Combinatorially Designed Lipid-like Nanoparticles for Intracellular Delivery of Cytotoxic Protein for Cancer Therapy
An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid‐like materials (termed “lipidoids”), coupled with a rever...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 53; no. 11; pp. 2893 - 2898 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
10.03.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid‐like materials (termed “lipidoids”), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure–function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein–lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16‐1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model.
A protein delivery platform that combines a library of lipid‐like nanoparticles and a reversible chemical protein modification approach is presented. With ribonuclease A (RNase A) and saporin as representative cytotoxic proteins, the nanoparticles deliver proteins into cancer cells and inhibit cell proliferation. A representative lipidoid protein nanoparticle formulation inhibits tumor cell proliferation in vitro and suppresses tumor growth. |
---|---|
AbstractList | An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein-based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid-like materials (termed "lipidoids"), coupled with a reversible chemical protein engineering approach. Using ribonucleaseA (RNaseA) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure-function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein-lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16-1) protein nanoparticle formulation inhibits cell proliferation invitro and suppresses tumor growth in a murine breast cancer model. [PUBLICATION ABSTRACT] An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein-based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid-like materials (termed "lipidoids"), coupled with a reversible chemical protein engineering approach. Using ribonucleaseA (RNaseA) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure-function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein-lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16-1) protein nanoparticle formulation inhibits cell proliferation invitro and suppresses tumor growth in a murine breast cancer model. A protein delivery platform that combines a library of lipid-like nanoparticles and a reversible chemical protein modification approach is presented. With ribonucleaseA (RNaseA) and saporin as representative cytotoxic proteins, the nanoparticles deliver proteins into cancer cells and inhibit cell proliferation. A representative lipidoid protein nanoparticle formulation inhibits tumor cell proliferation invitro and suppresses tumor growth. An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid‐like materials (termed “lipidoids”), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure–function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein–lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16‐1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model. An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid‐like materials (termed “lipidoids”), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure–function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein–lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16‐1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model. A protein delivery platform that combines a library of lipid‐like nanoparticles and a reversible chemical protein modification approach is presented. With ribonuclease A (RNase A) and saporin as representative cytotoxic proteins, the nanoparticles deliver proteins into cancer cells and inhibit cell proliferation. A representative lipidoid protein nanoparticle formulation inhibits tumor cell proliferation in vitro and suppresses tumor growth. An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein-based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid-like materials (termed "lipidoids"), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure-function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein-lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16-1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model.An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein-based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid-like materials (termed "lipidoids"), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure-function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein-lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16-1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model. |
Author | Arellano, Carlos Luis Sun, Shuo Alberti, Kyle Xu, Qiaobing Wang, Ming |
Author_xml | – sequence: 1 givenname: Ming surname: Wang fullname: Wang, Ming organization: Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA (USA) – sequence: 2 givenname: Kyle surname: Alberti fullname: Alberti, Kyle organization: Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA (USA) – sequence: 3 givenname: Shuo surname: Sun fullname: Sun, Shuo organization: Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA (USA) – sequence: 4 givenname: Carlos Luis surname: Arellano fullname: Arellano, Carlos Luis organization: Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA (USA) – sequence: 5 givenname: Qiaobing surname: Xu fullname: Xu, Qiaobing email: qiaobing.xu@tufts.edu organization: Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA (USA) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24519972$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0btv1DAcwHELFdEHrIwoEgtLDj9jZyzpg0Ong-EQo-U4Drj12YftQPPfN-HKCVVCneLh87Vj_07BkQ_eAPAawQWCEL9X3poFhogghCl7Bk4Qw6gknJOjaU0JKblg6BicpnQzeSFg9QIcTxTVNccnIDdh21qvcohWOTcWFybZ7950xcrubFc6e2uKtfJhp2K22plU9CEWS5-j0sa5wak4Nc7-MnEsQl80Yw453FldfIkhG-v_-EZ5bWKx-WGi2o0vwfNeuWRePXzPwNery03zsVx9vl4256tSM8pZyU2niIJCQc4orYiGwrQdhBoRjVrKWgY17TUjXNS6xp0muG1rSliPq051HTkD7_b77mL4OZiU5dam-a-VN2FIEnGIoMAckacpgwwzDgWb6NtH9CYM0U8XmRWtEBOQTurNgxrarenkLtqtiqP8-_QTWOyBjiGlaPoDQVDOs5XzbOVhtlNAHwXaZpVtmGdh3f-zep_9ts6MTxwiz9fLy3_bct_alM3doVXxVlaccCa_ra-l-EAEvth8kpjcA3DAx50 |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1007_s00330_020_07609_8 crossref_primary_10_1016_j_jcis_2020_12_117 crossref_primary_10_1021_acs_chemmater_8b02868 crossref_primary_10_1021_acs_chemrev_1c00244 crossref_primary_10_1021_acs_chemmater_6b03896 crossref_primary_10_1021_jacs_8b03442 crossref_primary_10_1016_j_bbrc_2018_06_059 crossref_primary_10_1021_acsnano_8b03476 crossref_primary_10_1002_smsc_202400192 crossref_primary_10_1002_ange_202111213 crossref_primary_10_1016_j_bioorg_2022_105666 crossref_primary_10_1021_jacs_8b11996 crossref_primary_10_1038_gt_2016_72 crossref_primary_10_1038_s41551_018_0234_x crossref_primary_10_1002_ange_202004994 crossref_primary_10_1002_adma_202108116 crossref_primary_10_1039_C8CS00805A crossref_primary_10_1021_acsami_7b06879 crossref_primary_10_1016_j_jconrel_2018_10_013 crossref_primary_10_1002_smll_202308574 crossref_primary_10_1002_adma_202412366 crossref_primary_10_1016_j_talanta_2019_120512 crossref_primary_10_1016_j_biomaterials_2018_03_011 crossref_primary_10_1021_acs_biomac_9b00783 crossref_primary_10_1002_adfm_201805287 crossref_primary_10_1002_anie_202402291 crossref_primary_10_1039_C5RA11607D crossref_primary_10_1039_D3NR06543J crossref_primary_10_1021_acs_jpcb_1c06452 crossref_primary_10_1002_anie_202215801 crossref_primary_10_1002_smll_201601234 crossref_primary_10_1021_acs_nanolett_6b04955 crossref_primary_10_1016_j_onano_2022_100091 crossref_primary_10_1371_journal_pone_0141860 crossref_primary_10_1016_j_biomaterials_2016_06_006 crossref_primary_10_1002_anie_201500096 crossref_primary_10_1021_jacs_9b08669 crossref_primary_10_1208_s12248_018_0267_9 crossref_primary_10_1016_j_polymer_2022_125530 crossref_primary_10_1039_C9CC04517A crossref_primary_10_1002_anie_201403036 crossref_primary_10_1039_D0CC07808E crossref_primary_10_1021_acs_bioconjchem_8b00753 crossref_primary_10_1021_acs_bioconjchem_8b00750 crossref_primary_10_1002_adfm_201806818 crossref_primary_10_1039_C9CC00519F crossref_primary_10_1002_ange_201407272 crossref_primary_10_1002_adfm_201910566 crossref_primary_10_1002_ange_202307664 crossref_primary_10_1002_anie_202009572 crossref_primary_10_1039_D4NR03638G crossref_primary_10_1016_j_ijpharm_2019_01_040 crossref_primary_10_1016_j_actbio_2015_08_029 crossref_primary_10_1016_j_apsb_2022_04_013 crossref_primary_10_1002_advs_202500844 crossref_primary_10_1021_cr5005315 crossref_primary_10_1038_s41467_018_03779_8 crossref_primary_10_3390_pharmaceutics14040734 crossref_primary_10_1002_adma_201902575 crossref_primary_10_1002_smll_202101219 crossref_primary_10_1002_adfm_201706710 crossref_primary_10_1002_ange_202009572 crossref_primary_10_1016_j_nantod_2024_102287 crossref_primary_10_1039_C8QM00314A crossref_primary_10_1007_s10895_023_03474_y crossref_primary_10_1007_s12274_023_6172_2 crossref_primary_10_1016_j_ijpharm_2022_122489 crossref_primary_10_2147_IJN_S293427 crossref_primary_10_1002_ange_202402291 crossref_primary_10_1002_anie_201602577 crossref_primary_10_1073_pnas_1520244113 crossref_primary_10_1002_adhm_202000938 crossref_primary_10_1038_s41557_021_00854_4 crossref_primary_10_1016_j_jconrel_2015_08_058 crossref_primary_10_1002_ange_201403036 crossref_primary_10_1021_acs_nanolett_7b04976 crossref_primary_10_1002_adma_202209765 crossref_primary_10_1039_C8BM00637G crossref_primary_10_1016_j_biomaterials_2019_119358 crossref_primary_10_3390_toxins9100314 crossref_primary_10_1002_anie_202004994 crossref_primary_10_1021_acs_biomac_1c00745 crossref_primary_10_1016_j_cej_2020_126606 crossref_primary_10_1021_jacs_8b13507 crossref_primary_10_1039_C9NR07334E crossref_primary_10_1039_C9TB02528F crossref_primary_10_1016_j_actbio_2020_06_020 crossref_primary_10_3390_pharmaceutics15061610 crossref_primary_10_1021_acs_accounts_8b00493 crossref_primary_10_1021_acsami_8b06660 crossref_primary_10_1186_s12929_016_0272_1 crossref_primary_10_1021_acs_biomac_5b00193 crossref_primary_10_1002_anie_202013904 crossref_primary_10_1016_j_biomaterials_2018_08_023 crossref_primary_10_1016_j_msec_2021_112184 crossref_primary_10_1186_s40580_022_00297_8 crossref_primary_10_1007_s10571_017_0479_z crossref_primary_10_1002_ange_201500096 crossref_primary_10_3390_cancers12020498 crossref_primary_10_1016_j_comche_2014_04_001 crossref_primary_10_1021_acscentsci_4c00071 crossref_primary_10_1002_adma_202002932 crossref_primary_10_1016_j_bioactmat_2021_03_027 crossref_primary_10_3390_pharmaceutics13111829 crossref_primary_10_1002_smll_201802618 crossref_primary_10_1016_j_jcis_2024_06_123 crossref_primary_10_1021_acsami_6b01667 crossref_primary_10_1002_ange_202013904 crossref_primary_10_1007_s13277_015_3360_z crossref_primary_10_1039_C9NR02408E crossref_primary_10_1039_D2SC03861G crossref_primary_10_1016_j_carbpol_2019_115174 crossref_primary_10_1177_1535370216640944 crossref_primary_10_1021_acs_nanolett_1c03293 crossref_primary_10_3390_jfb14060301 crossref_primary_10_1021_acsami_7b18577 crossref_primary_10_1007_s00210_024_03664_w crossref_primary_10_1016_j_nantod_2021_101140 crossref_primary_10_1021_acsnano_5b05792 crossref_primary_10_1155_2016_2860859 crossref_primary_10_1016_j_actbio_2016_01_011 crossref_primary_10_1021_acsami_3c14450 crossref_primary_10_1021_acs_biomac_8b01243 crossref_primary_10_1016_j_ymthe_2019_05_002 crossref_primary_10_1021_acsami_8b21724 crossref_primary_10_1002_adtp_202100009 crossref_primary_10_1007_s11426_020_9702_1 crossref_primary_10_1021_acsami_6b08202 crossref_primary_10_1080_1061186X_2019_1669043 crossref_primary_10_1002_ange_201602577 crossref_primary_10_1016_j_jconrel_2020_02_004 crossref_primary_10_1021_acsami_1c23412 crossref_primary_10_1002_anie_201407272 crossref_primary_10_1039_D4BM01440E crossref_primary_10_1039_D4TB02009J crossref_primary_10_1021_acsnano_1c00476 crossref_primary_10_1002_anie_202111213 crossref_primary_10_1126_scitranslmed_adi4830 crossref_primary_10_1002_EXP_20210217 crossref_primary_10_1016_j_pmatsci_2021_100871 crossref_primary_10_1002_anie_202008082 crossref_primary_10_1021_acs_biochem_3c00614 crossref_primary_10_1038_s41598_023_31792_5 crossref_primary_10_1021_acs_chemmater_7b02953 crossref_primary_10_1002_ange_202215801 crossref_primary_10_1002_smtd_201700364 crossref_primary_10_1002_adhm_201800685 crossref_primary_10_1021_acs_accounts_3c00597 crossref_primary_10_1021_acs_nanolett_0c03287 crossref_primary_10_1002_wnan_1978 crossref_primary_10_1021_acsami_6b16277 crossref_primary_10_1016_j_jconrel_2024_06_004 crossref_primary_10_1021_acs_chemmater_8b04672 crossref_primary_10_1126_sciadv_abb4429 crossref_primary_10_1002_adhm_202202049 crossref_primary_10_1002_ange_201508288 crossref_primary_10_1016_j_antiviral_2016_11_027 crossref_primary_10_1002_anie_202307664 crossref_primary_10_1002_advs_201700175 crossref_primary_10_1021_acs_bioconjchem_0c00295 crossref_primary_10_1021_jacs_8b04457 crossref_primary_10_1002_ange_202008082 crossref_primary_10_1039_C8BM01632A crossref_primary_10_1002_adhm_201600416 crossref_primary_10_1021_acs_jpcb_9b06006 crossref_primary_10_34133_bmef_0035 crossref_primary_10_1021_acsnano_6b06892 crossref_primary_10_1016_j_nantod_2021_101221 crossref_primary_10_1002_smll_201603109 crossref_primary_10_1002_ange_201800511 crossref_primary_10_1039_C4CS00390J crossref_primary_10_1038_s41467_020_16399_y crossref_primary_10_1002_anie_201508288 crossref_primary_10_2217_nnm_14_192 crossref_primary_10_1021_acs_biomac_7b00666 crossref_primary_10_1021_acsami_6b05775 crossref_primary_10_1002_anie_202004008 crossref_primary_10_1016_j_actbio_2018_04_010 crossref_primary_10_1021_acsami_9b09605 crossref_primary_10_1002_anie_201407234 crossref_primary_10_1016_j_actbio_2021_05_001 crossref_primary_10_3109_08982104_2014_926917 crossref_primary_10_1016_j_biomaterials_2021_121321 crossref_primary_10_1039_C6BM00580B crossref_primary_10_1002_cbic_202100225 crossref_primary_10_1002_adma_201902604 crossref_primary_10_1002_adfm_201906187 crossref_primary_10_1021_acsami_7b04788 crossref_primary_10_1016_j_actbio_2022_08_070 crossref_primary_10_1016_j_cej_2024_155133 crossref_primary_10_1002_smll_201402779 crossref_primary_10_1016_j_addr_2021_113837 crossref_primary_10_1002_adma_201404788 crossref_primary_10_1002_chem_202000219 crossref_primary_10_1002_ange_201407234 crossref_primary_10_1016_j_omtn_2020_01_018 crossref_primary_10_3390_cancers14215366 crossref_primary_10_1039_C9CC07768E crossref_primary_10_1021_acs_chemmater_6b04404 crossref_primary_10_1016_j_jconrel_2021_11_037 crossref_primary_10_3389_fbioe_2023_1211798 crossref_primary_10_1002_adma_201800316 crossref_primary_10_1021_acsami_9b05827 crossref_primary_10_1016_j_addr_2020_03_001 crossref_primary_10_1002_adhm_201800996 crossref_primary_10_1021_mp500797n crossref_primary_10_1002_ange_202004008 crossref_primary_10_1039_D2CC00453D crossref_primary_10_1016_j_jconrel_2015_10_012 crossref_primary_10_1002_anie_201800511 |
Cites_doi | 10.1021/ja302705v 10.1038/nbt0910-917 10.1073/pnas.76.1.106 10.1021/cr960427h 10.1016/j.nano.2013.01.006 10.1002/ange.200905264 10.3390/toxins3060697 10.1039/c0cs00227e 10.1016/j.jconrel.2011.10.005 10.1002/ange.200900064 10.1021/bc200572w 10.1038/nbt1402 10.1073/pnas.0813348106 10.1021/ja907887z 10.1021/ja203077x 10.1006/mthe.2000.0137 10.1002/anie.200900064 10.1073/pnas.1121423109 10.1038/nrd2399 10.1016/j.biomaterials.2012.02.010 10.1073/pnas.1306529110 10.1074/jbc.M104920200 10.1073/pnas.0910603106 10.1002/anie.200905264 10.1021/sb300023h |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/anie.201311245 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) Materials Research Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 2898 |
ExternalDocumentID | 3238301291 24519972 10_1002_anie_201311245 ANIE201311245 ark_67375_WNG_8B382DTJ_2 |
Genre | shortCommunication Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NSF – fundername: Pew Charitable Trusts – fundername: Tufts University |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABDBF ABJNI AETEA AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c5475-7eda3a08a0754463c08ebd00c13c1b45b50c4fc53789c92dc32bb9435f26dadd3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:42:10 EDT 2025 Fri Jul 11 10:01:16 EDT 2025 Sun Jul 13 04:30:17 EDT 2025 Mon Jul 21 05:34:26 EDT 2025 Tue Jul 01 02:53:26 EDT 2025 Thu Apr 24 23:12:55 EDT 2025 Wed Jan 22 16:45:57 EST 2025 Wed Oct 30 09:51:33 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | cancer therapy lipidoids nanoparticles protein delivery |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5475-7eda3a08a0754463c08ebd00c13c1b45b50c4fc53789c92dc32bb9435f26dadd3 |
Notes | We thank Prof. Gary Sahagian and Dr. Min Fang at Tufts University, School of Medicine for providing 4T1-12B cells and developing the breast cancer mice model. This research was supported by Tufts University. Q.B.X. also acknowledges the Tufts FRAC award and Charlton Award from Tufts University School of Medicine and Pew Scholar for Biomedical Sciences program from Pew Charitable Trusts. K.A. acknowledges the IGERT fellowship from NSF. NSF Pew Charitable Trusts istex:3456438480D3F66E3F86B1C0B46DFE30CA2B19E4 ArticleID:ANIE201311245 Tufts University ark:/67375/WNG-8B382DTJ-2 We thank Prof. Gary Sahagian and Dr. Min Fang at Tufts University, School of Medicine for providing 4T1‐12B cells and developing the breast cancer mice model. This research was supported by Tufts University. Q.B.X. also acknowledges the Tufts FRAC award and Charlton Award from Tufts University School of Medicine and Pew Scholar for Biomedical Sciences program from Pew Charitable Trusts. K.A. acknowledges the IGERT fellowship from NSF. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24519972 |
PQID | 1504615804 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1701082713 proquest_miscellaneous_1505257085 proquest_journals_1504615804 pubmed_primary_24519972 crossref_primary_10_1002_anie_201311245 crossref_citationtrail_10_1002_anie_201311245 wiley_primary_10_1002_anie_201311245_ANIE201311245 istex_primary_ark_67375_WNG_8B382DTJ_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 10, 2014 |
PublicationDateYYYYMMDD | 2014-03-10 |
PublicationDate_xml | – month: 03 year: 2014 text: March 10, 2014 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Y.-H. Huang, Y. Bao, W. Peng, M. Goldberg, K. Love, D. A. Bumcrot, G. Cole, R. Langer, D. G. Anderson, J. A. Sawicki, Proc. Natl. Acad. Sci. USA 2009, 106, 3426-3430 B. Leader, Q. J. Baca, D. E. Golan, Nat. Rev. Drug. Discovery 2008, 7, 21-39. Angew. Chem. Int. Ed. 2009, 48, 5309-5312 Z. B. Mi, J. Mai, X. L. Lu, P. D. Robbins, Mol. Ther. 2000, 2, 339-347. D. N. Nguyen, K. P. Mahon, G. Chikh, P. Kim, H. Chung, A. P. Vicari, K. T. Love, M. Goldberg, S. Chen, A. M. Krieg, J. Chen, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2012, 109, E797-E803 S. Sun, M. Wang, K. A. Alberti, A. Choy, Q. B. Xu, Nanomed-Nanotechnol. 2013, 9, 849-854. D. V. Goeddel, D. G. Kleid, F. Bolivar, H. L. Heyneker, D. G. Yansura, R. Crea, T. Hirose, A. Kraszewski, K. Itakura, A. D. Riggs, Proc. Natl. Acad. Sci. USA 1979, 76, 106-110. G. Walsh, Nat. Biotechnol. 2010, 28, 917-924 A. Akinc, A. Zumbuehl, M. Goldberg, E. S. Leshchiner, V. Busini, N. Hossain, S. A. Bacallado, D. N. Nguyen, J. Fuller, R. Alvarez, A. Borodovsky, T. Borland, R. Constien, A. de Fougerolles, J. R. Dorkin, K. N. Jayaprakash, M. Jayaraman, M. John, V. Koteliansky, M. Manoharan, L. Nechev, J. Qin, T. Racie, D. Raitcheva, K. G. Rajeev, D. W. Y. Sah, J. Soutschek, I. Toudjarska, H. P. Vornlocher, T. S. Zimmermann, R. Langer, D. G. Anderson, Nat. Biotechnol. 2008, 26, 561-569 Z. Gu, A. Biswas, M. X. Zhao, Y. Tang, Chem. Soc. Rev. 2011, 40, 3638-3655. C. A. Alabi, K. T. Love, G. Sahay, H. Yin, K. M. Luly, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2013, 110, 12881-12886. Angew. Chem. Int. Ed. 2010, 49, 2552-2555 Y. Lee, T. Ishii, H. J. Kim, N. Nishiyama, Y. Hayakawa, K. Itaka, K. Kataoka, Angew. Chem. 2010, 122, 2606-2609 A. Taheri, R. Dinarvand, F. S. Nouri, M. R. Khorramizadeh, A. T. Borougeni, P. Mansoori, F. Atyabi, Int. J. Nanomed. 2011, 6, 1863-1874 P. Ghosh, X. Yang, R. Arvizo, Z.-J. Zhu, S. S. Agasti, Z. Mo, V. M. Rotello, J. Am. Chem. Soc. 2010, 132, 2642-2645. R. T. Raines, Chem. Rev. 1998, 98, 1045-1065. L. Polito, M. Bortolotti, M. Pedrazzi, A. Bolognesi, Toxins 2011, 3, 697-720. K. T. Love, K. P. Mahon, C. G. Levins, K. A. Whitehead, W. Querbes, J. R. Dorkin, J. Qin, W. Cantley, L. L. Qin, T. Racie, M. Frank-Kamenetsky, K. N. Yip, R. Alvarez, D. W. Sah, A. de Fougerolles, K. Fitzgerald, V. Koteliansky, A. Akinc, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2010, 107, 1864-1869 Y. Lee, T. Ishii, H. Cabral, H. J. Kim, J. H. Seo, N. Nishiyama, H. Oshima, K. Osada, K. Kataoka, Angew. Chem. 2009, 121, 5413-5416 J. G. Beitz, P. Davol, J. W. Clark, J. Kato, M. Medina, A. R. Frackelton, D. A. Lappi, A. Baird, P. Calabresi, Cancer Res. 1992, 52, 227-230. J. Su, F. Chen, V. L. Cryns, P. B. Messersmith, J. Am. Chem. Soc. 2011, 133, 11850-11853. M. Wang, S. Sun, K. A. Alberti, Q. Xu, ACS Synth. Biol. 2012, 1, 403-407 K. Maier, E. Wagner, J. Am. Chem. Soc. 2012, 134, 10169-10173. J. S. Lee, J. Feijen, J. Controlled Release 2012, 161, 473-483. S. K. Kim, M. B. Foote, L. Huang, Biomaterials 2012, 33, 3959-3966 J. G. Beitz, P. Davol, J. W. Clark, J. Kato, M. Medina, A. R. Frackelton, D. A. Lappi, A. Baird, P. Calabresi, Cancer Res. 1992, 52, 227-230 O. Zelphati, Y. Wang, S. Kitada, J. C. Reed, P. L. Felgner, J. Corbeil, J. Biol. Chem. 2001, 276, 35103-35110. Y. Matsumura, H. Maeda, Cancer Res. 1986, 46, 6387-6392. M. S. Iordanov, O. P. Ryabinina, J. Wong, T. H. Dinh, D. L. Newton, S. M. Rybak, B. E. Magun, Cancer Res. 2000, 60, 1983-1994 S. Sun, M. Wang, S. A. Knupp, Y. Soto-Feliciano, X. Hu, D. L. Kaplan, R. Langer, D. G. Anderson, Q. B. Xu, Bioconjugate Chem. 2012, 23, 135-140 2012; 161 2010; 107 2011; 40 2010 2010; 122 49 2008; 7 2000; 2 2011; 3 2011; 6 1979; 76 2012; 33 2009 2009; 121 48 2011; 133 2012; 109 2013; 9 1992; 52 2001; 276 2012; 134 2012; 1 2010; 28 1986; 46 2010; 132 2008; 26 2000; 60 2013; 110 2012; 23 1998; 98 2009; 106 e_1_2_2_3_2 e_1_2_2_23_3 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_20_2 e_1_2_2_1_2 e_1_2_2_2_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_26_2 e_1_2_2_9_2 e_1_2_2_24_3 e_1_2_2_25_2 Taheri A. (e_1_2_2_33_2) 2011; 6 Matsumura Y. (e_1_2_2_35_2) 1986; 46 e_1_2_2_13_2 e_1_2_2_12_2 e_1_2_2_11_2 e_1_2_2_10_2 Iordanov M. S. (e_1_2_2_29_2) 2000; 60 Beitz J. G. (e_1_2_2_30_2) 1992; 52 e_1_2_2_19_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_16_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_14_2 Beitz J. G. (e_1_2_2_27_2) 1992; 52 |
References_xml | – reference: S. Sun, M. Wang, S. A. Knupp, Y. Soto-Feliciano, X. Hu, D. L. Kaplan, R. Langer, D. G. Anderson, Q. B. Xu, Bioconjugate Chem. 2012, 23, 135-140; – reference: J. Su, F. Chen, V. L. Cryns, P. B. Messersmith, J. Am. Chem. Soc. 2011, 133, 11850-11853. – reference: G. Walsh, Nat. Biotechnol. 2010, 28, 917-924; – reference: B. Leader, Q. J. Baca, D. E. Golan, Nat. Rev. Drug. Discovery 2008, 7, 21-39. – reference: Y.-H. Huang, Y. Bao, W. Peng, M. Goldberg, K. Love, D. A. Bumcrot, G. Cole, R. Langer, D. G. Anderson, J. A. Sawicki, Proc. Natl. Acad. Sci. USA 2009, 106, 3426-3430; – reference: Y. Lee, T. Ishii, H. J. Kim, N. Nishiyama, Y. Hayakawa, K. Itaka, K. Kataoka, Angew. Chem. 2010, 122, 2606-2609; – reference: Z. Gu, A. Biswas, M. X. Zhao, Y. Tang, Chem. Soc. Rev. 2011, 40, 3638-3655. – reference: K. Maier, E. Wagner, J. Am. Chem. Soc. 2012, 134, 10169-10173. – reference: A. Taheri, R. Dinarvand, F. S. Nouri, M. R. Khorramizadeh, A. T. Borougeni, P. Mansoori, F. Atyabi, Int. J. Nanomed. 2011, 6, 1863-1874; – reference: K. T. Love, K. P. Mahon, C. G. Levins, K. A. Whitehead, W. Querbes, J. R. Dorkin, J. Qin, W. Cantley, L. L. Qin, T. Racie, M. Frank-Kamenetsky, K. N. Yip, R. Alvarez, D. W. Sah, A. de Fougerolles, K. Fitzgerald, V. Koteliansky, A. Akinc, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2010, 107, 1864-1869; – reference: L. Polito, M. Bortolotti, M. Pedrazzi, A. Bolognesi, Toxins 2011, 3, 697-720. – reference: A. Akinc, A. Zumbuehl, M. Goldberg, E. S. Leshchiner, V. Busini, N. Hossain, S. A. Bacallado, D. N. Nguyen, J. Fuller, R. Alvarez, A. Borodovsky, T. Borland, R. Constien, A. de Fougerolles, J. R. Dorkin, K. N. Jayaprakash, M. Jayaraman, M. John, V. Koteliansky, M. Manoharan, L. Nechev, J. Qin, T. Racie, D. Raitcheva, K. G. Rajeev, D. W. Y. Sah, J. Soutschek, I. Toudjarska, H. P. Vornlocher, T. S. Zimmermann, R. Langer, D. G. Anderson, Nat. Biotechnol. 2008, 26, 561-569; – reference: J. G. Beitz, P. Davol, J. W. Clark, J. Kato, M. Medina, A. R. Frackelton, D. A. Lappi, A. Baird, P. Calabresi, Cancer Res. 1992, 52, 227-230; – reference: S. Sun, M. Wang, K. A. Alberti, A. Choy, Q. B. Xu, Nanomed-Nanotechnol. 2013, 9, 849-854. – reference: D. V. Goeddel, D. G. Kleid, F. Bolivar, H. L. Heyneker, D. G. Yansura, R. Crea, T. Hirose, A. Kraszewski, K. Itakura, A. D. Riggs, Proc. Natl. Acad. Sci. USA 1979, 76, 106-110. – reference: M. Wang, S. Sun, K. A. Alberti, Q. Xu, ACS Synth. Biol. 2012, 1, 403-407; – reference: R. T. Raines, Chem. Rev. 1998, 98, 1045-1065. – reference: J. G. Beitz, P. Davol, J. W. Clark, J. Kato, M. Medina, A. R. Frackelton, D. A. Lappi, A. Baird, P. Calabresi, Cancer Res. 1992, 52, 227-230. – reference: Z. B. Mi, J. Mai, X. L. Lu, P. D. Robbins, Mol. Ther. 2000, 2, 339-347. – reference: Angew. Chem. Int. Ed. 2009, 48, 5309-5312; – reference: O. Zelphati, Y. Wang, S. Kitada, J. C. Reed, P. L. Felgner, J. Corbeil, J. Biol. Chem. 2001, 276, 35103-35110. – reference: Angew. Chem. Int. Ed. 2010, 49, 2552-2555; – reference: M. S. Iordanov, O. P. Ryabinina, J. Wong, T. H. Dinh, D. L. Newton, S. M. Rybak, B. E. Magun, Cancer Res. 2000, 60, 1983-1994; – reference: D. N. Nguyen, K. P. Mahon, G. Chikh, P. Kim, H. Chung, A. P. Vicari, K. T. Love, M. Goldberg, S. Chen, A. M. Krieg, J. Chen, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2012, 109, E797-E803; – reference: Y. Lee, T. Ishii, H. Cabral, H. J. Kim, J. H. Seo, N. Nishiyama, H. Oshima, K. Osada, K. Kataoka, Angew. Chem. 2009, 121, 5413-5416; – reference: S. K. Kim, M. B. Foote, L. Huang, Biomaterials 2012, 33, 3959-3966; – reference: C. A. Alabi, K. T. Love, G. Sahay, H. Yin, K. M. Luly, R. Langer, D. G. Anderson, Proc. Natl. Acad. Sci. USA 2013, 110, 12881-12886. – reference: Y. Matsumura, H. Maeda, Cancer Res. 1986, 46, 6387-6392. – reference: P. Ghosh, X. Yang, R. Arvizo, Z.-J. Zhu, S. S. Agasti, Z. Mo, V. M. Rotello, J. Am. Chem. Soc. 2010, 132, 2642-2645. – reference: J. S. Lee, J. Feijen, J. Controlled Release 2012, 161, 473-483. – volume: 26 start-page: 561 year: 2008 end-page: 569 publication-title: Nat. Biotechnol. – volume: 109 start-page: 797 year: 2012 end-page: 803 publication-title: Proc. Natl. Acad. Sci. USA – volume: 33 start-page: 3959 year: 2012 end-page: 3966 publication-title: Biomaterials – volume: 28 start-page: 917 year: 2010 end-page: 924 publication-title: Nat. Biotechnol. – volume: 76 start-page: 106 year: 1979 end-page: 110 publication-title: Proc. Natl. Acad. Sci. USA – volume: 52 start-page: 227 year: 1992 end-page: 230 publication-title: Cancer Res. – volume: 276 start-page: 35103 year: 2001 end-page: 35110 publication-title: J. Biol. Chem. – volume: 121 48 start-page: 5413 5309 year: 2009 2009 end-page: 5416 5312 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 7 start-page: 21 year: 2008 end-page: 39 publication-title: Nat. Rev. Drug. Discovery – volume: 132 start-page: 2642 year: 2010 end-page: 2645 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 11850 year: 2011 end-page: 11853 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 1983 year: 2000 end-page: 1994 publication-title: Cancer Res. – volume: 1 start-page: 403 year: 2012 end-page: 407 publication-title: ACS Synth. Biol. – volume: 134 start-page: 10169 year: 2012 end-page: 10173 publication-title: J. Am. Chem. Soc. – volume: 161 start-page: 473 year: 2012 end-page: 483 publication-title: J. Controlled Release – volume: 46 start-page: 6387 year: 1986 end-page: 6392 publication-title: Cancer Res. – volume: 40 start-page: 3638 year: 2011 end-page: 3655 publication-title: Chem. Soc. Rev. – volume: 107 start-page: 1864 year: 2010 end-page: 1869 publication-title: Proc. Natl. Acad. Sci. USA – volume: 110 start-page: 12881 year: 2013 end-page: 12886 publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: 135 year: 2012 end-page: 140 publication-title: Bioconjugate Chem. – volume: 2 start-page: 339 year: 2000 end-page: 347 publication-title: Mol. Ther. – volume: 9 start-page: 849 year: 2013 end-page: 854 publication-title: Nanomed‐Nanotechnol. – volume: 122 49 start-page: 2606 2552 year: 2010 2010 end-page: 2609 2555 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 106 start-page: 3426 year: 2009 end-page: 3430 publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 start-page: 697 year: 2011 end-page: 720 publication-title: Toxins – volume: 6 start-page: 1863 year: 2011 end-page: 1874 publication-title: Int. J. Nanomed. – volume: 98 start-page: 1045 year: 1998 end-page: 1065 publication-title: Chem. Rev. – ident: e_1_2_2_25_2 doi: 10.1021/ja302705v – ident: e_1_2_2_4_2 doi: 10.1038/nbt0910-917 – ident: e_1_2_2_1_2 doi: 10.1073/pnas.76.1.106 – ident: e_1_2_2_28_2 – volume: 52 start-page: 227 year: 1992 ident: e_1_2_2_27_2 publication-title: Cancer Res. – ident: e_1_2_2_3_2 – ident: e_1_2_2_26_2 doi: 10.1021/cr960427h – ident: e_1_2_2_21_2 doi: 10.1016/j.nano.2013.01.006 – volume: 46 start-page: 6387 year: 1986 ident: e_1_2_2_35_2 publication-title: Cancer Res. – ident: e_1_2_2_22_2 – ident: e_1_2_2_24_2 doi: 10.1002/ange.200905264 – ident: e_1_2_2_31_2 doi: 10.3390/toxins3060697 – ident: e_1_2_2_5_2 doi: 10.1039/c0cs00227e – ident: e_1_2_2_10_2 doi: 10.1016/j.jconrel.2011.10.005 – ident: e_1_2_2_23_2 doi: 10.1002/ange.200900064 – volume: 52 start-page: 227 year: 1992 ident: e_1_2_2_30_2 publication-title: Cancer Res. – ident: e_1_2_2_20_2 doi: 10.1021/bc200572w – volume: 6 start-page: 1863 year: 2011 ident: e_1_2_2_33_2 publication-title: Int. J. Nanomed. – ident: e_1_2_2_13_2 doi: 10.1038/nbt1402 – ident: e_1_2_2_14_2 doi: 10.1073/pnas.0813348106 – ident: e_1_2_2_11_2 doi: 10.1021/ja907887z – ident: e_1_2_2_7_2 – ident: e_1_2_2_34_2 doi: 10.1021/ja203077x – ident: e_1_2_2_6_2 doi: 10.1006/mthe.2000.0137 – ident: e_1_2_2_32_2 – ident: e_1_2_2_23_3 doi: 10.1002/anie.200900064 – ident: e_1_2_2_12_2 – ident: e_1_2_2_16_2 doi: 10.1073/pnas.1121423109 – ident: e_1_2_2_2_2 doi: 10.1038/nrd2399 – ident: e_1_2_2_8_2 doi: 10.1016/j.biomaterials.2012.02.010 – ident: e_1_2_2_17_2 doi: 10.1073/pnas.1306529110 – ident: e_1_2_2_9_2 doi: 10.1074/jbc.M104920200 – ident: e_1_2_2_15_2 doi: 10.1073/pnas.0910603106 – ident: e_1_2_2_24_3 doi: 10.1002/anie.200905264 – volume: 60 start-page: 1983 year: 2000 ident: e_1_2_2_29_2 publication-title: Cancer Res. – ident: e_1_2_2_19_2 doi: 10.1021/sb300023h – ident: e_1_2_2_18_2 |
SSID | ssj0028806 |
Score | 2.5368745 |
Snippet | An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel... An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein-based therapeutics. A novel... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2893 |
SubjectTerms | Aconitic Acid - analogs & derivatives Aconitic Acid - chemistry Alkanes - chemistry Amines - chemistry Animals Antineoplastic Agents - administration & dosage Cancer cancer therapy Cationic Cell growth Cell Line, Tumor Cell Survival - drug effects Combinatorial analysis Cytotoxicity Humans lipidoids Lipids - chemistry Mathematical models Mice Nanoparticles Nanoparticles - chemistry Neoplasms - drug therapy Platforms protein delivery Proteins Ribonuclease, Pancreatic - metabolism Ribonuclease, Pancreatic - therapeutic use Ribonuclease, Pancreatic - toxicity Ribosome Inactivating Proteins, Type 1 - metabolism Ribosome Inactivating Proteins, Type 1 - therapeutic use Ribosome Inactivating Proteins, Type 1 - toxicity Tumors |
Title | Combinatorially Designed Lipid-like Nanoparticles for Intracellular Delivery of Cytotoxic Protein for Cancer Therapy |
URI | https://api.istex.fr/ark:/67375/WNG-8B382DTJ-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201311245 https://www.ncbi.nlm.nih.gov/pubmed/24519972 https://www.proquest.com/docview/1504615804 https://www.proquest.com/docview/1505257085 https://www.proquest.com/docview/1701082713 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hcoALlHdoQYuE4OR2vbuO18eStrSViBBKRW8r78NSlMhGqVM1PfET-hv7S5hZPyCIhwQ3R5mN1utvZ79xZr4h5LW3BcKIRdxAuCqdgz2XwVXBVAGYdpZLLHD-MB4encqTs-Tshyr-Rh-if-GGOyP4a9zguTnf_S4aihXYmJolgDFIrDLHhC1kRZ96_SgO4GzKi4SIsAt9p9rI-O768LVT6TYu8OWvKOc6gw1H0OF9kneTbzJPZjvL2uzYq590Hf_n7jbJvZaf0r0GUA_ILV8-JHdGXVu4R-QCPAhE0xirA3TnK7ofckC8o9gG2918vZ5PZ56C14ZwvM26o8CM6TG-Rsb_CTDxFUbNMSNkRauCjlZ1VVeXU0s_omrEtAz2I8Tjgk4a2YPH5PTwYDI6itrmDZFNZJpEqXe5yJnKGUrsDYVlyhvHmI2FjY1MTMKsLGwiUpXZjDsruDEZkLeCDx04XfGEbJRV6Z8RWgDO8lgox7yXBUsMnKd-6IoYficD-wGJuoenbatsjg025rrRZOYaV1P3qzkgb3v7L42mx28t3wQs9Gb5YoaZcGmiP4_fa_VOKL4_OdEwhe0OLLp1AucauLYEwqiYHJBX_dfwuHCt89JXy2ATGgmq5A82KQTNiqexGJCnDRD7CXGUB8pSmAAPcPrLDem98fFB_-n5vwzaInfhWkYhp3GbbNSLpX8BxKw2L8Pm-wa5ljAK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgexgv3BmFAUZC8JTN8aVxHke30Y6tQqgTvFmJ7UhVqwSVFK088RP4jfwSznGaoCIuErw17XHkOJ-Pz3E_f4eQZ94WCCMW8RzSVekczLkUPhVMF4BpZ7nEA87n4_7wQp6-Vy2bEM_CNPoQ3YYbzozgr3GC44b0wQ_VUDyCjdwsASGDVFfJNpb1DlnV205BigM8mwNGQkRYh77VbWT8YLP9xrq0jUN8-augczOGDYvQyQ2St91vuCez_WWd79vPPyk7_tfz3STX1yEqPWwwdYtc8eVtsjNoK8PdIZ_AiUBCjek6oHe-okeBBuIdxUrY7tuXr_PpzFNw3JCRr4l3FIJjOsKdZPyrALmv0GqOpJAVrQo6WNVVXV1OLX2DwhHTMtgPEJILOmmUD-6Si5PjyWAYres3RFbJREWJd5nImM4Yquz1hWXa544xGwsb51LlillZWCUSndqUOyt4nqcQvxW878Dvintkq6xKf5_QAqCWxUI75r0smMphSfV9V8RwnxTseyRq356xa3FzrLExN40sMzc4mqYbzR550dl_aGQ9fmv5PIChM8sWMyTDJcq8G78y-qXQ_GhyaqALey1azNoPfDQQbkuIGTWTPfK0-xleF451VvpqGWxCLUGt_mCTQN6seRKLHtltkNh1iKNCUJpAB3jA018eyByOR8fd1YN_afSE7Awn52fmbDR-_ZBcg-9lFCiOe2SrXiz9I4jT6vxxmInfAaOWNCU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgk4AX7oPCACMheMrm2E7iPI52ZR1QTagTe7MS25GqVs1UUrTyxE_gN_JLOMe5QBEXCd7S9LhynM_H33GPv0PIM2cKhBELeA7hqrQW5lwKVwVTBWDaGi7xgPPbcXx0Ko_PorMfTvHX-hDdhhvODO-vcYKf22L_u2gonsDG1CwBjEFGl8m2jJlCXA_edQJSHNBZny8SIsAy9K1sI-P7m-03lqVtHOGLX3HOTQrr16DhDZK1va9TT2Z7qyrfM59-Enb8n8e7Sa43BJUe1Ii6RS65xW1ytd_WhbtDPoILgXAag3XA7nxNBz4JxFmKdbDt189f5tOZo-C2IR5v0u4oUGM6wn1k_KMAM1-h1RxTQta0LGh_XZVVeTE19ARlI6YLb99HQC7ppNY9uEtOh4eT_lHQVG8ITCSTKEiczUTGVMZQYy8WhimXW8ZMKEyYyyiPmJGFiUSiUpNyawTP8xTYW8FjC15X7JCtRblw9wktAGhZKJRlzsmCRTksqC62RQi_k4J9jwTty9OmkTbHChtzXYsyc42jqbvR7JEXnf15LerxW8vnHgudWbacYSpcEun341davRSKDybHGrqw24JFN17ggwayLYExKiZ75Gn3NbwuHOts4cqVt_GVBFX0B5sEombFk1D0yL0aiF2HOOoDpQl0gHs4_eWB9MF4dNh9evAvjZ6QKyeDoX4zGr9-SK7BbRn4_MZdslUtV-4RkLQqf-zn4Tf4_zLd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorially+Designed+Lipid%E2%80%90like+Nanoparticles+for+Intracellular+Delivery+of+Cytotoxic+Protein+for+Cancer+Therapy&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Ming&rft.au=Alberti%2C+Kyle&rft.au=Sun%2C+Shuo&rft.au=Arellano%2C+Carlos+Luis&rft.date=2014-03-10&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=11&rft.spage=2893&rft.epage=2898&rft_id=info:doi/10.1002%2Fanie.201311245&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201311245 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |