Post‐exercise cold water immersion attenuates acute anabolic signalling and long‐term adaptations in muscle to strength training

Key points Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to strength training is not well understood. We compared the effects of cold water immersion and active recovery on changes in muscle mass and s...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 593; no. 18; pp. 4285 - 4301
Main Authors Roberts, Llion A., Raastad, Truls, Markworth, James F., Figueiredo, Vandre C., Egner, Ingrid M., Shield, Anthony, Cameron‐Smith, David, Coombes, Jeff S., Peake, Jonathan M.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 15.09.2015
John Wiley & Sons, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key points Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to strength training is not well understood. We compared the effects of cold water immersion and active recovery on changes in muscle mass and strength after 12 weeks of strength training. We also examined the effects of these two treatments on hypertrophy signalling pathways and satellite cell activity in skeletal muscle after acute strength exercise. Cold water immersion attenuated long term gains in muscle mass and strength. It also blunted the activation of key proteins and satellite cells in skeletal muscle up to 2 days after strength exercise. Individuals who use strength training to improve athletic performance, recover from injury or maintain their health should therefore reconsider whether to use cold water immersion as an adjuvant to their training. We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross‐sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single‐leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7) (20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellite cells increased 48 h after exercise with CWI. NCAM+‐ and Pax7+‐positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long‐term training gains in muscle strength and hypertrophy. The use of CWI as a regular post‐exercise recovery strategy should be reconsidered.
AbstractList Key points Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to strength training is not well understood. We compared the effects of cold water immersion and active recovery on changes in muscle mass and strength after 12 weeks of strength training. We also examined the effects of these two treatments on hypertrophy signalling pathways and satellite cell activity in skeletal muscle after acute strength exercise. Cold water immersion attenuated long term gains in muscle mass and strength. It also blunted the activation of key proteins and satellite cells in skeletal muscle up to 2 days after strength exercise. Individuals who use strength training to improve athletic performance, recover from injury or maintain their health should therefore reconsider whether to use cold water immersion as an adjuvant to their training. We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross‐sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single‐leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7) (20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellite cells increased 48 h after exercise with CWI. NCAM+‐ and Pax7+‐positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long‐term training gains in muscle strength and hypertrophy. The use of CWI as a regular post‐exercise recovery strategy should be reconsidered.
We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10-30%) and paired box protein (Pax7) (20-50%) increased 24-48 h after exercise with ACT. The number of NCAM(+) satellite cells increased 48 h after exercise with CWI. NCAM(+) - and Pax7(+) -positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinase(Thr421/Ser424) increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.
We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P &lt; 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P &lt; 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10-30%) and paired box protein (Pax7) (20-50%) increased 24-48 h after exercise with ACT. The number of NCAM(+) satellite cells increased 48 h after exercise with CWI. NCAM(+) - and Pax7(+) -positive satellite cell numbers were greater after ACT than after CWI (P &lt; 0.05). Phosphorylation of p70S6 kinase(Thr421/Ser424) increased after exercise in both conditions but was greater after ACT (P &lt; 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.
We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group ( P  < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P  < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7) (20−50%) increased 24–48 h after exercise with ACT. The number of NCAM + satellite cells increased 48 h after exercise with CWI. NCAM + - and Pax7 + -positive satellite cell numbers were greater after ACT than after CWI ( P  < 0.05). Phosphorylation of p70S6 kinase Thr421/Ser424 increased after exercise in both conditions but was greater after ACT ( P  < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.
Key points Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to strength training is not well understood. We compared the effects of cold water immersion and active recovery on changes in muscle mass and strength after 12 weeks of strength training. We also examined the effects of these two treatments on hypertrophy signalling pathways and satellite cell activity in skeletal muscle after acute strength exercise. Cold water immersion attenuated long term gains in muscle mass and strength. It also blunted the activation of key proteins and satellite cells in skeletal muscle up to 2 days after strength exercise. Individuals who use strength training to improve athletic performance, recover from injury or maintain their health should therefore reconsider whether to use cold water immersion as an adjuvant to their training. Abstract We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group ( P  < 0.05). Isokinetic work (19%), type II muscle fibre cross‐sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P  < 0.05), but not the CWI group. In another study, nine active men performed a bout of single‐leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7) (20−50%) increased 24–48 h after exercise with ACT. The number of NCAM + satellite cells increased 48 h after exercise with CWI. NCAM + ‐ and Pax7 + ‐positive satellite cell numbers were greater after ACT than after CWI ( P  < 0.05). Phosphorylation of p70S6 kinase Thr421/Ser424 increased after exercise in both conditions but was greater after ACT ( P  < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long‐term training gains in muscle strength and hypertrophy. The use of CWI as a regular post‐exercise recovery strategy should be reconsidered.
Key points Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to strength training is not well understood. We compared the effects of cold water immersion and active recovery on changes in muscle mass and strength after 12 weeks of strength training. We also examined the effects of these two treatments on hypertrophy signalling pathways and satellite cell activity in skeletal muscle after acute strength exercise. Cold water immersion attenuated long term gains in muscle mass and strength. It also blunted the activation of key proteins and satellite cells in skeletal muscle up to 2 days after strength exercise. Individuals who use strength training to improve athletic performance, recover from injury or maintain their health should therefore reconsider whether to use cold water immersion as an adjuvant to their training. We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10-30%) and paired box protein (Pax7) (20-50%) increased 24-48 h after exercise with ACT. The number of NCAM+ satellite cells increased 48 h after exercise with CWI. NCAM+- and Pax7+-positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.
Author Roberts, Llion A.
Figueiredo, Vandre C.
Markworth, James F.
Raastad, Truls
Egner, Ingrid M.
Cameron‐Smith, David
Shield, Anthony
Coombes, Jeff S.
Peake, Jonathan M.
Author_xml – sequence: 1
  givenname: Llion A.
  surname: Roberts
  fullname: Roberts, Llion A.
  organization: Queensland Academy of Sport
– sequence: 2
  givenname: Truls
  surname: Raastad
  fullname: Raastad, Truls
  organization: Norwegian School of Sport Sciences
– sequence: 3
  givenname: James F.
  surname: Markworth
  fullname: Markworth, James F.
  organization: University of Auckland
– sequence: 4
  givenname: Vandre C.
  surname: Figueiredo
  fullname: Figueiredo, Vandre C.
  organization: University of Auckland
– sequence: 5
  givenname: Ingrid M.
  surname: Egner
  fullname: Egner, Ingrid M.
  organization: University of Oslo
– sequence: 6
  givenname: Anthony
  surname: Shield
  fullname: Shield, Anthony
  organization: Queensland University of Technology
– sequence: 7
  givenname: David
  surname: Cameron‐Smith
  fullname: Cameron‐Smith, David
  organization: University of Auckland
– sequence: 8
  givenname: Jeff S.
  surname: Coombes
  fullname: Coombes, Jeff S.
  organization: School of Human Movement Studies and Nutrition Sciences
– sequence: 9
  givenname: Jonathan M.
  surname: Peake
  fullname: Peake, Jonathan M.
  organization: Queensland University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26174323$$D View this record in MEDLINE/PubMed
BookMark eNp1kctuFDEQRS0URCYBiS9AltiwafCj3e7eIKGIVxSJWYS1Ve2umThy24PtTsiOBR_AN_IlGPLgIbGyXD73-qruAdkLMSAhjzl7zjmXL47XQjOl2T2y4m03NFoPco-sGBOikVrxfXKQ8zljXLJheED2Rcd1K4Vcka_rmMv3L9_wMybrMlIb_UQvoWCibp4xZRcDhVIwLHWYKdilIIUAY_TO0uy2Abx3YVtnE_UxbKtbVc8UJtgVKFWfqQt0XrL1SEukuSQM23JGSwIXqvQhub8Bn_HRzXlIPr55fXr0rjn58Pb90auTxqpWqwZHNUq7YSAGq1Gwftx0WkvgWO9inHqlJNfcArKey3bqQLJ2tLybsAeFWh6Sl9e-u2WccbIYagJvdsnNkK5MBGf-fgnuzGzjhWnV0IqhrwbPbgxS_LRgLmZ22aL3EDAu2dTfpRJd14uKPv0HPY9Lqrv6RQk5yK7vfhvaFHNOuLkLw5n5Wa25rbaiT_4MfwfedlmB5hq4dB6v_mtkTo_XdW1K_gC64bMk
CODEN JPHYA7
CitedBy_id crossref_primary_10_5114_jhk_186659
crossref_primary_10_1016_j_mehy_2018_08_002
crossref_primary_10_1038_icb_2015_99
crossref_primary_10_3233_IES_230165
crossref_primary_10_1152_ajpcell_00008_2019
crossref_primary_10_1519_JSC_0000000000004097
crossref_primary_10_1123_ijspp_2019_0965
crossref_primary_10_1007_s40279_020_01362_0
crossref_primary_10_1007_s00421_021_04683_8
crossref_primary_10_3390_sports11110213
crossref_primary_10_1152_japplphysiol_00127_2019
crossref_primary_10_1007_s11726_022_1344_2
crossref_primary_10_1007_s11332_021_00839_3
crossref_primary_10_3389_fphys_2018_01948
crossref_primary_10_1113_JP272881
crossref_primary_10_1123_ijspp_2018_0313
crossref_primary_10_1371_journal_pone_0264569
crossref_primary_10_1519_SSC_0000000000000247
crossref_primary_10_1080_02640414_2023_2178872
crossref_primary_10_1152_ajpregu_00031_2023
crossref_primary_10_1080_02699052_2017_1346287
crossref_primary_10_1113_JP278996
crossref_primary_10_1007_s00421_018_4008_7
crossref_primary_10_1113_JP281244
crossref_primary_10_3389_fphys_2017_00258
crossref_primary_10_1016_j_heliyon_2023_e20288
crossref_primary_10_1080_17461391_2019_1595740
crossref_primary_10_1139_apnm_2016_0582
crossref_primary_10_1016_j_jesf_2021_01_001
crossref_primary_10_1519_SSC_0000000000000651
crossref_primary_10_1590_1517_869220182405182913
crossref_primary_10_1113_JP273503
crossref_primary_10_1113_EP085795
crossref_primary_10_1152_physiol_00034_2018
crossref_primary_10_3390_ijerph17217855
crossref_primary_10_1016_j_cryobiol_2023_104553
crossref_primary_10_1002_tsm2_141
crossref_primary_10_2478_bhk_2019_0026
crossref_primary_10_1038_s41598_020_58461_1
crossref_primary_10_1007_s00421_024_05424_3
crossref_primary_10_1123_ijatt_2017_0033
crossref_primary_10_1519_JSC_0000000000004428
crossref_primary_10_3389_fspor_2020_00017
crossref_primary_10_1249_MSS_0000000000001593
crossref_primary_10_1007_s40279_018_0910_8
crossref_primary_10_1038_ncomms14266
crossref_primary_10_3389_fspor_2020_568420
crossref_primary_10_1113_JP274169
crossref_primary_10_47671_TVG_78_22_149
crossref_primary_10_1016_j_bbrc_2022_03_093
crossref_primary_10_1007_s00421_022_05075_2
crossref_primary_10_1152_ajpregu_00421_2017
crossref_primary_10_3389_fphys_2021_665204
crossref_primary_10_3389_fspor_2021_660092
crossref_primary_10_3389_fphys_2022_981773
crossref_primary_10_1113_JP279343
crossref_primary_10_14814_phy2_15480
crossref_primary_10_3389_fphys_2018_01711
crossref_primary_10_1152_japplphysiol_00259_2018
crossref_primary_10_1249_JES_0000000000000082
crossref_primary_10_3389_fspor_2021_655975
crossref_primary_10_1152_japplphysiol_00464_2021
crossref_primary_10_1152_japplphysiol_00322_2020
crossref_primary_10_1007_s40279_022_01767_z
crossref_primary_10_23736_S0393_3660_20_04328_4
crossref_primary_10_1080_23328940_2017_1413284
crossref_primary_10_1007_s00421_019_04178_7
crossref_primary_10_1139_apnm_2019_0041
crossref_primary_10_1080_17461391_2022_2033851
crossref_primary_10_15758_ajk_2022_24_3_22
crossref_primary_10_1080_17461391_2017_1279222
crossref_primary_10_1097_PHM_0000000000000777
crossref_primary_10_1249_JSR_0000000000000933
crossref_primary_10_3389_fphys_2021_627657
crossref_primary_10_15857_ksep_2019_28_3_221
crossref_primary_10_1113_JP273659
crossref_primary_10_14814_phy2_13526
crossref_primary_10_1152_japplphysiol_00397_2018
crossref_primary_10_1186_s40798_019_0221_0
crossref_primary_10_1152_japplphysiol_00802_2016
crossref_primary_10_3390_ijerph17155496
crossref_primary_10_1152_physrev_00039_2022
crossref_primary_10_1249_MSS_0000000000001775
crossref_primary_10_18276_cej_2022_2_06
crossref_primary_10_1126_sciadv_abf2856
crossref_primary_10_1113_JP274870
crossref_primary_10_1177_19417381221080172
crossref_primary_10_1139_apnm_2018_0200
crossref_primary_10_14814_phy2_15784
crossref_primary_10_1519_JSC_0000000000001591
crossref_primary_10_2478_hukin_2022_0082
crossref_primary_10_14814_phy2_12670
crossref_primary_10_3389_fphys_2018_00403
crossref_primary_10_1123_ijspp_2017_0759
crossref_primary_10_1007_s40279_017_0717_z
crossref_primary_10_3389_fspor_2021_714148
crossref_primary_10_1249_MSS_0000000000001406
crossref_primary_10_1113_EP086283
crossref_primary_10_1519_JSC_0000000000003926
crossref_primary_10_1113_JP279404
crossref_primary_10_1152_japplphysiol_01100_2017
crossref_primary_10_1038_s41598_024_58731_2
crossref_primary_10_1111_sms_13593
crossref_primary_10_1007_s40279_016_0483_3
crossref_primary_10_3389_fphys_2017_00383
crossref_primary_10_1016_j_peh_2017_04_002
crossref_primary_10_3389_fspor_2022_834386
crossref_primary_10_1113_JP284442
crossref_primary_10_1007_s40279_017_0679_1
crossref_primary_10_1519_JSC_0000000000002960
crossref_primary_10_1519_JSC_0000000000003895
crossref_primary_10_1007_s00421_019_04285_5
crossref_primary_10_1123_ijspp_2018_0093
crossref_primary_10_1519_SSC_0000000000000380
crossref_primary_10_1519_JSC_0000000000002322
crossref_primary_10_3389_fphys_2020_00737
crossref_primary_10_1080_02640414_2023_2259267
crossref_primary_10_1007_s40279_018_0916_2
crossref_primary_10_1113_JP273796
crossref_primary_10_15407_nnn_18_01_205
crossref_primary_10_3389_fphys_2022_860709
crossref_primary_10_1007_s11332_019_00571_z
crossref_primary_10_1519_SSC_0000000000000822
crossref_primary_10_1249_MSS_0000000000002906
crossref_primary_10_3389_fspor_2021_660291
crossref_primary_10_3389_fphys_2023_1213733
crossref_primary_10_1113_JP279663
crossref_primary_10_1097_PHM_0000000000000789
crossref_primary_10_1002_ejsc_12074
crossref_primary_10_3389_fspor_2020_00109
crossref_primary_10_1152_japplphysiol_00500_2019
crossref_primary_10_14814_phy2_14108
crossref_primary_10_1007_s00421_022_04915_5
crossref_primary_10_3390_ijerph19073912
crossref_primary_10_1123_ijspp_2018_0668
crossref_primary_10_1590_1517_869220182401177165
crossref_primary_10_1186_s40798_022_00428_9
Cites_doi 10.1113/jphysiol.2006.113175
10.1152/japplphysiol.01187.2010
10.1249/MSS.0b013e3182814462
10.2165/00007256-200737020-00004
10.1152/ajpcell.1999.276.1.C120
10.1152/ajpcell.00098.2011
10.1152/ajpregu.00333.2005
10.1152/ajpendo.00010.2014
10.1038/nmeth.2089
10.1007/s00421-005-0095-3
10.1249/01.mss.0000169611.21671.2e
10.1111/j.1600-0838.2012.01452.x
10.1113/jphysiol.2002.021220
10.1371/journal.pgen.1003389
10.1152/ajpregu.2000.279.1.R1
10.1152/ajpcell.1997.272.2.C754
10.1007/s00421-007-0564-y
10.1016/j.neuroimage.2006.01.015
10.1152/ajpendo.00271.2005
10.1152/ajpendo.00530.2005
10.1016/j.jtherbio.2004.08.069
10.1152/japplphysiol.01055.2014
10.1519/JSC.0000000000000434
10.1136/bjsm.2009.067272
10.1152/japplphysiol.01215.2007
10.1007/s40279-013-0063-8
10.1371/journal.pone.0109739
10.1177/0363546510395497
10.1152/ajpregu.00031.2015
10.1111/j.1742-4658.2008.06781.x
10.1249/MSS.0000000000000308
10.2165/00007256-200636090-00005
10.1055/s-0034-1398652
10.1249/MSS.0b013e31829d8e2e
10.1371/journal.pone.0089431
10.1080/02640414.2010.481722
10.2108/zsj.25.1066
10.2337/db10-0415
10.1249/MSS.0000000000000268
10.3109/10715762.2010.517252
ContentType Journal Article
Copyright 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society
2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Journal compilation © 2015 The Physiological Society
2015 The Authors. The Journal of Physiology © 2015 The Physiological Society 2015
Copyright_xml – notice: 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society
– notice: 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
– notice: Journal compilation © 2015 The Physiological Society
– notice: 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society 2015
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/JP270570
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 4301
ExternalDocumentID 3807379181
10_1113_JP270570
26174323
TJP6775
Genre article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5475-eb5b3cf0a29c7e208bf6773a1e9c72bd8553171cae08134d6a304bc16de8a5e73
IEDL.DBID RPM
ISSN 0022-3751
IngestDate Tue Sep 17 21:11:41 EDT 2024
Fri Aug 16 07:27:12 EDT 2024
Thu Oct 10 16:41:10 EDT 2024
Fri Aug 23 00:58:37 EDT 2024
Sat Sep 28 08:08:01 EDT 2024
Sat Aug 24 01:03:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5475-eb5b3cf0a29c7e208bf6773a1e9c72bd8553171cae08134d6a304bc16de8a5e73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-News-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP270570
PMID 26174323
PQID 1712393686
PQPubID 1086388
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4594298
proquest_miscellaneous_1713526682
proquest_journals_1712393686
crossref_primary_10_1113_JP270570
pubmed_primary_26174323
wiley_primary_10_1113_JP270570_TJP6775
PublicationCentury 2000
PublicationDate 15 September 2015
PublicationDateYYYYMMDD 2015-09-15
PublicationDate_xml – month: 09
  year: 2015
  text: 15 September 2015
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Chichester, UK
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2015
Publisher Wiley Subscription Services, Inc
John Wiley & Sons, Ltd
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley & Sons, Ltd
References 2015; 36
2006; 96
2010; 59
2006; 31
2004; 29
2000; 279
2013; 43
1997; 272
2013; 45
2013; 23
2006; 36
2009; 276
2014; 46
2006; 291
2006; 290
2008; 104
2014; 28
2008; 102
2011; 39
2006; 576
2007; 37
2013; 9
2011; 110
2010; 45
2011; 301
2014; 307
2000; 14
2010; 28
2008; 25
2002; 545
2015
2011; 45
1999; 276
2014; 9
2005; 37
1906
1998; 10
2012; 9
20724580 - Diabetes. 2010 Nov;59(11):2764-71
26041108 - Am J Physiol Regul Integr Comp Physiol. 2015 Aug 1;309(3):R286-94
16937953 - Sports Med. 2006;36(9):781-96
19267618 - Zoolog Sci. 2008 Nov;25(11):1066-74
16705054 - Am J Physiol Endocrinol Metab. 2006 Oct;291(4):E745-54
25977451 - J Appl Physiol (1985). 2015 Aug 1;119(3):172-89
16372177 - Eur J Appl Physiol. 2006 Mar;96(5):572-80
16015124 - Med Sci Sports Exerc. 2005 Jul;37(7):1093-8
24586775 - PLoS One. 2014;9(2):e89431
21164157 - J Appl Physiol (1985). 2011 Feb;110(2):382-8
20233843 - Br J Sports Med. 2011 Aug;45(10):825-9
19054067 - FEBS J. 2009 Jan;276(1):286-302
16545965 - Neuroimage. 2006 Jul 1;31(3):1116-28
22930834 - Nat Methods. 2012 Jul;9(7):671-5
10896857 - Am J Physiol Regul Integr Comp Physiol. 2000 Jul;279(1):R1-8
24561815 - Med Sci Sports Exerc. 2014 Oct;46(10):1900-7
9886927 - Am J Physiol. 1999 Jan;276(1 Pt 1):C120-7
17241104 - Sports Med. 2007;37(2):145-68
21335348 - Am J Sports Med. 2011 Jun;39(6):1316-23
18436694 - J Appl Physiol (1985). 2008 Jun;104(6):1736-42
16873412 - J Physiol. 2006 Oct 15;576(Pt 2):613-24
25313863 - PLoS One. 2014;9(10):e109739
24895282 - Am J Physiol Endocrinol Metab. 2014 Aug 1;307(3):E245-61
20544483 - J Sports Sci. 2010 Jul;28(9):923-35
23274601 - Med Sci Sports Exerc. 2013 Jun;45(6):1174-81
12433947 - J Physiol. 2002 Nov 15;545(Pt 1):27-41
24504431 - Med Sci Sports Exerc. 2014 Aug;46(8):1631-9
20942569 - Free Radic Res. 2011 Feb;45(2):125-38
16434552 - Am J Physiol Endocrinol Metab. 2006 Jun;290(6):E1245-52
24240118 - Med Sci Sports Exerc. 2013 Dec;45(12):2277-85
23743793 - Sports Med. 2013 Nov;43(11):1101-30
21593448 - Am J Physiol Cell Physiol. 2011 Aug;301(2):C392-402
22417199 - Scand J Med Sci Sports. 2013 Dec;23(6):728-39
17874120 - Eur J Appl Physiol. 2008 Jan;102(2):145-52
16150839 - Am J Physiol Regul Integr Comp Physiol. 2006 Feb;290(2):R313-21
23555298 - PLoS Genet. 2013 Mar;9(3):e1003389
10367942 - Oncol Res. 1998;10(11-12):605-10
9124320 - Am J Physiol. 1997 Feb;272(2 Pt 1):C754-9
24552795 - J Strength Cond Res. 2014 Sep;28(9):2628-33
25760154 - Int J Sports Med. 2015 Jul;36(8):647-53
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
Matijasevic Z (e_1_2_6_24_1) 1998; 10
Burke D (e_1_2_6_5_1) 2000; 14
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
Vierdort H (e_1_2_6_41_1) 1906
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 36
  start-page: 647
  year: 2015
  end-page: 653
  article-title: Does regular post‐exercise cold application attenuate trained muscle adaptation?
  publication-title: Int J Sports Med
– volume: 59
  start-page: 2764
  year: 2010
  end-page: 2771
  article-title: Pharmacological vasodilation improves insulin‐stimulated muscle protein anabolism but not glucose utilization in older adults
  publication-title: Diabetes
– volume: 301
  start-page: C392
  year: 2011
  end-page: 402
  article-title: Enhanced survival of skeletal muscle myoblasts in response to overexpression of cold shock protein RBM3
  publication-title: Am J Physiol Cell Physiol
– volume: 96
  start-page: 572
  year: 2006
  end-page: 580
  article-title: Post‐exercise leg and forearm flexor muscle cooling in humans attenuates endurance and resistance training effects on muscle performance and on circulatory adaptation
  publication-title: Eur J Appl Physiol
– volume: 37
  start-page: 1093
  year: 2005
  end-page: 1098
  article-title: Effects of cryotherapy after contusion using real‐time intravital microscopy
  publication-title: Med Sci Sports Exerc
– volume: 28
  start-page: 2628
  year: 2014
  end-page: 2633
  article-title: Strength training adaptations after cold water immersion
  publication-title: J Strength Cond Res
– volume: 276
  start-page: C120
  year: 1999
  end-page: 127
  article-title: Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise
  publication-title: Am J Physiol Cell Physiol
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
– volume: 276
  start-page: 286
  year: 2009
  end-page: 302
  article-title: Biochemical insights into the mechanisms central to the response of mammalian cells to cold stress and subsequent rewarming
  publication-title: FEBS J
– start-page: in press
  year: 2015
  article-title: Modulating exercise‐induced hormesis: does less equal more?
  publication-title: J Appl Physiol
– volume: 10
  start-page: 605
  year: 1998
  end-page: 610
  article-title: Hypothermia causes a reversible, p53‐mediated cell cycle arrest in cultured fibroblasts
  publication-title: Oncol Res
– volume: 110
  start-page: 382
  year: 2011
  end-page: 388
  article-title: Influence of icing on muscle regeneration after crush injury to skeletal muscles in rats
  publication-title: J Appl Physiol
– volume: 272
  start-page: C754
  year: 1997
  end-page: 759
  article-title: Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF‐4E and eIF‐4G
  publication-title: Am J Physiol Cell Physiol
– volume: 46
  start-page: 1900
  year: 2014
  end-page: 1907
  article-title: Postexercise muscle cooling enhances gene expression of PGC‐1α
  publication-title: Med Sci Sports Exerc
– volume: 45
  start-page: 125
  year: 2011
  end-page: 138
  article-title: Therapeutic cold: An effective kind to modulate the oxidative damage resulting of a skeletal muscle contusion
  publication-title: Free Radic Res
– volume: 102
  start-page: 145
  year: 2008
  end-page: 152
  article-title: Resistance exercise‐induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects
  publication-title: Eur J Appl Physiol
– year: 1906
– volume: 104
  start-page: 1736
  year: 2008
  end-page: 1742
  article-title: Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell‐mediated myonuclear addition: a cluster analysis
  publication-title: J Appl Physiol
– volume: 279
  start-page: R1
  year: 2000
  end-page: R8
  article-title: Multiple comparisons: Philosophies and illustrations
  publication-title: Am J Physiol Regul Integr Comp Physiol
– start-page: in press
  year: 2015
  article-title: Regular post‐exercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 25
  start-page: 1066
  year: 2008
  end-page: 1074
  article-title: The expression of myogenin, but not of MyoD, is temperature‐sensitive in mouse skeletal muscle cells
  publication-title: Zoolog Sci
– volume: 28
  start-page: 923
  year: 2010
  end-page: 935
  article-title: Protective effects of therapeutic cold and heat against the oxidative damage induced by a muscle strain injury in rats
  publication-title: J Sports Sci
– volume: 39
  start-page: 1316
  year: 2011
  end-page: 1323
  article-title: Influence of cold water immersion on limb and cutaneous blood flow at rest
  publication-title: Am J Sports Med
– volume: 36
  start-page: 781
  year: 2006
  end-page: 796
  article-title: Using recovery modalities between training sessions in elite athletes: does it help?
  publication-title: Sports Med
– volume: 291
  start-page: E745
  year: 2006
  end-page: 754
  article-title: Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin‐induced changes in muscle blood flow and amino acid availability
  publication-title: Am J Physiol Endocrinol Metab
– volume: 290
  start-page: R313
  year: 2006
  end-page: 321
  article-title: IGF‐I stimulates protein synthesis in skeletal muscle through multiple signaling pathways during sepsis
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 576
  start-page: 613
  year: 2006
  end-page: 624
  article-title: Resistance exercise increases AMPK activity and reduces 4E‐BP1 phosphorylation and protein synthesis in human skeletal muscle
  publication-title: J Physiol
– volume: 9
  start-page: e89431
  year: 2014
  article-title: Acute post‐exercise myofibrillar protein synthesis is not correlated with resistance training‐induced muscle hypertrophy in young men
  publication-title: PLoS One
– volume: 45
  start-page: 1174
  year: 2013
  end-page: 1181
  article-title: Postexercise cold water immersion does not attenuate muscle glycogen resynthesis
  publication-title: Med Sci Sports Exerc
– volume: 9
  start-page: e109739
  year: 2014
  article-title: The acute satellite cell response and skeletal muscle hypertrophy following resistance training
  publication-title: PLoS One
– volume: 14
  start-page: 21
  year: 2000
  end-page: 25
  article-title: The effect of hot or cold water immersion on isometric strength training
  publication-title: J Strength Cond Res
– volume: 37
  start-page: 145
  year: 2007
  end-page: 168
  article-title: The adaptations to strength training: morphological and neurological contributions to increased strength
  publication-title: Sports Med
– volume: 307
  start-page: E245
  year: 2014
  end-page: 261
  article-title: p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization
  publication-title: Am J Physiol Endocrinol Metab
– volume: 29
  start-page: 839
  year: 2004
  end-page: 483
  article-title: Adaptive changes in muscular performance and circulation by resistance training with regular cold water immersion
  publication-title: J Therm Biol
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 43
  start-page: 1101
  year: 2013
  end-page: 1130
  article-title: Water immersion recovery for athletes: effect on exercise performance and practical recommendations
  publication-title: Sports Med
– volume: 545
  start-page: 27
  year: 2002
  end-page: 41
  article-title: Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling
  publication-title: J Physiol
– volume: 45
  start-page: 2277
  year: 2013
  end-page: 2285
  article-title: Influence of cold‐water immersion on limb and cutaneous blood flow after exercise
  publication-title: Med Sci Sports Exerc
– volume: 290
  start-page: E1245
  year: 2006
  end-page: 1252
  article-title: Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers
  publication-title: Am J Physiol Endocrinol Metab
– volume: 46
  start-page: 1631
  year: 2014
  end-page: 1639
  article-title: Does hydrotherapy help or hinder adaptation to training in competitive cyclists?
  publication-title: Med Sci Sports Exerc
– volume: 23
  start-page: 728
  year: 2013
  end-page: 739
  article-title: The effect of strength training volume on satellite cells, myogenic regulatory factors, and growth factors
  publication-title: Scand J Med Sci Sports
– volume: 45
  start-page: 825
  year: 2010
  end-page: 829
  article-title: Effect of cold water immersion on repeated cycling performance and limb blood flow
  publication-title: Br J Sports Med
– volume: 9
  start-page: e1003389
  year: 2013
  article-title: Molecular networks of human muscle adaptation to exercise and age
  publication-title: PLoS Genet
– ident: e_1_2_6_9_1
  doi: 10.1113/jphysiol.2006.113175
– ident: e_1_2_6_35_1
  doi: 10.1152/japplphysiol.01187.2010
– ident: e_1_2_6_15_1
  doi: 10.1249/MSS.0b013e3182814462
– ident: e_1_2_6_11_1
  doi: 10.2165/00007256-200737020-00004
– ident: e_1_2_6_2_1
  doi: 10.1152/ajpcell.1999.276.1.C120
– ident: e_1_2_6_10_1
  doi: 10.1152/ajpcell.00098.2011
– ident: e_1_2_6_39_1
  doi: 10.1152/ajpregu.00333.2005
– volume: 14
  start-page: 21
  year: 2000
  ident: e_1_2_6_5_1
  article-title: The effect of hot or cold water immersion on isometric strength training
  publication-title: J Strength Cond Res
  contributor:
    fullname: Burke D
– ident: e_1_2_6_12_1
  doi: 10.1152/ajpendo.00010.2014
– ident: e_1_2_6_33_1
  doi: 10.1038/nmeth.2089
– ident: e_1_2_6_43_1
  doi: 10.1007/s00421-005-0095-3
– ident: e_1_2_6_23_1
  doi: 10.1249/01.mss.0000169611.21671.2e
– volume: 10
  start-page: 605
  year: 1998
  ident: e_1_2_6_24_1
  article-title: Hypothermia causes a reversible, p53‐mediated cell cycle arrest in cultured fibroblasts
  publication-title: Oncol Res
  contributor:
    fullname: Matijasevic Z
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1600-0838.2012.01452.x
– ident: e_1_2_6_7_1
  doi: 10.1113/jphysiol.2002.021220
– ident: e_1_2_6_30_1
  doi: 10.1371/journal.pgen.1003389
– ident: e_1_2_6_8_1
  doi: 10.1152/ajpregu.2000.279.1.R1
– ident: e_1_2_6_21_1
  doi: 10.1152/ajpcell.1997.272.2.C754
– ident: e_1_2_6_36_1
  doi: 10.1007/s00421-007-0564-y
– ident: e_1_2_6_44_1
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: e_1_2_6_14_1
  doi: 10.1152/ajpendo.00271.2005
– ident: e_1_2_6_22_1
  doi: 10.1152/ajpendo.00530.2005
– ident: e_1_2_6_27_1
  doi: 10.1016/j.jtherbio.2004.08.069
– ident: e_1_2_6_28_1
  doi: 10.1152/japplphysiol.01055.2014
– ident: e_1_2_6_13_1
  doi: 10.1519/JSC.0000000000000434
– volume-title: Anatomische, physiologische und physikalische daten und tabellen
  year: 1906
  ident: e_1_2_6_41_1
  contributor:
    fullname: Vierdort H
– ident: e_1_2_6_38_1
  doi: 10.1136/bjsm.2009.067272
– ident: e_1_2_6_29_1
  doi: 10.1152/japplphysiol.01215.2007
– ident: e_1_2_6_40_1
  doi: 10.1007/s40279-013-0063-8
– ident: e_1_2_6_4_1
  doi: 10.1371/journal.pone.0109739
– ident: e_1_2_6_16_1
  doi: 10.1177/0363546510395497
– ident: e_1_2_6_19_1
  doi: 10.1152/ajpregu.00031.2015
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1742-4658.2008.06781.x
– ident: e_1_2_6_20_1
  doi: 10.1249/MSS.0000000000000308
– ident: e_1_2_6_3_1
  doi: 10.2165/00007256-200636090-00005
– ident: e_1_2_6_42_1
  doi: 10.1055/s-0034-1398652
– ident: e_1_2_6_25_1
  doi: 10.1249/MSS.0b013e31829d8e2e
– ident: e_1_2_6_26_1
  doi: 10.1371/journal.pone.0089431
– ident: e_1_2_6_6_1
  doi: 10.1080/02640414.2010.481722
– ident: e_1_2_6_34_1
  doi: 10.2108/zsj.25.1066
– ident: e_1_2_6_37_1
  doi: 10.2337/db10-0415
– ident: e_1_2_6_17_1
  doi: 10.1249/MSS.0000000000000268
– ident: e_1_2_6_31_1
  doi: 10.3109/10715762.2010.517252
SSID ssj0013099
Score 2.5743394
Snippet Key points Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to...
We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies....
Key points Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4285
SubjectTerms Adaptation, Physiological - physiology
Adult
Cold Temperature
Exercise - physiology
Humans
Hypertrophy - physiopathology
Integrative
Male
Metabolism - physiology
Muscle Strength - physiology
Muscle, Skeletal - physiology
Recovery of Function - physiology
Resistance Training - methods
Signal Transduction - physiology
Water - physiology
Young Adult
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQT1x4lceWggYJ9ZaSxK_kWCGqaiVQhVqpEofIdpx2ReutuokQPfXAD-A38kuYcR6wVEiIYxK_Ys_Y39jjbxh7rWyTKls3CU6QPBEebdZSiQZtHuVMkSmfObqN_P6DOjgW8xN5MnhV0l2Ynh9i2nAjzYjzNSm4sUMUkozIBuaHuUawQeY68egRHvqY_zpASMtyIgrXMht4ZzHrmzHj-kp0C17e9pL8Hb3G5Wf_Pvs0Nrz3Ovm827V2113_wen4f3_2gN0bUCns9WL0kN3x4RHb3AtokV98hR2IfqJxA36TfaP4vj9uvo_BmgBFqYYviFmvYBG3wXGogWg7Q0dAFozrWg8moLidLxyQx4iJTOD4robzZTjF0miFAFOby941YAWLABfdClsD7RLoRks4bc9gjGjxmB3vvzt6e5AMsRwSJ4WWibfSctekJi-d9nla2EZpzU3m8Tm3dSFxMtCZMx4xChe1MjwV1mWq9oWRXvMnbCMsg3_GoJEoQFqY2jUIf2RmpTclF8pbl0tb5jP2ahzX6rKn7Kh6U4dXY9fO2PY44NWgtKsK6ydCOFUoLGL6jOpGZygm-GUX01BEAVVgNU97-ZgqIXJ7wXM-Y3pNcqYEROW9_iUsziKlt5AlAoNixnaiYPy13dXR_BD7TW79a8Ln7C5CPEkeLpncZhvtVedfIIxq7cuoMD8Bfm4dxw
  priority: 102
  providerName: Wiley-Blackwell
Title Post‐exercise cold water immersion attenuates acute anabolic signalling and long‐term adaptations in muscle to strength training
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP270570
https://www.ncbi.nlm.nih.gov/pubmed/26174323
https://www.proquest.com/docview/1712393686
https://search.proquest.com/docview/1713526682
https://pubmed.ncbi.nlm.nih.gov/PMC4594298
Volume 593
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVJTr2UtunHtmmYQsnN2ZX1ZR9DaAgLKUtJIDcjyXJi2NUuWZvSW396R7K1dAm99GhbWEJvJL2RRm8I-SpNM5OmbjKcIFnGHfqspeQN-jzS6oJKR224jXzzXV7f8fm9uD8gIt2FiUH71rTnfrk69-1jjK3crOw0xYlNFzeXXJQ4jRbTQ3KoGEsuejo6mJXlTiJcCToqzlLKpvNFrpCfhOxvQYics5ztL0fPOObzUMm_KWxcg65ekZcjeYSLoZGvyYHzb8jxhUfHefULziCGc8Z98mPyO6ThzVJGJUC8a_iJxPIJ2rhXjXhA0Nb0fWCboG3fOdAebWLZWghhHTrKdeO7GpZr_5CFSRx0rTfD6f0WWg-rfostgW4N4dKJf-geISWdeEvurr7dXl5nY7qFzAquROaMMMw2M52XVrl8VphGKsU0dficm7oQOF4VtdohjWC8lprNuLFU1q7Qwin2jhz5tXcfCDQCMVZc17bBXhbUCKdLxqUzNhemzCfkS-r1ajOoalSDN8KqBNKEnCQ4qnFcbSusP2i2yULiL3afcUSEYw7t3bqPZYLovyywmvcDertKEuwTovZw3RUIatv7X9AIo-r2aHQTchYt4J_trm7nC-w38fG_q_hEXiAtEyEqhYoTctQ99e4zUp_OnCLp_5GfRoP_AwP2Bjs
link.rule.ids 230,315,733,786,790,891,1382,27955,27956,46327,46751,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALrwLdtsAgod5SkviViFMFVMvSVhXaSj0gRbbjtCtab9VNhODEgR_Ab-SXMHYesFRIiGNiO3bsGfsbe_wNIc-FrmKhyyrCCZJGzKLNmgtWoc0jjMoSYRPjbyMfHIrxMZuc8JMV8rK_C9PyQwwbbl4zwnztFdxvSHda7tkGJkepRLSB9voN1HbutfL1-_TXEUKc5wNVOCZ3zLNY9kVfcnktugYwr_tJ_o5fwwK0d4d86Jve-p183GlqvWO-_MHq-J__dpfc7oAp7LaSdI-sWHefrO06NMovPsM2BFfRsAe_Rr75EL8_vn7v4zUBSlMJnxC2XsEs7ITjaINn7nSNx7KgTFNbUA4l7nxmwDuNqEAGju9KOJ-7U_yaXyRAleqy9Q5YwMzBRbPA1kA9B3-pxZ3WZ9AHtXhAjvfeTF-Noy6cQ2Q4kzyymmtqqliluZE2jTNdCSmpSiw-p7rMOM4HMjHKIkyhrBSKxkybRJQ2U9xK-pCsurmz6wQqjjIkmSpNhQiIJ5pblVMmrDYp13k6Is_6gS0uW9aOorV2aNF37Yhs9SNedHq7KLB-zwknMoGfGJJR4_wxinJ23oQ8PqiAyLCaR62ADJV4fntGUzoickl0hgyezXs5xc3OAqs34zlig2xEtoNk_LXdxXRyhP3GN_4141Nyczw92C_23x6-2yS3EPFx7_CS8C2yWl819jGiqlo_CdrzEzzvIec
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkRAXCpTHlkKNhHpLSfxMjhVl1S5QrVArVeIQ-ZV2RetddRMhOHHgB_Ab-SWMnQcsFRLimMSv2DP2N_b4G4ReCF2lQtsqgQmSJsyBzVoIVoHNI4zKM-EyE24jvzsSBydscspPO6_KcBem5YcYNtyCZsT5Oij4wladkgeygcmUSAAbYK7fZIKSYHjtvye_ThDSohiYwiXPOuJZyPuyz7m6FF3Dl9fdJH-Hr3H9Ga-jD33LW7eTj7tNrXfNlz9IHf_v1-6iOx0sxXutHN1DN5y_jzb2PJjkl5_xDo6OonEHfgN9CwF-f3z93kdrwiBLFn8C0HqFZ3EfHMYaB95O3wQki5VpaoeVB3m7mBkcXEZUpAKHdxZfzP0ZlBaWCKysWrS-AUs88_iyWUJrcD3H4UqLP6vPcR_S4gE6Gb8-fnWQdMEcEsOZ5InTXFNTpYoURjqS5roSUlKVOXgm2uYcZgOZGeUApFBmhaIp0yYT1uWKO0kfojU_9-4xwhUHCZJMWVMB_uGZ5k4VlAmnDeG6ICP0vB_XctFydpStrUPLvmtHaKsf8LLT2mUJ9QdGOJELKGL4DPoWDlGUd_MmpgkhBUQO1Txq5WOoJLDbM0roCMkVyRkSBC7v1S9-dh45vRkvABnkI7QTBeOv7S6PJ1PoN775rwm30a3p_rh8e3j05gm6DXCPB2-XjG-htfqqcU8BUtX6WdSdn9EiIJY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-exercise+cold+water+immersion+attenuates+acute+anabolic+signalling+and+long-term+adaptations+in+muscle+to+strength+training&rft.jtitle=The+Journal+of+physiology&rft.au=Roberts%2C+Llion+A&rft.au=Raastad%2C+Truls&rft.au=Markworth%2C+James+F&rft.au=Figueiredo%2C+Vandre+C&rft.date=2015-09-15&rft.eissn=1469-7793&rft.volume=593&rft.issue=18&rft.spage=4285&rft_id=info:doi/10.1113%2FJP270570&rft_id=info%3Apmid%2F26174323&rft.externalDocID=26174323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon