Molecular dissection of plasmacytoid dendritic cell activation in vivo during a viral infection

Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors (TLRs) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 37; no. 19
Main Authors Tomasello, Elena, Naciri, Karima, Chelbi, Rabie, Bessou, Gilles, Fries, Anissa, Gressier, Elise, Abbas, Abdenour, Pollet, Emeline, Pierre, Philippe, Lawrence, Toby, Vu Manh, Thien‐Phong, Dalod, Marc
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2018
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors (TLRs) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN‐I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN‐I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN‐I downstream of the TLR9‐to‐MyD88‐to‐IRF7 signaling pathway without requiring IFN‐I positive feedback, high IRF7 expression, or AP3‐driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN‐I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection. Synopsis In vivo production of IFN‐I by pDC requires TLR9‐to‐MyD88‐to‐IRF7 signaling both during MCMV infection and CpG injection but IFN‐I positive feedback and AP3 function only for CpG. Hence, distinct mechanisms tune pDC responses to TLR9 triggering by synthetic ligands versus a viral infection. TLR, IFN‐I and IFN‐γ differentially contribute to pDC activation during MCMV infection, driving largely distinct gene expression programs. During MCMV infection but not CpG injection, pDC can produce IFN‐I in vivo independently of IFN‐I positive feedback and AP3‐mediated routing. IRF7 is necessary for IFN‐I production by pDC, but low amounts are sufficient to endow them with this function. Cell‐intrinsic LFA‐1 functions and hence cell‐cell interactions promote pDC cytokine production both during MCMV infection and CpG injection, but their precise nature remains unknown. Graphical Abstract Physiological settings for studying activation of interferon‐producing pDCs reveal dispensability of high basal IRF7 expression and positive IFN‐I feedback signals previously implicated based on testing with synthetic ligands.
AbstractList Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors (TLRs) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN‐I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN‐I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN‐I downstream of the TLR9‐to‐MyD88‐to‐IRF7 signaling pathway without requiring IFN‐I positive feedback, high IRF7 expression, or AP3‐driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN‐I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection. Synopsis In vivo production of IFN‐I by pDC requires TLR9‐to‐MyD88‐to‐IRF7 signaling both during MCMV infection and CpG injection but IFN‐I positive feedback and AP3 function only for CpG. Hence, distinct mechanisms tune pDC responses to TLR9 triggering by synthetic ligands versus a viral infection. TLR, IFN‐I and IFN‐γ differentially contribute to pDC activation during MCMV infection, driving largely distinct gene expression programs. During MCMV infection but not CpG injection, pDC can produce IFN‐I in vivo independently of IFN‐I positive feedback and AP3‐mediated routing. IRF7 is necessary for IFN‐I production by pDC, but low amounts are sufficient to endow them with this function. Cell‐intrinsic LFA‐1 functions and hence cell‐cell interactions promote pDC cytokine production both during MCMV infection and CpG injection, but their precise nature remains unknown. Physiological settings for studying activation of interferon‐producing pDCs reveal dispensability of high basal IRF7 expression and positive IFN‐I feedback signals previously implicated based on testing with synthetic ligands.
Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors (TLRs) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN‐I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN‐I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN‐I downstream of the TLR9‐to‐MyD88‐to‐IRF7 signaling pathway without requiring IFN‐I positive feedback, high IRF7 expression, or AP3‐driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN‐I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.
Plasmacytoid dendritic cells ( pDC ) are the major source of type I interferons ( IFN ‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors ( TLR s) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA , respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP 3 is necessary to transport molecular complexes of TLR s, synthetic CpG DNA , and MyD88 into endosomal compartments allowing interferon regulatory factor 7 ( IRF 7) recruitment whose phosphorylation then initiates IFN ‐I production. High basal expression of IRF 7 by pDC and its further enhancement by positive IFN ‐I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus ( MCMV ) infection pDC produce high amounts of IFN ‐I downstream of the TLR 9‐to‐MyD88‐to‐ IRF 7 signaling pathway without requiring IFN ‐I positive feedback, high IRF 7 expression, or AP 3‐driven endosomal routing of TLR s. Hence, the current model of the molecular requirements for professional IFN ‐I production by pDC , established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.
Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like receptors (TLRs) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN-I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN-I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN-I downstream of the TLR9-to-MyD88-to-IRF7 signaling pathway without requiring IFN-I positive feedback, high IRF7 expression, or AP3-driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN-I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.
Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors (TLRs) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN‐I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN‐I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN‐I downstream of the TLR9‐to‐MyD88‐to‐IRF7 signaling pathway without requiring IFN‐I positive feedback, high IRF7 expression, or AP3‐driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN‐I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection. Synopsis In vivo production of IFN‐I by pDC requires TLR9‐to‐MyD88‐to‐IRF7 signaling both during MCMV infection and CpG injection but IFN‐I positive feedback and AP3 function only for CpG. Hence, distinct mechanisms tune pDC responses to TLR9 triggering by synthetic ligands versus a viral infection. TLR, IFN‐I and IFN‐γ differentially contribute to pDC activation during MCMV infection, driving largely distinct gene expression programs. During MCMV infection but not CpG injection, pDC can produce IFN‐I in vivo independently of IFN‐I positive feedback and AP3‐mediated routing. IRF7 is necessary for IFN‐I production by pDC, but low amounts are sufficient to endow them with this function. Cell‐intrinsic LFA‐1 functions and hence cell‐cell interactions promote pDC cytokine production both during MCMV infection and CpG injection, but their precise nature remains unknown. Graphical Abstract Physiological settings for studying activation of interferon‐producing pDCs reveal dispensability of high basal IRF7 expression and positive IFN‐I feedback signals previously implicated based on testing with synthetic ligands.
Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like receptors (TLRs) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN-I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN-I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN-I downstream of the TLR9-to-MyD88-to-IRF7 signaling pathway without requiring IFN-I positive feedback, high IRF7 expression, or AP3-driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN-I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like receptors (TLRs) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN-I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN-I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN-I downstream of the TLR9-to-MyD88-to-IRF7 signaling pathway without requiring IFN-I positive feedback, high IRF7 expression, or AP3-driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN-I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.
Author Chelbi, Rabie
Pollet, Emeline
Abbas, Abdenour
Lawrence, Toby
Pierre, Philippe
Naciri, Karima
Bessou, Gilles
Tomasello, Elena
Vu Manh, Thien‐Phong
Fries, Anissa
Dalod, Marc
Gressier, Elise
AuthorAffiliation 3 Present address: Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Vic. Australia
1 Aix Marseille Univ CNRS INSERM CIML Centre d'Immunologie de Marseille‐Luminy Marseille France
2 Present address: Department of Dermatology University Hospital CHUV Lausanne Switzerland
AuthorAffiliation_xml – name: 2 Present address: Department of Dermatology University Hospital CHUV Lausanne Switzerland
– name: 3 Present address: Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Vic. Australia
– name: 1 Aix Marseille Univ CNRS INSERM CIML Centre d'Immunologie de Marseille‐Luminy Marseille France
Author_xml – sequence: 1
  givenname: Elena
  surname: Tomasello
  fullname: Tomasello, Elena
  email: tomasell@ciml.univ-mrs.fr
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy
– sequence: 2
  givenname: Karima
  surname: Naciri
  fullname: Naciri, Karima
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy
– sequence: 3
  givenname: Rabie
  surname: Chelbi
  fullname: Chelbi, Rabie
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy
– sequence: 4
  givenname: Gilles
  surname: Bessou
  fullname: Bessou, Gilles
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy
– sequence: 5
  givenname: Anissa
  surname: Fries
  fullname: Fries, Anissa
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy, Department of Dermatology, University Hospital CHUV
– sequence: 6
  givenname: Elise
  surname: Gressier
  fullname: Gressier, Elise
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne
– sequence: 7
  givenname: Abdenour
  surname: Abbas
  fullname: Abbas, Abdenour
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy
– sequence: 8
  givenname: Emeline
  surname: Pollet
  fullname: Pollet, Emeline
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy
– sequence: 9
  givenname: Philippe
  orcidid: 0000-0003-0863-8255
  surname: Pierre
  fullname: Pierre, Philippe
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy
– sequence: 10
  givenname: Toby
  surname: Lawrence
  fullname: Lawrence, Toby
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy
– sequence: 11
  givenname: Thien‐Phong
  surname: Vu Manh
  fullname: Vu Manh, Thien‐Phong
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy
– sequence: 12
  givenname: Marc
  orcidid: 0000-0002-6436-7966
  surname: Dalod
  fullname: Dalod, Marc
  email: dalod@ciml.univ-mrs.fr
  organization: Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille‐Luminy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30131424$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02117981$$DView record in HAL
BookMark eNqFks1u1DAUhS1URKeFNTsUiQ1dpPV1HCdhgVSqQkFTsYG1cWyn9Sixp3YSNG_TZ-HJcCZtKSNVrCxdf-fc3wO0Z53VCL0GfAw5ycmJ7urVMcFQVGWZsWdoAZThlOAi30MLTBikFMpqHx2EsMIY52UBL9B-hiEDSugC_bx0rZZDK3yiTAha9sbZxDXJuhWhE3LTO6MSpa3ypjcykbptExGpUWxJY3_fjmZ0iRq8sVeJSEbjRRvjzez1Ej1vRBv0q7v3EP34dP797CJdfvv85ex0mcqcFiwttC6pKKXKpCSalJiJKiO4AlrHkkkNdUGzShBQtMqV0EpDU0Wh1FDXOGPZIfow-66HutNKatvHOvjam074DXfC8H9_rLnmV27kDBiDjESDo9ngekd2cbrkUwwTmMYMI0T23V0y724GHXremTCNRljthsCnwkvICzahb3fQlRu8jaPg0Y_mrKC0jNSbx9U_5L9fVATyGZDeheB1w6XptyuIzZiWA-bbg-DTQfCHg4i6kx3dvfXTivez4pdp9eZ_OD-__Pj1sRjP4rCezkH7v90-le8PPRTaOQ
CitedBy_id crossref_primary_10_1126_sciimmunol_abc7302
crossref_primary_10_7554_eLife_78873
crossref_primary_10_7554_eLife_56882
crossref_primary_10_1016_j_heliyon_2024_e39176
crossref_primary_10_1186_s12863_021_00991_2
crossref_primary_10_3389_fimmu_2024_1360291
crossref_primary_10_3389_fimmu_2020_607442
crossref_primary_10_3389_fimmu_2021_672729
crossref_primary_10_7554_eLife_74072
crossref_primary_10_1002_eji_202149513
crossref_primary_10_1016_j_it_2021_07_004
crossref_primary_10_3389_fgene_2023_1207233
crossref_primary_10_3390_cells12111504
crossref_primary_10_1016_j_isci_2021_103059
crossref_primary_10_1038_s41590_023_01472_7
crossref_primary_10_3892_etm_2019_8161
crossref_primary_10_1016_j_isci_2021_102402
crossref_primary_10_1146_annurev_immunol_090122_041105
crossref_primary_10_3390_ijms22084190
crossref_primary_10_1038_s41590_023_01454_9
crossref_primary_10_3390_cells11193149
crossref_primary_10_1002_eji_202048566
crossref_primary_10_1155_2020_7418342
crossref_primary_10_1038_s41423_024_01167_5
crossref_primary_10_1038_s41467_024_55692_y
crossref_primary_10_1016_j_immuni_2022_10_005
crossref_primary_10_1155_2019_7596786
crossref_primary_10_3390_ijms23137325
crossref_primary_10_3390_v12091039
crossref_primary_10_1016_j_celrep_2022_111260
crossref_primary_10_1002_cti2_1139
crossref_primary_10_1042_CS20210577
crossref_primary_10_4049_jimmunol_1900297
crossref_primary_10_1038_s41590_020_0731_4
crossref_primary_10_1016_j_molimm_2022_05_009
crossref_primary_10_1016_j_bbi_2021_04_018
crossref_primary_10_1016_j_immuni_2018_12_027
Cites_doi 10.1016/j.bbrc.2006.01.122
10.1002/eji.200636767
10.1016/j.immuni.2015.03.003
10.1038/ni736
10.1016/j.immuni.2013.10.004
10.4049/jimmunol.1400215
10.4161/onci.24212
10.1084/jem.20011666
10.4049/jimmunol.175.10.6723
10.1126/science.1187029
10.1371/journal.ppat.0030123
10.1038/nature01783
10.1371/journal.ppat.1003648
10.1158/0008-5472.CAN-12-3058
10.1038/nature03308
10.1189/jlb.0912452
10.1128/JVI.01714-13
10.1089/jir.2013.0110
10.1084/jem.20041930
10.3389/fmicb.2016.00771
10.4049/jimmunol.170.9.4465
10.1038/nature04641
10.1182/blood-2008-03-143370
10.1016/j.immuni.2016.09.011
10.1016/S0014-5793(98)01514-2
10.1371/journal.ppat.1004897
10.1083/jcb.201501059
10.1002/embj.201488027
10.1038/35073080
10.1002/eji.200636745
10.1016/j.cell.2015.12.032
10.1186/gb-2008-9-1-r17
10.1016/j.immuni.2010.11.020
10.1073/pnas.1002301107
10.1172/JCI44960
10.1016/j.immuni.2017.01.003
10.1016/j.immuni.2016.06.006
10.1093/emboj/17.22.6660
10.4049/jimmunol.1303135
10.4049/jimmunol.1102038
10.1016/j.chom.2012.09.002
10.1038/11360
10.1038/nature03547
10.1016/j.immuni.2018.03.013
10.1126/science.284.5421.1835
10.1016/j.celrep.2016.09.055
10.4049/jimmunol.1402001
10.3389/fimmu.2014.00526
10.4049/jimmunol.0804315
10.4049/jimmunol.180.9.5799
10.1093/intimm/dxv062
10.1038/nature03464
10.1084/jem.20011672
10.1073/pnas.1014051107
10.1038/ni.3200
10.1038/s41467-017-01687-x
10.1080/08820130701715845
10.1371/journal.ppat.1003728
10.3389/fimmu.2015.00299
10.4049/jimmunol.175.6.4000
10.1002/eji.201243106
10.1182/blood-2005-07-2709
10.1371/journal.ppat.1004434
10.3389/fmicb.2014.00378
10.1084/jem.20021522
10.1038/nature04724
10.1074/jbc.M112.345405
10.1002/eji.201343806
10.1016/j.immuni.2004.06.007
10.1038/nri3865
10.1016/j.chom.2012.08.010
10.1126/scisignal.aan4144
10.1016/S0166-0934(00)00202-0
10.1093/intimm/dxm119
10.1182/blood-2008-06-162651
10.1074/jbc.M501289200
10.1016/j.immuni.2012.09.014
10.4049/jimmunol.166.4.2291
10.1182/blood-2015-06-650689
10.1016/S0092-8674(01)00599-2
10.4049/jimmunol.1003349
10.1073/pnas.0808537105
ContentType Journal Article
Copyright The Author(s) 2018
2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license
2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
2018 EMBO
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: The Author(s) 2018
– notice: 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license
– notice: 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
– notice: 2018 EMBO
– notice: Attribution - NonCommercial - NoDerivatives
DBID C6C
24P
AAYXX
CITATION
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.15252/embj.201798836
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts

PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Elena Tomasello et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC6166132
oai_HAL_hal_02117981v1
30131424
10_15252_embj_201798836
EMBJ201798836
Genre article
Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR‐10‐INSB‐04‐01; ANR‐15‐CE15‐0006‐01; ANR‐11‐LABEX‐0043; ANR‐10‐IDEX‐0001‐02; ANR‐11‐IDEX‐0001‐02
  funderid: 10.13039/501100001665
– fundername: Fondation pour la Recherche Médicale
  grantid: DEQ20110421284
  funderid: 10.13039/501100002915
– fundername: European Research Council under the European Community's Seventh Framework Programme
  grantid: 281225
  funderid: 10.13039/100011102
– fundername: Fondation pour la Recherche Médicale
  funderid: DEQ20110421284
– fundername: Agence Nationale de la Recherche
  funderid: ANR‐10‐INSB‐04‐01; ANR‐15‐CE15‐0006‐01; ANR‐11‐LABEX‐0043; ANR‐10‐IDEX‐0001‐02; ANR‐11‐IDEX‐0001‐02
– fundername: European Research Council under the European Community's Seventh Framework Programme
  funderid: 281225
– fundername: Agence Nationale de la Recherche
  grantid: ANR‐10‐INSB‐04‐01; ANR‐15‐CE15‐0006‐01; ANR‐11‐LABEX‐0043; ANR‐10‐IDEX‐0001‐02; ANR‐11‐IDEX‐0001‐02
– fundername: Fondation pour la Recherche Médicale
  grantid: DEQ20110421284
– fundername: European Research Council under the European Community's Seventh Framework Programme
  grantid: 281225
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
.55
3O-
4.4
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
AANHP
AASML
AAYXX
ABUWG
ABZEH
ACBWZ
ACKIV
ACRPL
ACYXJ
ADNMO
AEUYN
AFKRA
AGQPQ
AI.
ASPBG
AVWKF
AZQEC
BBNVY
BHPHI
BKSAR
BPHCQ
BVXVI
C1A
CAG
CCPQU
CITATION
COF
D1J
DWQXO
FA8
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
H13
HCIFZ
HMCUK
HVGLF
H~9
LH4
LK8
LW6
M1P
M2O
M7P
NAO
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
RIG
RNI
RZO
UKHRP
VH1
WOQ
X7M
XSW
Y6R
YYP
ZGI
ZXP
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c5476-7ee84a8cd3cc2e2806a9320914b8712b1b7439a21d495daede1f9476ce1bb0363
IEDL.DBID 24P
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:20:29 EDT 2025
Fri May 09 12:25:24 EDT 2025
Fri Jul 11 04:12:56 EDT 2025
Fri Jul 25 10:54:53 EDT 2025
Wed Feb 19 02:42:59 EST 2025
Tue Jul 01 02:06:03 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Wed Jan 22 16:29:24 EST 2025
Fri Feb 21 02:37:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords IRF7
plasmacytoid dendritic cells
viral infection
mouse cytomegalovirus
type I interferons
Virology & Host Pathogen Interaction
Microbiology
viral infection Subject Categories Immunology
Language English
License Attribution
2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5476-7ee84a8cd3cc2e2806a9320914b8712b1b7439a21d495daede1f9476ce1bb0363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
These authors contributed equally to this work as senior authors
ORCID 0000-0003-0863-8255
0000-0002-6436-7966
0000-0002-0294-342X
0000-0003-0967-6122
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798836
PMID 30131424
PQID 2114567448
PQPubID 35985
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6166132
hal_primary_oai_HAL_hal_02117981v1
proquest_miscellaneous_2091815761
proquest_journals_2114567448
pubmed_primary_30131424
crossref_citationtrail_10_15252_embj_201798836
crossref_primary_10_15252_embj_201798836
wiley_primary_10_15252_embj_201798836_EMBJ201798836
springer_journals_10_15252_embj_201798836
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 01 October 2018
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 01 October 2018
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2018
Publisher Nature Publishing Group UK
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: EMBO Press
– name: John Wiley and Sons Inc
References Sato, Hata, Asagiri, Nakaya, Taniguchi, Tanaka (CR57) 1998; 441
Asselin‐Paturel, Brizard, Chemin, Boonstra, O'Garra, Vicari, Trinchieri (CR3) 2005; 201
Robbins, Walzer, Dembele, Thibault, Defays, Bessou, Xu, Vivier, Sellars, Pierre, Sharp, Chan, Kastner, Dalod (CR54) 2008; 9
Swiecki, Gilfillan, Vermi, Wang, Colonna (CR64) 2010; 33
Dalod, Salazar‐Mather, Malmgaard, Lewis, Asselin‐Paturel, Briere, Trinchieri, Biron (CR12) 2002; 195
Mostafavi, Yoshida, Moodley, LeBoite, Rothamel, Raj, Ye, Chevrier, Zhang, Feng, Lee, Casanova, Clark, Hegen, Telliez, Hacohen, De Jager, Regev, Mathis, Benoist (CR44) 2016; 164
Dreux, Garaigorta, Boyd, Decembre, Chung, Whitten‐Bauer, Wieland, Chisari (CR19) 2012; 12
Tomasello, Pollet, Vu Manh, Uze, Dalod (CR73) 2014; 5
O'Brien, Manches, Sabado, Baranda, Wang, Marie, Rolnitzky, Markowitz, Margolis, Levy, Bhardwaj (CR45) 2011; 121
Alexandre, Cocita, Ghilas, Dalod (CR1) 2014; 5
Sasai, Linehan, Iwasaki (CR56) 2010; 329
Puttur, Francozo, Solmaz, Bueno, Lindenberg, Gohmert, Swallow, Tufa, Jacobs, Lienenklaus, Kuhl, Borkner, Cicin‐Sain, Holzmann, Wagner, Berod, Sparwasser (CR52) 2016; 17
Tamoutounour, Guilliams, Montanana Sanchis, Liu, Terhorst, Malosse, Pollet, Ardouin, Luche, Sanchez, Dalod, Malissen, Henri (CR70) 2013; 39
Frenz, Graalmann, Detje, Doring, Grabski, Scheu, Kalinke (CR21) 2014; 193
Luche, Weber, Nageswara Rao, Blum, Fehling (CR39) 2007; 37
Brewitz, Eickhoff, Dahling, Quast, Bedoui, Kroczek, Kurts, Garbi, Barchet, Iannacone, Klauschen, Kolanus, Kaisho, Colonna, Germain, Kastenmuller (CR8) 2017; 46
Waterstrat, Liang, Swiderski, Shelton, Van Zant (CR76) 2010; 115
Hara, Nakamura, Matsui, Yamamoto, Nakahara, Suzuki‐Migishima, Yokoyama, Mishima, Saito, Okano, Mizushima (CR24) 2006; 441
Vu Manh, Alexandre, Baranek, Crozat, Dalod (CR74) 2013; 43
Hayashi, Taura, Iwasaki (CR25) 2018; 11
Hagberg, Berggren, Leonard, Weber, Bryceson, Alm, Eloranta, Ronnblom (CR23) 2011; 186
Swiecki, Colonna (CR67) 2015; 15
Zucchini, Bessou, Traub, Robbins, Uematsu, Akira, Alexopoulou, Dalod (CR82) 2008; 180
Hoshino, Sugiyama, Matsumoto, Tanaka, Saito, Hemmi, Ohara, Akira, Kaisho (CR31) 2006; 440
Kumagai, Kumar, Koyama, Kawai, Takeuchi, Akira (CR37) 2009; 182
Baratin, Foray, Demaria, Habbeddine, Pollet, Maurizio, Verthuy, Davanture, Azukizawa, Flores‐Langarica, Dalod, Lawrence (CR5) 2015; 42
Henault, Martinez, Riggs, Tian, Mehta, Clarke, Sasai, Latz, Brinkmann, Iwasaki, Coyle, Kolbeck, Green, Sanjuan (CR27) 2012; 37
Dalod, Chelbi, Malissen, Lawrence (CR14) 2014; 33
Prandini, Salvi, Colombo, Moratto, Lorenzi, Vermi, De Francesco, Notarangelo, Porta, Plebani, Facchetti, Sozzani, Badolato (CR50) 2016; 127
Takaoka, Yanai, Kondo, Duncan, Negishi, Mizutani, Kano, Honda, Ohba, Mak, Taniguchi (CR69) 2005; 434
Garcia‐Nicolas, Auray, Sautter, Rappe, McCullough, Ruggli, Summerfield (CR22) 2016; 7
Prakash, Levy (CR49) 2006; 342
Blasius, Arnold, Georgel, Rutschmann, Xia, Lin, Ross, Li, Smart, Beutler (CR7) 2010; 107
Kim, Kaiser, Beier, Bechheim, Guenthner‐Biller, Ablasser, Berger, Endres, Hartmann, Hornung (CR35) 2014; 44
Vu Manh, Elhmouzi‐Younes, Urien, Ruscanu, Jouneau, Bourge, Moroldo, Foucras, Salmon, Marty, Quere, Bertho, Boudinot, Dalod, Schwartz‐Cornil (CR75) 2015; 6
Yin, Dai, Deng, Sheikh, Natalia, Shih, Lewis‐Antes, Amrute, Garrigues, Doyle, Donnelly, Kotenko, Fitzgerald‐Bocarsly (CR79) 2012; 189
Robbins, Bessou, Cornillon, Zucchini, Rupp, Ruzsics, Sacher, Tomasello, Vivier, Koszinowski, Dalod (CR53) 2007; 3
Malleret, Maneglier, Karlsson, Lebon, Nascimbeni, Perie, Brochard, Delache, Calvo, Andrieu, Spreux‐Varoquaux, Hosmalin, Le Grand, Vaslin (CR41) 2008; 112
Takahashi, Asabe, Wieland, Garaigorta, Gastaminza, Isogawa, Chisari (CR68) 2010; 107
Cella, Jarrossay, Facchetti, Alebardi, Nakajima, Lanzavecchia, Colonna (CR10) 1999; 5
Delale, Paquin, Asselin‐Paturel, Dalod, Brizard, Bates, Kastner, Chan, Akira, Vicari, Biron, Trinchieri, Briere (CR17) 2005; 175
Ohto, Ishida, Shibata, Sato, Miyake, Shimizu (CR46) 2018; 48
Dalod, Hamilton, Salomon, Salazar‐Mather, Henry, Hamilton, Biron (CR13) 2003; 197
Fonteneau, Guillerme, Tangy, Gregoire (CR20) 2013; 2
Terawaki, Camosseto, Prete, Wenger, Papadopoulos, Rondeau, Combes, Rodriguez Rodrigues, Vu Manh, Fallet, English, Santamaria, Soares, Weil, Hammad, Desjardins, Gorvel, Santos, Gatti, Pierre (CR72) 2015; 210
Diebold, Montoya, Unger, Alexopoulou, Roy, Haswell, Al‐Shamkhani, Flavell, Borrow, Reis e Sousa (CR18) 2003; 424
Kerkmann, Rothenfusser, Hornung, Towarowski, Wagner, Sarris, Giese, Endres, Hartmann (CR34) 2003; 170
Wu, Sanin, Everts, Chen, Qiu, Buck, Patterson, Smith, Chang, Liu, Artyomov, Pearce, Cella, Pearce (CR78) 2016; 44
Scheu, Dresing, Locksley (CR58) 2008; 105
Wieland, Takahashi, Boyd, Whitten‐Bauer, Ngo, de la Torre, Chisari (CR77) 2014; 88
Kadowaki, Antonenko, Liu (CR33) 2001; 166
Megjugorac, Jacobs, Izaguirre, George, Gupta, Fitzgerald‐Bocarsly (CR43) 2007; 36
Henry, Schmader, Brown, Miller, Howell, Daley, Hamilton (CR28) 2000; 89
Hemont, Neel, Heslan, Braudeau, Josien (CR26) 2013; 93
Strobl, Bubic, Bruns, Steinborn, Lajko, Kolbe, Karaghiosoff, Kalinke, Jonjic, Muller (CR63) 2005; 175
Pauls, Shpiro, Peggie, Young, Sorcek, Tan, Choi, Cohen (CR47) 2012; 287
Swiecki, Wang, Riboldi, Kim, Dzutsev, Gilfillan, Vermi, Ruedl, Trinchieri, Colonna (CR66) 2014; 192
Swiecki, Wang, Gilfillan, Colonna (CR65) 2013; 9
Zhang, Ohto, Shibata, Krayukhina, Taoka, Yamauchi, Tanji, Isobe, Uchiyama, Miyake, Shimizu (CR80) 2016; 45
Schmitz, Heit, Guggemoos, Krug, Mages, Schiemann, Adler, Drexler, Haas, Lang, Wagner (CR60) 2007; 37
Zucchini, Bessou, Robbins, Chasson, Raper, Crocker, Dalod (CR81) 2008; 20
Decembre, Assil, Hillaire, Dejnirattisai, Mongkolsapaya, Screaton, Davidson, Dreux (CR15) 2014; 10
Honda, Ohba, Yanai, Negishi, Mizutani, Takaoka, Taya, Taniguchi (CR29) 2005; 434
Marie, Durbin, Levy (CR42) 1998; 17
Honda, Yanai, Negishi, Asagiri, Sato, Mizutani, Shimada, Ohba, Takaoka, Yoshida, Taniguchi (CR30) 2005; 434
Baranek, Manh, Alexandre, Maqbool, Cabeza, Tomasello, Crozat, Bessou, Zucchini, Robbins, Vivier, Kalinke, Ferrier, Dalod (CR4) 2012; 12
Le Mercier, Poujol, Sanlaville, Sisirak, Gobert, Durand, Dubois, Treilleux, Marvel, Vlach, Blay, Bendriss‐Vermare, Caux, Puisieux, Goutagny (CR38) 2013; 73
Madera, Sun (CR40) 2015; 194
Cao, Bonizzi, Seagroves, Greten, Johnson, Schmidt, Karin (CR9) 2001; 107
Barchet, Cella, Odermatt, Asselin‐Paturel, Colonna, Kalinke (CR6) 2002; 195
Ito, Kanzler, Duramad, Cao, Liu (CR32) 2006; 107
Schlitzer, Sivakamasundari, Chen, Sumatoh, Schreuder, Lum, Malleret, Zhang, Larbi, Zolezzi, Renia, Poidinger, Naik, Newell, Robson, Ginhoux (CR59) 2015; 16
Taniguchi, Takaoka (CR71) 2001; 2
Saitoh, Abe, Kanno, Tanimura, Mori Saitoh, Fukui, Shibata, Sato, Ichinohe, Hayashi, Kubota, Kozuka‐Hata, Oyama, Kikko, Katada, Kontani, Miyake (CR55) 2017; 8
Shibata, Ohto, Nomura, Kibata, Motoi, Zhang, Murakami, Fukui, Ishimoto, Sano, Ito, Shimizu, Miyake (CR61) 2016; 28
Krug, French, Barchet, Fischer, Dzionek, Pingel, Orihuela, Akira, Yokoyama, Colonna (CR36) 2004; 21
Siegal, Kadowaki, Shodell, Fitzgerald‐Bocarsly, Shah, Ho, Antonenko, Liu (CR62) 1999; 284
Cocita, Guiton, Bessou, Chasson, Boyron, Crozat, Dalod (CR11) 2015; 11
Prakash, Smith, Lee, Levy (CR48) 2005; 280
Del Prete, Luganini, Scutera, Rossi, Anselmo, Greco, Landolfo, Badolato, Gribaudo, Sozzani, Musso (CR16) 2015; 35
Asselin‐Paturel, Boonstra, Dalod, Durand, Yessaad, Dezutter‐Dambuyant, Vicari, O'Garra, Biron, Briere, Trinchieri (CR2) 2001; 2
Puttur, Arnold‐Schrauf, Lahl, Solmaz, Lindenberg, Mayer, Gohmert, Swallow, van Helt, Schmitt, Nitschke, Lambrecht, Lang, Messerle, Sparwasser (CR51) 2013; 9
2015; 35
2004; 21
2017; 8
2012; 287
2005; 175
2013; 2
2010; 107
2005b; 434
2002; 195
2000; 89
2017; 46
2008; 9
1999; 284
2008; 105
2005a; 434
2001; 107
2012; 12
2007; 36
2018; 48
2003; 197
2007; 37
2013; 9
1998; 17
2014; 5
2015; 42
2015; 210
2010; 115
2006; 440
2007; 3
2008; 112
1998; 441
2006; 441
2014; 10
2011; 121
2016; 45
2016; 44
2001; 166
2010; 33
2015; 15
2015; 6
2015; 16
2010; 329
2012; 189
2013; 43
2009; 182
2005; 434
2015; 11
2013; 93
2003; 170
2016; 127
2014; 192
2014; 193
2012; 37
2016; 17
1999; 5
2016; 164
2008a; 20
2014; 44
2014; 88
2005; 280
2016; 7
2015; 194
2008b; 180
2013; 39
2003; 424
2005; 201
2013; 73
2001; 2
2018; 11
2016; 28
2006; 107
2014; 33
2006; 342
2011; 186
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 112
  start-page: 4598
  year: 2008
  end-page: 4608
  ident: CR41
  article-title: Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type I interferon, and immune suppression
  publication-title: Blood
– volume: 48
  start-page: 649
  year: 2018
  end-page: 658
  ident: CR46
  article-title: Toll‐like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation
  publication-title: Immunity
– volume: 107
  start-page: 2423
  year: 2006
  end-page: 2431
  ident: CR32
  article-title: Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells
  publication-title: Blood
– volume: 127
  start-page: 3382
  year: 2016
  end-page: 3386
  ident: CR50
  article-title: Impairment of dendritic cell functions in patients with adaptor protein‐3 complex deficiency
  publication-title: Blood
– volume: 44
  start-page: 1325
  year: 2016
  end-page: 1336
  ident: CR78
  article-title: Type 1 interferons induce changes in core metabolism that are critical for immune function
  publication-title: Immunity
– volume: 17
  start-page: 6660
  year: 1998
  end-page: 6669
  ident: CR42
  article-title: Differential viral induction of distinct interferon‐alpha genes by positive feedback through interferon regulatory factor‐7
  publication-title: EMBO J
– volume: 107
  start-page: 763
  year: 2001
  end-page: 775
  ident: CR9
  article-title: IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development
  publication-title: Cell
– volume: 105
  start-page: 20416
  year: 2008
  end-page: 20421
  ident: CR58
  article-title: Visualization of IFNbeta production by plasmacytoid versus conventional dendritic cells under specific stimulation conditions
  publication-title: Proc Natl Acad Sci USA
– volume: 121
  start-page: 1088
  year: 2011
  end-page: 1101
  ident: CR45
  article-title: Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN‐alpha‐producing and partially matured phenotype
  publication-title: J Clin Invest
– volume: 9
  start-page: e1003648
  year: 2013
  ident: CR51
  article-title: Absence of Siglec‐H in MCMV infection elevates interferon alpha production but does not enhance viral clearance
  publication-title: PLoS Pathog
– volume: 287
  start-page: 19216
  year: 2012
  end-page: 19228
  ident: CR47
  article-title: Essential role for IKKbeta in production of type 1 interferons by plasmacytoid dendritic cells
  publication-title: J Biol Chem
– volume: 9
  start-page: R17
  year: 2008
  ident: CR54
  article-title: Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome‐wide expression profiling
  publication-title: Genome Biol
– volume: 45
  start-page: 737
  year: 2016
  end-page: 748
  ident: CR80
  article-title: Structural analysis reveals that toll‐like receptor 7 is a dual receptor for guanosine and single‐stranded RNA
  publication-title: Immunity
– volume: 194
  start-page: 1408
  year: 2015
  end-page: 1412
  ident: CR40
  article-title: Cutting edge: stage‐specific requirement of IL‐18 for antiviral NK cell expansion
  publication-title: J Immunol
– volume: 12
  start-page: 571
  year: 2012
  end-page: 584
  ident: CR4
  article-title: Differential responses of immune cells to type I interferon contribute to host resistance to viral infection
  publication-title: Cell Host Microbe
– volume: 434
  start-page: 1035
  year: 2005
  end-page: 1040
  ident: CR29
  article-title: Spatiotemporal regulation of MyD88‐IRF‐7 signalling for robust type‐I interferon induction
  publication-title: Nature
– volume: 284
  start-page: 1835
  year: 1999
  end-page: 1837
  ident: CR62
  article-title: The nature of the principal type 1 interferon‐producing cells in human blood
  publication-title: Science
– volume: 46
  start-page: 205
  year: 2017
  end-page: 219
  ident: CR8
  article-title: CD8+ T cells orchestrate pDC‐XCR1+ dendritic cell spatial and functional cooperativity to optimize priming
  publication-title: Immunity
– volume: 20
  start-page: 45
  year: 2008
  end-page: 56
  ident: CR81
  article-title: Individual plasmacytoid dendritic cells are major contributors to the production of multiple innate cytokines in an organ‐specific manner during viral infection
  publication-title: Int Immunol
– volume: 39
  start-page: 925
  year: 2013
  end-page: 938
  ident: CR70
  article-title: Origins and functional specialization of macrophages and of conventional and monocyte‐derived dendritic cells in mouse skin
  publication-title: Immunity
– volume: 197
  start-page: 885
  year: 2003
  end-page: 898
  ident: CR13
  article-title: Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon alpha/beta
  publication-title: J Exp Med
– volume: 17
  start-page: 1113
  year: 2016
  end-page: 1127
  ident: CR52
  article-title: Conventional dendritic cells confer protection against mouse cytomegalovirus infection via TLR9 and MyD88 signaling
  publication-title: Cell Rep
– volume: 88
  start-page: 752
  year: 2014
  end-page: 757
  ident: CR77
  article-title: Human plasmacytoid dendritic cells sense lymphocytic choriomeningitis virus‐infected cells
  publication-title: J Virol
– volume: 5
  start-page: 919
  year: 1999
  end-page: 923
  ident: CR10
  article-title: Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon
  publication-title: Nat Med
– volume: 37
  start-page: 43
  year: 2007
  end-page: 53
  ident: CR39
  article-title: Faithful activation of an extra‐bright red fluorescent protein in “knock‐in” Cre‐reporter mice ideally suited for lineage tracing studies
  publication-title: Eur J Immunol
– volume: 5
  start-page: 378
  year: 2014
  ident: CR1
  article-title: Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections
  publication-title: Front Microbiol
– volume: 89
  start-page: 61
  year: 2000
  end-page: 73
  ident: CR28
  article-title: Enhanced green fluorescent protein as a marker for localizing murine cytomegalovirus in acute and latent infection
  publication-title: J Virol Methods
– volume: 107
  start-page: 19973
  year: 2010
  end-page: 19978
  ident: CR7
  article-title: Slc15a4, AP‐3, and Hermansky‐Pudlak syndrome proteins are required for Toll‐like receptor signaling in plasmacytoid dendritic cells
  publication-title: Proc Natl Acad Sci USA
– volume: 434
  start-page: 772
  year: 2005
  end-page: 777
  ident: CR30
  article-title: IRF‐7 is the master regulator of type‐I interferon‐dependent immune responses
  publication-title: Nature
– volume: 16
  start-page: 718
  year: 2015
  end-page: 728
  ident: CR59
  article-title: Identification of cDC1‐ and cDC2‐committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow
  publication-title: Nat Immunol
– volume: 192
  start-page: 4409
  year: 2014
  end-page: 4416
  ident: CR66
  article-title: Cell depletion in mice that express diphtheria toxin receptor under the control of SiglecH encompasses more than plasmacytoid dendritic cells
  publication-title: J Immunol
– volume: 8
  start-page: 1592
  year: 2017
  ident: CR55
  article-title: TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells
  publication-title: Nat Commun
– volume: 33
  start-page: 955
  year: 2010
  end-page: 966
  ident: CR64
  article-title: Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual
  publication-title: Immunity
– volume: 182
  start-page: 3960
  year: 2009
  end-page: 3964
  ident: CR37
  article-title: Cutting Edge: TLR‐Dependent viral recognition along with type I IFN positive feedback signaling masks the requirement of viral replication for IFN‐{alpha} production in plasmacytoid dendritic cells
  publication-title: J Immunol
– volume: 115
  start-page: 408
  year: 2010
  end-page: 417
  ident: CR76
  article-title: Congenic interval of CD45/Ly‐5 congenic mice contains multiple genes that may influence hematopoietic stem cell engraftment
  publication-title: Blood
– volume: 180
  start-page: 5799
  year: 2008
  end-page: 5803
  ident: CR82
  article-title: Cutting edge: overlapping functions of TLR7 and TLR9 for innate defense against a herpesvirus infection
  publication-title: J Immunol
– volume: 33
  start-page: 1104
  year: 2014
  end-page: 1116
  ident: CR14
  article-title: Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming
  publication-title: EMBO J
– volume: 170
  start-page: 4465
  year: 2003
  end-page: 4474
  ident: CR34
  article-title: Activation with CpG‐A and CpG‐B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells
  publication-title: J Immunol
– volume: 7
  start-page: 771
  year: 2016
  ident: CR22
  article-title: Sensing of porcine reproductive and respiratory syndrome virus‐infected macrophages by plasmacytoid dendritic cells
  publication-title: Front Microbiol
– volume: 280
  start-page: 18651
  year: 2005
  end-page: 18657
  ident: CR48
  article-title: Tissue‐specific positive feedback requirements for production of type I interferon following virus infection
  publication-title: J Biol Chem
– volume: 329
  start-page: 1530
  year: 2010
  end-page: 1534
  ident: CR56
  article-title: Bifurcation of Toll‐like receptor 9 signaling by adaptor protein 3
  publication-title: Science
– volume: 93
  start-page: 599
  year: 2013
  end-page: 609
  ident: CR26
  article-title: Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness
  publication-title: J Leukoc Biol
– volume: 21
  start-page: 107
  year: 2004
  end-page: 119
  ident: CR36
  article-title: TLR9‐dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function
  publication-title: Immunity
– volume: 441
  start-page: 106
  year: 1998
  end-page: 110
  ident: CR57
  article-title: Positive feedback regulation of type I IFN genes by the IFN‐inducible transcription factor IRF‐7
  publication-title: FEBS Lett
– volume: 175
  start-page: 4000
  year: 2005
  end-page: 4008
  ident: CR63
  article-title: Novel functions of tyrosine kinase 2 in the antiviral defense against murine cytomegalovirus
  publication-title: J Immunol
– volume: 189
  start-page: 2735
  year: 2012
  end-page: 2745
  ident: CR79
  article-title: Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells
  publication-title: J Immunol
– volume: 6
  start-page: 299
  year: 2015
  ident: CR75
  article-title: Defining mononuclear phagocyte subset homology across several distant warm‐blooded vertebrates through comparative transcriptomics
  publication-title: Front Immunol
– volume: 15
  start-page: 471
  year: 2015
  end-page: 485
  ident: CR67
  article-title: The multifaceted biology of plasmacytoid dendritic cells
  publication-title: Nat Rev Immunol
– volume: 166
  start-page: 2291
  year: 2001
  end-page: 2295
  ident: CR33
  article-title: Distinct CpG DNA and polyinosinic‐polycytidylic acid double‐stranded RNA, respectively, stimulate CD11c‐ type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN
  publication-title: J Immunol
– volume: 73
  start-page: 4629
  year: 2013
  end-page: 4640
  ident: CR38
  article-title: Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment
  publication-title: Cancer Res
– volume: 440
  start-page: 949
  year: 2006
  end-page: 953
  ident: CR31
  article-title: IkappaB kinase‐alpha is critical for interferon‐alpha production induced by Toll‐like receptors 7 and 9
  publication-title: Nature
– volume: 37
  start-page: 986
  year: 2012
  end-page: 997
  ident: CR27
  article-title: Noncanonical autophagy is required for type I interferon secretion in response to DNA‐immune complexes
  publication-title: Immunity
– volume: 3
  start-page: e123
  year: 2007
  ident: CR53
  article-title: Natural killer cells promote early CD8 T cell responses against cytomegalovirus
  publication-title: PLoS Pathog
– volume: 186
  start-page: 5085
  year: 2011
  end-page: 5094
  ident: CR23
  article-title: IFN‐alpha production by plasmacytoid dendritic cells stimulated with RNA‐containing immune complexes is promoted by NK cells via MIP‐1beta and LFA‐1
  publication-title: J Immunol
– volume: 42
  start-page: 627
  year: 2015
  end-page: 639
  ident: CR5
  article-title: Homeostatic NF‐kappaB signaling in steady‐state migratory dendritic cells regulates immune homeostasis and tolerance
  publication-title: Immunity
– volume: 164
  start-page: 564
  year: 2016
  end-page: 578
  ident: CR44
  article-title: Parsing the interferon transcriptional network and its disease associations
  publication-title: Cell
– volume: 195
  start-page: 507
  year: 2002
  end-page: 516
  ident: CR6
  article-title: Virus‐induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling
  publication-title: J Exp Med
– volume: 2
  start-page: e24212
  year: 2013
  ident: CR20
  article-title: Attenuated measles virus used as an oncolytic virus activates myeloid and plasmacytoid dendritic cells
  publication-title: Oncoimmunology
– volume: 107
  start-page: 7431
  year: 2010
  end-page: 7436
  ident: CR68
  article-title: Plasmacytoid dendritic cells sense hepatitis C virus‐infected cells, produce interferon, and inhibit infection
  publication-title: Proc Natl Acad Sci USA
– volume: 201
  start-page: 1157
  year: 2005
  end-page: 1167
  ident: CR3
  article-title: Type I interferon dependence of plasmacytoid dendritic cell activation and migration
  publication-title: J Exp Med
– volume: 5
  start-page: 526
  year: 2014
  ident: CR73
  article-title: Harnessing mechanistic knowledge on beneficial versus deleterious IFN‐I effects to design innovative immunotherapies targeting cytokine activity to specific cell types
  publication-title: Front Immunol
– volume: 424
  start-page: 324
  year: 2003
  end-page: 328
  ident: CR18
  article-title: Viral infection switches non‐plasmacytoid dendritic cells into high interferon producers
  publication-title: Nature
– volume: 35
  start-page: 232
  year: 2015
  end-page: 238
  ident: CR16
  article-title: Interferon‐alpha production by plasmacytoid dendritic cells is dispensable for an effective anti‐cytomegalovirus response in adaptor protein‐3‐deficient mice
  publication-title: J Interferon Cytokine Res
– volume: 193
  start-page: 2496
  year: 2014
  end-page: 2503
  ident: CR21
  article-title: Independent of plasmacytoid dendritic cell (pDC) infection, pDC triggered by virus‐infected cells mount enhanced type I IFN responses of different composition as opposed to pDC stimulated with free virus
  publication-title: J Immunol
– volume: 210
  start-page: 1133
  year: 2015
  end-page: 1152
  ident: CR72
  article-title: RUN and FYVE domain‐containing protein 4 enhances autophagy and lysosome tethering in response to interleukin‐4
  publication-title: J Cell Biol
– volume: 441
  start-page: 885
  year: 2006
  end-page: 889
  ident: CR24
  article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
  publication-title: Nature
– volume: 2
  start-page: 378
  year: 2001
  end-page: 386
  ident: CR71
  article-title: A weak signal for strong responses: interferon‐alpha/beta revisited
  publication-title: Nat Rev Mol Cell Biol
– volume: 11
  start-page: e1004897
  year: 2015
  ident: CR11
  article-title: Natural killer cell sensing of infected cells compensates for MyD88 deficiency but not IFN‐I activity in resistance to mouse cytomegalovirus
  publication-title: PLoS Pathog
– volume: 28
  start-page: 211
  year: 2016
  end-page: 222
  ident: CR61
  article-title: Guanosine and its modified derivatives are endogenous ligands for TLR7
  publication-title: Int Immunol
– volume: 175
  start-page: 6723
  year: 2005
  end-page: 6732
  ident: CR17
  article-title: MyD88‐dependent and ‐independent murine cytomegalovirus sensing for IFN‐alpha release and initiation of immune responses
  publication-title: J Immunol
– volume: 12
  start-page: 558
  year: 2012
  end-page: 570
  ident: CR19
  article-title: Short‐range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity
  publication-title: Cell Host Microbe
– volume: 195
  start-page: 517
  year: 2002
  end-page: 528
  ident: CR12
  article-title: Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression
  publication-title: J Exp Med
– volume: 342
  start-page: 50
  year: 2006
  end-page: 56
  ident: CR49
  article-title: Regulation of IRF7 through cell type‐specific protein stability
  publication-title: Biochem Biophys Res Commun
– volume: 36
  start-page: 739
  year: 2007
  end-page: 761
  ident: CR43
  article-title: Image‐based study of interferongenic interactions between plasmacytoid dendritic cells and HSV‐infected monocyte‐derived dendritic cells
  publication-title: Immunol Invest
– volume: 37
  start-page: 315
  year: 2007
  end-page: 327
  ident: CR60
  article-title: Interferon‐regulatory‐factor 1 controls Toll‐like receptor 9‐mediated IFN‐beta production in myeloid dendritic cells
  publication-title: Eur J Immunol
– volume: 10
  start-page: e1004434
  year: 2014
  ident: CR15
  article-title: Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells
  publication-title: PLoS Pathog
– volume: 44
  start-page: 807
  year: 2014
  end-page: 818
  ident: CR35
  article-title: Self‐priming determines high type I IFN production by plasmacytoid dendritic cells
  publication-title: Eur J Immunol
– volume: 434
  start-page: 243
  year: 2005
  end-page: 249
  ident: CR69
  article-title: Integral role of IRF‐5 in the gene induction programme activated by Toll‐like receptors
  publication-title: Nature
– volume: 2
  start-page: 1144
  year: 2001
  end-page: 1150
  ident: CR2
  article-title: Mouse type I IFN‐producing cells are immature APCs with plasmacytoid morphology
  publication-title: Nat Immunol
– volume: 11
  start-page: eaan4144
  year: 2018
  ident: CR25
  article-title: The interaction between IKKalpha and LC3 promotes type I interferon production through the TLR9‐containing LAPosome
  publication-title: Sci Signal
– volume: 9
  start-page: e1003728
  year: 2013
  ident: CR65
  article-title: Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections
  publication-title: PLoS Pathog
– volume: 43
  start-page: 1706
  year: 2013
  end-page: 1715
  ident: CR74
  article-title: Plasmacytoid, conventional, and monocyte‐derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation
  publication-title: Eur J Immunol
– volume: 45
  start-page: 737
  year: 2016
  end-page: 748
  article-title: Structural analysis reveals that toll‐like receptor 7 is a dual receptor for guanosine and single‐stranded RNA
  publication-title: Immunity
– volume: 5
  start-page: 526
  year: 2014
  article-title: Harnessing mechanistic knowledge on beneficial versus deleterious IFN‐I effects to design innovative immunotherapies targeting cytokine activity to specific cell types
  publication-title: Front Immunol
– volume: 20
  start-page: 45
  year: 2008a
  end-page: 56
  article-title: Individual plasmacytoid dendritic cells are major contributors to the production of multiple innate cytokines in an organ‐specific manner during viral infection
  publication-title: Int Immunol
– volume: 201
  start-page: 1157
  year: 2005
  end-page: 1167
  article-title: Type I interferon dependence of plasmacytoid dendritic cell activation and migration
  publication-title: J Exp Med
– volume: 5
  start-page: 378
  year: 2014
  article-title: Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections
  publication-title: Front Microbiol
– volume: 43
  start-page: 1706
  year: 2013
  end-page: 1715
  article-title: Plasmacytoid, conventional, and monocyte‐derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation
  publication-title: Eur J Immunol
– volume: 5
  start-page: 919
  year: 1999
  end-page: 923
  article-title: Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon
  publication-title: Nat Med
– volume: 33
  start-page: 1104
  year: 2014
  end-page: 1116
  article-title: Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming
  publication-title: EMBO J
– volume: 16
  start-page: 718
  year: 2015
  end-page: 728
  article-title: Identification of cDC1‐ and cDC2‐committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow
  publication-title: Nat Immunol
– volume: 2
  start-page: 1144
  year: 2001
  end-page: 1150
  article-title: Mouse type I IFN‐producing cells are immature APCs with plasmacytoid morphology
  publication-title: Nat Immunol
– volume: 180
  start-page: 5799
  year: 2008b
  end-page: 5803
  article-title: Cutting edge: overlapping functions of TLR7 and TLR9 for innate defense against a herpesvirus infection
  publication-title: J Immunol
– volume: 44
  start-page: 1325
  year: 2016
  end-page: 1336
  article-title: Type 1 interferons induce changes in core metabolism that are critical for immune function
  publication-title: Immunity
– volume: 121
  start-page: 1088
  year: 2011
  end-page: 1101
  article-title: Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN‐alpha‐producing and partially matured phenotype
  publication-title: J Clin Invest
– volume: 329
  start-page: 1530
  year: 2010
  end-page: 1534
  article-title: Bifurcation of Toll‐like receptor 9 signaling by adaptor protein 3
  publication-title: Science
– volume: 11
  start-page: e1004897
  year: 2015
  article-title: Natural killer cell sensing of infected cells compensates for MyD88 deficiency but not IFN‐I activity in resistance to mouse cytomegalovirus
  publication-title: PLoS Pathog
– volume: 193
  start-page: 2496
  year: 2014
  end-page: 2503
  article-title: Independent of plasmacytoid dendritic cell (pDC) infection, pDC triggered by virus‐infected cells mount enhanced type I IFN responses of different composition as opposed to pDC stimulated with free virus
  publication-title: J Immunol
– volume: 434
  start-page: 243
  year: 2005
  end-page: 249
  article-title: Integral role of IRF‐5 in the gene induction programme activated by Toll‐like receptors
  publication-title: Nature
– volume: 284
  start-page: 1835
  year: 1999
  end-page: 1837
  article-title: The nature of the principal type 1 interferon‐producing cells in human blood
  publication-title: Science
– volume: 182
  start-page: 3960
  year: 2009
  end-page: 3964
  article-title: Cutting Edge: TLR‐Dependent viral recognition along with type I IFN positive feedback signaling masks the requirement of viral replication for IFN‐{alpha} production in plasmacytoid dendritic cells
  publication-title: J Immunol
– volume: 342
  start-page: 50
  year: 2006
  end-page: 56
  article-title: Regulation of IRF7 through cell type‐specific protein stability
  publication-title: Biochem Biophys Res Commun
– volume: 48
  start-page: 649
  year: 2018
  end-page: 658
  article-title: Toll‐like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation
  publication-title: Immunity
– volume: 192
  start-page: 4409
  year: 2014
  end-page: 4416
  article-title: Cell depletion in mice that express diphtheria toxin receptor under the control of SiglecH encompasses more than plasmacytoid dendritic cells
  publication-title: J Immunol
– volume: 7
  start-page: 771
  year: 2016
  article-title: Sensing of porcine reproductive and respiratory syndrome virus‐infected macrophages by plasmacytoid dendritic cells
  publication-title: Front Microbiol
– volume: 112
  start-page: 4598
  year: 2008
  end-page: 4608
  article-title: Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type I interferon, and immune suppression
  publication-title: Blood
– volume: 287
  start-page: 19216
  year: 2012
  end-page: 19228
  article-title: Essential role for IKKbeta in production of type 1 interferons by plasmacytoid dendritic cells
  publication-title: J Biol Chem
– volume: 6
  start-page: 299
  year: 2015
  article-title: Defining mononuclear phagocyte subset homology across several distant warm‐blooded vertebrates through comparative transcriptomics
  publication-title: Front Immunol
– volume: 37
  start-page: 986
  year: 2012
  end-page: 997
  article-title: Noncanonical autophagy is required for type I interferon secretion in response to DNA‐immune complexes
  publication-title: Immunity
– volume: 17
  start-page: 6660
  year: 1998
  end-page: 6669
  article-title: Differential viral induction of distinct interferon‐alpha genes by positive feedback through interferon regulatory factor‐7
  publication-title: EMBO J
– volume: 107
  start-page: 7431
  year: 2010
  end-page: 7436
  article-title: Plasmacytoid dendritic cells sense hepatitis C virus‐infected cells, produce interferon, and inhibit infection
  publication-title: Proc Natl Acad Sci USA
– volume: 39
  start-page: 925
  year: 2013
  end-page: 938
  article-title: Origins and functional specialization of macrophages and of conventional and monocyte‐derived dendritic cells in mouse skin
  publication-title: Immunity
– volume: 166
  start-page: 2291
  year: 2001
  end-page: 2295
  article-title: Distinct CpG DNA and polyinosinic‐polycytidylic acid double‐stranded RNA, respectively, stimulate CD11c‐ type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN
  publication-title: J Immunol
– volume: 424
  start-page: 324
  year: 2003
  end-page: 328
  article-title: Viral infection switches non‐plasmacytoid dendritic cells into high interferon producers
  publication-title: Nature
– volume: 107
  start-page: 19973
  year: 2010
  end-page: 19978
  article-title: Slc15a4, AP‐3, and Hermansky‐Pudlak syndrome proteins are required for Toll‐like receptor signaling in plasmacytoid dendritic cells
  publication-title: Proc Natl Acad Sci USA
– volume: 93
  start-page: 599
  year: 2013
  end-page: 609
  article-title: Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness
  publication-title: J Leukoc Biol
– volume: 127
  start-page: 3382
  year: 2016
  end-page: 3386
  article-title: Impairment of dendritic cell functions in patients with adaptor protein‐3 complex deficiency
  publication-title: Blood
– volume: 3
  start-page: e123
  year: 2007
  article-title: Natural killer cells promote early CD8 T cell responses against cytomegalovirus
  publication-title: PLoS Pathog
– volume: 210
  start-page: 1133
  year: 2015
  end-page: 1152
  article-title: RUN and FYVE domain‐containing protein 4 enhances autophagy and lysosome tethering in response to interleukin‐4
  publication-title: J Cell Biol
– volume: 9
  start-page: e1003648
  year: 2013
  article-title: Absence of Siglec‐H in MCMV infection elevates interferon alpha production but does not enhance viral clearance
  publication-title: PLoS Pathog
– volume: 73
  start-page: 4629
  year: 2013
  end-page: 4640
  article-title: Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment
  publication-title: Cancer Res
– volume: 107
  start-page: 2423
  year: 2006
  end-page: 2431
  article-title: Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells
  publication-title: Blood
– volume: 37
  start-page: 315
  year: 2007
  end-page: 327
  article-title: Interferon‐regulatory‐factor 1 controls Toll‐like receptor 9‐mediated IFN‐beta production in myeloid dendritic cells
  publication-title: Eur J Immunol
– volume: 195
  start-page: 517
  year: 2002
  end-page: 528
  article-title: Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression
  publication-title: J Exp Med
– volume: 441
  start-page: 106
  year: 1998
  end-page: 110
  article-title: Positive feedback regulation of type I IFN genes by the IFN‐inducible transcription factor IRF‐7
  publication-title: FEBS Lett
– volume: 189
  start-page: 2735
  year: 2012
  end-page: 2745
  article-title: Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells
  publication-title: J Immunol
– volume: 434
  start-page: 1035
  year: 2005a
  end-page: 1040
  article-title: Spatiotemporal regulation of MyD88‐IRF‐7 signalling for robust type‐I interferon induction
  publication-title: Nature
– volume: 107
  start-page: 763
  year: 2001
  end-page: 775
  article-title: IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development
  publication-title: Cell
– volume: 12
  start-page: 558
  year: 2012
  end-page: 570
  article-title: Short‐range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity
  publication-title: Cell Host Microbe
– volume: 280
  start-page: 18651
  year: 2005
  end-page: 18657
  article-title: Tissue‐specific positive feedback requirements for production of type I interferon following virus infection
  publication-title: J Biol Chem
– volume: 10
  start-page: e1004434
  year: 2014
  article-title: Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells
  publication-title: PLoS Pathog
– volume: 33
  start-page: 955
  year: 2010
  end-page: 966
  article-title: Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual
  publication-title: Immunity
– volume: 2
  start-page: e24212
  year: 2013
  article-title: Attenuated measles virus used as an oncolytic virus activates myeloid and plasmacytoid dendritic cells
  publication-title: Oncoimmunology
– volume: 44
  start-page: 807
  year: 2014
  end-page: 818
  article-title: Self‐priming determines high type I IFN production by plasmacytoid dendritic cells
  publication-title: Eur J Immunol
– volume: 194
  start-page: 1408
  year: 2015
  end-page: 1412
  article-title: Cutting edge: stage‐specific requirement of IL‐18 for antiviral NK cell expansion
  publication-title: J Immunol
– volume: 12
  start-page: 571
  year: 2012
  end-page: 584
  article-title: Differential responses of immune cells to type I interferon contribute to host resistance to viral infection
  publication-title: Cell Host Microbe
– volume: 164
  start-page: 564
  year: 2016
  end-page: 578
  article-title: Parsing the interferon transcriptional network and its disease associations
  publication-title: Cell
– volume: 37
  start-page: 43
  year: 2007
  end-page: 53
  article-title: Faithful activation of an extra‐bright red fluorescent protein in “knock‐in” Cre‐reporter mice ideally suited for lineage tracing studies
  publication-title: Eur J Immunol
– volume: 88
  start-page: 752
  year: 2014
  end-page: 757
  article-title: Human plasmacytoid dendritic cells sense lymphocytic choriomeningitis virus‐infected cells
  publication-title: J Virol
– volume: 441
  start-page: 885
  year: 2006
  end-page: 889
  article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
  publication-title: Nature
– volume: 9
  start-page: R17
  year: 2008
  article-title: Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome‐wide expression profiling
  publication-title: Genome Biol
– volume: 2
  start-page: 378
  year: 2001
  end-page: 386
  article-title: A weak signal for strong responses: interferon‐alpha/beta revisited
  publication-title: Nat Rev Mol Cell Biol
– volume: 28
  start-page: 211
  year: 2016
  end-page: 222
  article-title: Guanosine and its modified derivatives are endogenous ligands for TLR7
  publication-title: Int Immunol
– volume: 35
  start-page: 232
  year: 2015
  end-page: 238
  article-title: Interferon‐alpha production by plasmacytoid dendritic cells is dispensable for an effective anti‐cytomegalovirus response in adaptor protein‐3‐deficient mice
  publication-title: J Interferon Cytokine Res
– volume: 186
  start-page: 5085
  year: 2011
  end-page: 5094
  article-title: IFN‐alpha production by plasmacytoid dendritic cells stimulated with RNA‐containing immune complexes is promoted by NK cells via MIP‐1beta and LFA‐1
  publication-title: J Immunol
– volume: 46
  start-page: 205
  year: 2017
  end-page: 219
  article-title: CD8+ T cells orchestrate pDC‐XCR1+ dendritic cell spatial and functional cooperativity to optimize priming
  publication-title: Immunity
– volume: 105
  start-page: 20416
  year: 2008
  end-page: 20421
  article-title: Visualization of IFNbeta production by plasmacytoid versus conventional dendritic cells under specific stimulation conditions
  publication-title: Proc Natl Acad Sci USA
– volume: 195
  start-page: 507
  year: 2002
  end-page: 516
  article-title: Virus‐induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling
  publication-title: J Exp Med
– volume: 440
  start-page: 949
  year: 2006
  end-page: 953
  article-title: IkappaB kinase‐alpha is critical for interferon‐alpha production induced by Toll‐like receptors 7 and 9
  publication-title: Nature
– volume: 170
  start-page: 4465
  year: 2003
  end-page: 4474
  article-title: Activation with CpG‐A and CpG‐B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells
  publication-title: J Immunol
– volume: 115
  start-page: 408
  year: 2010
  end-page: 417
  article-title: Congenic interval of CD45/Ly‐5 congenic mice contains multiple genes that may influence hematopoietic stem cell engraftment
  publication-title: Blood
– volume: 434
  start-page: 772
  year: 2005b
  end-page: 777
  article-title: IRF‐7 is the master regulator of type‐I interferon‐dependent immune responses
  publication-title: Nature
– volume: 9
  start-page: e1003728
  year: 2013
  article-title: Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections
  publication-title: PLoS Pathog
– volume: 89
  start-page: 61
  year: 2000
  end-page: 73
  article-title: Enhanced green fluorescent protein as a marker for localizing murine cytomegalovirus in acute and latent infection
  publication-title: J Virol Methods
– volume: 42
  start-page: 627
  year: 2015
  end-page: 639
  article-title: Homeostatic NF‐kappaB signaling in steady‐state migratory dendritic cells regulates immune homeostasis and tolerance
  publication-title: Immunity
– volume: 11
  start-page: eaan4144
  year: 2018
  article-title: The interaction between IKKalpha and LC3 promotes type I interferon production through the TLR9‐containing LAPosome
  publication-title: Sci Signal
– volume: 197
  start-page: 885
  year: 2003
  end-page: 898
  article-title: Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon alpha/beta
  publication-title: J Exp Med
– volume: 175
  start-page: 6723
  year: 2005
  end-page: 6732
  article-title: MyD88‐dependent and ‐independent murine cytomegalovirus sensing for IFN‐alpha release and initiation of immune responses
  publication-title: J Immunol
– volume: 15
  start-page: 471
  year: 2015
  end-page: 485
  article-title: The multifaceted biology of plasmacytoid dendritic cells
  publication-title: Nat Rev Immunol
– volume: 17
  start-page: 1113
  year: 2016
  end-page: 1127
  article-title: Conventional dendritic cells confer protection against mouse cytomegalovirus infection via TLR9 and MyD88 signaling
  publication-title: Cell Rep
– volume: 36
  start-page: 739
  year: 2007
  end-page: 761
  article-title: Image‐based study of interferongenic interactions between plasmacytoid dendritic cells and HSV‐infected monocyte‐derived dendritic cells
  publication-title: Immunol Invest
– volume: 8
  start-page: 1592
  year: 2017
  article-title: TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells
  publication-title: Nat Commun
– volume: 175
  start-page: 4000
  year: 2005
  end-page: 4008
  article-title: Novel functions of tyrosine kinase 2 in the antiviral defense against murine cytomegalovirus
  publication-title: J Immunol
– volume: 21
  start-page: 107
  year: 2004
  end-page: 119
  article-title: TLR9‐dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function
  publication-title: Immunity
– ident: e_1_2_8_50_1
  doi: 10.1016/j.bbrc.2006.01.122
– ident: e_1_2_8_61_1
  doi: 10.1002/eji.200636767
– ident: e_1_2_8_6_1
  doi: 10.1016/j.immuni.2015.03.003
– ident: e_1_2_8_3_1
  doi: 10.1038/ni736
– ident: e_1_2_8_71_1
  doi: 10.1016/j.immuni.2013.10.004
– ident: e_1_2_8_22_1
  doi: 10.4049/jimmunol.1400215
– ident: e_1_2_8_21_1
  doi: 10.4161/onci.24212
– ident: e_1_2_8_7_1
  doi: 10.1084/jem.20011666
– ident: e_1_2_8_18_1
  doi: 10.4049/jimmunol.175.10.6723
– ident: e_1_2_8_57_1
  doi: 10.1126/science.1187029
– ident: e_1_2_8_54_1
  doi: 10.1371/journal.ppat.0030123
– ident: e_1_2_8_19_1
  doi: 10.1038/nature01783
– ident: e_1_2_8_52_1
  doi: 10.1371/journal.ppat.1003648
– ident: e_1_2_8_39_1
  doi: 10.1158/0008-5472.CAN-12-3058
– ident: e_1_2_8_70_1
  doi: 10.1038/nature03308
– ident: e_1_2_8_27_1
  doi: 10.1189/jlb.0912452
– ident: e_1_2_8_78_1
  doi: 10.1128/JVI.01714-13
– ident: e_1_2_8_17_1
  doi: 10.1089/jir.2013.0110
– ident: e_1_2_8_4_1
  doi: 10.1084/jem.20041930
– ident: e_1_2_8_23_1
  doi: 10.3389/fmicb.2016.00771
– ident: e_1_2_8_35_1
  doi: 10.4049/jimmunol.170.9.4465
– ident: e_1_2_8_32_1
  doi: 10.1038/nature04641
– ident: e_1_2_8_77_1
  doi: 10.1182/blood-2008-03-143370
– ident: e_1_2_8_81_1
  doi: 10.1016/j.immuni.2016.09.011
– ident: e_1_2_8_58_1
  doi: 10.1016/S0014-5793(98)01514-2
– ident: e_1_2_8_12_1
  doi: 10.1371/journal.ppat.1004897
– ident: e_1_2_8_73_1
  doi: 10.1083/jcb.201501059
– ident: e_1_2_8_15_1
  doi: 10.1002/embj.201488027
– ident: e_1_2_8_72_1
  doi: 10.1038/35073080
– ident: e_1_2_8_40_1
  doi: 10.1002/eji.200636745
– ident: e_1_2_8_45_1
  doi: 10.1016/j.cell.2015.12.032
– ident: e_1_2_8_55_1
  doi: 10.1186/gb-2008-9-1-r17
– ident: e_1_2_8_65_1
  doi: 10.1016/j.immuni.2010.11.020
– ident: e_1_2_8_69_1
  doi: 10.1073/pnas.1002301107
– ident: e_1_2_8_46_1
  doi: 10.1172/JCI44960
– ident: e_1_2_8_9_1
  doi: 10.1016/j.immuni.2017.01.003
– ident: e_1_2_8_79_1
  doi: 10.1016/j.immuni.2016.06.006
– ident: e_1_2_8_43_1
  doi: 10.1093/emboj/17.22.6660
– ident: e_1_2_8_67_1
  doi: 10.4049/jimmunol.1303135
– ident: e_1_2_8_80_1
  doi: 10.4049/jimmunol.1102038
– ident: e_1_2_8_5_1
  doi: 10.1016/j.chom.2012.09.002
– ident: e_1_2_8_11_1
  doi: 10.1038/11360
– ident: e_1_2_8_30_1
  doi: 10.1038/nature03547
– ident: e_1_2_8_47_1
  doi: 10.1016/j.immuni.2018.03.013
– ident: e_1_2_8_63_1
  doi: 10.1126/science.284.5421.1835
– ident: e_1_2_8_53_1
  doi: 10.1016/j.celrep.2016.09.055
– ident: e_1_2_8_41_1
  doi: 10.4049/jimmunol.1402001
– ident: e_1_2_8_74_1
  doi: 10.3389/fimmu.2014.00526
– ident: e_1_2_8_38_1
  doi: 10.4049/jimmunol.0804315
– ident: e_1_2_8_83_1
  doi: 10.4049/jimmunol.180.9.5799
– ident: e_1_2_8_62_1
  doi: 10.1093/intimm/dxv062
– ident: e_1_2_8_31_1
  doi: 10.1038/nature03464
– ident: e_1_2_8_13_1
  doi: 10.1084/jem.20011672
– ident: e_1_2_8_8_1
  doi: 10.1073/pnas.1014051107
– ident: e_1_2_8_60_1
  doi: 10.1038/ni.3200
– ident: e_1_2_8_56_1
  doi: 10.1038/s41467-017-01687-x
– ident: e_1_2_8_44_1
  doi: 10.1080/08820130701715845
– ident: e_1_2_8_66_1
  doi: 10.1371/journal.ppat.1003728
– ident: e_1_2_8_76_1
  doi: 10.3389/fimmu.2015.00299
– ident: e_1_2_8_64_1
  doi: 10.4049/jimmunol.175.6.4000
– ident: e_1_2_8_75_1
  doi: 10.1002/eji.201243106
– ident: e_1_2_8_33_1
  doi: 10.1182/blood-2005-07-2709
– ident: e_1_2_8_16_1
  doi: 10.1371/journal.ppat.1004434
– ident: e_1_2_8_2_1
  doi: 10.3389/fmicb.2014.00378
– ident: e_1_2_8_14_1
  doi: 10.1084/jem.20021522
– ident: e_1_2_8_25_1
  doi: 10.1038/nature04724
– ident: e_1_2_8_48_1
  doi: 10.1074/jbc.M112.345405
– ident: e_1_2_8_36_1
  doi: 10.1002/eji.201343806
– ident: e_1_2_8_37_1
  doi: 10.1016/j.immuni.2004.06.007
– ident: e_1_2_8_68_1
  doi: 10.1038/nri3865
– ident: e_1_2_8_20_1
  doi: 10.1016/j.chom.2012.08.010
– ident: e_1_2_8_26_1
  doi: 10.1126/scisignal.aan4144
– ident: e_1_2_8_29_1
  doi: 10.1016/S0166-0934(00)00202-0
– ident: e_1_2_8_82_1
  doi: 10.1093/intimm/dxm119
– ident: e_1_2_8_42_1
  doi: 10.1182/blood-2008-06-162651
– ident: e_1_2_8_49_1
  doi: 10.1074/jbc.M501289200
– ident: e_1_2_8_28_1
  doi: 10.1016/j.immuni.2012.09.014
– ident: e_1_2_8_34_1
  doi: 10.4049/jimmunol.166.4.2291
– ident: e_1_2_8_51_1
  doi: 10.1182/blood-2015-06-650689
– ident: e_1_2_8_10_1
  doi: 10.1016/S0092-8674(01)00599-2
– ident: e_1_2_8_24_1
  doi: 10.4049/jimmunol.1003349
– ident: e_1_2_8_59_1
  doi: 10.1073/pnas.0808537105
SSID ssj0005871
Score 2.45306
Snippet Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like...
Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like...
Plasmacytoid dendritic cells ( pDC ) are the major source of type I interferons ( IFN ‐I) during viral infections, in response to triggering of endosomal...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Cell activation
Cell interactions
CpG islands
Cytokines
Cytomegalovirus
Dendritic cells
Deoxyribonucleic acid
DNA
EMBO19
EMBO23
Feedback
Gene expression
Immune system
Immunology
Infections
Injection
Interferon
Interferon regulatory factor
Interferon regulatory factor 7
IRF7
Life Sciences
Ligands
mouse cytomegalovirus
MyD88 protein
Phosphorylation
plasmacytoid dendritic cells
Positive feedback
Proteins
Receptors
Ribonucleic acid
RNA
Signal transduction
Signaling
TLR9 protein
Toll-like receptors
type I interferons
viral infection
Viral infections
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTxVBEK6wxOjFCCqOImmNBz2M0MtsR3yBvBCeJ0m4jb1NeARmiD5ewr_xt_jLrOpZcILEcJuZ7p6lqnr6q64N4APf87lyci_OlK5iJVQVa43z0RW2cCJ1PqkoOHn2NZ2eqKPT5LRLkkSxMH_b7xORiF1_ac7JA4vyasl0FdYTLlMS30k6ufXlyINmFTZTFM-LLofPP24wWn5Wz8j58S6yvOsgOVhJxxg2LEKHz-Bphx7ZfsvuDVjx9SY8autJ3mzC40lfvu05fJ_1hW9ZsLmH-AXWVOwK8fKltjeLZu4Y_nVcKHbAaAefUZRDu0fL5vXvX8v5smFtICPTjNyBL1jvvVW_gJPDg2-TadyVU4htorI0zjyyRefWSWuFJ4uqRvCGeEEZJJ8w3JByogV3qDQ57Z3nVYEDrefGkL33JazVTe1fAcuE1KjH-cwURmkc71wlLHc2kYlBgBLB557Kpe1yjVPJi4uSdA5iS0lsKQe2RPBxGHDVptm4v-t7ZNvQi9JjT_ePS7qGeIU68SWPYLvnatlNyp8ltiJczFAhjeDd0IxsIQrr2jfX2AfpkXNUwvAWW60QDI-SlJsIxTmCbCQeo3cZt9Tzs5CyO-WIg6SI4FMvSLevde93yiBp_6NHeTD7cjScvX7AE97AEzxus_vybVhb_Lj2bxFiLcxOmF5_AFJOHmU
  priority: 102
  providerName: Springer Nature
Title Molecular dissection of plasmacytoid dendritic cell activation in vivo during a viral infection
URI https://link.springer.com/article/10.15252/embj.201798836
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798836
https://www.ncbi.nlm.nih.gov/pubmed/30131424
https://www.proquest.com/docview/2114567448
https://www.proquest.com/docview/2091815761
https://hal.science/hal-02117981
https://pubmed.ncbi.nlm.nih.gov/PMC6166132
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VqqpcqpY-SAvIVD2UQwp2nNcRVqAV6qIeitRb8CtiK0hW3WUl_k1_C7-MGeeBIoSQuKyy68cmnnH8jT3zDcA3vu8yaaP9MJWqDKWQZagUzkebm9yKxLq4pODkyWkyPpMnf-LOm5BiYRp-iH7DjWaGf1_TBFd63mXsIdZQd6X_km8WMW5FyQq8pABbos8X8te9l0fmbS6_zSJ5lrfsPtTF3rCDwcK0ckFukQ8x50PXyf78dIhu_fJ0_BbetLiSHTSK8A5euGodXjWZJm_W4fWoS-z2Hs4nXUpc5k_jfWQDq0s2QyR9pczNop5ahu8j69MgMNrbZxT_0Ozesml1-385XdasCXFkipGj8CXr_LqqD3B2fPR7NA7bRAuhiWWahKlDganM2MgY4eisVSGsQyQhNQ6f0FyT2aIEt2hOWeWs42WODY3jWtNJ8EdYrerKbQBLRaTQwnOpzrVU2N7aUhhuTRzFGqFLAD-6US5My0JOyTAuC7JGSCwFiaXoxRLA977BrCHgeLzqVxRbX4uIs8cHPwv6DZEMVeJLHsBmJ9Wina7zAksRSKZoqgaw0xejWGiEVeXqa6yD45FxNM-wi0-NEvR_FRFrESp6AOlAPQb3MiyppheezDvhiJAiEcBup0j3t_Xoc0Ze054aj-JocnjSf_v8rFZfYA2vGwZgvgmri3_Xbgth2EJv-4mGn6NktE0LYnwH8dsrsg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTxRBFH4RjMGLUdxaUUvjQQ-tVHX1dkQCGXGGeICEW1lbhzHQTWCYhH_jb_GX-V71gh1CTDxO1zLdb-n-3qu3ALznm76QLtmMc6mrWApZxVqjPrrSlk5kzqcVJSfP9rPJodw7So_-yoVp60MMDjfSjPC-JgUnh3TfsofKhvpT85OCs6jkVpKtwF2ZiZyUU8jv12EeRTC6gp9F8qLsyvvQFp_HG4y-TCvHFBd5E3TejJ0cDlDH8DZ8n3YfwoMOWLKtVhIewR1fr8O9ttXk1Tqsbfed3R7Dj1nfE5eF4_iQ2sCaip0hlD7V9mrRzB3DF5ILfRAYOfcZJUC07ls2r3__Ws6XDWtzHJlmFCl8wvrArvoJHO7uHGxP4q7TQmxTmWdx7pFjurAusVZ4OmzViOsQSkiD5BOGG7JbtOAO7SmnvfO8KnGh9dwYOgp-Cqt1U_vnwHKRaDTxfG5KIzWud64SljubJqlB7BLBp57KynZlyKkbxokic4TYoogtamBLBB-GBWdtBY7bp75Dtg2zqHL2ZGuq6BpCGZrElzyCjZ6rqtPXC4WjiCRztFUjeDsMI1uIwrr2zSXOQXoUHO0z3OJZKwTDXyVUtgglPYJ8JB6jexmP1PPjUM074wiREhHBx16Qrm_r1udMgqT9ix5qZ_Zlb_j14r9WvYG1ycFsqqZf97-9hPt4vS0HzDdgdXF-6V8hJluY10Hp_gD9Di1b
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK7wiOjFKKKOojbGgxwG6Zme1xGRzQos4SCJt7ZfE9bAzEaXTfg3_hZ_mVU9DzIhhMTjTj92pqtq5quu6q8APvBdlwsb74aZUGUoIlGGSqE92sIUNkqtS0o6nDw5Scdn4vB70mUT0lmYhh-i33Ajy_DvazLwmS27ij3EGuou9U_KzSLGrThdhlUf8iNyZ3F6k-WRe5_Lb7MInhctuw9N8Wk4weDDtHxOaZG3Meft1Mk-fjpEt_7zNHoCj1tcyfYaRXgKS65ahwdNpcnrdXi43xV2ewY_Jl1JXOaj8f5kA6tLNkMkfanM9byeWobvI-vLIDDa22d0_qHZvWXT6u-fxXRRs-aII1OMEoUvWJfXVW3A2ejg2_44bAsthCYRWRpmDgWmcmNjYyJHsVaFsA6RhNC4fJHmmtwWFXGL7pRVzjpeFjjQOK41RYKfw0pVV-4lsCyKFXp4LtOFFgrHW1tGhluTxIlG6BLATrfK0rQs5FQM40KSN0JikSQW2YslgI_9gFlDwHF31_cotr4XEWeP944lXUMkQ534ggew2UlVtub6W2IrAskMXdUAtvpmFAutsKpcfYV9cD1yju4ZTvGiUYL-r2JiLUJFDyAbqMfgXoYt1fTck3mnHBFSHAWw3SnSzW3d-Zyx17T71kMeTD4f9r9e_deod7B2-mUkj7-eHL2GR3i5IQPmm7Ay_3Xl3iAim-u33ub-ARDeLI0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dissection+of+plasmacytoid+dendritic+cell+activation+in%C2%A0vivo+during+a+viral+infection&rft.jtitle=The+EMBO+journal&rft.au=Tomasello%2C+Elena&rft.au=Naciri%2C+Karima&rft.au=Chelbi%2C+Rabie&rft.au=Bessou%2C+Gilles&rft.date=2018-10-01&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=37&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembj.201798836&rft.externalDBID=10.15252%252Fembj.201798836&rft.externalDocID=EMBJ201798836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon