Combinatorially Designed Lipid-like Nanoparticles for Intracellular Delivery of Cytotoxic Protein for Cancer Therapy

An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid‐like materials (termed “lipidoids”), coupled with a rever...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 53; no. 11; pp. 2893 - 2898
Main Authors Wang, Ming, Alberti, Kyle, Sun, Shuo, Arellano, Carlos Luis, Xu, Qiaobing
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 10.03.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid‐like materials (termed “lipidoids”), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure–function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein–lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16‐1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model. A protein delivery platform that combines a library of lipid‐like nanoparticles and a reversible chemical protein modification approach is presented. With ribonuclease A (RNase A) and saporin as representative cytotoxic proteins, the nanoparticles deliver proteins into cancer cells and inhibit cell proliferation. A representative lipidoid protein nanoparticle formulation inhibits tumor cell proliferation in vitro and suppresses tumor growth.
AbstractList An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein-based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid-like materials (termed "lipidoids"), coupled with a reversible chemical protein engineering approach. Using ribonucleaseA (RNaseA) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure-function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein-lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16-1) protein nanoparticle formulation inhibits cell proliferation invitro and suppresses tumor growth in a murine breast cancer model. [PUBLICATION ABSTRACT]
An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein-based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid-like materials (termed "lipidoids"), coupled with a reversible chemical protein engineering approach. Using ribonucleaseA (RNaseA) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure-function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein-lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16-1) protein nanoparticle formulation inhibits cell proliferation invitro and suppresses tumor growth in a murine breast cancer model. A protein delivery platform that combines a library of lipid-like nanoparticles and a reversible chemical protein modification approach is presented. With ribonucleaseA (RNaseA) and saporin as representative cytotoxic proteins, the nanoparticles deliver proteins into cancer cells and inhibit cell proliferation. A representative lipidoid protein nanoparticle formulation inhibits tumor cell proliferation invitro and suppresses tumor growth.
An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid‐like materials (termed “lipidoids”), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure–function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein–lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16‐1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model.
An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid‐like materials (termed “lipidoids”), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure–function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein–lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16‐1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model. A protein delivery platform that combines a library of lipid‐like nanoparticles and a reversible chemical protein modification approach is presented. With ribonuclease A (RNase A) and saporin as representative cytotoxic proteins, the nanoparticles deliver proteins into cancer cells and inhibit cell proliferation. A representative lipidoid protein nanoparticle formulation inhibits tumor cell proliferation in vitro and suppresses tumor growth.
An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein-based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid-like materials (termed "lipidoids"), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure-function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein-lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16-1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model.An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein-based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid-like materials (termed "lipidoids"), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure-function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein-lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16-1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model.
Author Arellano, Carlos Luis
Sun, Shuo
Alberti, Kyle
Xu, Qiaobing
Wang, Ming
Author_xml – sequence: 1
  givenname: Ming
  surname: Wang
  fullname: Wang, Ming
  organization: Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA (USA)
– sequence: 2
  givenname: Kyle
  surname: Alberti
  fullname: Alberti, Kyle
  organization: Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA (USA)
– sequence: 3
  givenname: Shuo
  surname: Sun
  fullname: Sun, Shuo
  organization: Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA (USA)
– sequence: 4
  givenname: Carlos Luis
  surname: Arellano
  fullname: Arellano, Carlos Luis
  organization: Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA (USA)
– sequence: 5
  givenname: Qiaobing
  surname: Xu
  fullname: Xu, Qiaobing
  email: qiaobing.xu@tufts.edu
  organization: Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA (USA)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24519972$$D View this record in MEDLINE/PubMed
BookMark eNqF0btv1DAcwHELFdEHrIwoEgtLDj9jZyzpg0Ong-EQo-U4Drj12YftQPPfN-HKCVVCneLh87Vj_07BkQ_eAPAawQWCEL9X3poFhogghCl7Bk4Qw6gknJOjaU0JKblg6BicpnQzeSFg9QIcTxTVNccnIDdh21qvcohWOTcWFybZ7950xcrubFc6e2uKtfJhp2K22plU9CEWS5-j0sa5wak4Nc7-MnEsQl80Yw453FldfIkhG-v_-EZ5bWKx-WGi2o0vwfNeuWRePXzPwNery03zsVx9vl4256tSM8pZyU2niIJCQc4orYiGwrQdhBoRjVrKWgY17TUjXNS6xp0muG1rSliPq051HTkD7_b77mL4OZiU5dam-a-VN2FIEnGIoMAckacpgwwzDgWb6NtH9CYM0U8XmRWtEBOQTurNgxrarenkLtqtiqP8-_QTWOyBjiGlaPoDQVDOs5XzbOVhtlNAHwXaZpVtmGdh3f-zep_9ts6MTxwiz9fLy3_bct_alM3doVXxVlaccCa_ra-l-EAEvth8kpjcA3DAx50
CODEN ACIEAY
CitedBy_id crossref_primary_10_1007_s00330_020_07609_8
crossref_primary_10_1016_j_jcis_2020_12_117
crossref_primary_10_1021_acs_chemmater_8b02868
crossref_primary_10_1021_acs_chemrev_1c00244
crossref_primary_10_1021_acs_chemmater_6b03896
crossref_primary_10_1021_jacs_8b03442
crossref_primary_10_1016_j_bbrc_2018_06_059
crossref_primary_10_1021_acsnano_8b03476
crossref_primary_10_1002_smsc_202400192
crossref_primary_10_1002_ange_202111213
crossref_primary_10_1016_j_bioorg_2022_105666
crossref_primary_10_1021_jacs_8b11996
crossref_primary_10_1038_gt_2016_72
crossref_primary_10_1038_s41551_018_0234_x
crossref_primary_10_1002_ange_202004994
crossref_primary_10_1002_adma_202108116
crossref_primary_10_1039_C8CS00805A
crossref_primary_10_1021_acsami_7b06879
crossref_primary_10_1016_j_jconrel_2018_10_013
crossref_primary_10_1002_smll_202308574
crossref_primary_10_1002_adma_202412366
crossref_primary_10_1016_j_talanta_2019_120512
crossref_primary_10_1016_j_biomaterials_2018_03_011
crossref_primary_10_1021_acs_biomac_9b00783
crossref_primary_10_1002_adfm_201805287
crossref_primary_10_1002_anie_202402291
crossref_primary_10_1039_C5RA11607D
crossref_primary_10_1039_D3NR06543J
crossref_primary_10_1021_acs_jpcb_1c06452
crossref_primary_10_1002_anie_202215801
crossref_primary_10_1002_smll_201601234
crossref_primary_10_1021_acs_nanolett_6b04955
crossref_primary_10_1016_j_onano_2022_100091
crossref_primary_10_1371_journal_pone_0141860
crossref_primary_10_1016_j_biomaterials_2016_06_006
crossref_primary_10_1002_anie_201500096
crossref_primary_10_1021_jacs_9b08669
crossref_primary_10_1208_s12248_018_0267_9
crossref_primary_10_1016_j_polymer_2022_125530
crossref_primary_10_1039_C9CC04517A
crossref_primary_10_1002_anie_201403036
crossref_primary_10_1039_D0CC07808E
crossref_primary_10_1021_acs_bioconjchem_8b00753
crossref_primary_10_1021_acs_bioconjchem_8b00750
crossref_primary_10_1002_adfm_201806818
crossref_primary_10_1039_C9CC00519F
crossref_primary_10_1002_ange_201407272
crossref_primary_10_1002_adfm_201910566
crossref_primary_10_1002_ange_202307664
crossref_primary_10_1002_anie_202009572
crossref_primary_10_1039_D4NR03638G
crossref_primary_10_1016_j_ijpharm_2019_01_040
crossref_primary_10_1016_j_actbio_2015_08_029
crossref_primary_10_1016_j_apsb_2022_04_013
crossref_primary_10_1002_advs_202500844
crossref_primary_10_1021_cr5005315
crossref_primary_10_1038_s41467_018_03779_8
crossref_primary_10_3390_pharmaceutics14040734
crossref_primary_10_1002_adma_201902575
crossref_primary_10_1002_smll_202101219
crossref_primary_10_1002_adfm_201706710
crossref_primary_10_1002_ange_202009572
crossref_primary_10_1016_j_nantod_2024_102287
crossref_primary_10_1039_C8QM00314A
crossref_primary_10_1007_s10895_023_03474_y
crossref_primary_10_1007_s12274_023_6172_2
crossref_primary_10_1016_j_ijpharm_2022_122489
crossref_primary_10_2147_IJN_S293427
crossref_primary_10_1002_ange_202402291
crossref_primary_10_1002_anie_201602577
crossref_primary_10_1073_pnas_1520244113
crossref_primary_10_1002_adhm_202000938
crossref_primary_10_1038_s41557_021_00854_4
crossref_primary_10_1016_j_jconrel_2015_08_058
crossref_primary_10_1002_ange_201403036
crossref_primary_10_1021_acs_nanolett_7b04976
crossref_primary_10_1002_adma_202209765
crossref_primary_10_1039_C8BM00637G
crossref_primary_10_1016_j_biomaterials_2019_119358
crossref_primary_10_3390_toxins9100314
crossref_primary_10_1002_anie_202004994
crossref_primary_10_1021_acs_biomac_1c00745
crossref_primary_10_1016_j_cej_2020_126606
crossref_primary_10_1021_jacs_8b13507
crossref_primary_10_1039_C9NR07334E
crossref_primary_10_1039_C9TB02528F
crossref_primary_10_1016_j_actbio_2020_06_020
crossref_primary_10_3390_pharmaceutics15061610
crossref_primary_10_1021_acs_accounts_8b00493
crossref_primary_10_1021_acsami_8b06660
crossref_primary_10_1186_s12929_016_0272_1
crossref_primary_10_1021_acs_biomac_5b00193
crossref_primary_10_1002_anie_202013904
crossref_primary_10_1016_j_biomaterials_2018_08_023
crossref_primary_10_1016_j_msec_2021_112184
crossref_primary_10_1186_s40580_022_00297_8
crossref_primary_10_1007_s10571_017_0479_z
crossref_primary_10_1002_ange_201500096
crossref_primary_10_3390_cancers12020498
crossref_primary_10_1016_j_comche_2014_04_001
crossref_primary_10_1021_acscentsci_4c00071
crossref_primary_10_1002_adma_202002932
crossref_primary_10_1016_j_bioactmat_2021_03_027
crossref_primary_10_3390_pharmaceutics13111829
crossref_primary_10_1002_smll_201802618
crossref_primary_10_1016_j_jcis_2024_06_123
crossref_primary_10_1021_acsami_6b01667
crossref_primary_10_1002_ange_202013904
crossref_primary_10_1007_s13277_015_3360_z
crossref_primary_10_1039_C9NR02408E
crossref_primary_10_1039_D2SC03861G
crossref_primary_10_1016_j_carbpol_2019_115174
crossref_primary_10_1177_1535370216640944
crossref_primary_10_1021_acs_nanolett_1c03293
crossref_primary_10_3390_jfb14060301
crossref_primary_10_1021_acsami_7b18577
crossref_primary_10_1007_s00210_024_03664_w
crossref_primary_10_1016_j_nantod_2021_101140
crossref_primary_10_1021_acsnano_5b05792
crossref_primary_10_1155_2016_2860859
crossref_primary_10_1016_j_actbio_2016_01_011
crossref_primary_10_1021_acsami_3c14450
crossref_primary_10_1021_acs_biomac_8b01243
crossref_primary_10_1016_j_ymthe_2019_05_002
crossref_primary_10_1021_acsami_8b21724
crossref_primary_10_1002_adtp_202100009
crossref_primary_10_1007_s11426_020_9702_1
crossref_primary_10_1021_acsami_6b08202
crossref_primary_10_1080_1061186X_2019_1669043
crossref_primary_10_1002_ange_201602577
crossref_primary_10_1016_j_jconrel_2020_02_004
crossref_primary_10_1021_acsami_1c23412
crossref_primary_10_1002_anie_201407272
crossref_primary_10_1039_D4BM01440E
crossref_primary_10_1039_D4TB02009J
crossref_primary_10_1021_acsnano_1c00476
crossref_primary_10_1002_anie_202111213
crossref_primary_10_1126_scitranslmed_adi4830
crossref_primary_10_1002_EXP_20210217
crossref_primary_10_1016_j_pmatsci_2021_100871
crossref_primary_10_1002_anie_202008082
crossref_primary_10_1021_acs_biochem_3c00614
crossref_primary_10_1038_s41598_023_31792_5
crossref_primary_10_1021_acs_chemmater_7b02953
crossref_primary_10_1002_ange_202215801
crossref_primary_10_1002_smtd_201700364
crossref_primary_10_1002_adhm_201800685
crossref_primary_10_1021_acs_accounts_3c00597
crossref_primary_10_1021_acs_nanolett_0c03287
crossref_primary_10_1002_wnan_1978
crossref_primary_10_1021_acsami_6b16277
crossref_primary_10_1016_j_jconrel_2024_06_004
crossref_primary_10_1021_acs_chemmater_8b04672
crossref_primary_10_1126_sciadv_abb4429
crossref_primary_10_1002_adhm_202202049
crossref_primary_10_1002_ange_201508288
crossref_primary_10_1016_j_antiviral_2016_11_027
crossref_primary_10_1002_anie_202307664
crossref_primary_10_1002_advs_201700175
crossref_primary_10_1021_acs_bioconjchem_0c00295
crossref_primary_10_1021_jacs_8b04457
crossref_primary_10_1002_ange_202008082
crossref_primary_10_1039_C8BM01632A
crossref_primary_10_1002_adhm_201600416
crossref_primary_10_1021_acs_jpcb_9b06006
crossref_primary_10_34133_bmef_0035
crossref_primary_10_1021_acsnano_6b06892
crossref_primary_10_1016_j_nantod_2021_101221
crossref_primary_10_1002_smll_201603109
crossref_primary_10_1002_ange_201800511
crossref_primary_10_1039_C4CS00390J
crossref_primary_10_1038_s41467_020_16399_y
crossref_primary_10_1002_anie_201508288
crossref_primary_10_2217_nnm_14_192
crossref_primary_10_1021_acs_biomac_7b00666
crossref_primary_10_1021_acsami_6b05775
crossref_primary_10_1002_anie_202004008
crossref_primary_10_1016_j_actbio_2018_04_010
crossref_primary_10_1021_acsami_9b09605
crossref_primary_10_1002_anie_201407234
crossref_primary_10_1016_j_actbio_2021_05_001
crossref_primary_10_3109_08982104_2014_926917
crossref_primary_10_1016_j_biomaterials_2021_121321
crossref_primary_10_1039_C6BM00580B
crossref_primary_10_1002_cbic_202100225
crossref_primary_10_1002_adma_201902604
crossref_primary_10_1002_adfm_201906187
crossref_primary_10_1021_acsami_7b04788
crossref_primary_10_1016_j_actbio_2022_08_070
crossref_primary_10_1016_j_cej_2024_155133
crossref_primary_10_1002_smll_201402779
crossref_primary_10_1016_j_addr_2021_113837
crossref_primary_10_1002_adma_201404788
crossref_primary_10_1002_chem_202000219
crossref_primary_10_1002_ange_201407234
crossref_primary_10_1016_j_omtn_2020_01_018
crossref_primary_10_3390_cancers14215366
crossref_primary_10_1039_C9CC07768E
crossref_primary_10_1021_acs_chemmater_6b04404
crossref_primary_10_1016_j_jconrel_2021_11_037
crossref_primary_10_3389_fbioe_2023_1211798
crossref_primary_10_1002_adma_201800316
crossref_primary_10_1021_acsami_9b05827
crossref_primary_10_1016_j_addr_2020_03_001
crossref_primary_10_1002_adhm_201800996
crossref_primary_10_1021_mp500797n
crossref_primary_10_1002_ange_202004008
crossref_primary_10_1039_D2CC00453D
crossref_primary_10_1016_j_jconrel_2015_10_012
crossref_primary_10_1002_anie_201800511
Cites_doi 10.1021/ja302705v
10.1038/nbt0910-917
10.1073/pnas.76.1.106
10.1021/cr960427h
10.1016/j.nano.2013.01.006
10.1002/ange.200905264
10.3390/toxins3060697
10.1039/c0cs00227e
10.1016/j.jconrel.2011.10.005
10.1002/ange.200900064
10.1021/bc200572w
10.1038/nbt1402
10.1073/pnas.0813348106
10.1021/ja907887z
10.1021/ja203077x
10.1006/mthe.2000.0137
10.1002/anie.200900064
10.1073/pnas.1121423109
10.1038/nrd2399
10.1016/j.biomaterials.2012.02.010
10.1073/pnas.1306529110
10.1074/jbc.M104920200
10.1073/pnas.0910603106
10.1002/anie.200905264
10.1021/sb300023h
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/anie.201311245
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
Materials Research Database
CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 2898
ExternalDocumentID 3238301291
24519972
10_1002_anie_201311245
ANIE201311245
ark_67375_WNG_8B382DTJ_2
Genre shortCommunication
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NSF
– fundername: Pew Charitable Trusts
– fundername: Tufts University
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c5475-7eda3a08a0754463c08ebd00c13c1b45b50c4fc53789c92dc32bb9435f26dadd3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:42:10 EDT 2025
Fri Jul 11 10:01:16 EDT 2025
Sun Jul 13 04:30:17 EDT 2025
Mon Jul 21 05:34:26 EDT 2025
Tue Jul 01 02:53:26 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
Wed Jan 22 16:45:57 EST 2025
Wed Oct 30 09:51:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords cancer therapy
lipidoids
nanoparticles
protein delivery
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5475-7eda3a08a0754463c08ebd00c13c1b45b50c4fc53789c92dc32bb9435f26dadd3
Notes We thank Prof. Gary Sahagian and Dr. Min Fang at Tufts University, School of Medicine for providing 4T1-12B cells and developing the breast cancer mice model. This research was supported by Tufts University. Q.B.X. also acknowledges the Tufts FRAC award and Charlton Award from Tufts University School of Medicine and Pew Scholar for Biomedical Sciences program from Pew Charitable Trusts. K.A. acknowledges the IGERT fellowship from NSF.
NSF
Pew Charitable Trusts
istex:3456438480D3F66E3F86B1C0B46DFE30CA2B19E4
ArticleID:ANIE201311245
Tufts University
ark:/67375/WNG-8B382DTJ-2
We thank Prof. Gary Sahagian and Dr. Min Fang at Tufts University, School of Medicine for providing 4T1‐12B cells and developing the breast cancer mice model. This research was supported by Tufts University. Q.B.X. also acknowledges the Tufts FRAC award and Charlton Award from Tufts University School of Medicine and Pew Scholar for Biomedical Sciences program from Pew Charitable Trusts. K.A. acknowledges the IGERT fellowship from NSF.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24519972
PQID 1504615804
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_1701082713
proquest_miscellaneous_1505257085
proquest_journals_1504615804
pubmed_primary_24519972
crossref_primary_10_1002_anie_201311245
crossref_citationtrail_10_1002_anie_201311245
wiley_primary_10_1002_anie_201311245_ANIE201311245
istex_primary_ark_67375_WNG_8B382DTJ_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 10, 2014
PublicationDateYYYYMMDD 2014-03-10
PublicationDate_xml – month: 03
  year: 2014
  text: March 10, 2014
  day: 10
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Y.-H. Huang, Y. Bao, W. Peng, M. Goldberg, K. Love, D. A. Bumcrot, G. Cole, R. Langer, D. G. Anderson, J. A. Sawicki, Proc. Natl. Acad. Sci. USA 2009, 106, 3426-3430
B. Leader, Q. J. Baca, D. E. Golan, Nat. Rev. Drug. Discovery 2008, 7, 21-39.
Angew. Chem. Int. Ed. 2009, 48, 5309-5312
Z. B. Mi, J. Mai, X. L. Lu, P. D. Robbins, Mol. Ther. 2000, 2, 339-347.
D. N. Nguyen, K. P. Mahon, G. Chikh, P. Kim, H. Chung, A. P. Vicari, K. T. Love, M. Goldberg, S. Chen, A. M. Krieg, J. Chen, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2012, 109, E797-E803
S. Sun, M. Wang, K. A. Alberti, A. Choy, Q. B. Xu, Nanomed-Nanotechnol. 2013, 9, 849-854.
D. V. Goeddel, D. G. Kleid, F. Bolivar, H. L. Heyneker, D. G. Yansura, R. Crea, T. Hirose, A. Kraszewski, K. Itakura, A. D. Riggs, Proc. Natl. Acad. Sci. USA 1979, 76, 106-110.
G. Walsh, Nat. Biotechnol. 2010, 28, 917-924
A. Akinc, A. Zumbuehl, M. Goldberg, E. S. Leshchiner, V. Busini, N. Hossain, S. A. Bacallado, D. N. Nguyen, J. Fuller, R. Alvarez, A. Borodovsky, T. Borland, R. Constien, A. de Fougerolles, J. R. Dorkin, K. N. Jayaprakash, M. Jayaraman, M. John, V. Koteliansky, M. Manoharan, L. Nechev, J. Qin, T. Racie, D. Raitcheva, K. G. Rajeev, D. W. Y. Sah, J. Soutschek, I. Toudjarska, H. P. Vornlocher, T. S. Zimmermann, R. Langer, D. G. Anderson, Nat. Biotechnol. 2008, 26, 561-569
Z. Gu, A. Biswas, M. X. Zhao, Y. Tang, Chem. Soc. Rev. 2011, 40, 3638-3655.
C. A. Alabi, K. T. Love, G. Sahay, H. Yin, K. M. Luly, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2013, 110, 12881-12886.
Angew. Chem. Int. Ed. 2010, 49, 2552-2555
Y. Lee, T. Ishii, H. J. Kim, N. Nishiyama, Y. Hayakawa, K. Itaka, K. Kataoka, Angew. Chem. 2010, 122, 2606-2609
A. Taheri, R. Dinarvand, F. S. Nouri, M. R. Khorramizadeh, A. T. Borougeni, P. Mansoori, F. Atyabi, Int. J. Nanomed. 2011, 6, 1863-1874
P. Ghosh, X. Yang, R. Arvizo, Z.-J. Zhu, S. S. Agasti, Z. Mo, V. M. Rotello, J. Am. Chem. Soc. 2010, 132, 2642-2645.
R. T. Raines, Chem. Rev. 1998, 98, 1045-1065.
L. Polito, M. Bortolotti, M. Pedrazzi, A. Bolognesi, Toxins 2011, 3, 697-720.
K. T. Love, K. P. Mahon, C. G. Levins, K. A. Whitehead, W. Querbes, J. R. Dorkin, J. Qin, W. Cantley, L. L. Qin, T. Racie, M. Frank-Kamenetsky, K. N. Yip, R. Alvarez, D. W. Sah, A. de Fougerolles, K. Fitzgerald, V. Koteliansky, A. Akinc, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2010, 107, 1864-1869
Y. Lee, T. Ishii, H. Cabral, H. J. Kim, J. H. Seo, N. Nishiyama, H. Oshima, K. Osada, K. Kataoka, Angew. Chem. 2009, 121, 5413-5416
J. G. Beitz, P. Davol, J. W. Clark, J. Kato, M. Medina, A. R. Frackelton, D. A. Lappi, A. Baird, P. Calabresi, Cancer Res. 1992, 52, 227-230.
J. Su, F. Chen, V. L. Cryns, P. B. Messersmith, J. Am. Chem. Soc. 2011, 133, 11850-11853.
M. Wang, S. Sun, K. A. Alberti, Q. Xu, ACS Synth. Biol. 2012, 1, 403-407
K. Maier, E. Wagner, J. Am. Chem. Soc. 2012, 134, 10169-10173.
J. S. Lee, J. Feijen, J. Controlled Release 2012, 161, 473-483.
S. K. Kim, M. B. Foote, L. Huang, Biomaterials 2012, 33, 3959-3966
J. G. Beitz, P. Davol, J. W. Clark, J. Kato, M. Medina, A. R. Frackelton, D. A. Lappi, A. Baird, P. Calabresi, Cancer Res. 1992, 52, 227-230
O. Zelphati, Y. Wang, S. Kitada, J. C. Reed, P. L. Felgner, J. Corbeil, J. Biol. Chem. 2001, 276, 35103-35110.
Y. Matsumura, H. Maeda, Cancer Res. 1986, 46, 6387-6392.
M. S. Iordanov, O. P. Ryabinina, J. Wong, T. H. Dinh, D. L. Newton, S. M. Rybak, B. E. Magun, Cancer Res. 2000, 60, 1983-1994
S. Sun, M. Wang, S. A. Knupp, Y. Soto-Feliciano, X. Hu, D. L. Kaplan, R. Langer, D. G. Anderson, Q. B. Xu, Bioconjugate Chem. 2012, 23, 135-140
2012; 161
2010; 107
2011; 40
2010 2010; 122 49
2008; 7
2000; 2
2011; 3
2011; 6
1979; 76
2012; 33
2009 2009; 121 48
2011; 133
2012; 109
2013; 9
1992; 52
2001; 276
2012; 134
2012; 1
2010; 28
1986; 46
2010; 132
2008; 26
2000; 60
2013; 110
2012; 23
1998; 98
2009; 106
e_1_2_2_3_2
e_1_2_2_23_3
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_21_2
e_1_2_2_20_2
e_1_2_2_1_2
e_1_2_2_2_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_26_2
e_1_2_2_9_2
e_1_2_2_24_3
e_1_2_2_25_2
Taheri A. (e_1_2_2_33_2) 2011; 6
Matsumura Y. (e_1_2_2_35_2) 1986; 46
e_1_2_2_13_2
e_1_2_2_12_2
e_1_2_2_11_2
e_1_2_2_10_2
Iordanov M. S. (e_1_2_2_29_2) 2000; 60
Beitz J. G. (e_1_2_2_30_2) 1992; 52
e_1_2_2_19_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_16_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_14_2
Beitz J. G. (e_1_2_2_27_2) 1992; 52
References_xml – reference: S. Sun, M. Wang, S. A. Knupp, Y. Soto-Feliciano, X. Hu, D. L. Kaplan, R. Langer, D. G. Anderson, Q. B. Xu, Bioconjugate Chem. 2012, 23, 135-140;
– reference: J. Su, F. Chen, V. L. Cryns, P. B. Messersmith, J. Am. Chem. Soc. 2011, 133, 11850-11853.
– reference: G. Walsh, Nat. Biotechnol. 2010, 28, 917-924;
– reference: B. Leader, Q. J. Baca, D. E. Golan, Nat. Rev. Drug. Discovery 2008, 7, 21-39.
– reference: Y.-H. Huang, Y. Bao, W. Peng, M. Goldberg, K. Love, D. A. Bumcrot, G. Cole, R. Langer, D. G. Anderson, J. A. Sawicki, Proc. Natl. Acad. Sci. USA 2009, 106, 3426-3430;
– reference: Y. Lee, T. Ishii, H. J. Kim, N. Nishiyama, Y. Hayakawa, K. Itaka, K. Kataoka, Angew. Chem. 2010, 122, 2606-2609;
– reference: Z. Gu, A. Biswas, M. X. Zhao, Y. Tang, Chem. Soc. Rev. 2011, 40, 3638-3655.
– reference: K. Maier, E. Wagner, J. Am. Chem. Soc. 2012, 134, 10169-10173.
– reference: A. Taheri, R. Dinarvand, F. S. Nouri, M. R. Khorramizadeh, A. T. Borougeni, P. Mansoori, F. Atyabi, Int. J. Nanomed. 2011, 6, 1863-1874;
– reference: K. T. Love, K. P. Mahon, C. G. Levins, K. A. Whitehead, W. Querbes, J. R. Dorkin, J. Qin, W. Cantley, L. L. Qin, T. Racie, M. Frank-Kamenetsky, K. N. Yip, R. Alvarez, D. W. Sah, A. de Fougerolles, K. Fitzgerald, V. Koteliansky, A. Akinc, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2010, 107, 1864-1869;
– reference: L. Polito, M. Bortolotti, M. Pedrazzi, A. Bolognesi, Toxins 2011, 3, 697-720.
– reference: A. Akinc, A. Zumbuehl, M. Goldberg, E. S. Leshchiner, V. Busini, N. Hossain, S. A. Bacallado, D. N. Nguyen, J. Fuller, R. Alvarez, A. Borodovsky, T. Borland, R. Constien, A. de Fougerolles, J. R. Dorkin, K. N. Jayaprakash, M. Jayaraman, M. John, V. Koteliansky, M. Manoharan, L. Nechev, J. Qin, T. Racie, D. Raitcheva, K. G. Rajeev, D. W. Y. Sah, J. Soutschek, I. Toudjarska, H. P. Vornlocher, T. S. Zimmermann, R. Langer, D. G. Anderson, Nat. Biotechnol. 2008, 26, 561-569;
– reference: J. G. Beitz, P. Davol, J. W. Clark, J. Kato, M. Medina, A. R. Frackelton, D. A. Lappi, A. Baird, P. Calabresi, Cancer Res. 1992, 52, 227-230;
– reference: S. Sun, M. Wang, K. A. Alberti, A. Choy, Q. B. Xu, Nanomed-Nanotechnol. 2013, 9, 849-854.
– reference: D. V. Goeddel, D. G. Kleid, F. Bolivar, H. L. Heyneker, D. G. Yansura, R. Crea, T. Hirose, A. Kraszewski, K. Itakura, A. D. Riggs, Proc. Natl. Acad. Sci. USA 1979, 76, 106-110.
– reference: M. Wang, S. Sun, K. A. Alberti, Q. Xu, ACS Synth. Biol. 2012, 1, 403-407;
– reference: R. T. Raines, Chem. Rev. 1998, 98, 1045-1065.
– reference: J. G. Beitz, P. Davol, J. W. Clark, J. Kato, M. Medina, A. R. Frackelton, D. A. Lappi, A. Baird, P. Calabresi, Cancer Res. 1992, 52, 227-230.
– reference: Z. B. Mi, J. Mai, X. L. Lu, P. D. Robbins, Mol. Ther. 2000, 2, 339-347.
– reference: Angew. Chem. Int. Ed. 2009, 48, 5309-5312;
– reference: O. Zelphati, Y. Wang, S. Kitada, J. C. Reed, P. L. Felgner, J. Corbeil, J. Biol. Chem. 2001, 276, 35103-35110.
– reference: Angew. Chem. Int. Ed. 2010, 49, 2552-2555;
– reference: M. S. Iordanov, O. P. Ryabinina, J. Wong, T. H. Dinh, D. L. Newton, S. M. Rybak, B. E. Magun, Cancer Res. 2000, 60, 1983-1994;
– reference: D. N. Nguyen, K. P. Mahon, G. Chikh, P. Kim, H. Chung, A. P. Vicari, K. T. Love, M. Goldberg, S. Chen, A. M. Krieg, J. Chen, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2012, 109, E797-E803;
– reference: Y. Lee, T. Ishii, H. Cabral, H. J. Kim, J. H. Seo, N. Nishiyama, H. Oshima, K. Osada, K. Kataoka, Angew. Chem. 2009, 121, 5413-5416;
– reference: S. K. Kim, M. B. Foote, L. Huang, Biomaterials 2012, 33, 3959-3966;
– reference: C. A. Alabi, K. T. Love, G. Sahay, H. Yin, K. M. Luly, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2013, 110, 12881-12886.
– reference: Y. Matsumura, H. Maeda, Cancer Res. 1986, 46, 6387-6392.
– reference: P. Ghosh, X. Yang, R. Arvizo, Z.-J. Zhu, S. S. Agasti, Z. Mo, V. M. Rotello, J. Am. Chem. Soc. 2010, 132, 2642-2645.
– reference: J. S. Lee, J. Feijen, J. Controlled Release 2012, 161, 473-483.
– volume: 26
  start-page: 561
  year: 2008
  end-page: 569
  publication-title: Nat. Biotechnol.
– volume: 109
  start-page: 797
  year: 2012
  end-page: 803
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 33
  start-page: 3959
  year: 2012
  end-page: 3966
  publication-title: Biomaterials
– volume: 28
  start-page: 917
  year: 2010
  end-page: 924
  publication-title: Nat. Biotechnol.
– volume: 76
  start-page: 106
  year: 1979
  end-page: 110
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 52
  start-page: 227
  year: 1992
  end-page: 230
  publication-title: Cancer Res.
– volume: 276
  start-page: 35103
  year: 2001
  end-page: 35110
  publication-title: J. Biol. Chem.
– volume: 121 48
  start-page: 5413 5309
  year: 2009 2009
  end-page: 5416 5312
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 7
  start-page: 21
  year: 2008
  end-page: 39
  publication-title: Nat. Rev. Drug. Discovery
– volume: 132
  start-page: 2642
  year: 2010
  end-page: 2645
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 11850
  year: 2011
  end-page: 11853
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 1983
  year: 2000
  end-page: 1994
  publication-title: Cancer Res.
– volume: 1
  start-page: 403
  year: 2012
  end-page: 407
  publication-title: ACS Synth. Biol.
– volume: 134
  start-page: 10169
  year: 2012
  end-page: 10173
  publication-title: J. Am. Chem. Soc.
– volume: 161
  start-page: 473
  year: 2012
  end-page: 483
  publication-title: J. Controlled Release
– volume: 46
  start-page: 6387
  year: 1986
  end-page: 6392
  publication-title: Cancer Res.
– volume: 40
  start-page: 3638
  year: 2011
  end-page: 3655
  publication-title: Chem. Soc. Rev.
– volume: 107
  start-page: 1864
  year: 2010
  end-page: 1869
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 110
  start-page: 12881
  year: 2013
  end-page: 12886
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  start-page: 135
  year: 2012
  end-page: 140
  publication-title: Bioconjugate Chem.
– volume: 2
  start-page: 339
  year: 2000
  end-page: 347
  publication-title: Mol. Ther.
– volume: 9
  start-page: 849
  year: 2013
  end-page: 854
  publication-title: Nanomed‐Nanotechnol.
– volume: 122 49
  start-page: 2606 2552
  year: 2010 2010
  end-page: 2609 2555
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 106
  start-page: 3426
  year: 2009
  end-page: 3430
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: 697
  year: 2011
  end-page: 720
  publication-title: Toxins
– volume: 6
  start-page: 1863
  year: 2011
  end-page: 1874
  publication-title: Int. J. Nanomed.
– volume: 98
  start-page: 1045
  year: 1998
  end-page: 1065
  publication-title: Chem. Rev.
– ident: e_1_2_2_25_2
  doi: 10.1021/ja302705v
– ident: e_1_2_2_4_2
  doi: 10.1038/nbt0910-917
– ident: e_1_2_2_1_2
  doi: 10.1073/pnas.76.1.106
– ident: e_1_2_2_28_2
– volume: 52
  start-page: 227
  year: 1992
  ident: e_1_2_2_27_2
  publication-title: Cancer Res.
– ident: e_1_2_2_3_2
– ident: e_1_2_2_26_2
  doi: 10.1021/cr960427h
– ident: e_1_2_2_21_2
  doi: 10.1016/j.nano.2013.01.006
– volume: 46
  start-page: 6387
  year: 1986
  ident: e_1_2_2_35_2
  publication-title: Cancer Res.
– ident: e_1_2_2_22_2
– ident: e_1_2_2_24_2
  doi: 10.1002/ange.200905264
– ident: e_1_2_2_31_2
  doi: 10.3390/toxins3060697
– ident: e_1_2_2_5_2
  doi: 10.1039/c0cs00227e
– ident: e_1_2_2_10_2
  doi: 10.1016/j.jconrel.2011.10.005
– ident: e_1_2_2_23_2
  doi: 10.1002/ange.200900064
– volume: 52
  start-page: 227
  year: 1992
  ident: e_1_2_2_30_2
  publication-title: Cancer Res.
– ident: e_1_2_2_20_2
  doi: 10.1021/bc200572w
– volume: 6
  start-page: 1863
  year: 2011
  ident: e_1_2_2_33_2
  publication-title: Int. J. Nanomed.
– ident: e_1_2_2_13_2
  doi: 10.1038/nbt1402
– ident: e_1_2_2_14_2
  doi: 10.1073/pnas.0813348106
– ident: e_1_2_2_11_2
  doi: 10.1021/ja907887z
– ident: e_1_2_2_7_2
– ident: e_1_2_2_34_2
  doi: 10.1021/ja203077x
– ident: e_1_2_2_6_2
  doi: 10.1006/mthe.2000.0137
– ident: e_1_2_2_32_2
– ident: e_1_2_2_23_3
  doi: 10.1002/anie.200900064
– ident: e_1_2_2_12_2
– ident: e_1_2_2_16_2
  doi: 10.1073/pnas.1121423109
– ident: e_1_2_2_2_2
  doi: 10.1038/nrd2399
– ident: e_1_2_2_8_2
  doi: 10.1016/j.biomaterials.2012.02.010
– ident: e_1_2_2_17_2
  doi: 10.1073/pnas.1306529110
– ident: e_1_2_2_9_2
  doi: 10.1074/jbc.M104920200
– ident: e_1_2_2_15_2
  doi: 10.1073/pnas.0910603106
– ident: e_1_2_2_24_3
  doi: 10.1002/anie.200905264
– volume: 60
  start-page: 1983
  year: 2000
  ident: e_1_2_2_29_2
  publication-title: Cancer Res.
– ident: e_1_2_2_19_2
  doi: 10.1021/sb300023h
– ident: e_1_2_2_18_2
SSID ssj0028806
Score 2.5368745
Snippet An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel...
An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein-based therapeutics. A novel...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2893
SubjectTerms Aconitic Acid - analogs & derivatives
Aconitic Acid - chemistry
Alkanes - chemistry
Amines - chemistry
Animals
Antineoplastic Agents - administration & dosage
Cancer
cancer therapy
Cationic
Cell growth
Cell Line, Tumor
Cell Survival - drug effects
Combinatorial analysis
Cytotoxicity
Humans
lipidoids
Lipids - chemistry
Mathematical models
Mice
Nanoparticles
Nanoparticles - chemistry
Neoplasms - drug therapy
Platforms
protein delivery
Proteins
Ribonuclease, Pancreatic - metabolism
Ribonuclease, Pancreatic - therapeutic use
Ribonuclease, Pancreatic - toxicity
Ribosome Inactivating Proteins, Type 1 - metabolism
Ribosome Inactivating Proteins, Type 1 - therapeutic use
Ribosome Inactivating Proteins, Type 1 - toxicity
Tumors
Title Combinatorially Designed Lipid-like Nanoparticles for Intracellular Delivery of Cytotoxic Protein for Cancer Therapy
URI https://api.istex.fr/ark:/67375/WNG-8B382DTJ-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201311245
https://www.ncbi.nlm.nih.gov/pubmed/24519972
https://www.proquest.com/docview/1504615804
https://www.proquest.com/docview/1505257085
https://www.proquest.com/docview/1701082713
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hcoALlHdoQYuE4OR2vbuO18eStrSViBBKRW8r78NSlMhGqVM1PfET-hv7S5hZPyCIhwQ3R5mN1utvZ79xZr4h5LW3BcKIRdxAuCqdgz2XwVXBVAGYdpZLLHD-MB4encqTs-Tshyr-Rh-if-GGOyP4a9zguTnf_S4aihXYmJolgDFIrDLHhC1kRZ96_SgO4GzKi4SIsAt9p9rI-O768LVT6TYu8OWvKOc6gw1H0OF9kneTbzJPZjvL2uzYq590Hf_n7jbJvZaf0r0GUA_ILV8-JHdGXVu4R-QCPAhE0xirA3TnK7ofckC8o9gG2918vZ5PZ56C14ZwvM26o8CM6TG-Rsb_CTDxFUbNMSNkRauCjlZ1VVeXU0s_omrEtAz2I8Tjgk4a2YPH5PTwYDI6itrmDZFNZJpEqXe5yJnKGUrsDYVlyhvHmI2FjY1MTMKsLGwiUpXZjDsruDEZkLeCDx04XfGEbJRV6Z8RWgDO8lgox7yXBUsMnKd-6IoYficD-wGJuoenbatsjg025rrRZOYaV1P3qzkgb3v7L42mx28t3wQs9Gb5YoaZcGmiP4_fa_VOKL4_OdEwhe0OLLp1AucauLYEwqiYHJBX_dfwuHCt89JXy2ATGgmq5A82KQTNiqexGJCnDRD7CXGUB8pSmAAPcPrLDem98fFB_-n5vwzaInfhWkYhp3GbbNSLpX8BxKw2L8Pm-wa5ljAK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgexgv3BmFAUZC8JTN8aVxHke30Y6tQqgTvFmJ7UhVqwSVFK088RP4jfwSznGaoCIuErw17XHkOJ-Pz3E_f4eQZ94WCCMW8RzSVekczLkUPhVMF4BpZ7nEA87n4_7wQp6-Vy2bEM_CNPoQ3YYbzozgr3GC44b0wQ_VUDyCjdwsASGDVFfJNpb1DlnV205BigM8mwNGQkRYh77VbWT8YLP9xrq0jUN8-augczOGDYvQyQ2St91vuCez_WWd79vPPyk7_tfz3STX1yEqPWwwdYtc8eVtsjNoK8PdIZ_AiUBCjek6oHe-okeBBuIdxUrY7tuXr_PpzFNw3JCRr4l3FIJjOsKdZPyrALmv0GqOpJAVrQo6WNVVXV1OLX2DwhHTMtgPEJILOmmUD-6Si5PjyWAYres3RFbJREWJd5nImM4Yquz1hWXa544xGwsb51LlillZWCUSndqUOyt4nqcQvxW878Dvintkq6xKf5_QAqCWxUI75r0smMphSfV9V8RwnxTseyRq356xa3FzrLExN40sMzc4mqYbzR550dl_aGQ9fmv5PIChM8sWMyTDJcq8G78y-qXQ_GhyaqALey1azNoPfDQQbkuIGTWTPfK0-xleF451VvpqGWxCLUGt_mCTQN6seRKLHtltkNh1iKNCUJpAB3jA018eyByOR8fd1YN_afSE7Awn52fmbDR-_ZBcg-9lFCiOe2SrXiz9I4jT6vxxmInfAaOWNCU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgk4AX7oPCACMheMrm2E7iPI52ZR1QTagTe7MS25GqVs1UUrTyxE_gN_JLOMe5QBEXCd7S9LhynM_H33GPv0PIM2cKhBELeA7hqrQW5lwKVwVTBWDaGi7xgPPbcXx0Ko_PorMfTvHX-hDdhhvODO-vcYKf22L_u2gonsDG1CwBjEFGl8m2jJlCXA_edQJSHNBZny8SIsAy9K1sI-P7m-03lqVtHOGLX3HOTQrr16DhDZK1va9TT2Z7qyrfM59-Enb8n8e7Sa43BJUe1Ii6RS65xW1ytd_WhbtDPoILgXAag3XA7nxNBz4JxFmKdbDt189f5tOZo-C2IR5v0u4oUGM6wn1k_KMAM1-h1RxTQta0LGh_XZVVeTE19ARlI6YLb99HQC7ppNY9uEtOh4eT_lHQVG8ITCSTKEiczUTGVMZQYy8WhimXW8ZMKEyYyyiPmJGFiUSiUpNyawTP8xTYW8FjC15X7JCtRblw9wktAGhZKJRlzsmCRTksqC62RQi_k4J9jwTty9OmkTbHChtzXYsyc42jqbvR7JEXnf15LerxW8vnHgudWbacYSpcEun341davRSKDybHGrqw24JFN17ggwayLYExKiZ75Gn3NbwuHOts4cqVt_GVBFX0B5sEombFk1D0yL0aiF2HOOoDpQl0gHs4_eWB9MF4dNh9evAvjZ6QKyeDoX4zGr9-SK7BbRn4_MZdslUtV-4RkLQqf-zn4Tf4_zLd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorially+Designed+Lipid%E2%80%90like+Nanoparticles+for+Intracellular+Delivery+of+Cytotoxic+Protein+for+Cancer+Therapy&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Ming&rft.au=Alberti%2C+Kyle&rft.au=Sun%2C+Shuo&rft.au=Arellano%2C+Carlos+Luis&rft.date=2014-03-10&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=11&rft.spage=2893&rft.epage=2898&rft_id=info:doi/10.1002%2Fanie.201311245&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201311245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon