, Zucchini, Robbins, Vivier, Kalinke, Ferrier, Dalod (CR4) 2012; 12 Le Mercier, Poujol, Sanlaville, Sisirak, Gobert, Durand, Dubois, Treilleux, Marvel, Vlach, Blay, Bendriss‐Vermare, Caux, Puisieux, Goutagny (CR38) 2013; 73 Madera, Sun (CR40) 2015; 194 Cao, Bonizzi, Seagroves, Greten, Johnson, Schmidt, Karin (CR9) 2001; 107 Barchet, Cella, Odermatt, Asselin‐Paturel, Colonna, Kalinke (CR6) 2002; 195 Ito, Kanzler, Duramad, Cao, Liu (CR32) 2006; 107 Schlitzer, Sivakamasundari, Chen, Sumatoh, Schreuder, Lum, Malleret, Zhang, Larbi, Zolezzi, Renia, Poidinger, Naik, Newell, Robson, Ginhoux (CR59) 2015; 16 Taniguchi, Takaoka (CR71) 2001; 2 Saitoh, Abe, Kanno, Tanimura, Mori Saitoh, Fukui, Shibata, Sato, Ichinohe, Hayashi, Kubota, Kozuka‐Hata, Oyama, Kikko, Katada, Kontani, Miyake (CR55) 2017; 8 Shibata, Ohto, Nomura, Kibata, Motoi, Zhang, Murakami, Fukui, Ishimoto, Sano, Ito, Shimizu, Miyake (CR61) 2016; 28 Krug, French, Barchet, Fischer, Dzionek, Pingel, Orihuela, Akira, Yokoyama, Colonna (CR36) 2004; 21 Siegal, Kadowaki, Shodell, Fitzgerald‐Bocarsly, Shah, Ho, Antonenko, Liu (CR62) 1999; 284 Cocita, Guiton, Bessou, Chasson, Boyron, Crozat, Dalod (CR11) 2015; 11 Prakash, Smith, Lee, Levy (CR48) 2005; 280 Del Prete, Luganini, Scutera, Rossi, Anselmo, Greco, Landolfo, Badolato, Gribaudo, Sozzani, Musso (CR16) 2015; 35 Asselin‐Paturel, Boonstra, Dalod, Durand, Yessaad, Dezutter‐Dambuyant, Vicari, O'Garra, Biron, Briere, Trinchieri (CR2) 2001; 2 Puttur, Arnold‐Schrauf, Lahl, Solmaz, Lindenberg, Mayer, Gohmert, Swallow, van Helt, Schmitt, Nitschke, Lambrecht, Lang, Messerle, Sparwasser (CR51) 2013; 9 2015; 35 2004; 21 2017; 8 2012; 287 2005; 175 2013; 2 2010; 107 2005b; 434 2002; 195 2000; 89 2017; 46 2008; 9 1999; 284 2008; 105 2005a; 434 2001; 107 2012; 12 2007; 36 2018; 48 2003; 197 2007; 37 2013; 9 1998; 17 2014; 5 2015; 42 2015; 210 2010; 115 2006; 440 2007; 3 2008; 112 1998; 441 2006; 441 2014; 10 2011; 121 2016; 45 2016; 44 2001; 166 2010; 33 2015; 15 2015; 6 2015; 16 2010; 329 2012; 189 2013; 43 2009; 182 2005; 434 2015; 11 2013; 93 2003; 170 2016; 127 2014; 192 2014; 193 2012; 37 2016; 17 1999; 5 2016; 164 2008a; 20 2014; 44 2014; 88 2005; 280 2016; 7 2015; 194 2008b; 180 2013; 39 2003; 424 2005; 201 2013; 73 2001; 2 2018; 11 2016; 28 2006; 107 2014; 33 2006; 342 2011; 186 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 112 start-page: 4598 year: 2008 end-page: 4608 ident: CR41 article-title: Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type I interferon, and immune suppression publication-title: Blood – volume: 48 start-page: 649 year: 2018 end-page: 658 ident: CR46 article-title: Toll‐like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation publication-title: Immunity – volume: 107 start-page: 2423 year: 2006 end-page: 2431 ident: CR32 article-title: Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells publication-title: Blood – volume: 127 start-page: 3382 year: 2016 end-page: 3386 ident: CR50 article-title: Impairment of dendritic cell functions in patients with adaptor protein‐3 complex deficiency publication-title: Blood – volume: 44 start-page: 1325 year: 2016 end-page: 1336 ident: CR78 article-title: Type 1 interferons induce changes in core metabolism that are critical for immune function publication-title: Immunity – volume: 17 start-page: 6660 year: 1998 end-page: 6669 ident: CR42 article-title: Differential viral induction of distinct interferon‐alpha genes by positive feedback through interferon regulatory factor‐7 publication-title: EMBO J – volume: 107 start-page: 763 year: 2001 end-page: 775 ident: CR9 article-title: IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development publication-title: Cell – volume: 105 start-page: 20416 year: 2008 end-page: 20421 ident: CR58 article-title: Visualization of IFNbeta production by plasmacytoid versus conventional dendritic cells under specific stimulation conditions publication-title: Proc Natl Acad Sci USA – volume: 121 start-page: 1088 year: 2011 end-page: 1101 ident: CR45 article-title: Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN‐alpha‐producing and partially matured phenotype publication-title: J Clin Invest – volume: 9 start-page: e1003648 year: 2013 ident: CR51 article-title: Absence of Siglec‐H in MCMV infection elevates interferon alpha production but does not enhance viral clearance publication-title: PLoS Pathog – volume: 287 start-page: 19216 year: 2012 end-page: 19228 ident: CR47 article-title: Essential role for IKKbeta in production of type 1 interferons by plasmacytoid dendritic cells publication-title: J Biol Chem – volume: 9 start-page: R17 year: 2008 ident: CR54 article-title: Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome‐wide expression profiling publication-title: Genome Biol – volume: 45 start-page: 737 year: 2016 end-page: 748 ident: CR80 article-title: Structural analysis reveals that toll‐like receptor 7 is a dual receptor for guanosine and single‐stranded RNA publication-title: Immunity – volume: 194 start-page: 1408 year: 2015 end-page: 1412 ident: CR40 article-title: Cutting edge: stage‐specific requirement of IL‐18 for antiviral NK cell expansion publication-title: J Immunol – volume: 12 start-page: 571 year: 2012 end-page: 584 ident: CR4 article-title: Differential responses of immune cells to type I interferon contribute to host resistance to viral infection publication-title: Cell Host Microbe – volume: 434 start-page: 1035 year: 2005 end-page: 1040 ident: CR29 article-title: Spatiotemporal regulation of MyD88‐IRF‐7 signalling for robust type‐I interferon induction publication-title: Nature – volume: 284 start-page: 1835 year: 1999 end-page: 1837 ident: CR62 article-title: The nature of the principal type 1 interferon‐producing cells in human blood publication-title: Science – volume: 46 start-page: 205 year: 2017 end-page: 219 ident: CR8 article-title: CD8+ T cells orchestrate pDC‐XCR1+ dendritic cell spatial and functional cooperativity to optimize priming publication-title: Immunity – volume: 20 start-page: 45 year: 2008 end-page: 56 ident: CR81 article-title: Individual plasmacytoid dendritic cells are major contributors to the production of multiple innate cytokines in an organ‐specific manner during viral infection publication-title: Int Immunol – volume: 39 start-page: 925 year: 2013 end-page: 938 ident: CR70 article-title: Origins and functional specialization of macrophages and of conventional and monocyte‐derived dendritic cells in mouse skin publication-title: Immunity – volume: 197 start-page: 885 year: 2003 end-page: 898 ident: CR13 article-title: Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon alpha/beta publication-title: J Exp Med – volume: 17 start-page: 1113 year: 2016 end-page: 1127 ident: CR52 article-title: Conventional dendritic cells confer protection against mouse cytomegalovirus infection via TLR9 and MyD88 signaling publication-title: Cell Rep – volume: 88 start-page: 752 year: 2014 end-page: 757 ident: CR77 article-title: Human plasmacytoid dendritic cells sense lymphocytic choriomeningitis virus‐infected cells publication-title: J Virol – volume: 5 start-page: 919 year: 1999 end-page: 923 ident: CR10 article-title: Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon publication-title: Nat Med – volume: 37 start-page: 43 year: 2007 end-page: 53 ident: CR39 article-title: Faithful activation of an extra‐bright red fluorescent protein in “knock‐in” Cre‐reporter mice ideally suited for lineage tracing studies publication-title: Eur J Immunol – volume: 5 start-page: 378 year: 2014 ident: CR1 article-title: Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections publication-title: Front Microbiol – volume: 89 start-page: 61 year: 2000 end-page: 73 ident: CR28 article-title: Enhanced green fluorescent protein as a marker for localizing murine cytomegalovirus in acute and latent infection publication-title: J Virol Methods – volume: 107 start-page: 19973 year: 2010 end-page: 19978 ident: CR7 article-title: Slc15a4, AP‐3, and Hermansky‐Pudlak syndrome proteins are required for Toll‐like receptor signaling in plasmacytoid dendritic cells publication-title: Proc Natl Acad Sci USA – volume: 434 start-page: 772 year: 2005 end-page: 777 ident: CR30 article-title: IRF‐7 is the master regulator of type‐I interferon‐dependent immune responses publication-title: Nature – volume: 16 start-page: 718 year: 2015 end-page: 728 ident: CR59 article-title: Identification of cDC1‐ and cDC2‐committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow publication-title: Nat Immunol – volume: 192 start-page: 4409 year: 2014 end-page: 4416 ident: CR66 article-title: Cell depletion in mice that express diphtheria toxin receptor under the control of SiglecH encompasses more than plasmacytoid dendritic cells publication-title: J Immunol – volume: 8 start-page: 1592 year: 2017 ident: CR55 article-title: TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells publication-title: Nat Commun – volume: 33 start-page: 955 year: 2010 end-page: 966 ident: CR64 article-title: Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual publication-title: Immunity – volume: 182 start-page: 3960 year: 2009 end-page: 3964 ident: CR37 article-title: Cutting Edge: TLR‐Dependent viral recognition along with type I IFN positive feedback signaling masks the requirement of viral replication for IFN‐{alpha} production in plasmacytoid dendritic cells publication-title: J Immunol – volume: 115 start-page: 408 year: 2010 end-page: 417 ident: CR76 article-title: Congenic interval of CD45/Ly‐5 congenic mice contains multiple genes that may influence hematopoietic stem cell engraftment publication-title: Blood – volume: 180 start-page: 5799 year: 2008 end-page: 5803 ident: CR82 article-title: Cutting edge: overlapping functions of TLR7 and TLR9 for innate defense against a herpesvirus infection publication-title: J Immunol – volume: 33 start-page: 1104 year: 2014 end-page: 1116 ident: CR14 article-title: Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming publication-title: EMBO J – volume: 170 start-page: 4465 year: 2003 end-page: 4474 ident: CR34 article-title: Activation with CpG‐A and CpG‐B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells publication-title: J Immunol – volume: 7 start-page: 771 year: 2016 ident: CR22 article-title: Sensing of porcine reproductive and respiratory syndrome virus‐infected macrophages by plasmacytoid dendritic cells publication-title: Front Microbiol – volume: 280 start-page: 18651 year: 2005 end-page: 18657 ident: CR48 article-title: Tissue‐specific positive feedback requirements for production of type I interferon following virus infection publication-title: J Biol Chem – volume: 329 start-page: 1530 year: 2010 end-page: 1534 ident: CR56 article-title: Bifurcation of Toll‐like receptor 9 signaling by adaptor protein 3 publication-title: Science – volume: 93 start-page: 599 year: 2013 end-page: 609 ident: CR26 article-title: Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness publication-title: J Leukoc Biol – volume: 21 start-page: 107 year: 2004 end-page: 119 ident: CR36 article-title: TLR9‐dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function publication-title: Immunity – volume: 441 start-page: 106 year: 1998 end-page: 110 ident: CR57 article-title: Positive feedback regulation of type I IFN genes by the IFN‐inducible transcription factor IRF‐7 publication-title: FEBS Lett – volume: 175 start-page: 4000 year: 2005 end-page: 4008 ident: CR63 article-title: Novel functions of tyrosine kinase 2 in the antiviral defense against murine cytomegalovirus publication-title: J Immunol – volume: 189 start-page: 2735 year: 2012 end-page: 2745 ident: CR79 article-title: Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells publication-title: J Immunol – volume: 6 start-page: 299 year: 2015 ident: CR75 article-title: Defining mononuclear phagocyte subset homology across several distant warm‐blooded vertebrates through comparative transcriptomics publication-title: Front Immunol – volume: 15 start-page: 471 year: 2015 end-page: 485 ident: CR67 article-title: The multifaceted biology of plasmacytoid dendritic cells publication-title: Nat Rev Immunol – volume: 166 start-page: 2291 year: 2001 end-page: 2295 ident: CR33 article-title: Distinct CpG DNA and polyinosinic‐polycytidylic acid double‐stranded RNA, respectively, stimulate CD11c‐ type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN publication-title: J Immunol – volume: 73 start-page: 4629 year: 2013 end-page: 4640 ident: CR38 article-title: Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment publication-title: Cancer Res – volume: 440 start-page: 949 year: 2006 end-page: 953 ident: CR31 article-title: IkappaB kinase‐alpha is critical for interferon‐alpha production induced by Toll‐like receptors 7 and 9 publication-title: Nature – volume: 37 start-page: 986 year: 2012 end-page: 997 ident: CR27 article-title: Noncanonical autophagy is required for type I interferon secretion in response to DNA‐immune complexes publication-title: Immunity – volume: 3 start-page: e123 year: 2007 ident: CR53 article-title: Natural killer cells promote early CD8 T cell responses against cytomegalovirus publication-title: PLoS Pathog – volume: 186 start-page: 5085 year: 2011 end-page: 5094 ident: CR23 article-title: IFN‐alpha production by plasmacytoid dendritic cells stimulated with RNA‐containing immune complexes is promoted by NK cells via MIP‐1beta and LFA‐1 publication-title: J Immunol – volume: 42 start-page: 627 year: 2015 end-page: 639 ident: CR5 article-title: Homeostatic NF‐kappaB signaling in steady‐state migratory dendritic cells regulates immune homeostasis and tolerance publication-title: Immunity – volume: 164 start-page: 564 year: 2016 end-page: 578 ident: CR44 article-title: Parsing the interferon transcriptional network and its disease associations publication-title: Cell – volume: 195 start-page: 507 year: 2002 end-page: 516 ident: CR6 article-title: Virus‐induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling publication-title: J Exp Med – volume: 2 start-page: e24212 year: 2013 ident: CR20 article-title: Attenuated measles virus used as an oncolytic virus activates myeloid and plasmacytoid dendritic cells publication-title: Oncoimmunology – volume: 107 start-page: 7431 year: 2010 end-page: 7436 ident: CR68 article-title: Plasmacytoid dendritic cells sense hepatitis C virus‐infected cells, produce interferon, and inhibit infection publication-title: Proc Natl Acad Sci USA – volume: 201 start-page: 1157 year: 2005 end-page: 1167 ident: CR3 article-title: Type I interferon dependence of plasmacytoid dendritic cell activation and migration publication-title: J Exp Med – volume: 5 start-page: 526 year: 2014 ident: CR73 article-title: Harnessing mechanistic knowledge on beneficial versus deleterious IFN‐I effects to design innovative immunotherapies targeting cytokine activity to specific cell types publication-title: Front Immunol – volume: 424 start-page: 324 year: 2003 end-page: 328 ident: CR18 article-title: Viral infection switches non‐plasmacytoid dendritic cells into high interferon producers publication-title: Nature – volume: 35 start-page: 232 year: 2015 end-page: 238 ident: CR16 article-title: Interferon‐alpha production by plasmacytoid dendritic cells is dispensable for an effective anti‐cytomegalovirus response in adaptor protein‐3‐deficient mice publication-title: J Interferon Cytokine Res – volume: 193 start-page: 2496 year: 2014 end-page: 2503 ident: CR21 article-title: Independent of plasmacytoid dendritic cell (pDC) infection, pDC triggered by virus‐infected cells mount enhanced type I IFN responses of different composition as opposed to pDC stimulated with free virus publication-title: J Immunol – volume: 210 start-page: 1133 year: 2015 end-page: 1152 ident: CR72 article-title: RUN and FYVE domain‐containing protein 4 enhances autophagy and lysosome tethering in response to interleukin‐4 publication-title: J Cell Biol – volume: 441 start-page: 885 year: 2006 end-page: 889 ident: CR24 article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice publication-title: Nature – volume: 2 start-page: 378 year: 2001 end-page: 386 ident: CR71 article-title: A weak signal for strong responses: interferon‐alpha/beta revisited publication-title: Nat Rev Mol Cell Biol – volume: 11 start-page: e1004897 year: 2015 ident: CR11 article-title: Natural killer cell sensing of infected cells compensates for MyD88 deficiency but not IFN‐I activity in resistance to mouse cytomegalovirus publication-title: PLoS Pathog – volume: 28 start-page: 211 year: 2016 end-page: 222 ident: CR61 article-title: Guanosine and its modified derivatives are endogenous ligands for TLR7 publication-title: Int Immunol – volume: 175 start-page: 6723 year: 2005 end-page: 6732 ident: CR17 article-title: MyD88‐dependent and ‐independent murine cytomegalovirus sensing for IFN‐alpha release and initiation of immune responses publication-title: J Immunol – volume: 12 start-page: 558 year: 2012 end-page: 570 ident: CR19 article-title: Short‐range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity publication-title: Cell Host Microbe – volume: 195 start-page: 517 year: 2002 end-page: 528 ident: CR12 article-title: Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression publication-title: J Exp Med – volume: 342 start-page: 50 year: 2006 end-page: 56 ident: CR49 article-title: Regulation of IRF7 through cell type‐specific protein stability publication-title: Biochem Biophys Res Commun – volume: 36 start-page: 739 year: 2007 end-page: 761 ident: CR43 article-title: Image‐based study of interferongenic interactions between plasmacytoid dendritic cells and HSV‐infected monocyte‐derived dendritic cells publication-title: Immunol Invest – volume: 37 start-page: 315 year: 2007 end-page: 327 ident: CR60 article-title: Interferon‐regulatory‐factor 1 controls Toll‐like receptor 9‐mediated IFN‐beta production in myeloid dendritic cells publication-title: Eur J Immunol – volume: 10 start-page: e1004434 year: 2014 ident: CR15 article-title: Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells publication-title: PLoS Pathog – volume: 44 start-page: 807 year: 2014 end-page: 818 ident: CR35 article-title: Self‐priming determines high type I IFN production by plasmacytoid dendritic cells publication-title: Eur J Immunol – volume: 434 start-page: 243 year: 2005 end-page: 249 ident: CR69 article-title: Integral role of IRF‐5 in the gene induction programme activated by Toll‐like receptors publication-title: Nature – volume: 2 start-page: 1144 year: 2001 end-page: 1150 ident: CR2 article-title: Mouse type I IFN‐producing cells are immature APCs with plasmacytoid morphology publication-title: Nat Immunol – volume: 11 start-page: eaan4144 year: 2018 ident: CR25 article-title: The interaction between IKKalpha and LC3 promotes type I interferon production through the TLR9‐containing LAPosome publication-title: Sci Signal – volume: 9 start-page: e1003728 year: 2013 ident: CR65 article-title: Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections publication-title: PLoS Pathog – volume: 43 start-page: 1706 year: 2013 end-page: 1715 ident: CR74 article-title: Plasmacytoid, conventional, and monocyte‐derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation publication-title: Eur J Immunol – volume: 45 start-page: 737 year: 2016 end-page: 748 article-title: Structural analysis reveals that toll‐like receptor 7 is a dual receptor for guanosine and single‐stranded RNA publication-title: Immunity – volume: 5 start-page: 526 year: 2014 article-title: Harnessing mechanistic knowledge on beneficial versus deleterious IFN‐I effects to design innovative immunotherapies targeting cytokine activity to specific cell types publication-title: Front Immunol – volume: 20 start-page: 45 year: 2008a end-page: 56 article-title: Individual plasmacytoid dendritic cells are major contributors to the production of multiple innate cytokines in an organ‐specific manner during viral infection publication-title: Int Immunol – volume: 201 start-page: 1157 year: 2005 end-page: 1167 article-title: Type I interferon dependence of plasmacytoid dendritic cell activation and migration publication-title: J Exp Med – volume: 5 start-page: 378 year: 2014 article-title: Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections publication-title: Front Microbiol – volume: 43 start-page: 1706 year: 2013 end-page: 1715 article-title: Plasmacytoid, conventional, and monocyte‐derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation publication-title: Eur J Immunol – volume: 5 start-page: 919 year: 1999 end-page: 923 article-title: Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon publication-title: Nat Med – volume: 33 start-page: 1104 year: 2014 end-page: 1116 article-title: Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming publication-title: EMBO J – volume: 16 start-page: 718 year: 2015 end-page: 728 article-title: Identification of cDC1‐ and cDC2‐committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow publication-title: Nat Immunol – volume: 2 start-page: 1144 year: 2001 end-page: 1150 article-title: Mouse type I IFN‐producing cells are immature APCs with plasmacytoid morphology publication-title: Nat Immunol – volume: 180 start-page: 5799 year: 2008b end-page: 5803 article-title: Cutting edge: overlapping functions of TLR7 and TLR9 for innate defense against a herpesvirus infection publication-title: J Immunol – volume: 44 start-page: 1325 year: 2016 end-page: 1336 article-title: Type 1 interferons induce changes in core metabolism that are critical for immune function publication-title: Immunity – volume: 121 start-page: 1088 year: 2011 end-page: 1101 article-title: Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN‐alpha‐producing and partially matured phenotype publication-title: J Clin Invest – volume: 329 start-page: 1530 year: 2010 end-page: 1534 article-title: Bifurcation of Toll‐like receptor 9 signaling by adaptor protein 3 publication-title: Science – volume: 11 start-page: e1004897 year: 2015 article-title: Natural killer cell sensing of infected cells compensates for MyD88 deficiency but not IFN‐I activity in resistance to mouse cytomegalovirus publication-title: PLoS Pathog – volume: 193 start-page: 2496 year: 2014 end-page: 2503 article-title: Independent of plasmacytoid dendritic cell (pDC) infection, pDC triggered by virus‐infected cells mount enhanced type I IFN responses of different composition as opposed to pDC stimulated with free virus publication-title: J Immunol – volume: 434 start-page: 243 year: 2005 end-page: 249 article-title: Integral role of IRF‐5 in the gene induction programme activated by Toll‐like receptors publication-title: Nature – volume: 284 start-page: 1835 year: 1999 end-page: 1837 article-title: The nature of the principal type 1 interferon‐producing cells in human blood publication-title: Science – volume: 182 start-page: 3960 year: 2009 end-page: 3964 article-title: Cutting Edge: TLR‐Dependent viral recognition along with type I IFN positive feedback signaling masks the requirement of viral replication for IFN‐{alpha} production in plasmacytoid dendritic cells publication-title: J Immunol – volume: 342 start-page: 50 year: 2006 end-page: 56 article-title: Regulation of IRF7 through cell type‐specific protein stability publication-title: Biochem Biophys Res Commun – volume: 48 start-page: 649 year: 2018 end-page: 658 article-title: Toll‐like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation publication-title: Immunity – volume: 192 start-page: 4409 year: 2014 end-page: 4416 article-title: Cell depletion in mice that express diphtheria toxin receptor under the control of SiglecH encompasses more than plasmacytoid dendritic cells publication-title: J Immunol – volume: 7 start-page: 771 year: 2016 article-title: Sensing of porcine reproductive and respiratory syndrome virus‐infected macrophages by plasmacytoid dendritic cells publication-title: Front Microbiol – volume: 112 start-page: 4598 year: 2008 end-page: 4608 article-title: Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type I interferon, and immune suppression publication-title: Blood – volume: 287 start-page: 19216 year: 2012 end-page: 19228 article-title: Essential role for IKKbeta in production of type 1 interferons by plasmacytoid dendritic cells publication-title: J Biol Chem – volume: 6 start-page: 299 year: 2015 article-title: Defining mononuclear phagocyte subset homology across several distant warm‐blooded vertebrates through comparative transcriptomics publication-title: Front Immunol – volume: 37 start-page: 986 year: 2012 end-page: 997 article-title: Noncanonical autophagy is required for type I interferon secretion in response to DNA‐immune complexes publication-title: Immunity – volume: 17 start-page: 6660 year: 1998 end-page: 6669 article-title: Differential viral induction of distinct interferon‐alpha genes by positive feedback through interferon regulatory factor‐7 publication-title: EMBO J – volume: 107 start-page: 7431 year: 2010 end-page: 7436 article-title: Plasmacytoid dendritic cells sense hepatitis C virus‐infected cells, produce interferon, and inhibit infection publication-title: Proc Natl Acad Sci USA – volume: 39 start-page: 925 year: 2013 end-page: 938 article-title: Origins and functional specialization of macrophages and of conventional and monocyte‐derived dendritic cells in mouse skin publication-title: Immunity – volume: 166 start-page: 2291 year: 2001 end-page: 2295 article-title: Distinct CpG DNA and polyinosinic‐polycytidylic acid double‐stranded RNA, respectively, stimulate CD11c‐ type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN publication-title: J Immunol – volume: 424 start-page: 324 year: 2003 end-page: 328 article-title: Viral infection switches non‐plasmacytoid dendritic cells into high interferon producers publication-title: Nature – volume: 107 start-page: 19973 year: 2010 end-page: 19978 article-title: Slc15a4, AP‐3, and Hermansky‐Pudlak syndrome proteins are required for Toll‐like receptor signaling in plasmacytoid dendritic cells publication-title: Proc Natl Acad Sci USA – volume: 93 start-page: 599 year: 2013 end-page: 609 article-title: Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness publication-title: J Leukoc Biol – volume: 127 start-page: 3382 year: 2016 end-page: 3386 article-title: Impairment of dendritic cell functions in patients with adaptor protein‐3 complex deficiency publication-title: Blood – volume: 3 start-page: e123 year: 2007 article-title: Natural killer cells promote early CD8 T cell responses against cytomegalovirus publication-title: PLoS Pathog – volume: 210 start-page: 1133 year: 2015 end-page: 1152 article-title: RUN and FYVE domain‐containing protein 4 enhances autophagy and lysosome tethering in response to interleukin‐4 publication-title: J Cell Biol – volume: 9 start-page: e1003648 year: 2013 article-title: Absence of Siglec‐H in MCMV infection elevates interferon alpha production but does not enhance viral clearance publication-title: PLoS Pathog – volume: 73 start-page: 4629 year: 2013 end-page: 4640 article-title: Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment publication-title: Cancer Res – volume: 107 start-page: 2423 year: 2006 end-page: 2431 article-title: Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells publication-title: Blood – volume: 37 start-page: 315 year: 2007 end-page: 327 article-title: Interferon‐regulatory‐factor 1 controls Toll‐like receptor 9‐mediated IFN‐beta production in myeloid dendritic cells publication-title: Eur J Immunol – volume: 195 start-page: 517 year: 2002 end-page: 528 article-title: Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression publication-title: J Exp Med – volume: 441 start-page: 106 year: 1998 end-page: 110 article-title: Positive feedback regulation of type I IFN genes by the IFN‐inducible transcription factor IRF‐7 publication-title: FEBS Lett – volume: 189 start-page: 2735 year: 2012 end-page: 2745 article-title: Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells publication-title: J Immunol – volume: 434 start-page: 1035 year: 2005a end-page: 1040 article-title: Spatiotemporal regulation of MyD88‐IRF‐7 signalling for robust type‐I interferon induction publication-title: Nature – volume: 107 start-page: 763 year: 2001 end-page: 775 article-title: IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development publication-title: Cell – volume: 12 start-page: 558 year: 2012 end-page: 570 article-title: Short‐range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity publication-title: Cell Host Microbe – volume: 280 start-page: 18651 year: 2005 end-page: 18657 article-title: Tissue‐specific positive feedback requirements for production of type I interferon following virus infection publication-title: J Biol Chem – volume: 10 start-page: e1004434 year: 2014 article-title: Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells publication-title: PLoS Pathog – volume: 33 start-page: 955 year: 2010 end-page: 966 article-title: Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual publication-title: Immunity – volume: 2 start-page: e24212 year: 2013 article-title: Attenuated measles virus used as an oncolytic virus activates myeloid and plasmacytoid dendritic cells publication-title: Oncoimmunology – volume: 44 start-page: 807 year: 2014 end-page: 818 article-title: Self‐priming determines high type I IFN production by plasmacytoid dendritic cells publication-title: Eur J Immunol – volume: 194 start-page: 1408 year: 2015 end-page: 1412 article-title: Cutting edge: stage‐specific requirement of IL‐18 for antiviral NK cell expansion publication-title: J Immunol – volume: 12 start-page: 571 year: 2012 end-page: 584 article-title: Differential responses of immune cells to type I interferon contribute to host resistance to viral infection publication-title: Cell Host Microbe – volume: 164 start-page: 564 year: 2016 end-page: 578 article-title: Parsing the interferon transcriptional network and its disease associations publication-title: Cell – volume: 37 start-page: 43 year: 2007 end-page: 53 article-title: Faithful activation of an extra‐bright red fluorescent protein in “knock‐in” Cre‐reporter mice ideally suited for lineage tracing studies publication-title: Eur J Immunol – volume: 88 start-page: 752 year: 2014 end-page: 757 article-title: Human plasmacytoid dendritic cells sense lymphocytic choriomeningitis virus‐infected cells publication-title: J Virol – volume: 441 start-page: 885 year: 2006 end-page: 889 article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice publication-title: Nature – volume: 9 start-page: R17 year: 2008 article-title: Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome‐wide expression profiling publication-title: Genome Biol – volume: 2 start-page: 378 year: 2001 end-page: 386 article-title: A weak signal for strong responses: interferon‐alpha/beta revisited publication-title: Nat Rev Mol Cell Biol – volume: 28 start-page: 211 year: 2016 end-page: 222 article-title: Guanosine and its modified derivatives are endogenous ligands for TLR7 publication-title: Int Immunol – volume: 35 start-page: 232 year: 2015 end-page: 238 article-title: Interferon‐alpha production by plasmacytoid dendritic cells is dispensable for an effective anti‐cytomegalovirus response in adaptor protein‐3‐deficient mice publication-title: J Interferon Cytokine Res – volume: 186 start-page: 5085 year: 2011 end-page: 5094 article-title: IFN‐alpha production by plasmacytoid dendritic cells stimulated with RNA‐containing immune complexes is promoted by NK cells via MIP‐1beta and LFA‐1 publication-title: J Immunol – volume: 46 start-page: 205 year: 2017 end-page: 219 article-title: CD8+ T cells orchestrate pDC‐XCR1+ dendritic cell spatial and functional cooperativity to optimize priming publication-title: Immunity – volume: 105 start-page: 20416 year: 2008 end-page: 20421 article-title: Visualization of IFNbeta production by plasmacytoid versus conventional dendritic cells under specific stimulation conditions publication-title: Proc Natl Acad Sci USA – volume: 195 start-page: 507 year: 2002 end-page: 516 article-title: Virus‐induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling publication-title: J Exp Med – volume: 440 start-page: 949 year: 2006 end-page: 953 article-title: IkappaB kinase‐alpha is critical for interferon‐alpha production induced by Toll‐like receptors 7 and 9 publication-title: Nature – volume: 170 start-page: 4465 year: 2003 end-page: 4474 article-title: Activation with CpG‐A and CpG‐B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells publication-title: J Immunol – volume: 115 start-page: 408 year: 2010 end-page: 417 article-title: Congenic interval of CD45/Ly‐5 congenic mice contains multiple genes that may influence hematopoietic stem cell engraftment publication-title: Blood – volume: 434 start-page: 772 year: 2005b end-page: 777 article-title: IRF‐7 is the master regulator of type‐I interferon‐dependent immune responses publication-title: Nature – volume: 9 start-page: e1003728 year: 2013 article-title: Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections publication-title: PLoS Pathog – volume: 89 start-page: 61 year: 2000 end-page: 73 article-title: Enhanced green fluorescent protein as a marker for localizing murine cytomegalovirus in acute and latent infection publication-title: J Virol Methods – volume: 42 start-page: 627 year: 2015 end-page: 639 article-title: Homeostatic NF‐kappaB signaling in steady‐state migratory dendritic cells regulates immune homeostasis and tolerance publication-title: Immunity – volume: 11 start-page: eaan4144 year: 2018 article-title: The interaction between IKKalpha and LC3 promotes type I interferon production through the TLR9‐containing LAPosome publication-title: Sci Signal – volume: 197 start-page: 885 year: 2003 end-page: 898 article-title: Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon alpha/beta publication-title: J Exp Med – volume: 175 start-page: 6723 year: 2005 end-page: 6732 article-title: MyD88‐dependent and ‐independent murine cytomegalovirus sensing for IFN‐alpha release and initiation of immune responses publication-title: J Immunol – volume: 15 start-page: 471 year: 2015 end-page: 485 article-title: The multifaceted biology of plasmacytoid dendritic cells publication-title: Nat Rev Immunol – volume: 17 start-page: 1113 year: 2016 end-page: 1127 article-title: Conventional dendritic cells confer protection against mouse cytomegalovirus infection via TLR9 and MyD88 signaling publication-title: Cell Rep – volume: 36 start-page: 739 year: 2007 end-page: 761 article-title: Image‐based study of interferongenic interactions between plasmacytoid dendritic cells and HSV‐infected monocyte‐derived dendritic cells publication-title: Immunol Invest – volume: 8 start-page: 1592 year: 2017 article-title: TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells publication-title: Nat Commun – volume: 175 start-page: 4000 year: 2005 end-page: 4008 article-title: Novel functions of tyrosine kinase 2 in the antiviral defense against murine cytomegalovirus publication-title: J Immunol – volume: 21 start-page: 107 year: 2004 end-page: 119 article-title: TLR9‐dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function publication-title: Immunity – ident: e_1_2_8_50_1 doi: 10.1016/j.bbrc.2006.01.122 – ident: e_1_2_8_61_1 doi: 10.1002/eji.200636767 – ident: e_1_2_8_6_1 doi: 10.1016/j.immuni.2015.03.003 – ident: e_1_2_8_3_1 doi: 10.1038/ni736 – ident: e_1_2_8_71_1 doi: 10.1016/j.immuni.2013.10.004 – ident: e_1_2_8_22_1 doi: 10.4049/jimmunol.1400215 – ident: e_1_2_8_21_1 doi: 10.4161/onci.24212 – ident: e_1_2_8_7_1 doi: 10.1084/jem.20011666 – ident: e_1_2_8_18_1 doi: 10.4049/jimmunol.175.10.6723 – ident: e_1_2_8_57_1 doi: 10.1126/science.1187029 – ident: e_1_2_8_54_1 doi: 10.1371/journal.ppat.0030123 – ident: e_1_2_8_19_1 doi: 10.1038/nature01783 – ident: e_1_2_8_52_1 doi: 10.1371/journal.ppat.1003648 – ident: e_1_2_8_39_1 doi: 10.1158/0008-5472.CAN-12-3058 – ident: e_1_2_8_70_1 doi: 10.1038/nature03308 – ident: e_1_2_8_27_1 doi: 10.1189/jlb.0912452 – ident: e_1_2_8_78_1 doi: 10.1128/JVI.01714-13 – ident: e_1_2_8_17_1 doi: 10.1089/jir.2013.0110 – ident: e_1_2_8_4_1 doi: 10.1084/jem.20041930 – ident: e_1_2_8_23_1 doi: 10.3389/fmicb.2016.00771 – ident: e_1_2_8_35_1 doi: 10.4049/jimmunol.170.9.4465 – ident: e_1_2_8_32_1 doi: 10.1038/nature04641 – ident: e_1_2_8_77_1 doi: 10.1182/blood-2008-03-143370 – ident: e_1_2_8_81_1 doi: 10.1016/j.immuni.2016.09.011 – ident: e_1_2_8_58_1 doi: 10.1016/S0014-5793(98)01514-2 – ident: e_1_2_8_12_1 doi: 10.1371/journal.ppat.1004897 – ident: e_1_2_8_73_1 doi: 10.1083/jcb.201501059 – ident: e_1_2_8_15_1 doi: 10.1002/embj.201488027 – ident: e_1_2_8_72_1 doi: 10.1038/35073080 – ident: e_1_2_8_40_1 doi: 10.1002/eji.200636745 – ident: e_1_2_8_45_1 doi: 10.1016/j.cell.2015.12.032 – ident: e_1_2_8_55_1 doi: 10.1186/gb-2008-9-1-r17 – ident: e_1_2_8_65_1 doi: 10.1016/j.immuni.2010.11.020 – ident: e_1_2_8_69_1 doi: 10.1073/pnas.1002301107 – ident: e_1_2_8_46_1 doi: 10.1172/JCI44960 – ident: e_1_2_8_9_1 doi: 10.1016/j.immuni.2017.01.003 – ident: e_1_2_8_79_1 doi: 10.1016/j.immuni.2016.06.006 – ident: e_1_2_8_43_1 doi: 10.1093/emboj/17.22.6660 – ident: e_1_2_8_67_1 doi: 10.4049/jimmunol.1303135 – ident: e_1_2_8_80_1 doi: 10.4049/jimmunol.1102038 – ident: e_1_2_8_5_1 doi: 10.1016/j.chom.2012.09.002 – ident: e_1_2_8_11_1 doi: 10.1038/11360 – ident: e_1_2_8_30_1 doi: 10.1038/nature03547 – ident: e_1_2_8_47_1 doi: 10.1016/j.immuni.2018.03.013 – ident: e_1_2_8_63_1 doi: 10.1126/science.284.5421.1835 – ident: e_1_2_8_53_1 doi: 10.1016/j.celrep.2016.09.055 – ident: e_1_2_8_41_1 doi: 10.4049/jimmunol.1402001 – ident: e_1_2_8_74_1 doi: 10.3389/fimmu.2014.00526 – ident: e_1_2_8_38_1 doi: 10.4049/jimmunol.0804315 – ident: e_1_2_8_83_1 doi: 10.4049/jimmunol.180.9.5799 – ident: e_1_2_8_62_1 doi: 10.1093/intimm/dxv062 – ident: e_1_2_8_31_1 doi: 10.1038/nature03464 – ident: e_1_2_8_13_1 doi: 10.1084/jem.20011672 – ident: e_1_2_8_8_1 doi: 10.1073/pnas.1014051107 – ident: e_1_2_8_60_1 doi: 10.1038/ni.3200 – ident: e_1_2_8_56_1 doi: 10.1038/s41467-017-01687-x – ident: e_1_2_8_44_1 doi: 10.1080/08820130701715845 – ident: e_1_2_8_66_1 doi: 10.1371/journal.ppat.1003728 – ident: e_1_2_8_76_1 doi: 10.3389/fimmu.2015.00299 – ident: e_1_2_8_64_1 doi: 10.4049/jimmunol.175.6.4000 – ident: e_1_2_8_75_1 doi: 10.1002/eji.201243106 – ident: e_1_2_8_33_1 doi: 10.1182/blood-2005-07-2709 – ident: e_1_2_8_16_1 doi: 10.1371/journal.ppat.1004434 – ident: e_1_2_8_2_1 doi: 10.3389/fmicb.2014.00378 – ident: e_1_2_8_14_1 doi: 10.1084/jem.20021522 – ident: e_1_2_8_25_1 doi: 10.1038/nature04724 – ident: e_1_2_8_48_1 doi: 10.1074/jbc.M112.345405 – ident: e_1_2_8_36_1 doi: 10.1002/eji.201343806 – ident: e_1_2_8_37_1 doi: 10.1016/j.immuni.2004.06.007 – ident: e_1_2_8_68_1 doi: 10.1038/nri3865 – ident: e_1_2_8_20_1 doi: 10.1016/j.chom.2012.08.010 – ident: e_1_2_8_26_1 doi: 10.1126/scisignal.aan4144 – ident: e_1_2_8_29_1 doi: 10.1016/S0166-0934(00)00202-0 – ident: e_1_2_8_82_1 doi: 10.1093/intimm/dxm119 – ident: e_1_2_8_42_1 doi: 10.1182/blood-2008-06-162651 – ident: e_1_2_8_49_1 doi: 10.1074/jbc.M501289200 – ident: e_1_2_8_28_1 doi: 10.1016/j.immuni.2012.09.014 – ident: e_1_2_8_34_1 doi: 10.4049/jimmunol.166.4.2291 – ident: e_1_2_8_51_1 doi: 10.1182/blood-2015-06-650689 – ident: e_1_2_8_10_1 doi: 10.1016/S0092-8674(01)00599-2 – ident: e_1_2_8_24_1 doi: 10.4049/jimmunol.1003349 – ident: e_1_2_8_59_1 doi: 10.1073/pnas.0808537105 |
SSID | ssj0005871 |
Score | 2.45306 |
Snippet | Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like... Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like... Plasmacytoid dendritic cells ( pDC ) are the major source of type I interferons ( IFN ‐I) during viral infections, in response to triggering of endosomal... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Cell activation Cell interactions CpG islands Cytokines Cytomegalovirus Dendritic cells Deoxyribonucleic acid DNA EMBO19 EMBO23 Feedback Gene expression Immune system Immunology Infections Injection Interferon Interferon regulatory factor Interferon regulatory factor 7 IRF7 Life Sciences Ligands mouse cytomegalovirus MyD88 protein Phosphorylation plasmacytoid dendritic cells Positive feedback Proteins Receptors Ribonucleic acid RNA Signal transduction Signaling TLR9 protein Toll-like receptors type I interferons viral infection Viral infections |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTxVBEK6wxOjFCCqOImmNBz2M0MtsR3yBvBCeJ0m4jb1NeARmiD5ewr_xt_jLrOpZcILEcJuZ7p6lqnr6q64N4APf87lyci_OlK5iJVQVa43z0RW2cCJ1PqkoOHn2NZ2eqKPT5LRLkkSxMH_b7xORiF1_ac7JA4vyasl0FdYTLlMS30k6ufXlyINmFTZTFM-LLofPP24wWn5Wz8j58S6yvOsgOVhJxxg2LEKHz-Bphx7ZfsvuDVjx9SY8autJ3mzC40lfvu05fJ_1hW9ZsLmH-AXWVOwK8fKltjeLZu4Y_nVcKHbAaAefUZRDu0fL5vXvX8v5smFtICPTjNyBL1jvvVW_gJPDg2-TadyVU4htorI0zjyyRefWSWuFJ4uqRvCGeEEZJJ8w3JByogV3qDQ57Z3nVYEDrefGkL33JazVTe1fAcuE1KjH-cwURmkc71wlLHc2kYlBgBLB557Kpe1yjVPJi4uSdA5iS0lsKQe2RPBxGHDVptm4v-t7ZNvQi9JjT_ePS7qGeIU68SWPYLvnatlNyp8ltiJczFAhjeDd0IxsIQrr2jfX2AfpkXNUwvAWW60QDI-SlJsIxTmCbCQeo3cZt9Tzs5CyO-WIg6SI4FMvSLevde93yiBp_6NHeTD7cjScvX7AE97AEzxus_vybVhb_Lj2bxFiLcxOmF5_AFJOHmU priority: 102 providerName: Springer Nature |
Title | Molecular dissection of plasmacytoid dendritic cell activation in vivo during a viral infection |
URI | https://link.springer.com/article/10.15252/embj.201798836 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798836 https://www.ncbi.nlm.nih.gov/pubmed/30131424 https://www.proquest.com/docview/2114567448 https://www.proquest.com/docview/2091815761 https://hal.science/hal-02117981 https://pubmed.ncbi.nlm.nih.gov/PMC6166132 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VqqpcqpY-SAvIVD2UQwp2nNcRVqAV6qIeitRb8CtiK0hW3WUl_k1_C7-MGeeBIoSQuKyy68cmnnH8jT3zDcA3vu8yaaP9MJWqDKWQZagUzkebm9yKxLq4pODkyWkyPpMnf-LOm5BiYRp-iH7DjWaGf1_TBFd63mXsIdZQd6X_km8WMW5FyQq8pABbos8X8te9l0fmbS6_zSJ5lrfsPtTF3rCDwcK0ckFukQ8x50PXyf78dIhu_fJ0_BbetLiSHTSK8A5euGodXjWZJm_W4fWoS-z2Hs4nXUpc5k_jfWQDq0s2QyR9pczNop5ahu8j69MgMNrbZxT_0Ozesml1-385XdasCXFkipGj8CXr_LqqD3B2fPR7NA7bRAuhiWWahKlDganM2MgY4eisVSGsQyQhNQ6f0FyT2aIEt2hOWeWs42WODY3jWtNJ8EdYrerKbQBLRaTQwnOpzrVU2N7aUhhuTRzFGqFLAD-6US5My0JOyTAuC7JGSCwFiaXoxRLA977BrCHgeLzqVxRbX4uIs8cHPwv6DZEMVeJLHsBmJ9Wina7zAksRSKZoqgaw0xejWGiEVeXqa6yD45FxNM-wi0-NEvR_FRFrESp6AOlAPQb3MiyppheezDvhiJAiEcBup0j3t_Xoc0Ze054aj-JocnjSf_v8rFZfYA2vGwZgvgmri3_Xbgth2EJv-4mGn6NktE0LYnwH8dsrsg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTxRBFH4RjMGLUdxaUUvjQQ-tVHX1dkQCGXGGeICEW1lbhzHQTWCYhH_jb_GX-V71gh1CTDxO1zLdb-n-3qu3ALznm76QLtmMc6mrWApZxVqjPrrSlk5kzqcVJSfP9rPJodw7So_-yoVp60MMDjfSjPC-JgUnh3TfsofKhvpT85OCs6jkVpKtwF2ZiZyUU8jv12EeRTC6gp9F8qLsyvvQFp_HG4y-TCvHFBd5E3TejJ0cDlDH8DZ8n3YfwoMOWLKtVhIewR1fr8O9ttXk1Tqsbfed3R7Dj1nfE5eF4_iQ2sCaip0hlD7V9mrRzB3DF5ILfRAYOfcZJUC07ls2r3__Ws6XDWtzHJlmFCl8wvrArvoJHO7uHGxP4q7TQmxTmWdx7pFjurAusVZ4OmzViOsQSkiD5BOGG7JbtOAO7SmnvfO8KnGh9dwYOgp-Cqt1U_vnwHKRaDTxfG5KIzWud64SljubJqlB7BLBp57KynZlyKkbxokic4TYoogtamBLBB-GBWdtBY7bp75Dtg2zqHL2ZGuq6BpCGZrElzyCjZ6rqtPXC4WjiCRztFUjeDsMI1uIwrr2zSXOQXoUHO0z3OJZKwTDXyVUtgglPYJ8JB6jexmP1PPjUM074wiREhHBx16Qrm_r1udMgqT9ix5qZ_Zlb_j14r9WvYG1ycFsqqZf97-9hPt4vS0HzDdgdXF-6V8hJluY10Hp_gD9Di1b |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK7wiOjFKKKOojbGgxwG6Zme1xGRzQos4SCJt7ZfE9bAzEaXTfg3_hZ_mVU9DzIhhMTjTj92pqtq5quu6q8APvBdlwsb74aZUGUoIlGGSqE92sIUNkqtS0o6nDw5Scdn4vB70mUT0lmYhh-i33Ajy_DvazLwmS27ij3EGuou9U_KzSLGrThdhlUf8iNyZ3F6k-WRe5_Lb7MInhctuw9N8Wk4weDDtHxOaZG3Meft1Mk-fjpEt_7zNHoCj1tcyfYaRXgKS65ahwdNpcnrdXi43xV2ewY_Jl1JXOaj8f5kA6tLNkMkfanM9byeWobvI-vLIDDa22d0_qHZvWXT6u-fxXRRs-aII1OMEoUvWJfXVW3A2ejg2_44bAsthCYRWRpmDgWmcmNjYyJHsVaFsA6RhNC4fJHmmtwWFXGL7pRVzjpeFjjQOK41RYKfw0pVV-4lsCyKFXp4LtOFFgrHW1tGhluTxIlG6BLATrfK0rQs5FQM40KSN0JikSQW2YslgI_9gFlDwHF31_cotr4XEWeP944lXUMkQ534ggew2UlVtub6W2IrAskMXdUAtvpmFAutsKpcfYV9cD1yju4ZTvGiUYL-r2JiLUJFDyAbqMfgXoYt1fTck3mnHBFSHAWw3SnSzW3d-Zyx17T71kMeTD4f9r9e_deod7B2-mUkj7-eHL2GR3i5IQPmm7Ay_3Xl3iAim-u33ub-ARDeLI0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dissection+of+plasmacytoid+dendritic+cell+activation+in%C2%A0vivo+during+a+viral+infection&rft.jtitle=The+EMBO+journal&rft.au=Tomasello%2C+Elena&rft.au=Naciri%2C+Karima&rft.au=Chelbi%2C+Rabie&rft.au=Bessou%2C+Gilles&rft.date=2018-10-01&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=37&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembj.201798836&rft.externalDBID=10.15252%252Fembj.201798836&rft.externalDocID=EMBJ201798836 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |