Inter-subject synchronization of brain responses during natural music listening
Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real‐world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, a...
Saved in:
Published in | The European journal of neuroscience Vol. 37; no. 9; pp. 1458 - 1469 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.05.2013
Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 0953-816X 1460-9568 1460-9568 |
DOI | 10.1111/ejn.12173 |
Cover
Loading…
Abstract | Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real‐world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non‐musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right‐lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo‐musical control conditions. Remarkably, inter‐subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro‐temporal features of the stimulus. Increased synchronization during music listening was also evident in a right‐hemisphere fronto‐parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences.
Little is known about common brain systems that support the integration of extended, naturalistic music stimuli. We show that music synchronizes brain response across listeners in bilateral auditory midbrain and thalamus, auditory cortex, right‐lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. Results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences. |
---|---|
AbstractList | Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real‐world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non‐musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right‐lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo‐musical control conditions. Remarkably, inter‐subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro‐temporal features of the stimulus. Increased synchronization during music listening was also evident in a right‐hemisphere fronto‐parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real‐world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non‐musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right‐lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo‐musical control conditions. Remarkably, inter‐subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro‐temporal features of the stimulus. Increased synchronization during music listening was also evident in a right‐hemisphere fronto‐parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. Little is known about common brain systems that support the integration of extended, naturalistic music stimuli. We show that music synchronizes brain response across listeners in bilateral auditory midbrain and thalamus, auditory cortex, right‐lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. Results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences. Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences.Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. Little is known about common brain systems that support the integration of extended, naturalistic music stimuli. We show that music synchronizes brain response across listeners in bilateral auditory midbrain and thalamus, auditory cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. Results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences. |
Author | Abrams, Daniel A. Chordia, Parag Chen, Tianwen Menon, Vinod Ryali, Srikanth Levitin, Daniel J. Khouzam, Amirah |
AuthorAffiliation | 2 Program in Neuroscience, Stanford University School of Medicine, Stanford, CA, USA 5 Department of Psychology, McGill University, Montreal, QC, Canada 3 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA 1 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94304, USA 4 Department of Music, Georgia Institute of Technology, Atlanta, GA, USA |
AuthorAffiliation_xml | – name: 4 Department of Music, Georgia Institute of Technology, Atlanta, GA, USA – name: 5 Department of Psychology, McGill University, Montreal, QC, Canada – name: 2 Program in Neuroscience, Stanford University School of Medicine, Stanford, CA, USA – name: 3 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA – name: 1 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94304, USA |
Author_xml | – sequence: 1 givenname: Daniel A. surname: Abrams fullname: Abrams, Daniel A. email: daa@stanford.edu organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA, 94304, Stanford, USA – sequence: 2 givenname: Srikanth surname: Ryali fullname: Ryali, Srikanth organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA, 94304, Stanford, USA – sequence: 3 givenname: Tianwen surname: Chen fullname: Chen, Tianwen organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA, 94304, Stanford, USA – sequence: 4 givenname: Parag surname: Chordia fullname: Chordia, Parag organization: Department of Music, Georgia Institute of Technology, GA, Atlanta, USA – sequence: 5 givenname: Amirah surname: Khouzam fullname: Khouzam, Amirah organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA, 94304, Stanford, USA – sequence: 6 givenname: Daniel J. surname: Levitin fullname: Levitin, Daniel J. organization: Department of Psychology, McGill University, QC, Montreal, Canada – sequence: 7 givenname: Vinod surname: Menon fullname: Menon, Vinod email: daa@stanford.edu organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 94304, Stanford, CA, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27428718$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23578016$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1v0zAYhS00xLqOC_4Ayg0SXGSz4484N0hs2spQtQkBgjvLcd5sLqld7ATW_Xrctes2JBC-sCW_zzk69tlDO847QOgFwQckrUOYuQNSkJI-QSPCBM4rLuQOGuGK01wS8W0X7cU4wxhLwfgztFtQXkpMxAhdnLkeQh6Hegamz-LSmavgnb3RvfUu821WB21dFiAuvIsQs2YI1l1mTvdD0F02H6I1WWdjDy7d76Onre4iPN-cY_Tl9OTz8ft8ejE5O343zQ1nJc0bxgXUAguWcmBRioY3ujKAW2h02xS4adOcgDakqJgsOGmxJMTURJi2qikdo7dr38VQz6Ex4PqURi2CneuwVF5b9Xji7JW69D8VY7LEbGXwemMQ_I8BYq_mNhroOu3AD1ERykVFMSXFf6CsopWUaR-jlw9jbfPcfXgCXm0AHY3u2qCdsfGeK1khSyIT92bNmeBjDNBuEYLVqnSVSle3pSf28A_W2P62v_Ry2_1L8ct2sPy7tTr5cH6nyNeKVdHXW4UO35UoacnV1_OJOjr9-OlowqYK098uWM30 |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2018_08_005 crossref_primary_10_1038_s41598_017_06105_2 crossref_primary_10_3390_app11199158 crossref_primary_10_7554_eLife_39906 crossref_primary_10_1146_annurev_psych_122216_011740 crossref_primary_10_3917_comla_193_0025 crossref_primary_10_3389_fnhum_2014_00798 crossref_primary_10_1016_j_bcp_2020_114111 crossref_primary_10_1016_j_earlhumdev_2015_08_004 crossref_primary_10_3389_fnetp_2022_910920 crossref_primary_10_3389_fnhum_2022_955238 crossref_primary_10_1177_21582440241298400 crossref_primary_10_3389_fninf_2019_00047 crossref_primary_10_1111_ejn_16324 crossref_primary_10_3389_fncom_2022_875282 crossref_primary_10_1016_j_brainres_2021_147571 crossref_primary_10_1016_j_neuroimage_2016_07_002 crossref_primary_10_1016_j_neuroimage_2020_116655 crossref_primary_10_1371_journal_pone_0128833 crossref_primary_10_1016_j_sbspro_2015_02_169 crossref_primary_10_1109_ACCESS_2021_3097774 crossref_primary_10_5965_1808312915252020e0035 crossref_primary_10_1002_hbm_23565 crossref_primary_10_1016_j_neuroimage_2019_116474 crossref_primary_10_1016_j_neuropsychologia_2023_108604 crossref_primary_10_1098_rstb_2022_0421 crossref_primary_10_1002_brb3_2270 crossref_primary_10_1093_scan_nsab094 crossref_primary_10_3389_fpsyg_2014_01257 crossref_primary_10_1016_j_jaac_2013_10_012 crossref_primary_10_1142_S0129065721500015 crossref_primary_10_1016_j_cortex_2023_05_020 crossref_primary_10_1016_j_ijpsycho_2024_112387 crossref_primary_10_1016_j_neuroimage_2020_116559 crossref_primary_10_1177_10892680241260840 crossref_primary_10_1038_tp_2016_80 crossref_primary_10_1016_j_biopsycho_2017_12_005 crossref_primary_10_1038_srep41414 crossref_primary_10_1073_pnas_2202515119 crossref_primary_10_3389_fnbeh_2017_00038 crossref_primary_10_1049_htl_2016_0073 crossref_primary_10_1177_10298649241255694 crossref_primary_10_1162_jocn_a_01815 crossref_primary_10_3389_fnhum_2023_1225377 crossref_primary_10_1093_scan_nsv060 crossref_primary_10_21706_ps_71_1_28 crossref_primary_10_1007_s00729_015_0056_1 crossref_primary_10_3917_comla_193_0049 crossref_primary_10_1002_hbm_26060 crossref_primary_10_1177_0305735614543968 crossref_primary_10_1093_scan_nsab124 crossref_primary_10_1142_S0129065717500551 crossref_primary_10_1016_j_neuroscience_2020_06_015 crossref_primary_10_3389_fnins_2015_00157 crossref_primary_10_30535_mto_20_3_3 crossref_primary_10_1016_j_neuroimage_2020_116799 crossref_primary_10_3389_fnins_2022_921489 crossref_primary_10_3389_fpsyg_2018_01862 crossref_primary_10_3389_fnhum_2020_584312 crossref_primary_10_1038_s41598_021_00492_3 crossref_primary_10_1016_j_neuroscience_2015_10_061 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_1371_journal_pone_0302705 crossref_primary_10_1002_hbm_23549 crossref_primary_10_1007_s11682_016_9515_8 crossref_primary_10_3389_fnins_2021_723893 crossref_primary_10_1016_j_jneumeth_2018_03_014 crossref_primary_10_1016_j_cortex_2015_06_026 crossref_primary_10_3389_fnins_2021_665767 crossref_primary_10_1016_j_neuroimage_2022_119496 crossref_primary_10_1093_scan_nsz012 crossref_primary_10_3389_fpsyg_2023_765019 crossref_primary_10_1016_j_neuroimage_2016_05_023 crossref_primary_10_1093_cercor_bhw334 crossref_primary_10_1109_ACCESS_2024_3409771 crossref_primary_10_1177_0305735614547665 crossref_primary_10_3389_fncom_2018_00051 crossref_primary_10_1109_TNSRE_2017_2778178 crossref_primary_10_1111_ejn_16036 crossref_primary_10_1525_mp_2019_37_1_42 crossref_primary_10_1098_rstb_2021_0365 crossref_primary_10_1073_pnas_1602948113 crossref_primary_10_1371_journal_pone_0164783 crossref_primary_10_1155_2016_2094601 crossref_primary_10_1038_srep11605 crossref_primary_10_1093_cercor_bhab036 crossref_primary_10_3389_fnhum_2019_00150 crossref_primary_10_3389_fnins_2021_702067 crossref_primary_10_3389_fpsyg_2021_653021 |
Cites_doi | 10.1523/JNEUROSCI.14-04-01908.1994 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1016/j.neuroimage.2004.07.051 10.1016/S1053-8119(03)00287-8 10.1073/pnas.1213555110 10.1126/science.1089506 10.1126/science.1076262 10.1016/j.neuron.2009.05.002 10.1016/0378-5955(83)90095-3 10.1523/JNEUROSCI.1949-12.2012 10.1038/nrn2152 10.1097/AUD.0b013e31816453dc 10.1007/BF00237072 10.1006/nimg.2002.1295 10.1016/j.neuron.2007.07.003 10.1152/physrev.00029.2003 10.1093/cercor/bhm049 10.1016/j.neuron.2009.10.006 10.1152/jn.00923.2011 10.1162/jocn.2008.20131 10.1097/01.wnr.0000132919.12990.34 10.1093/cercor/bhq198 10.1002/mrm.1910390305 10.1044/jshr.1501.05 10.1152/jn.1988.60.6.1799 10.1016/j.neuroimage.2004.09.019 10.1152/jn.00359.2007 10.5194/npg-11-561-2004 10.1038/90557 10.1073/pnas.201400998 10.1196/annals.1360.048 10.1016/j.conb.2005.03.005 10.1525/mp.2005.22.3.563 10.1038/87502 10.1152/jn.1995.74.6.2685 10.1093/brain/123.12.2400 10.1016/j.neuroimage.2003.08.016 10.1016/j.tics.2009.10.011 10.1152/jn.00632.2001 10.1002/hbm.1058 10.1038/nn1409 10.1103/PhysRevLett.73.951 10.1016/j.cogbrainres.2004.12.014 10.1038/88459 10.7551/mitpress/6575.001.0001 10.1093/cercor/bhs206 10.1523/JNEUROSCI.3907-06.2006 10.1016/S1364-6613(00)01816-7 10.1038/nn.2771 10.1523/JNEUROSCI.0187-08.2008 10.1523/JNEUROSCI.2751-09.2010 10.1016/j.neuroimage.2011.11.019 10.1093/cercor/bhn042 10.1523/JNEUROSCI.5242-08.2009 10.1073/pnas.97.22.11793 10.1093/cercor/bhs165 10.1155/2000/421719 10.1523/JNEUROSCI.2018-08.2009 10.1093/cercor/bhj070 10.1523/JNEUROSCI.4921-08.2009 10.1016/j.neuroimage.2006.06.054 10.1073/pnas.1206628109 |
ContentType | Journal Article |
Copyright | 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2014 INIST-CNRS 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2013 |
Copyright_xml | – notice: 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd – notice: 2014 INIST-CNRS – notice: 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2013 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1111/ejn.12173 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Music |
EISSN | 1460-9568 |
EndPage | 1469 |
ExternalDocumentID | PMC4487043 23578016 27428718 10_1111_ejn_12173 EJN12173 ark_67375_WNG_BFQSBG4L_0 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: F32 DC010322‐01A2; 1R21DC011095 – fundername: National Science Foundation funderid: BCS0449927 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 228175‐2010 – fundername: NIDCD NIH HHS grantid: F32 DC010322-01A2 – fundername: NIDCD NIH HHS grantid: F32 DC010322 – fundername: NIDCD NIH HHS grantid: 1R21DC011095 – fundername: NIDCD NIH HHS grantid: R21 DC011095 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION IQODW AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c5473-d456eb60647800676d5da9ce0fedafd20df6eb1eac12948251f0811cb16cf9b33 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Thu Aug 21 18:15:38 EDT 2025 Fri Jul 11 12:22:32 EDT 2025 Fri Jul 11 07:09:48 EDT 2025 Mon Jul 21 06:05:36 EDT 2025 Wed Apr 02 07:23:33 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Tue Jul 01 04:00:34 EDT 2025 Wed Jan 22 16:40:06 EST 2025 Wed Oct 30 09:53:45 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Medial geniculate body Human medial geniculate Colliculus inferior inferior frontal gyrus Central nervous system Parietal cortex inferior colliculus Auditory pathway Synchronization Auditory cortex Encephalon |
Language | English |
License | CC BY 4.0 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5473-d456eb60647800676d5da9ce0fedafd20df6eb1eac12948251f0811cb16cf9b33 |
Notes | Natural Sciences and Engineering Research Council of Canada - No. 228175-2010 istex:EDAB2D3E54817A649025E539F82C2458FAFB63D1 NIH - No. F32 DC010322-01A2; No. 1R21DC011095 ark:/67375/WNG-BFQSBG4L-0 National Science Foundation - No. BCS0449927 Fig. S1. Differences between ISS and GLM approaches for the analysis of music processing in the brain. Fig. S2. Flow chart for ISS Analysis. Synchronization was calculated by computing Pearson correlations between the voxel time series in each pair of subjects (136 subject-to-subject comparisons total).Data S1. Methods. ArticleID:EJN12173 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23578016 |
PQID | 1349398849 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4487043 proquest_miscellaneous_1356930312 proquest_miscellaneous_1349398849 pubmed_primary_23578016 pascalfrancis_primary_27428718 crossref_primary_10_1111_ejn_12173 crossref_citationtrail_10_1111_ejn_12173 wiley_primary_10_1111_ejn_12173_EJN12173 istex_primary_ark_67375_WNG_BFQSBG4L_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2013 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: May 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: France |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Zatorre, R.J., Evans, A.C. & Meyer, E. (1994) Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci., 14, 1908-1919. Grinsted, A., Moore, J.C. & Jevrejeva, S. (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geoph., 11, 561-566. Joris, P.X., Schreiner, C.E. & Rees, A. (2004) Neural processing of amplitude-modulated sounds. Physiol. Rev., 84, 541-577. Abrams, D.A., Bhatara, A., Ryali, S., Balaban, E., Levitin, D.J. & Menon, V. (2011) Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. Cereb. Cortex, 21, 1507-1518. Fecteau, S., Armony, J.L., Joanette, Y. & Belin, P. (2004) Is voice processing species-specific in human auditory cortex? - An fMRI study. NeuroImage, 23, 840-848. Skoe, E. & Kraus, N. (2012) A little goes a long way: how the adult brain is shaped by musical training in childhood. J. Neurosci., 32, 11507-11510. Platel, H., Baron, J.C., Desgranges, B., Bernard, F. & Eustache, F. (2003) Semantic and episodic memory of music are subserved by distinct neural networks. NeuroImage, 20, 244-256. Scott, S.K., Blank, C.C., Rosen, S. & Wise, R.J.S. (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M. & Matthews, P.M. (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl. 1), S208-S219. Glover, G.H. & Lai, S. (1998) Self-navigated spiral fMRI: interleaved versus single-shot. Magn. Reson. Med., 39, 361-368. Griffiths, T.D., Uppenkamp, S., Johnsrude, I., Josephs, O. & Patterson, R.D. (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat. Neurosci., 4, 633-637. Chen, J.L., Penhune, V.B. & Zatorre, R.J. (2008) Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex, 18, 2844-2854. Koelsch, S. (2005) Neural substrates of processing syntax and semantics in music. Curr. Opin. Neurobiol., 15, 207-212. Baumann, S., Griffiths, T.D., Sun, L., Petkov, C.I., Thiele, A. & Rees, A. (2011) Orthogonal representation of sound dimensions in the primate midbrain. Nat. Neurosci., 14, 423-425. Sridharan, D., Levitin, D.J., Chafe, C.H., Berger, J. & Menon, V. (2007) Neural dynamics of event segmentation in music: converging evidence for dissociable ventral and dorsal networks. Neuron, 55, 521-532. Aiken, S.J. & Picton, T.W. (2008) Human cortical responses to the speech envelope. Ear Hearing, 29, 139-157. Tzounopoulos, T. & Kraus, N. (2009) Learning to encode timing: mechanisms of plasticity in the auditory brainstem. Neuron, 62, 463-469. Kaas, J.H. & Hackett, T.A. (2000) Subdivisions of auditory cortex and processing streams in primates. Proc. Natl. Acad. Sci. USA, 97, 11793-11799. Chait, M., Poeppel, D. & Simon, J.Z. (2007) Stimulus context affects auditory cortical responses to changes in interaural correlation. J. Neurophysiol., 98, 224-231. Muhlau, M., Rauschecker, J.P., Oestreicher, E., Gaser, C., Rottinger, M., Wohlschlager, A.M., Simon, F., Etgen, T., Conrad, B. & Sander, D. (2006) Structural brain changes in tinnitus. Cereb. Cortex, 16, 1283-1288. Wilson, S.M., Molnar-Szakacs, I. & Iacoboni, M. (2008) Beyond superior temporal cortex: intersubject correlations in narrative speech comprehension. Cereb. Cortex, 18, 230-242. Anderson, S., White-Schwoch, T., Parbery-Clark, A. & Kraus, N. (2013) Reversal of age-related neural timing delays with training. Proc. Natl. Acad. Sci. USA, 110, 4357-4362. Nichols, T.E. & Holmes, A.P. (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp., 15, 1-25. Rees, A. & Moller, A.R. (1983) Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hearing Res., 10, 301-330. Prichard, D. & Theiler, J. (1994) Generating surrogate data for time-series with several simultaneously measured variables. Phys. Rev. Lett., 73, 951-954. Oechslin, M.S., Van De Ville, D., Lazeyras, F., Hauert, C.A. & James, C.E. (2012) Degree of musical expertise modulates higher order brain functioning. Cereb. Cortex, doi: 10.1093/cercor/bhs206 [Epub ahead of print]. Alluri, V., Toiviainen, P., Jaaskelainen, I.P., Glerean, E., Sams, M. & Brattico, E. (2012) Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage, 59, 3677-3689. Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., Mahncke, H. & Merzenich, M.M. (2001) Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proc. Natl. Acad. Sci. USA, 98, 13367-13372. Zatorre, R.J., Belin, P. & Penhune, V.B. (2002) Structure and function of auditory cortex: music and speech. Trends Cogn. Sci., 6, 37-46. Snyder, J.S. & Large, E.W. (2005) Gamma-band activity reflects the metric structure of rhythmic tone sequences. Brain Res. Cogn. Brain Res., 24, 117-126. Abrams, D.A., Ryali, S., Chen, T., Balaban, E., Levitin, D.J. & Menon, V. (2012) Multivariate activation and connectivity patterns discriminate speech intelligibility in Wernicke's, Broca's, and Geschwind's Areas. Cereb. Cortex, doi: 10.1093/cercor/bhs165 [Epub ahead of print]. Hasson, U., Malach, R. & Heeger, D.J. (2010) Reliability of cortical activity during natural stimulation. Trends Cogn. Sci., 14, 40-48. Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T. & Kraus, N. (2009) Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia. Neuron, 64, 311-319. Deike, S., Gaschler-Markefski, B., Brechmann, A. & Scheich, H. (2004) Auditory stream segregation relying on timbre involves left auditory cortex. NeuroReport, 15, 1511-1514. Levitin, D.J. & Menon, V. (2005) The neural locus of temporal structure and expectancies in music: evidence from functional neuroimaging at 3 Tesla. Music Percept., 22, 563-575. Chandrasekaran, B., Kraus, N. & Wong, P.C.M. (2012) Human inferior colliculus activity relates to individual differences in spoken language learning. J. Neurophysiol., 107, 1325-1336. Menon, V., Levitin, D.J., Smith, B.K., Lembke, A., Krasnow, B.D., Glazer, D., Glover, G.H. & McAdams, S. (2002) Neural correlates of timbre change in harmonic sounds. NeuroImage, 17, 1742-1754. Grahn, J.A. & Rowe, J.B. (2009) Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J. Neurosci., 29, 7540-7548. Huron, D. (2006) Sweet Anticipation: Music and the Psychology of Expectation. MIT Press, Cambridge, MA. Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K. & Zilles, K. (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage, 33, 430-448. Blesser, B. (1972) Speech perception under conditions of spectral transformation. 1. Phonetic characteristics. J. Speech Hear. Res., 15, 5-41. McNeill, W.H. (1995) Keeping Togther in Time: Dance and Drill in Human History. Harvard University Press, Cambridge, MA. Maess, B., Koelsch, S., Gunter, T.C. & Friederici, A.D. (2001) Musical syntax is processed in Broca's area: an MEG study. Nat. Neurosci., 4, 540-545. Nagarajan, S.S., Cheung, S.W., Bedenbaugh, P., Beitel, R.E., Schreiner, C.E. & Merzenich, M.M. (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. J. Neurophysiol., 87, 1723-1737. Patel, A.D. & Balaban, E. (2001) Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nat. Neurosci., 4, 839-844. Song, J.H., Skoe, E., Wong, P.C. & Kraus, N. (2008) Plasticity in the adult human auditory brainstem following short-term linguistic training. J. Cognitive Neurosci., 20, 1892-1902. Abrams, D.A., Nicol, T., Zecker, S. & Kraus, N. (2009) Abnormal cortical processing of the syllable rate of speech in poor readers. J. Neurosci., 29, 7686-7693. Zatorre, R.J., Chen, J.L. & Penhune, V.B. (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat. Rev. Neurosci., 8, 547-558. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. (2004) Intersubject synchronization of cortical activity during natural vision. Science, 303, 1634-1640. Janata, P., Birk, J.L., Van Horn, J.D., Leman, M., Tillmann, B. & Bharucha, J.J. (2002) The cortical topography of tonal structures underlying Western music. Science, 298, 2167-2170. Sammler, D., Baird, A., Valabregue, R., Clement, S., Dupont, S., Belin, P. & Samson, S. (2010) The relationship of lyrics and tunes in the processing of unfamiliar songs: a functional magnetic resonance adaptation study. J. Neurosci., 30, 3572-3578. Levitin, D.J. & Menon, V. (2003) Musical structure is processed in 'language' areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. NeuroImage, 20, 2142-2152. Torrence, C. & Compo, G. (1998) A practical guide to wavelet analysis. B. Am. Meteorol. Soc., 79, 61-78. Abrams, D.A., Nicol, T., Zecker, S. & Kraus, N. (2008) Right-hemisphere auditory cortex is dominant for coding syllable patterns in speech. J. Neurosci., 28, 3958-3965. Passynkova, N., Sander, K. & Scheich, H. (2005) Left auditory cortex specialization for vertical harmonic structure of chords. Ann. NY Acad. Sci., 1060, 454-456. Sethares, W.A. (2007) Rhythm and Transforms. Springer, London. Boemio, A., Fromm, S., Braun, A. & Poeppel, D. (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat. Neurosci., 8, 389-395. Langner, G. & Schreiner, C.E. (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol., 60, 1799-1822. Creutzfeldt, O., Hellweg, F.C. & Schreiner, C. (1980) Thalamocortical tr 2002; 17 1995; 74 2002; 15 2010; 14 2006; 33 2004; 23 1983; 10 2012; 59 2011; 14 2005; 22 2005; 24 1980; 39 2000; 12 2008; 29 2002; 87 2008; 28 2000; 97 2006; 26 2007; 8 2011; 21 2013; 110 2000; 123 2008; 20 2010; 30 1994; 73 2001; 98 1972; 15 2004; 303 2004; 84 2009; 62 2009; 64 2012 2008; 18 2006; 16 2002; 6 2002; 298 2008 2007 2006 1995 2007; 98 2007; 55 2012; 107 2012; 32 2009; 29 2012; 109 2004; 11 1998; 39 2001; 4 2005; 8 2004; 15 1994; 14 2005; 1060 2005; 15 1988; 60 2003; 20 1998; 79 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 McNeill W.H. (e_1_2_7_39_1) 1995 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Sethares W.A. (e_1_2_7_53_1) 2007 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Levitin D.J. (e_1_2_7_35_1) 2008 18595182 - Ear Hear. 2008 Apr;29(2):139-57 16949304 - Neuroimage. 2006 Nov 1;33(2):430-48 6247179 - Exp Brain Res. 1980;39(1):87-104 11849614 - Trends Cogn Sci. 2002 Jan 1;6(1):37-46 11319564 - Nat Neurosci. 2001 May;4(5):540-5 22949632 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16731-6 22693339 - Cereb Cortex. 2013 Jul;23(7):1703-14 5012812 - J Speech Hear Res. 1972 Mar;15(1):5-41 19535580 - J Neurosci. 2009 Jun 17;29(24):7686-93 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 11568431 - Behav Neurol. 2000;12(4):191-200 19244522 - J Neurosci. 2009 Feb 25;29(8):2477-85 16597802 - Ann N Y Acad Sci. 2005 Dec;1060:454-6 15723061 - Nat Neurosci. 2005 Mar;8(3):389-95 18400895 - J Neurosci. 2008 Apr 9;28(15):3958-65 18370594 - J Cogn Neurosci. 2008 Oct;20(10):1892-902 15831404 - Curr Opin Neurobiol. 2005 Apr;15(2):207-12 21378972 - Nat Neurosci. 2011 Apr;14(4):423-5 17493921 - J Neurophysiol. 2007 Jul;98(1):224-31 11929894 - J Neurophysiol. 2002 Apr;87(4):1723-37 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 8158246 - J Neurosci. 1994 Apr;14(4):1908-19 14683718 - Neuroimage. 2003 Dec;20(4):2142-52 15194885 - Neuroreport. 2004 Jun 28;15(9):1511-4 11050211 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11793-9 23401541 - Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4357-62 20219991 - J Neurosci. 2010 Mar 10;30(10):3572-8 20004608 - Trends Cogn Sci. 2010 Jan;14(1):40-8 22915097 - J Neurosci. 2012 Aug 22;32(34):11507-10 15044682 - Physiol Rev. 2004 Apr;84(2):541-77 19515922 - J Neurosci. 2009 Jun 10;29(23):7540-8 22131377 - J Neurophysiol. 2012 Mar;107(5):1325-36 11369945 - Nat Neurosci. 2001 Jun;4(6):633-7 22832388 - Cereb Cortex. 2013 Sep;23(9):2213-24 6874603 - Hear Res. 1983 Jun;10(3):301-30 10057582 - Phys Rev Lett. 1994 Aug 15;73(7):951-954 17167096 - J Neurosci. 2006 Dec 13;26(50):13067-75 9498591 - Magn Reson Med. 1998 Mar;39(3):361-8 19477149 - Neuron. 2009 May 28;62(4):463-9 15528084 - Neuroimage. 2004 Nov;23(3):840-8 21071617 - Cereb Cortex. 2011 Jul;21(7):1507-18 17678862 - Neuron. 2007 Aug 2;55(3):521-32 22116038 - Neuroimage. 2012 Feb 15;59(4):3677-89 15922164 - Brain Res Cogn Brain Res. 2005 Jun;24(1):117-26 15016991 - Science. 2004 Mar 12;303(5664):1634-40 18388350 - Cereb Cortex. 2008 Dec;18(12):2844-54 3236052 - J Neurophysiol. 1988 Dec;60(6):1799-822 17585307 - Nat Rev Neurosci. 2007 Jul;8(7):547-58 11698688 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13367-72 17504783 - Cereb Cortex. 2008 Jan;18(1):230-42 16280464 - Cereb Cortex. 2006 Sep;16(9):1283-8 11099443 - Brain. 2000 Dec;123 Pt 12:2400-6 12481131 - Science. 2002 Dec 13;298(5601):2167-70 14527585 - Neuroimage. 2003 Sep;20(1):244-56 12498748 - Neuroimage. 2002 Dec;17(4):1742-54 19914180 - Neuron. 2009 Nov 12;64(3):311-9 8747224 - J Neurophysiol. 1995 Dec;74(6):2685-706 11477431 - Nat Neurosci. 2001 Aug;4(8):839-44 |
References_xml | – reference: Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T. & Kraus, N. (2009) Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia. Neuron, 64, 311-319. – reference: Langner, G. & Schreiner, C.E. (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol., 60, 1799-1822. – reference: Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K. & Zilles, K. (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage, 33, 430-448. – reference: Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M. & Matthews, P.M. (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl. 1), S208-S219. – reference: Kaas, J.H. & Hackett, T.A. (2000) Subdivisions of auditory cortex and processing streams in primates. Proc. Natl. Acad. Sci. USA, 97, 11793-11799. – reference: Grahn, J.A. & Rowe, J.B. (2009) Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J. Neurosci., 29, 7540-7548. – reference: Levitin, D.J. (2008) The World in Six Songs: How the Musical Brain Created Human Nature. Dutton/Penguin, New York. – reference: Zatorre, R.J., Evans, A.C. & Meyer, E. (1994) Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci., 14, 1908-1919. – reference: Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., Mahncke, H. & Merzenich, M.M. (2001) Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proc. Natl. Acad. Sci. USA, 98, 13367-13372. – reference: Tzounopoulos, T. & Kraus, N. (2009) Learning to encode timing: mechanisms of plasticity in the auditory brainstem. Neuron, 62, 463-469. – reference: Joris, P.X., Schreiner, C.E. & Rees, A. (2004) Neural processing of amplitude-modulated sounds. Physiol. Rev., 84, 541-577. – reference: Torrence, C. & Compo, G. (1998) A practical guide to wavelet analysis. B. Am. Meteorol. Soc., 79, 61-78. – reference: Nagarajan, S.S., Cheung, S.W., Bedenbaugh, P., Beitel, R.E., Schreiner, C.E. & Merzenich, M.M. (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. J. Neurophysiol., 87, 1723-1737. – reference: Chandrasekaran, B., Kraus, N. & Wong, P.C.M. (2012) Human inferior colliculus activity relates to individual differences in spoken language learning. J. Neurophysiol., 107, 1325-1336. – reference: Alluri, V., Toiviainen, P., Jaaskelainen, I.P., Glerean, E., Sams, M. & Brattico, E. (2012) Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage, 59, 3677-3689. – reference: Rees, A. & Moller, A.R. (1983) Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hearing Res., 10, 301-330. – reference: Abrams, D.A., Bhatara, A., Ryali, S., Balaban, E., Levitin, D.J. & Menon, V. (2011) Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. Cereb. Cortex, 21, 1507-1518. – reference: Levitin, D.J. & Menon, V. (2005) The neural locus of temporal structure and expectancies in music: evidence from functional neuroimaging at 3 Tesla. Music Percept., 22, 563-575. – reference: Boemio, A., Fromm, S., Braun, A. & Poeppel, D. (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat. Neurosci., 8, 389-395. – reference: Janata, P., Birk, J.L., Van Horn, J.D., Leman, M., Tillmann, B. & Bharucha, J.J. (2002) The cortical topography of tonal structures underlying Western music. Science, 298, 2167-2170. – reference: Song, J.H., Skoe, E., Wong, P.C. & Kraus, N. (2008) Plasticity in the adult human auditory brainstem following short-term linguistic training. J. Cognitive Neurosci., 20, 1892-1902. – reference: Hasson, U., Malach, R. & Heeger, D.J. (2010) Reliability of cortical activity during natural stimulation. Trends Cogn. Sci., 14, 40-48. – reference: Oechslin, M.S., Van De Ville, D., Lazeyras, F., Hauert, C.A. & James, C.E. (2012) Degree of musical expertise modulates higher order brain functioning. Cereb. Cortex, doi: 10.1093/cercor/bhs206 [Epub ahead of print]. – reference: Huron, D. (2006) Sweet Anticipation: Music and the Psychology of Expectation. MIT Press, Cambridge, MA. – reference: Abrams, D.A., Nicol, T., Zecker, S. & Kraus, N. (2008) Right-hemisphere auditory cortex is dominant for coding syllable patterns in speech. J. Neurosci., 28, 3958-3965. – reference: Patel, A.D. & Balaban, E. (2001) Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nat. Neurosci., 4, 839-844. – reference: Deike, S., Gaschler-Markefski, B., Brechmann, A. & Scheich, H. (2004) Auditory stream segregation relying on timbre involves left auditory cortex. NeuroReport, 15, 1511-1514. – reference: Muhlau, M., Rauschecker, J.P., Oestreicher, E., Gaser, C., Rottinger, M., Wohlschlager, A.M., Simon, F., Etgen, T., Conrad, B. & Sander, D. (2006) Structural brain changes in tinnitus. Cereb. Cortex, 16, 1283-1288. – reference: Passynkova, N., Sander, K. & Scheich, H. (2005) Left auditory cortex specialization for vertical harmonic structure of chords. Ann. NY Acad. Sci., 1060, 454-456. – reference: Abrams, D.A., Ryali, S., Chen, T., Balaban, E., Levitin, D.J. & Menon, V. (2012) Multivariate activation and connectivity patterns discriminate speech intelligibility in Wernicke's, Broca's, and Geschwind's Areas. Cereb. Cortex, doi: 10.1093/cercor/bhs165 [Epub ahead of print]. – reference: Nichols, T.E. & Holmes, A.P. (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp., 15, 1-25. – reference: McNeill, W.H. (1995) Keeping Togther in Time: Dance and Drill in Human History. Harvard University Press, Cambridge, MA. – reference: Zatorre, R.J., Belin, P. & Penhune, V.B. (2002) Structure and function of auditory cortex: music and speech. Trends Cogn. Sci., 6, 37-46. – reference: Fecteau, S., Armony, J.L., Joanette, Y. & Belin, P. (2004) Is voice processing species-specific in human auditory cortex? - An fMRI study. NeuroImage, 23, 840-848. – reference: Creutzfeldt, O., Hellweg, F.C. & Schreiner, C. (1980) Thalamocortical transformation of responses to complex auditory stimuli. Exp. Brain Res., 39, 87-104. – reference: Platel, H., Baron, J.C., Desgranges, B., Bernard, F. & Eustache, F. (2003) Semantic and episodic memory of music are subserved by distinct neural networks. NeuroImage, 20, 244-256. – reference: Grinsted, A., Moore, J.C. & Jevrejeva, S. (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geoph., 11, 561-566. – reference: Sethares, W.A. (2007) Rhythm and Transforms. Springer, London. – reference: Glover, G.H. & Lai, S. (1998) Self-navigated spiral fMRI: interleaved versus single-shot. Magn. Reson. Med., 39, 361-368. – reference: Snyder, J.S. & Large, E.W. (2005) Gamma-band activity reflects the metric structure of rhythmic tone sequences. Brain Res. Cogn. Brain Res., 24, 117-126. – reference: Wilson, S.M., Molnar-Szakacs, I. & Iacoboni, M. (2008) Beyond superior temporal cortex: intersubject correlations in narrative speech comprehension. Cereb. Cortex, 18, 230-242. – reference: Chait, M., Poeppel, D. & Simon, J.Z. (2007) Stimulus context affects auditory cortical responses to changes in interaural correlation. J. Neurophysiol., 98, 224-231. – reference: Koelsch, S. (2005) Neural substrates of processing syntax and semantics in music. Curr. Opin. Neurobiol., 15, 207-212. – reference: Leaver, A.M., Van Lare, J., Zielinski, B., Halpern, A.R. & Rauschecker, J.P. (2009) Brain activation during anticipation of sound sequences. J. Neurosci., 29, 2477-2485. – reference: Abrams, D.A., Nicol, T., Zecker, S. & Kraus, N. (2009) Abnormal cortical processing of the syllable rate of speech in poor readers. J. Neurosci., 29, 7686-7693. – reference: Chen, J.L., Penhune, V.B. & Zatorre, R.J. (2008) Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex, 18, 2844-2854. – reference: Griffiths, T.D., Uppenkamp, S., Johnsrude, I., Josephs, O. & Patterson, R.D. (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat. Neurosci., 4, 633-637. – reference: Maess, B., Koelsch, S., Gunter, T.C. & Friederici, A.D. (2001) Musical syntax is processed in Broca's area: an MEG study. Nat. Neurosci., 4, 540-545. – reference: Rorden, C. & Brett, M. (2000) Stereotaxic display of brain lesions. Behav. Neurol., 12, 191-200. – reference: Blesser, B. (1972) Speech perception under conditions of spectral transformation. 1. Phonetic characteristics. J. Speech Hear. Res., 15, 5-41. – reference: Hornickel, J., Zecker, S.G., Bradlow, A.R. & Kraus, N. (2012) Assistive listening devices drive neuroplasticity in children with dyslexia. Proc. Natl. Acad. Sci. USA, 109, 16731-16736. – reference: Aiken, S.J. & Picton, T.W. (2008) Human cortical responses to the speech envelope. Ear Hearing, 29, 139-157. – reference: Menon, V., Levitin, D.J., Smith, B.K., Lembke, A., Krasnow, B.D., Glazer, D., Glover, G.H. & McAdams, S. (2002) Neural correlates of timbre change in harmonic sounds. NeuroImage, 17, 1742-1754. – reference: Scott, S.K., Blank, C.C., Rosen, S. & Wise, R.J.S. (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406. – reference: Baumann, S., Griffiths, T.D., Sun, L., Petkov, C.I., Thiele, A. & Rees, A. (2011) Orthogonal representation of sound dimensions in the primate midbrain. Nat. Neurosci., 14, 423-425. – reference: Sridharan, D., Levitin, D.J., Chafe, C.H., Berger, J. & Menon, V. (2007) Neural dynamics of event segmentation in music: converging evidence for dissociable ventral and dorsal networks. Neuron, 55, 521-532. – reference: Warren, J.E., Sauter, D.A., Eisner, F., Wiland, J., Dresner, M.A., Wise, R.J., Rosen, S. & Scott, S.K. (2006) Positive emotions preferentially engage an auditory-motor 'mirror' system. J. Neurosci., 26, 13067-13075. – reference: Zatorre, R.J., Chen, J.L. & Penhune, V.B. (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat. Rev. Neurosci., 8, 547-558. – reference: Wang, X., Merzenich, M.M., Beitel, R. & Schreiner, C.E. (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J. Neurophysiol., 74, 2685-2706. – reference: Levitin, D.J. & Menon, V. (2003) Musical structure is processed in 'language' areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. NeuroImage, 20, 2142-2152. – reference: Anderson, S., White-Schwoch, T., Parbery-Clark, A. & Kraus, N. (2013) Reversal of age-related neural timing delays with training. Proc. Natl. Acad. Sci. USA, 110, 4357-4362. – reference: Sammler, D., Baird, A., Valabregue, R., Clement, S., Dupont, S., Belin, P. & Samson, S. (2010) The relationship of lyrics and tunes in the processing of unfamiliar songs: a functional magnetic resonance adaptation study. J. Neurosci., 30, 3572-3578. – reference: Skoe, E. & Kraus, N. (2012) A little goes a long way: how the adult brain is shaped by musical training in childhood. J. Neurosci., 32, 11507-11510. – reference: Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. (2004) Intersubject synchronization of cortical activity during natural vision. Science, 303, 1634-1640. – reference: Prichard, D. & Theiler, J. (1994) Generating surrogate data for time-series with several simultaneously measured variables. Phys. Rev. Lett., 73, 951-954. – volume: 20 start-page: 244 year: 2003 end-page: 256 article-title: Semantic and episodic memory of music are subserved by distinct neural networks publication-title: NeuroImage – volume: 98 start-page: 13367 year: 2001 end-page: 13372 article-title: Speech comprehension is correlated with temporal response patterns recorded from auditory cortex publication-title: Proc. Natl. Acad. Sci. USA – volume: 98 start-page: 224 year: 2007 end-page: 231 article-title: Stimulus context affects auditory cortical responses to changes in interaural correlation publication-title: J. Neurophysiol. – volume: 29 start-page: 2477 year: 2009 end-page: 2485 article-title: Brain activation during anticipation of sound sequences publication-title: J. Neurosci. – volume: 4 start-page: 839 year: 2001 end-page: 844 article-title: Human pitch perception is reflected in the timing of stimulus‐related cortical activity publication-title: Nat. Neurosci. – volume: 15 start-page: 1511 year: 2004 end-page: 1514 article-title: Auditory stream segregation relying on timbre involves left auditory cortex publication-title: NeuroReport – volume: 16 start-page: 1283 year: 2006 end-page: 1288 article-title: Structural brain changes in tinnitus publication-title: Cereb. Cortex – volume: 29 start-page: 7540 year: 2009 end-page: 7548 article-title: Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception publication-title: J. Neurosci. – volume: 60 start-page: 1799 year: 1988 end-page: 1822 article-title: Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms publication-title: J. Neurophysiol. – volume: 8 start-page: 547 year: 2007 end-page: 558 article-title: When the brain plays music: auditory‐motor interactions in music perception and production publication-title: Nat. Rev. Neurosci. – volume: 14 start-page: 423 year: 2011 end-page: 425 article-title: Orthogonal representation of sound dimensions in the primate midbrain publication-title: Nat. Neurosci. – volume: 15 start-page: 5 year: 1972 end-page: 41 article-title: Speech perception under conditions of spectral transformation. 1. Phonetic characteristics publication-title: J. Speech Hear. Res. – volume: 39 start-page: 361 year: 1998 end-page: 368 article-title: Self‐navigated spiral fMRI: interleaved versus single‐shot publication-title: Magn. Reson. Med. – volume: 11 start-page: 561 year: 2004 end-page: 566 article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series publication-title: Nonlinear Proc. Geoph. – volume: 107 start-page: 1325 year: 2012 end-page: 1336 article-title: Human inferior colliculus activity relates to individual differences in spoken language learning publication-title: J. Neurophysiol. – volume: 97 start-page: 11793 year: 2000 end-page: 11799 article-title: Subdivisions of auditory cortex and processing streams in primates publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 7686 year: 2009 end-page: 7693 article-title: Abnormal cortical processing of the syllable rate of speech in poor readers publication-title: J. Neurosci. – volume: 64 start-page: 311 year: 2009 end-page: 319 article-title: Context‐dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia publication-title: Neuron – volume: 4 start-page: 633 year: 2001 end-page: 637 article-title: Encoding of the temporal regularity of sound in the human brainstem publication-title: Nat. Neurosci. – volume: 18 start-page: 230 year: 2008 end-page: 242 article-title: Beyond superior temporal cortex: intersubject correlations in narrative speech comprehension publication-title: Cereb. Cortex – volume: 10 start-page: 301 year: 1983 end-page: 330 article-title: Responses of neurons in the inferior colliculus of the rat to AM and FM tones publication-title: Hearing Res. – volume: 28 start-page: 3958 year: 2008 end-page: 3965 article-title: Right‐hemisphere auditory cortex is dominant for coding syllable patterns in speech publication-title: J. Neurosci. – year: 2008 – volume: 26 start-page: 13067 year: 2006 end-page: 13075 article-title: Positive emotions preferentially engage an auditory‐motor ‘mirror’ system publication-title: J. Neurosci. – volume: 12 start-page: 191 year: 2000 end-page: 200 article-title: Stereotaxic display of brain lesions publication-title: Behav. Neurol. – volume: 29 start-page: 139 year: 2008 end-page: 157 article-title: Human cortical responses to the speech envelope publication-title: Ear Hearing – volume: 22 start-page: 563 year: 2005 end-page: 575 article-title: The neural locus of temporal structure and expectancies in music: evidence from functional neuroimaging at 3 Tesla publication-title: Music Percept. – volume: 18 start-page: 2844 year: 2008 end-page: 2854 article-title: Listening to musical rhythms recruits motor regions of the brain publication-title: Cereb. Cortex – volume: 8 start-page: 389 year: 2005 end-page: 395 article-title: Hierarchical and asymmetric temporal sensitivity in human auditory cortices publication-title: Nat. Neurosci. – volume: 62 start-page: 463 year: 2009 end-page: 469 article-title: Learning to encode timing: mechanisms of plasticity in the auditory brainstem publication-title: Neuron – volume: 24 start-page: 117 year: 2005 end-page: 126 article-title: Gamma‐band activity reflects the metric structure of rhythmic tone sequences publication-title: Brain Res. Cogn. Brain Res. – volume: 59 start-page: 3677 year: 2012 end-page: 3689 article-title: Large‐scale brain networks emerge from dynamic processing of musical timbre, key and rhythm publication-title: NeuroImage – volume: 17 start-page: 1742 year: 2002 end-page: 1754 article-title: Neural correlates of timbre change in harmonic sounds publication-title: NeuroImage – volume: 84 start-page: 541 year: 2004 end-page: 577 article-title: Neural processing of amplitude‐modulated sounds publication-title: Physiol. Rev. – volume: 4 start-page: 540 year: 2001 end-page: 545 article-title: Musical syntax is processed in Broca's area: an MEG study publication-title: Nat. Neurosci. – year: 2007 – volume: 21 start-page: 1507 year: 2011 end-page: 1518 article-title: Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine‐scale spatial patterns publication-title: Cereb. Cortex – volume: 14 start-page: 1908 year: 1994 end-page: 1919 article-title: Neural mechanisms underlying melodic perception and memory for pitch publication-title: J. Neurosci. – volume: 298 start-page: 2167 year: 2002 end-page: 2170 article-title: The cortical topography of tonal structures underlying Western music publication-title: Science – volume: 79 start-page: 61 year: 1998 end-page: 78 article-title: A practical guide to wavelet analysis publication-title: B. Am. Meteorol. Soc. – volume: 73 start-page: 951 year: 1994 end-page: 954 article-title: Generating surrogate data for time‐series with several simultaneously measured variables publication-title: Phys. Rev. Lett. – volume: 33 start-page: 430 year: 2006 end-page: 448 article-title: The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability publication-title: NeuroImage – volume: 14 start-page: 40 year: 2010 end-page: 48 article-title: Reliability of cortical activity during natural stimulation publication-title: Trends Cogn. Sci. – volume: 32 start-page: 11507 year: 2012 end-page: 11510 article-title: A little goes a long way: how the adult brain is shaped by musical training in childhood publication-title: J. Neurosci. – year: 2012 article-title: Multivariate activation and connectivity patterns discriminate speech intelligibility in Wernicke's, Broca's, and Geschwind's Areas publication-title: Cereb. Cortex – volume: 1060 start-page: 454 year: 2005 end-page: 456 article-title: Left auditory cortex specialization for vertical harmonic structure of chords publication-title: Ann. NY Acad. Sci. – volume: 20 start-page: 1892 year: 2008 end-page: 1902 article-title: Plasticity in the adult human auditory brainstem following short‐term linguistic training publication-title: J. Cognitive Neurosci. – volume: 20 start-page: 2142 year: 2003 end-page: 2152 article-title: Musical structure is processed in ‘language’ areas of the brain: a possible role for Brodmann Area 47 in temporal coherence publication-title: NeuroImage – volume: 6 start-page: 37 year: 2002 end-page: 46 article-title: Structure and function of auditory cortex: music and speech publication-title: Trends Cogn. Sci. – year: 2012 article-title: Degree of musical expertise modulates higher order brain functioning publication-title: Cereb. Cortex – volume: 110 start-page: 4357 year: 2013 end-page: 4362 article-title: Reversal of age‐related neural timing delays with training publication-title: Proc. Natl. Acad. Sci. USA – volume: 303 start-page: 1634 year: 2004 end-page: 1640 article-title: Intersubject synchronization of cortical activity during natural vision publication-title: Science – volume: 87 start-page: 1723 year: 2002 end-page: 1737 article-title: Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex publication-title: J. Neurophysiol. – volume: 15 start-page: 1 year: 2002 end-page: 25 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum. Brain Mapp. – volume: 15 start-page: 207 year: 2005 end-page: 212 article-title: Neural substrates of processing syntax and semantics in music publication-title: Curr. Opin. Neurobiol. – year: 2006 – volume: 109 start-page: 16731 year: 2012 end-page: 16736 article-title: Assistive listening devices drive neuroplasticity in children with dyslexia publication-title: Proc. Natl. Acad. Sci. USA – volume: 55 start-page: 521 year: 2007 end-page: 532 article-title: Neural dynamics of event segmentation in music: converging evidence for dissociable ventral and dorsal networks publication-title: Neuron – year: 1995 – volume: 39 start-page: 87 year: 1980 end-page: 104 article-title: Thalamocortical transformation of responses to complex auditory stimuli publication-title: Exp. Brain Res. – volume: 23 start-page: 840 year: 2004 end-page: 848 article-title: Is voice processing species‐specific in human auditory cortex? ‐ An fMRI study publication-title: NeuroImage – volume: 30 start-page: 3572 year: 2010 end-page: 3578 article-title: The relationship of lyrics and tunes in the processing of unfamiliar songs: a functional magnetic resonance adaptation study publication-title: J. Neurosci. – volume: 74 start-page: 2685 year: 1995 end-page: 2706 article-title: Representation of a species‐specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics publication-title: J. Neurophysiol. – volume: 123 start-page: 2400 year: 2000 end-page: 2406 article-title: Identification of a pathway for intelligible speech in the left temporal lobe publication-title: Brain – volume: 23 start-page: S208 issue: Suppl. 1 year: 2004 end-page: S219 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage – ident: e_1_2_7_64_1 doi: 10.1523/JNEUROSCI.14-04-01908.1994 – ident: e_1_2_7_59_1 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – ident: e_1_2_7_55_1 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_2_7_47_1 doi: 10.1016/S1053-8119(03)00287-8 – ident: e_1_2_7_9_1 doi: 10.1073/pnas.1213555110 – ident: e_1_2_7_25_1 doi: 10.1126/science.1089506 – ident: e_1_2_7_29_1 doi: 10.1126/science.1076262 – ident: e_1_2_7_60_1 doi: 10.1016/j.neuron.2009.05.002 – ident: e_1_2_7_49_1 doi: 10.1016/0378-5955(83)90095-3 – ident: e_1_2_7_54_1 doi: 10.1523/JNEUROSCI.1949-12.2012 – ident: e_1_2_7_66_1 doi: 10.1038/nrn2152 – ident: e_1_2_7_7_1 doi: 10.1097/AUD.0b013e31816453dc – ident: e_1_2_7_18_1 doi: 10.1007/BF00237072 – ident: e_1_2_7_40_1 doi: 10.1006/nimg.2002.1295 – ident: e_1_2_7_58_1 doi: 10.1016/j.neuron.2007.07.003 – ident: e_1_2_7_30_1 doi: 10.1152/physrev.00029.2003 – ident: e_1_2_7_63_1 doi: 10.1093/cercor/bhm049 – ident: e_1_2_7_15_1 doi: 10.1016/j.neuron.2009.10.006 – ident: e_1_2_7_16_1 doi: 10.1152/jn.00923.2011 – ident: e_1_2_7_57_1 doi: 10.1162/jocn.2008.20131 – ident: e_1_2_7_19_1 doi: 10.1097/01.wnr.0000132919.12990.34 – ident: e_1_2_7_4_1 doi: 10.1093/cercor/bhq198 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.1910390305 – ident: e_1_2_7_11_1 doi: 10.1044/jshr.1501.05 – ident: e_1_2_7_33_1 doi: 10.1152/jn.1988.60.6.1799 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2004.09.019 – ident: e_1_2_7_14_1 doi: 10.1152/jn.00359.2007 – ident: e_1_2_7_24_1 doi: 10.5194/npg-11-561-2004 – volume-title: Rhythm and Transforms year: 2007 ident: e_1_2_7_53_1 – ident: e_1_2_7_46_1 doi: 10.1038/90557 – ident: e_1_2_7_6_1 doi: 10.1073/pnas.201400998 – ident: e_1_2_7_45_1 doi: 10.1196/annals.1360.048 – ident: e_1_2_7_32_1 doi: 10.1016/j.conb.2005.03.005 – ident: e_1_2_7_37_1 doi: 10.1525/mp.2005.22.3.563 – ident: e_1_2_7_38_1 doi: 10.1038/87502 – ident: e_1_2_7_61_1 doi: 10.1152/jn.1995.74.6.2685 – ident: e_1_2_7_52_1 doi: 10.1093/brain/123.12.2400 – ident: e_1_2_7_36_1 doi: 10.1016/j.neuroimage.2003.08.016 – ident: e_1_2_7_26_1 doi: 10.1016/j.tics.2009.10.011 – ident: e_1_2_7_42_1 doi: 10.1152/jn.00632.2001 – ident: e_1_2_7_43_1 doi: 10.1002/hbm.1058 – ident: e_1_2_7_12_1 doi: 10.1038/nn1409 – ident: e_1_2_7_48_1 doi: 10.1103/PhysRevLett.73.951 – ident: e_1_2_7_56_1 doi: 10.1016/j.cogbrainres.2004.12.014 – ident: e_1_2_7_23_1 doi: 10.1038/88459 – volume-title: The World in Six Songs: How the Musical Brain Created Human Nature year: 2008 ident: e_1_2_7_35_1 – ident: e_1_2_7_28_1 doi: 10.7551/mitpress/6575.001.0001 – ident: e_1_2_7_44_1 doi: 10.1093/cercor/bhs206 – ident: e_1_2_7_62_1 doi: 10.1523/JNEUROSCI.3907-06.2006 – ident: e_1_2_7_65_1 doi: 10.1016/S1364-6613(00)01816-7 – ident: e_1_2_7_10_1 doi: 10.1038/nn.2771 – ident: e_1_2_7_2_1 doi: 10.1523/JNEUROSCI.0187-08.2008 – ident: e_1_2_7_51_1 doi: 10.1523/JNEUROSCI.2751-09.2010 – ident: e_1_2_7_8_1 doi: 10.1016/j.neuroimage.2011.11.019 – ident: e_1_2_7_17_1 doi: 10.1093/cercor/bhn042 – ident: e_1_2_7_3_1 doi: 10.1523/JNEUROSCI.5242-08.2009 – ident: e_1_2_7_31_1 doi: 10.1073/pnas.97.22.11793 – ident: e_1_2_7_5_1 doi: 10.1093/cercor/bhs165 – ident: e_1_2_7_50_1 doi: 10.1155/2000/421719 – ident: e_1_2_7_22_1 doi: 10.1523/JNEUROSCI.2018-08.2009 – ident: e_1_2_7_41_1 doi: 10.1093/cercor/bhj070 – ident: e_1_2_7_34_1 doi: 10.1523/JNEUROSCI.4921-08.2009 – ident: e_1_2_7_13_1 doi: 10.1016/j.neuroimage.2006.06.054 – ident: e_1_2_7_27_1 doi: 10.1073/pnas.1206628109 – volume-title: Keeping Togther in Time: Dance and Drill in Human History year: 1995 ident: e_1_2_7_39_1 – reference: 17167096 - J Neurosci. 2006 Dec 13;26(50):13067-75 – reference: 11477431 - Nat Neurosci. 2001 Aug;4(8):839-44 – reference: 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 – reference: 22832388 - Cereb Cortex. 2013 Sep;23(9):2213-24 – reference: 19244522 - J Neurosci. 2009 Feb 25;29(8):2477-85 – reference: 15194885 - Neuroreport. 2004 Jun 28;15(9):1511-4 – reference: 6874603 - Hear Res. 1983 Jun;10(3):301-30 – reference: 16280464 - Cereb Cortex. 2006 Sep;16(9):1283-8 – reference: 17493921 - J Neurophysiol. 2007 Jul;98(1):224-31 – reference: 10057582 - Phys Rev Lett. 1994 Aug 15;73(7):951-954 – reference: 11849614 - Trends Cogn Sci. 2002 Jan 1;6(1):37-46 – reference: 11099443 - Brain. 2000 Dec;123 Pt 12:2400-6 – reference: 11698688 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13367-72 – reference: 9498591 - Magn Reson Med. 1998 Mar;39(3):361-8 – reference: 11568431 - Behav Neurol. 2000;12(4):191-200 – reference: 15528084 - Neuroimage. 2004 Nov;23(3):840-8 – reference: 15831404 - Curr Opin Neurobiol. 2005 Apr;15(2):207-12 – reference: 18595182 - Ear Hear. 2008 Apr;29(2):139-57 – reference: 11050211 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11793-9 – reference: 12498748 - Neuroimage. 2002 Dec;17(4):1742-54 – reference: 14527585 - Neuroimage. 2003 Sep;20(1):244-56 – reference: 11929894 - J Neurophysiol. 2002 Apr;87(4):1723-37 – reference: 20219991 - J Neurosci. 2010 Mar 10;30(10):3572-8 – reference: 5012812 - J Speech Hear Res. 1972 Mar;15(1):5-41 – reference: 17678862 - Neuron. 2007 Aug 2;55(3):521-32 – reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 – reference: 8747224 - J Neurophysiol. 1995 Dec;74(6):2685-706 – reference: 19914180 - Neuron. 2009 Nov 12;64(3):311-9 – reference: 11369945 - Nat Neurosci. 2001 Jun;4(6):633-7 – reference: 19515922 - J Neurosci. 2009 Jun 10;29(23):7540-8 – reference: 19535580 - J Neurosci. 2009 Jun 17;29(24):7686-93 – reference: 15044682 - Physiol Rev. 2004 Apr;84(2):541-77 – reference: 21378972 - Nat Neurosci. 2011 Apr;14(4):423-5 – reference: 15016991 - Science. 2004 Mar 12;303(5664):1634-40 – reference: 12481131 - Science. 2002 Dec 13;298(5601):2167-70 – reference: 11319564 - Nat Neurosci. 2001 May;4(5):540-5 – reference: 23401541 - Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4357-62 – reference: 22116038 - Neuroimage. 2012 Feb 15;59(4):3677-89 – reference: 14683718 - Neuroimage. 2003 Dec;20(4):2142-52 – reference: 17585307 - Nat Rev Neurosci. 2007 Jul;8(7):547-58 – reference: 22693339 - Cereb Cortex. 2013 Jul;23(7):1703-14 – reference: 3236052 - J Neurophysiol. 1988 Dec;60(6):1799-822 – reference: 17504783 - Cereb Cortex. 2008 Jan;18(1):230-42 – reference: 22949632 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16731-6 – reference: 18370594 - J Cogn Neurosci. 2008 Oct;20(10):1892-902 – reference: 6247179 - Exp Brain Res. 1980;39(1):87-104 – reference: 18400895 - J Neurosci. 2008 Apr 9;28(15):3958-65 – reference: 16597802 - Ann N Y Acad Sci. 2005 Dec;1060:454-6 – reference: 15922164 - Brain Res Cogn Brain Res. 2005 Jun;24(1):117-26 – reference: 15723061 - Nat Neurosci. 2005 Mar;8(3):389-95 – reference: 8158246 - J Neurosci. 1994 Apr;14(4):1908-19 – reference: 21071617 - Cereb Cortex. 2011 Jul;21(7):1507-18 – reference: 22131377 - J Neurophysiol. 2012 Mar;107(5):1325-36 – reference: 22915097 - J Neurosci. 2012 Aug 22;32(34):11507-10 – reference: 20004608 - Trends Cogn Sci. 2010 Jan;14(1):40-8 – reference: 16949304 - Neuroimage. 2006 Nov 1;33(2):430-48 – reference: 18388350 - Cereb Cortex. 2008 Dec;18(12):2844-54 – reference: 19477149 - Neuron. 2009 May 28;62(4):463-9 |
SSID | ssj0008645 |
Score | 2.4176366 |
Snippet | Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1458 |
SubjectTerms | Acoustic Stimulation Adult auditory cortex Auditory Perception Biological and medical sciences Brain - physiology Brain Mapping Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation Female Fundamental and applied biological sciences. Psychology Humans inferior colliculus inferior frontal gyrus Male medial geniculate Music Nerve Net - physiology parietal cortex Vertebrates: nervous system and sense organs |
Title | Inter-subject synchronization of brain responses during natural music listening |
URI | https://api.istex.fr/ark:/67375/WNG-BFQSBG4L-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12173 https://www.ncbi.nlm.nih.gov/pubmed/23578016 https://www.proquest.com/docview/1349398849 https://www.proquest.com/docview/1356930312 https://pubmed.ncbi.nlm.nih.gov/PMC4487043 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOLSXQqGPQItcVCEuQXk4L_UEiAWhshJtUfdQyYodW22BLNrsSqWn_oT-xv6SztibwLa0QtwiZSLLk7E9M575PoDXkQ6KCg8WP4qCzOexDvwiyQvfGBmaTPMk1pSHPO6nh6f8aJAM5uBN2wvj8CG6hButDLtf0wIvZXNjkeuvNUEjZIT0SbVa5BC9u4aOylNLUExwan4epoMpqhBV8XRfzpxFC6TWb1QbWTaoHuN4LW5zPP-un7zp19qDqbcIn9opuXqUs-3JWG6r73-gPd5zzkvwaOqwsh1nYY9hTtfLsLJTY7B-ccU2mS0htbn5ZXiw19LHrcCJzTX--vGzmUjK9bDmqlYWidc1frKhYZL4KdjIlenqhrmeSWbBRnHMC-KgZuekMcrePIHT3v6HvUN_yt_gK2I09it0zrRMbTsrnYpplVRloXRgdFUatJDK4PsQt350Ojj10Bp0UEIlw1SZQsbxU5ivh7V-Dkxh1GUqzXMtCx6rSiZEX67iXEU8kzr0YKv9k0JNwc2JY-NctEEOqk5Y1Xmw0YleOkSP24Q2rTl0EuXojErgskR87B-I3d7J-90D_lYEHqzP2Ev3AV2BYzCae_CqNSCBf4CuY8paDyeNIGDIuMhzXvxPJiGuyjiMPHjmjO56BAIqQo_dg2zGHDsBQg6ffVN_-WwRxDEmzwKOs9yy1vZvPYj9o759WL276Bo8jCxnCFWFvoD58WiiX6LnNpbrdon-BqtlQec |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fTxQxEJ8gPOALKKisf7AaQ3hZsrvt_kt8AeQ48bgEhXgvptl226jAHrm9S8QnP4Kf0U9ip71dOEVjfNtkZ9N0dtrOTGd-P4AXkQry0hwsfhQFqc-oCvw8znJfaxHqVLGYKsxDHvaT7gk7GMSDOXjZ9MI4fIg24YYrw-7XuMAxIX1tlavPFWIjpPQWLCCjN_IXvHp7BR6VJZaiGAHV_CxMBlNcIazjaT-dOY0WULFfsDqyqI2CtGO2uMn1_L2C8rpna4-mzjJ8aCblKlJOtyZjsSW__oL3-L-zvgNLU5-VbDsjuwtzqlqB1e3KxOvnl2SD2CpSm55fgcXdhkFuFY5suvHHt-_1RGC6h9SXlbRgvK73kww1EUhRQUauUlfVxLVNEos3asY8RxpqcoYqwwTOPTjp7B3vdv0phYMvkdTYL41_pkRiO1rxYEzKuCxyqQKtykIbIym1eR-a3d_4HQzbaLXxUUIpwkTqXFB6H-arYaXWgEgTeOlSsUyJnFFZihgZzCXNZMRSoUIPNptfyeUU3xxpNs54E-cY1XGrOg-et6IXDtTjJqENaw-tRDE6xSq4NObv-_t8p3P0bmef9XjgwfqMwbQf4C24iUczD541FsTNH8AbmaJSw0nNERuS5lnG8r_JxEhXScPIgwfO6q5GQKwi47R7kM7YYyuA4OGzb6pPHy2IuAnL04CZWW5ac_uzHvjeQd8-PPx30aew2D0-7PHe6_6bR3A7shQiWCT6GObHo4l6Yhy5sVi36_UnjAVGAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuPFoe4VEMQlUvqZLYeYlTW7otpawoULEHJCt2bAFts9VmV6Kc-An8Rn4JM84m7UJBiFukTBR5MhPPjGe-D-BpZIK8xI3Fj6Ig9QU3gZ_HWe5bq0KbGhFzQ3XIV_1k50DsDuLBHDxrZ2EafIiu4Eae4f7X5OAnpT3n5OZzRdAIKb8ECyJBZ6GI6M0ZdlSWOIZiwlPzszAZTGGFqI2ne3RmM1ogvX6h5siiRv3Yhtjiosjz9wbK84Gt25l61-FDu6amIeVwbTJWa_rrL3CP_7noG3BtGrGy9cbEbsKcqRZhab3CbP34lK0w10PqivOLcGWz5Y9bgn1XbPzx7Xs9UVTsYfVppR0UbzP5yYaWKSKoYKOmT9fUrBmaZA5tFN95TCTU7Ig0RuWbW3DQ23q3ueNPCRx8TZTGfonRmVGJm2elbTEp47LItQmsKQuLJlJavB_ivx-jDkFDtBYjlFCrMNE2V5zfhvlqWJm7wDSmXbY0IjMqF1yXKib-cs0zHYlUmdCD1fZLSj1FNyeSjSPZZjmoOulU58GTTvSkgfS4SGjFmUMnUYwOqQcujeX7_rbc6O2_3dgWezLwYHnGXroH6Awcs9HMg8etAUn8AnQeU1RmOKklIUPyPMtE_jeZmMgqeRh5cKcxurM3EFIRhuwepDPm2AkQdPjsnerTRwchjkl5Gghc5aqztj_rQW7t9t3FvX8XfQSXXz_vyb0X_Zf34Wrk-EOoQ_QBzI9HE_MQo7ixWnbe-hOz0US5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-subject+synchronization+of+brain+responses+during+natural+music+listening&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Abrams%2C+Daniel+A&rft.au=Ryali%2C+Srikanth&rft.au=Chen%2C+Tianwen&rft.au=Chordia%2C+Parag&rft.date=2013-05-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=37&rft.issue=9&rft.spage=1458&rft.epage=1469&rft_id=info:doi/10.1111%2Fejn.12173&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |