Inter-subject synchronization of brain responses during natural music listening

Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real‐world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, a...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 37; no. 9; pp. 1458 - 1469
Main Authors Abrams, Daniel A., Ryali, Srikanth, Chen, Tianwen, Chordia, Parag, Khouzam, Amirah, Levitin, Daniel J., Menon, Vinod
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.05.2013
Blackwell
Subjects
Online AccessGet full text
ISSN0953-816X
1460-9568
1460-9568
DOI10.1111/ejn.12173

Cover

Loading…
Abstract Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real‐world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non‐musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right‐lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo‐musical control conditions. Remarkably, inter‐subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro‐temporal features of the stimulus. Increased synchronization during music listening was also evident in a right‐hemisphere fronto‐parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. Little is known about common brain systems that support the integration of extended, naturalistic music stimuli. We show that music synchronizes brain response across listeners in bilateral auditory midbrain and thalamus, auditory cortex, right‐lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. Results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences.
AbstractList Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real‐world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non‐musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right‐lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo‐musical control conditions. Remarkably, inter‐subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro‐temporal features of the stimulus. Increased synchronization during music listening was also evident in a right‐hemisphere fronto‐parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences.
Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real‐world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non‐musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right‐lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo‐musical control conditions. Remarkably, inter‐subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro‐temporal features of the stimulus. Increased synchronization during music listening was also evident in a right‐hemisphere fronto‐parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. Little is known about common brain systems that support the integration of extended, naturalistic music stimuli. We show that music synchronizes brain response across listeners in bilateral auditory midbrain and thalamus, auditory cortex, right‐lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. Results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences.
Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences.Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences.
Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. Little is known about common brain systems that support the integration of extended, naturalistic music stimuli. We show that music synchronizes brain response across listeners in bilateral auditory midbrain and thalamus, auditory cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. Results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences.
Author Abrams, Daniel A.
Chordia, Parag
Chen, Tianwen
Menon, Vinod
Ryali, Srikanth
Levitin, Daniel J.
Khouzam, Amirah
AuthorAffiliation 2 Program in Neuroscience, Stanford University School of Medicine, Stanford, CA, USA
5 Department of Psychology, McGill University, Montreal, QC, Canada
3 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
1 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94304, USA
4 Department of Music, Georgia Institute of Technology, Atlanta, GA, USA
AuthorAffiliation_xml – name: 4 Department of Music, Georgia Institute of Technology, Atlanta, GA, USA
– name: 5 Department of Psychology, McGill University, Montreal, QC, Canada
– name: 2 Program in Neuroscience, Stanford University School of Medicine, Stanford, CA, USA
– name: 3 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
– name: 1 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94304, USA
Author_xml – sequence: 1
  givenname: Daniel A.
  surname: Abrams
  fullname: Abrams, Daniel A.
  email: daa@stanford.edu
  organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA, 94304, Stanford, USA
– sequence: 2
  givenname: Srikanth
  surname: Ryali
  fullname: Ryali, Srikanth
  organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA, 94304, Stanford, USA
– sequence: 3
  givenname: Tianwen
  surname: Chen
  fullname: Chen, Tianwen
  organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA, 94304, Stanford, USA
– sequence: 4
  givenname: Parag
  surname: Chordia
  fullname: Chordia, Parag
  organization: Department of Music, Georgia Institute of Technology, GA, Atlanta, USA
– sequence: 5
  givenname: Amirah
  surname: Khouzam
  fullname: Khouzam, Amirah
  organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA, 94304, Stanford, USA
– sequence: 6
  givenname: Daniel J.
  surname: Levitin
  fullname: Levitin, Daniel J.
  organization: Department of Psychology, McGill University, QC, Montreal, Canada
– sequence: 7
  givenname: Vinod
  surname: Menon
  fullname: Menon, Vinod
  email: daa@stanford.edu
  organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 94304, Stanford, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27428718$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23578016$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1v0zAYhS00xLqOC_4Ayg0SXGSz4484N0hs2spQtQkBgjvLcd5sLqld7ATW_Xrctes2JBC-sCW_zzk69tlDO847QOgFwQckrUOYuQNSkJI-QSPCBM4rLuQOGuGK01wS8W0X7cU4wxhLwfgztFtQXkpMxAhdnLkeQh6Hegamz-LSmavgnb3RvfUu821WB21dFiAuvIsQs2YI1l1mTvdD0F02H6I1WWdjDy7d76Onre4iPN-cY_Tl9OTz8ft8ejE5O343zQ1nJc0bxgXUAguWcmBRioY3ujKAW2h02xS4adOcgDakqJgsOGmxJMTURJi2qikdo7dr38VQz6Ex4PqURi2CneuwVF5b9Xji7JW69D8VY7LEbGXwemMQ_I8BYq_mNhroOu3AD1ERykVFMSXFf6CsopWUaR-jlw9jbfPcfXgCXm0AHY3u2qCdsfGeK1khSyIT92bNmeBjDNBuEYLVqnSVSle3pSf28A_W2P62v_Ry2_1L8ct2sPy7tTr5cH6nyNeKVdHXW4UO35UoacnV1_OJOjr9-OlowqYK098uWM30
CitedBy_id crossref_primary_10_1016_j_neuroimage_2018_08_005
crossref_primary_10_1038_s41598_017_06105_2
crossref_primary_10_3390_app11199158
crossref_primary_10_7554_eLife_39906
crossref_primary_10_1146_annurev_psych_122216_011740
crossref_primary_10_3917_comla_193_0025
crossref_primary_10_3389_fnhum_2014_00798
crossref_primary_10_1016_j_bcp_2020_114111
crossref_primary_10_1016_j_earlhumdev_2015_08_004
crossref_primary_10_3389_fnetp_2022_910920
crossref_primary_10_3389_fnhum_2022_955238
crossref_primary_10_1177_21582440241298400
crossref_primary_10_3389_fninf_2019_00047
crossref_primary_10_1111_ejn_16324
crossref_primary_10_3389_fncom_2022_875282
crossref_primary_10_1016_j_brainres_2021_147571
crossref_primary_10_1016_j_neuroimage_2016_07_002
crossref_primary_10_1016_j_neuroimage_2020_116655
crossref_primary_10_1371_journal_pone_0128833
crossref_primary_10_1016_j_sbspro_2015_02_169
crossref_primary_10_1109_ACCESS_2021_3097774
crossref_primary_10_5965_1808312915252020e0035
crossref_primary_10_1002_hbm_23565
crossref_primary_10_1016_j_neuroimage_2019_116474
crossref_primary_10_1016_j_neuropsychologia_2023_108604
crossref_primary_10_1098_rstb_2022_0421
crossref_primary_10_1002_brb3_2270
crossref_primary_10_1093_scan_nsab094
crossref_primary_10_3389_fpsyg_2014_01257
crossref_primary_10_1016_j_jaac_2013_10_012
crossref_primary_10_1142_S0129065721500015
crossref_primary_10_1016_j_cortex_2023_05_020
crossref_primary_10_1016_j_ijpsycho_2024_112387
crossref_primary_10_1016_j_neuroimage_2020_116559
crossref_primary_10_1177_10892680241260840
crossref_primary_10_1038_tp_2016_80
crossref_primary_10_1016_j_biopsycho_2017_12_005
crossref_primary_10_1038_srep41414
crossref_primary_10_1073_pnas_2202515119
crossref_primary_10_3389_fnbeh_2017_00038
crossref_primary_10_1049_htl_2016_0073
crossref_primary_10_1177_10298649241255694
crossref_primary_10_1162_jocn_a_01815
crossref_primary_10_3389_fnhum_2023_1225377
crossref_primary_10_1093_scan_nsv060
crossref_primary_10_21706_ps_71_1_28
crossref_primary_10_1007_s00729_015_0056_1
crossref_primary_10_3917_comla_193_0049
crossref_primary_10_1002_hbm_26060
crossref_primary_10_1177_0305735614543968
crossref_primary_10_1093_scan_nsab124
crossref_primary_10_1142_S0129065717500551
crossref_primary_10_1016_j_neuroscience_2020_06_015
crossref_primary_10_3389_fnins_2015_00157
crossref_primary_10_30535_mto_20_3_3
crossref_primary_10_1016_j_neuroimage_2020_116799
crossref_primary_10_3389_fnins_2022_921489
crossref_primary_10_3389_fpsyg_2018_01862
crossref_primary_10_3389_fnhum_2020_584312
crossref_primary_10_1038_s41598_021_00492_3
crossref_primary_10_1016_j_neuroscience_2015_10_061
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1371_journal_pone_0302705
crossref_primary_10_1002_hbm_23549
crossref_primary_10_1007_s11682_016_9515_8
crossref_primary_10_3389_fnins_2021_723893
crossref_primary_10_1016_j_jneumeth_2018_03_014
crossref_primary_10_1016_j_cortex_2015_06_026
crossref_primary_10_3389_fnins_2021_665767
crossref_primary_10_1016_j_neuroimage_2022_119496
crossref_primary_10_1093_scan_nsz012
crossref_primary_10_3389_fpsyg_2023_765019
crossref_primary_10_1016_j_neuroimage_2016_05_023
crossref_primary_10_1093_cercor_bhw334
crossref_primary_10_1109_ACCESS_2024_3409771
crossref_primary_10_1177_0305735614547665
crossref_primary_10_3389_fncom_2018_00051
crossref_primary_10_1109_TNSRE_2017_2778178
crossref_primary_10_1111_ejn_16036
crossref_primary_10_1525_mp_2019_37_1_42
crossref_primary_10_1098_rstb_2021_0365
crossref_primary_10_1073_pnas_1602948113
crossref_primary_10_1371_journal_pone_0164783
crossref_primary_10_1155_2016_2094601
crossref_primary_10_1038_srep11605
crossref_primary_10_1093_cercor_bhab036
crossref_primary_10_3389_fnhum_2019_00150
crossref_primary_10_3389_fnins_2021_702067
crossref_primary_10_3389_fpsyg_2021_653021
Cites_doi 10.1523/JNEUROSCI.14-04-01908.1994
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1016/j.neuroimage.2004.07.051
10.1016/S1053-8119(03)00287-8
10.1073/pnas.1213555110
10.1126/science.1089506
10.1126/science.1076262
10.1016/j.neuron.2009.05.002
10.1016/0378-5955(83)90095-3
10.1523/JNEUROSCI.1949-12.2012
10.1038/nrn2152
10.1097/AUD.0b013e31816453dc
10.1007/BF00237072
10.1006/nimg.2002.1295
10.1016/j.neuron.2007.07.003
10.1152/physrev.00029.2003
10.1093/cercor/bhm049
10.1016/j.neuron.2009.10.006
10.1152/jn.00923.2011
10.1162/jocn.2008.20131
10.1097/01.wnr.0000132919.12990.34
10.1093/cercor/bhq198
10.1002/mrm.1910390305
10.1044/jshr.1501.05
10.1152/jn.1988.60.6.1799
10.1016/j.neuroimage.2004.09.019
10.1152/jn.00359.2007
10.5194/npg-11-561-2004
10.1038/90557
10.1073/pnas.201400998
10.1196/annals.1360.048
10.1016/j.conb.2005.03.005
10.1525/mp.2005.22.3.563
10.1038/87502
10.1152/jn.1995.74.6.2685
10.1093/brain/123.12.2400
10.1016/j.neuroimage.2003.08.016
10.1016/j.tics.2009.10.011
10.1152/jn.00632.2001
10.1002/hbm.1058
10.1038/nn1409
10.1103/PhysRevLett.73.951
10.1016/j.cogbrainres.2004.12.014
10.1038/88459
10.7551/mitpress/6575.001.0001
10.1093/cercor/bhs206
10.1523/JNEUROSCI.3907-06.2006
10.1016/S1364-6613(00)01816-7
10.1038/nn.2771
10.1523/JNEUROSCI.0187-08.2008
10.1523/JNEUROSCI.2751-09.2010
10.1016/j.neuroimage.2011.11.019
10.1093/cercor/bhn042
10.1523/JNEUROSCI.5242-08.2009
10.1073/pnas.97.22.11793
10.1093/cercor/bhs165
10.1155/2000/421719
10.1523/JNEUROSCI.2018-08.2009
10.1093/cercor/bhj070
10.1523/JNEUROSCI.4921-08.2009
10.1016/j.neuroimage.2006.06.054
10.1073/pnas.1206628109
ContentType Journal Article
Copyright 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
2014 INIST-CNRS
2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2013
Copyright_xml – notice: 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
– notice: 2014 INIST-CNRS
– notice: 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2013
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1111/ejn.12173
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList CrossRef

MEDLINE

MEDLINE - Academic
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Music
EISSN 1460-9568
EndPage 1469
ExternalDocumentID PMC4487043
23578016
27428718
10_1111_ejn_12173
EJN12173
ark_67375_WNG_BFQSBG4L_0
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: F32 DC010322‐01A2; 1R21DC011095
– fundername: National Science Foundation
  funderid: BCS0449927
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 228175‐2010
– fundername: NIDCD NIH HHS
  grantid: F32 DC010322-01A2
– fundername: NIDCD NIH HHS
  grantid: F32 DC010322
– fundername: NIDCD NIH HHS
  grantid: 1R21DC011095
– fundername: NIDCD NIH HHS
  grantid: R21 DC011095
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
IQODW
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c5473-d456eb60647800676d5da9ce0fedafd20df6eb1eac12948251f0811cb16cf9b33
IEDL.DBID DR2
ISSN 0953-816X
1460-9568
IngestDate Thu Aug 21 18:15:38 EDT 2025
Fri Jul 11 12:22:32 EDT 2025
Fri Jul 11 07:09:48 EDT 2025
Mon Jul 21 06:05:36 EDT 2025
Wed Apr 02 07:23:33 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Tue Jul 01 04:00:34 EDT 2025
Wed Jan 22 16:40:06 EST 2025
Wed Oct 30 09:53:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Medial geniculate body
Human
medial geniculate
Colliculus inferior
inferior frontal gyrus
Central nervous system
Parietal cortex
inferior colliculus
Auditory pathway
Synchronization
Auditory cortex
Encephalon
Language English
License CC BY 4.0
2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5473-d456eb60647800676d5da9ce0fedafd20df6eb1eac12948251f0811cb16cf9b33
Notes Natural Sciences and Engineering Research Council of Canada - No. 228175-2010
istex:EDAB2D3E54817A649025E539F82C2458FAFB63D1
NIH - No. F32 DC010322-01A2; No. 1R21DC011095
ark:/67375/WNG-BFQSBG4L-0
National Science Foundation - No. BCS0449927
Fig. S1. Differences between ISS and GLM approaches for the analysis of music processing in the brain. Fig. S2. Flow chart for ISS Analysis. Synchronization was calculated by computing Pearson correlations between the voxel time series in each pair of subjects (136 subject-to-subject comparisons total).Data S1. Methods.
ArticleID:EJN12173
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23578016
PQID 1349398849
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4487043
proquest_miscellaneous_1356930312
proquest_miscellaneous_1349398849
pubmed_primary_23578016
pascalfrancis_primary_27428718
crossref_primary_10_1111_ejn_12173
crossref_citationtrail_10_1111_ejn_12173
wiley_primary_10_1111_ejn_12173_EJN12173
istex_primary_ark_67375_WNG_BFQSBG4L_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2013
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: May 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: France
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Zatorre, R.J., Evans, A.C. & Meyer, E. (1994) Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci., 14, 1908-1919.
Grinsted, A., Moore, J.C. & Jevrejeva, S. (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geoph., 11, 561-566.
Joris, P.X., Schreiner, C.E. & Rees, A. (2004) Neural processing of amplitude-modulated sounds. Physiol. Rev., 84, 541-577.
Abrams, D.A., Bhatara, A., Ryali, S., Balaban, E., Levitin, D.J. & Menon, V. (2011) Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. Cereb. Cortex, 21, 1507-1518.
Fecteau, S., Armony, J.L., Joanette, Y. & Belin, P. (2004) Is voice processing species-specific in human auditory cortex? - An fMRI study. NeuroImage, 23, 840-848.
Skoe, E. & Kraus, N. (2012) A little goes a long way: how the adult brain is shaped by musical training in childhood. J. Neurosci., 32, 11507-11510.
Platel, H., Baron, J.C., Desgranges, B., Bernard, F. & Eustache, F. (2003) Semantic and episodic memory of music are subserved by distinct neural networks. NeuroImage, 20, 244-256.
Scott, S.K., Blank, C.C., Rosen, S. & Wise, R.J.S. (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406.
Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M. & Matthews, P.M. (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl. 1), S208-S219.
Glover, G.H. & Lai, S. (1998) Self-navigated spiral fMRI: interleaved versus single-shot. Magn. Reson. Med., 39, 361-368.
Griffiths, T.D., Uppenkamp, S., Johnsrude, I., Josephs, O. & Patterson, R.D. (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat. Neurosci., 4, 633-637.
Chen, J.L., Penhune, V.B. & Zatorre, R.J. (2008) Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex, 18, 2844-2854.
Koelsch, S. (2005) Neural substrates of processing syntax and semantics in music. Curr. Opin. Neurobiol., 15, 207-212.
Baumann, S., Griffiths, T.D., Sun, L., Petkov, C.I., Thiele, A. & Rees, A. (2011) Orthogonal representation of sound dimensions in the primate midbrain. Nat. Neurosci., 14, 423-425.
Sridharan, D., Levitin, D.J., Chafe, C.H., Berger, J. & Menon, V. (2007) Neural dynamics of event segmentation in music: converging evidence for dissociable ventral and dorsal networks. Neuron, 55, 521-532.
Aiken, S.J. & Picton, T.W. (2008) Human cortical responses to the speech envelope. Ear Hearing, 29, 139-157.
Tzounopoulos, T. & Kraus, N. (2009) Learning to encode timing: mechanisms of plasticity in the auditory brainstem. Neuron, 62, 463-469.
Kaas, J.H. & Hackett, T.A. (2000) Subdivisions of auditory cortex and processing streams in primates. Proc. Natl. Acad. Sci. USA, 97, 11793-11799.
Chait, M., Poeppel, D. & Simon, J.Z. (2007) Stimulus context affects auditory cortical responses to changes in interaural correlation. J. Neurophysiol., 98, 224-231.
Muhlau, M., Rauschecker, J.P., Oestreicher, E., Gaser, C., Rottinger, M., Wohlschlager, A.M., Simon, F., Etgen, T., Conrad, B. & Sander, D. (2006) Structural brain changes in tinnitus. Cereb. Cortex, 16, 1283-1288.
Wilson, S.M., Molnar-Szakacs, I. & Iacoboni, M. (2008) Beyond superior temporal cortex: intersubject correlations in narrative speech comprehension. Cereb. Cortex, 18, 230-242.
Anderson, S., White-Schwoch, T., Parbery-Clark, A. & Kraus, N. (2013) Reversal of age-related neural timing delays with training. Proc. Natl. Acad. Sci. USA, 110, 4357-4362.
Nichols, T.E. & Holmes, A.P. (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp., 15, 1-25.
Rees, A. & Moller, A.R. (1983) Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hearing Res., 10, 301-330.
Prichard, D. & Theiler, J. (1994) Generating surrogate data for time-series with several simultaneously measured variables. Phys. Rev. Lett., 73, 951-954.
Oechslin, M.S., Van De Ville, D., Lazeyras, F., Hauert, C.A. & James, C.E. (2012) Degree of musical expertise modulates higher order brain functioning. Cereb. Cortex, doi: 10.1093/cercor/bhs206 [Epub ahead of print].
Alluri, V., Toiviainen, P., Jaaskelainen, I.P., Glerean, E., Sams, M. & Brattico, E. (2012) Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage, 59, 3677-3689.
Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., Mahncke, H. & Merzenich, M.M. (2001) Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proc. Natl. Acad. Sci. USA, 98, 13367-13372.
Zatorre, R.J., Belin, P. & Penhune, V.B. (2002) Structure and function of auditory cortex: music and speech. Trends Cogn. Sci., 6, 37-46.
Snyder, J.S. & Large, E.W. (2005) Gamma-band activity reflects the metric structure of rhythmic tone sequences. Brain Res. Cogn. Brain Res., 24, 117-126.
Abrams, D.A., Ryali, S., Chen, T., Balaban, E., Levitin, D.J. & Menon, V. (2012) Multivariate activation and connectivity patterns discriminate speech intelligibility in Wernicke's, Broca's, and Geschwind's Areas. Cereb. Cortex, doi: 10.1093/cercor/bhs165 [Epub ahead of print].
Hasson, U., Malach, R. & Heeger, D.J. (2010) Reliability of cortical activity during natural stimulation. Trends Cogn. Sci., 14, 40-48.
Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T. & Kraus, N. (2009) Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia. Neuron, 64, 311-319.
Deike, S., Gaschler-Markefski, B., Brechmann, A. & Scheich, H. (2004) Auditory stream segregation relying on timbre involves left auditory cortex. NeuroReport, 15, 1511-1514.
Levitin, D.J. & Menon, V. (2005) The neural locus of temporal structure and expectancies in music: evidence from functional neuroimaging at 3 Tesla. Music Percept., 22, 563-575.
Chandrasekaran, B., Kraus, N. & Wong, P.C.M. (2012) Human inferior colliculus activity relates to individual differences in spoken language learning. J. Neurophysiol., 107, 1325-1336.
Menon, V., Levitin, D.J., Smith, B.K., Lembke, A., Krasnow, B.D., Glazer, D., Glover, G.H. & McAdams, S. (2002) Neural correlates of timbre change in harmonic sounds. NeuroImage, 17, 1742-1754.
Grahn, J.A. & Rowe, J.B. (2009) Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J. Neurosci., 29, 7540-7548.
Huron, D. (2006) Sweet Anticipation: Music and the Psychology of Expectation. MIT Press, Cambridge, MA.
Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K. & Zilles, K. (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage, 33, 430-448.
Blesser, B. (1972) Speech perception under conditions of spectral transformation. 1. Phonetic characteristics. J. Speech Hear. Res., 15, 5-41.
McNeill, W.H. (1995) Keeping Togther in Time: Dance and Drill in Human History. Harvard University Press, Cambridge, MA.
Maess, B., Koelsch, S., Gunter, T.C. & Friederici, A.D. (2001) Musical syntax is processed in Broca's area: an MEG study. Nat. Neurosci., 4, 540-545.
Nagarajan, S.S., Cheung, S.W., Bedenbaugh, P., Beitel, R.E., Schreiner, C.E. & Merzenich, M.M. (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. J. Neurophysiol., 87, 1723-1737.
Patel, A.D. & Balaban, E. (2001) Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nat. Neurosci., 4, 839-844.
Song, J.H., Skoe, E., Wong, P.C. & Kraus, N. (2008) Plasticity in the adult human auditory brainstem following short-term linguistic training. J. Cognitive Neurosci., 20, 1892-1902.
Abrams, D.A., Nicol, T., Zecker, S. & Kraus, N. (2009) Abnormal cortical processing of the syllable rate of speech in poor readers. J. Neurosci., 29, 7686-7693.
Zatorre, R.J., Chen, J.L. & Penhune, V.B. (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat. Rev. Neurosci., 8, 547-558.
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. (2004) Intersubject synchronization of cortical activity during natural vision. Science, 303, 1634-1640.
Janata, P., Birk, J.L., Van Horn, J.D., Leman, M., Tillmann, B. & Bharucha, J.J. (2002) The cortical topography of tonal structures underlying Western music. Science, 298, 2167-2170.
Sammler, D., Baird, A., Valabregue, R., Clement, S., Dupont, S., Belin, P. & Samson, S. (2010) The relationship of lyrics and tunes in the processing of unfamiliar songs: a functional magnetic resonance adaptation study. J. Neurosci., 30, 3572-3578.
Levitin, D.J. & Menon, V. (2003) Musical structure is processed in 'language' areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. NeuroImage, 20, 2142-2152.
Torrence, C. & Compo, G. (1998) A practical guide to wavelet analysis. B. Am. Meteorol. Soc., 79, 61-78.
Abrams, D.A., Nicol, T., Zecker, S. & Kraus, N. (2008) Right-hemisphere auditory cortex is dominant for coding syllable patterns in speech. J. Neurosci., 28, 3958-3965.
Passynkova, N., Sander, K. & Scheich, H. (2005) Left auditory cortex specialization for vertical harmonic structure of chords. Ann. NY Acad. Sci., 1060, 454-456.
Sethares, W.A. (2007) Rhythm and Transforms. Springer, London.
Boemio, A., Fromm, S., Braun, A. & Poeppel, D. (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat. Neurosci., 8, 389-395.
Langner, G. & Schreiner, C.E. (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol., 60, 1799-1822.
Creutzfeldt, O., Hellweg, F.C. & Schreiner, C. (1980) Thalamocortical tr
2002; 17
1995; 74
2002; 15
2010; 14
2006; 33
2004; 23
1983; 10
2012; 59
2011; 14
2005; 22
2005; 24
1980; 39
2000; 12
2008; 29
2002; 87
2008; 28
2000; 97
2006; 26
2007; 8
2011; 21
2013; 110
2000; 123
2008; 20
2010; 30
1994; 73
2001; 98
1972; 15
2004; 303
2004; 84
2009; 62
2009; 64
2012
2008; 18
2006; 16
2002; 6
2002; 298
2008
2007
2006
1995
2007; 98
2007; 55
2012; 107
2012; 32
2009; 29
2012; 109
2004; 11
1998; 39
2001; 4
2005; 8
2004; 15
1994; 14
2005; 1060
2005; 15
1988; 60
2003; 20
1998; 79
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
McNeill W.H. (e_1_2_7_39_1) 1995
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Sethares W.A. (e_1_2_7_53_1) 2007
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Levitin D.J. (e_1_2_7_35_1) 2008
18595182 - Ear Hear. 2008 Apr;29(2):139-57
16949304 - Neuroimage. 2006 Nov 1;33(2):430-48
6247179 - Exp Brain Res. 1980;39(1):87-104
11849614 - Trends Cogn Sci. 2002 Jan 1;6(1):37-46
11319564 - Nat Neurosci. 2001 May;4(5):540-5
22949632 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16731-6
22693339 - Cereb Cortex. 2013 Jul;23(7):1703-14
5012812 - J Speech Hear Res. 1972 Mar;15(1):5-41
19535580 - J Neurosci. 2009 Jun 17;29(24):7686-93
15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
11568431 - Behav Neurol. 2000;12(4):191-200
19244522 - J Neurosci. 2009 Feb 25;29(8):2477-85
16597802 - Ann N Y Acad Sci. 2005 Dec;1060:454-6
15723061 - Nat Neurosci. 2005 Mar;8(3):389-95
18400895 - J Neurosci. 2008 Apr 9;28(15):3958-65
18370594 - J Cogn Neurosci. 2008 Oct;20(10):1892-902
15831404 - Curr Opin Neurobiol. 2005 Apr;15(2):207-12
21378972 - Nat Neurosci. 2011 Apr;14(4):423-5
17493921 - J Neurophysiol. 2007 Jul;98(1):224-31
11929894 - J Neurophysiol. 2002 Apr;87(4):1723-37
11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25
8158246 - J Neurosci. 1994 Apr;14(4):1908-19
14683718 - Neuroimage. 2003 Dec;20(4):2142-52
15194885 - Neuroreport. 2004 Jun 28;15(9):1511-4
11050211 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11793-9
23401541 - Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4357-62
20219991 - J Neurosci. 2010 Mar 10;30(10):3572-8
20004608 - Trends Cogn Sci. 2010 Jan;14(1):40-8
22915097 - J Neurosci. 2012 Aug 22;32(34):11507-10
15044682 - Physiol Rev. 2004 Apr;84(2):541-77
19515922 - J Neurosci. 2009 Jun 10;29(23):7540-8
22131377 - J Neurophysiol. 2012 Mar;107(5):1325-36
11369945 - Nat Neurosci. 2001 Jun;4(6):633-7
22832388 - Cereb Cortex. 2013 Sep;23(9):2213-24
6874603 - Hear Res. 1983 Jun;10(3):301-30
10057582 - Phys Rev Lett. 1994 Aug 15;73(7):951-954
17167096 - J Neurosci. 2006 Dec 13;26(50):13067-75
9498591 - Magn Reson Med. 1998 Mar;39(3):361-8
19477149 - Neuron. 2009 May 28;62(4):463-9
15528084 - Neuroimage. 2004 Nov;23(3):840-8
21071617 - Cereb Cortex. 2011 Jul;21(7):1507-18
17678862 - Neuron. 2007 Aug 2;55(3):521-32
22116038 - Neuroimage. 2012 Feb 15;59(4):3677-89
15922164 - Brain Res Cogn Brain Res. 2005 Jun;24(1):117-26
15016991 - Science. 2004 Mar 12;303(5664):1634-40
18388350 - Cereb Cortex. 2008 Dec;18(12):2844-54
3236052 - J Neurophysiol. 1988 Dec;60(6):1799-822
17585307 - Nat Rev Neurosci. 2007 Jul;8(7):547-58
11698688 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13367-72
17504783 - Cereb Cortex. 2008 Jan;18(1):230-42
16280464 - Cereb Cortex. 2006 Sep;16(9):1283-8
11099443 - Brain. 2000 Dec;123 Pt 12:2400-6
12481131 - Science. 2002 Dec 13;298(5601):2167-70
14527585 - Neuroimage. 2003 Sep;20(1):244-56
12498748 - Neuroimage. 2002 Dec;17(4):1742-54
19914180 - Neuron. 2009 Nov 12;64(3):311-9
8747224 - J Neurophysiol. 1995 Dec;74(6):2685-706
11477431 - Nat Neurosci. 2001 Aug;4(8):839-44
References_xml – reference: Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T. & Kraus, N. (2009) Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia. Neuron, 64, 311-319.
– reference: Langner, G. & Schreiner, C.E. (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol., 60, 1799-1822.
– reference: Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K. & Zilles, K. (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage, 33, 430-448.
– reference: Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M. & Matthews, P.M. (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl. 1), S208-S219.
– reference: Kaas, J.H. & Hackett, T.A. (2000) Subdivisions of auditory cortex and processing streams in primates. Proc. Natl. Acad. Sci. USA, 97, 11793-11799.
– reference: Grahn, J.A. & Rowe, J.B. (2009) Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J. Neurosci., 29, 7540-7548.
– reference: Levitin, D.J. (2008) The World in Six Songs: How the Musical Brain Created Human Nature. Dutton/Penguin, New York.
– reference: Zatorre, R.J., Evans, A.C. & Meyer, E. (1994) Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci., 14, 1908-1919.
– reference: Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., Mahncke, H. & Merzenich, M.M. (2001) Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proc. Natl. Acad. Sci. USA, 98, 13367-13372.
– reference: Tzounopoulos, T. & Kraus, N. (2009) Learning to encode timing: mechanisms of plasticity in the auditory brainstem. Neuron, 62, 463-469.
– reference: Joris, P.X., Schreiner, C.E. & Rees, A. (2004) Neural processing of amplitude-modulated sounds. Physiol. Rev., 84, 541-577.
– reference: Torrence, C. & Compo, G. (1998) A practical guide to wavelet analysis. B. Am. Meteorol. Soc., 79, 61-78.
– reference: Nagarajan, S.S., Cheung, S.W., Bedenbaugh, P., Beitel, R.E., Schreiner, C.E. & Merzenich, M.M. (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. J. Neurophysiol., 87, 1723-1737.
– reference: Chandrasekaran, B., Kraus, N. & Wong, P.C.M. (2012) Human inferior colliculus activity relates to individual differences in spoken language learning. J. Neurophysiol., 107, 1325-1336.
– reference: Alluri, V., Toiviainen, P., Jaaskelainen, I.P., Glerean, E., Sams, M. & Brattico, E. (2012) Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage, 59, 3677-3689.
– reference: Rees, A. & Moller, A.R. (1983) Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hearing Res., 10, 301-330.
– reference: Abrams, D.A., Bhatara, A., Ryali, S., Balaban, E., Levitin, D.J. & Menon, V. (2011) Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. Cereb. Cortex, 21, 1507-1518.
– reference: Levitin, D.J. & Menon, V. (2005) The neural locus of temporal structure and expectancies in music: evidence from functional neuroimaging at 3 Tesla. Music Percept., 22, 563-575.
– reference: Boemio, A., Fromm, S., Braun, A. & Poeppel, D. (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat. Neurosci., 8, 389-395.
– reference: Janata, P., Birk, J.L., Van Horn, J.D., Leman, M., Tillmann, B. & Bharucha, J.J. (2002) The cortical topography of tonal structures underlying Western music. Science, 298, 2167-2170.
– reference: Song, J.H., Skoe, E., Wong, P.C. & Kraus, N. (2008) Plasticity in the adult human auditory brainstem following short-term linguistic training. J. Cognitive Neurosci., 20, 1892-1902.
– reference: Hasson, U., Malach, R. & Heeger, D.J. (2010) Reliability of cortical activity during natural stimulation. Trends Cogn. Sci., 14, 40-48.
– reference: Oechslin, M.S., Van De Ville, D., Lazeyras, F., Hauert, C.A. & James, C.E. (2012) Degree of musical expertise modulates higher order brain functioning. Cereb. Cortex, doi: 10.1093/cercor/bhs206 [Epub ahead of print].
– reference: Huron, D. (2006) Sweet Anticipation: Music and the Psychology of Expectation. MIT Press, Cambridge, MA.
– reference: Abrams, D.A., Nicol, T., Zecker, S. & Kraus, N. (2008) Right-hemisphere auditory cortex is dominant for coding syllable patterns in speech. J. Neurosci., 28, 3958-3965.
– reference: Patel, A.D. & Balaban, E. (2001) Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nat. Neurosci., 4, 839-844.
– reference: Deike, S., Gaschler-Markefski, B., Brechmann, A. & Scheich, H. (2004) Auditory stream segregation relying on timbre involves left auditory cortex. NeuroReport, 15, 1511-1514.
– reference: Muhlau, M., Rauschecker, J.P., Oestreicher, E., Gaser, C., Rottinger, M., Wohlschlager, A.M., Simon, F., Etgen, T., Conrad, B. & Sander, D. (2006) Structural brain changes in tinnitus. Cereb. Cortex, 16, 1283-1288.
– reference: Passynkova, N., Sander, K. & Scheich, H. (2005) Left auditory cortex specialization for vertical harmonic structure of chords. Ann. NY Acad. Sci., 1060, 454-456.
– reference: Abrams, D.A., Ryali, S., Chen, T., Balaban, E., Levitin, D.J. & Menon, V. (2012) Multivariate activation and connectivity patterns discriminate speech intelligibility in Wernicke's, Broca's, and Geschwind's Areas. Cereb. Cortex, doi: 10.1093/cercor/bhs165 [Epub ahead of print].
– reference: Nichols, T.E. & Holmes, A.P. (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp., 15, 1-25.
– reference: McNeill, W.H. (1995) Keeping Togther in Time: Dance and Drill in Human History. Harvard University Press, Cambridge, MA.
– reference: Zatorre, R.J., Belin, P. & Penhune, V.B. (2002) Structure and function of auditory cortex: music and speech. Trends Cogn. Sci., 6, 37-46.
– reference: Fecteau, S., Armony, J.L., Joanette, Y. & Belin, P. (2004) Is voice processing species-specific in human auditory cortex? - An fMRI study. NeuroImage, 23, 840-848.
– reference: Creutzfeldt, O., Hellweg, F.C. & Schreiner, C. (1980) Thalamocortical transformation of responses to complex auditory stimuli. Exp. Brain Res., 39, 87-104.
– reference: Platel, H., Baron, J.C., Desgranges, B., Bernard, F. & Eustache, F. (2003) Semantic and episodic memory of music are subserved by distinct neural networks. NeuroImage, 20, 244-256.
– reference: Grinsted, A., Moore, J.C. & Jevrejeva, S. (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geoph., 11, 561-566.
– reference: Sethares, W.A. (2007) Rhythm and Transforms. Springer, London.
– reference: Glover, G.H. & Lai, S. (1998) Self-navigated spiral fMRI: interleaved versus single-shot. Magn. Reson. Med., 39, 361-368.
– reference: Snyder, J.S. & Large, E.W. (2005) Gamma-band activity reflects the metric structure of rhythmic tone sequences. Brain Res. Cogn. Brain Res., 24, 117-126.
– reference: Wilson, S.M., Molnar-Szakacs, I. & Iacoboni, M. (2008) Beyond superior temporal cortex: intersubject correlations in narrative speech comprehension. Cereb. Cortex, 18, 230-242.
– reference: Chait, M., Poeppel, D. & Simon, J.Z. (2007) Stimulus context affects auditory cortical responses to changes in interaural correlation. J. Neurophysiol., 98, 224-231.
– reference: Koelsch, S. (2005) Neural substrates of processing syntax and semantics in music. Curr. Opin. Neurobiol., 15, 207-212.
– reference: Leaver, A.M., Van Lare, J., Zielinski, B., Halpern, A.R. & Rauschecker, J.P. (2009) Brain activation during anticipation of sound sequences. J. Neurosci., 29, 2477-2485.
– reference: Abrams, D.A., Nicol, T., Zecker, S. & Kraus, N. (2009) Abnormal cortical processing of the syllable rate of speech in poor readers. J. Neurosci., 29, 7686-7693.
– reference: Chen, J.L., Penhune, V.B. & Zatorre, R.J. (2008) Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex, 18, 2844-2854.
– reference: Griffiths, T.D., Uppenkamp, S., Johnsrude, I., Josephs, O. & Patterson, R.D. (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat. Neurosci., 4, 633-637.
– reference: Maess, B., Koelsch, S., Gunter, T.C. & Friederici, A.D. (2001) Musical syntax is processed in Broca's area: an MEG study. Nat. Neurosci., 4, 540-545.
– reference: Rorden, C. & Brett, M. (2000) Stereotaxic display of brain lesions. Behav. Neurol., 12, 191-200.
– reference: Blesser, B. (1972) Speech perception under conditions of spectral transformation. 1. Phonetic characteristics. J. Speech Hear. Res., 15, 5-41.
– reference: Hornickel, J., Zecker, S.G., Bradlow, A.R. & Kraus, N. (2012) Assistive listening devices drive neuroplasticity in children with dyslexia. Proc. Natl. Acad. Sci. USA, 109, 16731-16736.
– reference: Aiken, S.J. & Picton, T.W. (2008) Human cortical responses to the speech envelope. Ear Hearing, 29, 139-157.
– reference: Menon, V., Levitin, D.J., Smith, B.K., Lembke, A., Krasnow, B.D., Glazer, D., Glover, G.H. & McAdams, S. (2002) Neural correlates of timbre change in harmonic sounds. NeuroImage, 17, 1742-1754.
– reference: Scott, S.K., Blank, C.C., Rosen, S. & Wise, R.J.S. (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406.
– reference: Baumann, S., Griffiths, T.D., Sun, L., Petkov, C.I., Thiele, A. & Rees, A. (2011) Orthogonal representation of sound dimensions in the primate midbrain. Nat. Neurosci., 14, 423-425.
– reference: Sridharan, D., Levitin, D.J., Chafe, C.H., Berger, J. & Menon, V. (2007) Neural dynamics of event segmentation in music: converging evidence for dissociable ventral and dorsal networks. Neuron, 55, 521-532.
– reference: Warren, J.E., Sauter, D.A., Eisner, F., Wiland, J., Dresner, M.A., Wise, R.J., Rosen, S. & Scott, S.K. (2006) Positive emotions preferentially engage an auditory-motor 'mirror' system. J. Neurosci., 26, 13067-13075.
– reference: Zatorre, R.J., Chen, J.L. & Penhune, V.B. (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat. Rev. Neurosci., 8, 547-558.
– reference: Wang, X., Merzenich, M.M., Beitel, R. & Schreiner, C.E. (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J. Neurophysiol., 74, 2685-2706.
– reference: Levitin, D.J. & Menon, V. (2003) Musical structure is processed in 'language' areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. NeuroImage, 20, 2142-2152.
– reference: Anderson, S., White-Schwoch, T., Parbery-Clark, A. & Kraus, N. (2013) Reversal of age-related neural timing delays with training. Proc. Natl. Acad. Sci. USA, 110, 4357-4362.
– reference: Sammler, D., Baird, A., Valabregue, R., Clement, S., Dupont, S., Belin, P. & Samson, S. (2010) The relationship of lyrics and tunes in the processing of unfamiliar songs: a functional magnetic resonance adaptation study. J. Neurosci., 30, 3572-3578.
– reference: Skoe, E. & Kraus, N. (2012) A little goes a long way: how the adult brain is shaped by musical training in childhood. J. Neurosci., 32, 11507-11510.
– reference: Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. (2004) Intersubject synchronization of cortical activity during natural vision. Science, 303, 1634-1640.
– reference: Prichard, D. & Theiler, J. (1994) Generating surrogate data for time-series with several simultaneously measured variables. Phys. Rev. Lett., 73, 951-954.
– volume: 20
  start-page: 244
  year: 2003
  end-page: 256
  article-title: Semantic and episodic memory of music are subserved by distinct neural networks
  publication-title: NeuroImage
– volume: 98
  start-page: 13367
  year: 2001
  end-page: 13372
  article-title: Speech comprehension is correlated with temporal response patterns recorded from auditory cortex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 98
  start-page: 224
  year: 2007
  end-page: 231
  article-title: Stimulus context affects auditory cortical responses to changes in interaural correlation
  publication-title: J. Neurophysiol.
– volume: 29
  start-page: 2477
  year: 2009
  end-page: 2485
  article-title: Brain activation during anticipation of sound sequences
  publication-title: J. Neurosci.
– volume: 4
  start-page: 839
  year: 2001
  end-page: 844
  article-title: Human pitch perception is reflected in the timing of stimulus‐related cortical activity
  publication-title: Nat. Neurosci.
– volume: 15
  start-page: 1511
  year: 2004
  end-page: 1514
  article-title: Auditory stream segregation relying on timbre involves left auditory cortex
  publication-title: NeuroReport
– volume: 16
  start-page: 1283
  year: 2006
  end-page: 1288
  article-title: Structural brain changes in tinnitus
  publication-title: Cereb. Cortex
– volume: 29
  start-page: 7540
  year: 2009
  end-page: 7548
  article-title: Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception
  publication-title: J. Neurosci.
– volume: 60
  start-page: 1799
  year: 1988
  end-page: 1822
  article-title: Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms
  publication-title: J. Neurophysiol.
– volume: 8
  start-page: 547
  year: 2007
  end-page: 558
  article-title: When the brain plays music: auditory‐motor interactions in music perception and production
  publication-title: Nat. Rev. Neurosci.
– volume: 14
  start-page: 423
  year: 2011
  end-page: 425
  article-title: Orthogonal representation of sound dimensions in the primate midbrain
  publication-title: Nat. Neurosci.
– volume: 15
  start-page: 5
  year: 1972
  end-page: 41
  article-title: Speech perception under conditions of spectral transformation. 1. Phonetic characteristics
  publication-title: J. Speech Hear. Res.
– volume: 39
  start-page: 361
  year: 1998
  end-page: 368
  article-title: Self‐navigated spiral fMRI: interleaved versus single‐shot
  publication-title: Magn. Reson. Med.
– volume: 11
  start-page: 561
  year: 2004
  end-page: 566
  article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series
  publication-title: Nonlinear Proc. Geoph.
– volume: 107
  start-page: 1325
  year: 2012
  end-page: 1336
  article-title: Human inferior colliculus activity relates to individual differences in spoken language learning
  publication-title: J. Neurophysiol.
– volume: 97
  start-page: 11793
  year: 2000
  end-page: 11799
  article-title: Subdivisions of auditory cortex and processing streams in primates
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 7686
  year: 2009
  end-page: 7693
  article-title: Abnormal cortical processing of the syllable rate of speech in poor readers
  publication-title: J. Neurosci.
– volume: 64
  start-page: 311
  year: 2009
  end-page: 319
  article-title: Context‐dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia
  publication-title: Neuron
– volume: 4
  start-page: 633
  year: 2001
  end-page: 637
  article-title: Encoding of the temporal regularity of sound in the human brainstem
  publication-title: Nat. Neurosci.
– volume: 18
  start-page: 230
  year: 2008
  end-page: 242
  article-title: Beyond superior temporal cortex: intersubject correlations in narrative speech comprehension
  publication-title: Cereb. Cortex
– volume: 10
  start-page: 301
  year: 1983
  end-page: 330
  article-title: Responses of neurons in the inferior colliculus of the rat to AM and FM tones
  publication-title: Hearing Res.
– volume: 28
  start-page: 3958
  year: 2008
  end-page: 3965
  article-title: Right‐hemisphere auditory cortex is dominant for coding syllable patterns in speech
  publication-title: J. Neurosci.
– year: 2008
– volume: 26
  start-page: 13067
  year: 2006
  end-page: 13075
  article-title: Positive emotions preferentially engage an auditory‐motor ‘mirror’ system
  publication-title: J. Neurosci.
– volume: 12
  start-page: 191
  year: 2000
  end-page: 200
  article-title: Stereotaxic display of brain lesions
  publication-title: Behav. Neurol.
– volume: 29
  start-page: 139
  year: 2008
  end-page: 157
  article-title: Human cortical responses to the speech envelope
  publication-title: Ear Hearing
– volume: 22
  start-page: 563
  year: 2005
  end-page: 575
  article-title: The neural locus of temporal structure and expectancies in music: evidence from functional neuroimaging at 3 Tesla
  publication-title: Music Percept.
– volume: 18
  start-page: 2844
  year: 2008
  end-page: 2854
  article-title: Listening to musical rhythms recruits motor regions of the brain
  publication-title: Cereb. Cortex
– volume: 8
  start-page: 389
  year: 2005
  end-page: 395
  article-title: Hierarchical and asymmetric temporal sensitivity in human auditory cortices
  publication-title: Nat. Neurosci.
– volume: 62
  start-page: 463
  year: 2009
  end-page: 469
  article-title: Learning to encode timing: mechanisms of plasticity in the auditory brainstem
  publication-title: Neuron
– volume: 24
  start-page: 117
  year: 2005
  end-page: 126
  article-title: Gamma‐band activity reflects the metric structure of rhythmic tone sequences
  publication-title: Brain Res. Cogn. Brain Res.
– volume: 59
  start-page: 3677
  year: 2012
  end-page: 3689
  article-title: Large‐scale brain networks emerge from dynamic processing of musical timbre, key and rhythm
  publication-title: NeuroImage
– volume: 17
  start-page: 1742
  year: 2002
  end-page: 1754
  article-title: Neural correlates of timbre change in harmonic sounds
  publication-title: NeuroImage
– volume: 84
  start-page: 541
  year: 2004
  end-page: 577
  article-title: Neural processing of amplitude‐modulated sounds
  publication-title: Physiol. Rev.
– volume: 4
  start-page: 540
  year: 2001
  end-page: 545
  article-title: Musical syntax is processed in Broca's area: an MEG study
  publication-title: Nat. Neurosci.
– year: 2007
– volume: 21
  start-page: 1507
  year: 2011
  end-page: 1518
  article-title: Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine‐scale spatial patterns
  publication-title: Cereb. Cortex
– volume: 14
  start-page: 1908
  year: 1994
  end-page: 1919
  article-title: Neural mechanisms underlying melodic perception and memory for pitch
  publication-title: J. Neurosci.
– volume: 298
  start-page: 2167
  year: 2002
  end-page: 2170
  article-title: The cortical topography of tonal structures underlying Western music
  publication-title: Science
– volume: 79
  start-page: 61
  year: 1998
  end-page: 78
  article-title: A practical guide to wavelet analysis
  publication-title: B. Am. Meteorol. Soc.
– volume: 73
  start-page: 951
  year: 1994
  end-page: 954
  article-title: Generating surrogate data for time‐series with several simultaneously measured variables
  publication-title: Phys. Rev. Lett.
– volume: 33
  start-page: 430
  year: 2006
  end-page: 448
  article-title: The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability
  publication-title: NeuroImage
– volume: 14
  start-page: 40
  year: 2010
  end-page: 48
  article-title: Reliability of cortical activity during natural stimulation
  publication-title: Trends Cogn. Sci.
– volume: 32
  start-page: 11507
  year: 2012
  end-page: 11510
  article-title: A little goes a long way: how the adult brain is shaped by musical training in childhood
  publication-title: J. Neurosci.
– year: 2012
  article-title: Multivariate activation and connectivity patterns discriminate speech intelligibility in Wernicke's, Broca's, and Geschwind's Areas
  publication-title: Cereb. Cortex
– volume: 1060
  start-page: 454
  year: 2005
  end-page: 456
  article-title: Left auditory cortex specialization for vertical harmonic structure of chords
  publication-title: Ann. NY Acad. Sci.
– volume: 20
  start-page: 1892
  year: 2008
  end-page: 1902
  article-title: Plasticity in the adult human auditory brainstem following short‐term linguistic training
  publication-title: J. Cognitive Neurosci.
– volume: 20
  start-page: 2142
  year: 2003
  end-page: 2152
  article-title: Musical structure is processed in ‘language’ areas of the brain: a possible role for Brodmann Area 47 in temporal coherence
  publication-title: NeuroImage
– volume: 6
  start-page: 37
  year: 2002
  end-page: 46
  article-title: Structure and function of auditory cortex: music and speech
  publication-title: Trends Cogn. Sci.
– year: 2012
  article-title: Degree of musical expertise modulates higher order brain functioning
  publication-title: Cereb. Cortex
– volume: 110
  start-page: 4357
  year: 2013
  end-page: 4362
  article-title: Reversal of age‐related neural timing delays with training
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 303
  start-page: 1634
  year: 2004
  end-page: 1640
  article-title: Intersubject synchronization of cortical activity during natural vision
  publication-title: Science
– volume: 87
  start-page: 1723
  year: 2002
  end-page: 1737
  article-title: Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex
  publication-title: J. Neurophysiol.
– volume: 15
  start-page: 1
  year: 2002
  end-page: 25
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum. Brain Mapp.
– volume: 15
  start-page: 207
  year: 2005
  end-page: 212
  article-title: Neural substrates of processing syntax and semantics in music
  publication-title: Curr. Opin. Neurobiol.
– year: 2006
– volume: 109
  start-page: 16731
  year: 2012
  end-page: 16736
  article-title: Assistive listening devices drive neuroplasticity in children with dyslexia
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 55
  start-page: 521
  year: 2007
  end-page: 532
  article-title: Neural dynamics of event segmentation in music: converging evidence for dissociable ventral and dorsal networks
  publication-title: Neuron
– year: 1995
– volume: 39
  start-page: 87
  year: 1980
  end-page: 104
  article-title: Thalamocortical transformation of responses to complex auditory stimuli
  publication-title: Exp. Brain Res.
– volume: 23
  start-page: 840
  year: 2004
  end-page: 848
  article-title: Is voice processing species‐specific in human auditory cortex? ‐ An fMRI study
  publication-title: NeuroImage
– volume: 30
  start-page: 3572
  year: 2010
  end-page: 3578
  article-title: The relationship of lyrics and tunes in the processing of unfamiliar songs: a functional magnetic resonance adaptation study
  publication-title: J. Neurosci.
– volume: 74
  start-page: 2685
  year: 1995
  end-page: 2706
  article-title: Representation of a species‐specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics
  publication-title: J. Neurophysiol.
– volume: 123
  start-page: 2400
  year: 2000
  end-page: 2406
  article-title: Identification of a pathway for intelligible speech in the left temporal lobe
  publication-title: Brain
– volume: 23
  start-page: S208
  issue: Suppl. 1
  year: 2004
  end-page: S219
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– ident: e_1_2_7_64_1
  doi: 10.1523/JNEUROSCI.14-04-01908.1994
– ident: e_1_2_7_59_1
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– ident: e_1_2_7_55_1
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_7_47_1
  doi: 10.1016/S1053-8119(03)00287-8
– ident: e_1_2_7_9_1
  doi: 10.1073/pnas.1213555110
– ident: e_1_2_7_25_1
  doi: 10.1126/science.1089506
– ident: e_1_2_7_29_1
  doi: 10.1126/science.1076262
– ident: e_1_2_7_60_1
  doi: 10.1016/j.neuron.2009.05.002
– ident: e_1_2_7_49_1
  doi: 10.1016/0378-5955(83)90095-3
– ident: e_1_2_7_54_1
  doi: 10.1523/JNEUROSCI.1949-12.2012
– ident: e_1_2_7_66_1
  doi: 10.1038/nrn2152
– ident: e_1_2_7_7_1
  doi: 10.1097/AUD.0b013e31816453dc
– ident: e_1_2_7_18_1
  doi: 10.1007/BF00237072
– ident: e_1_2_7_40_1
  doi: 10.1006/nimg.2002.1295
– ident: e_1_2_7_58_1
  doi: 10.1016/j.neuron.2007.07.003
– ident: e_1_2_7_30_1
  doi: 10.1152/physrev.00029.2003
– ident: e_1_2_7_63_1
  doi: 10.1093/cercor/bhm049
– ident: e_1_2_7_15_1
  doi: 10.1016/j.neuron.2009.10.006
– ident: e_1_2_7_16_1
  doi: 10.1152/jn.00923.2011
– ident: e_1_2_7_57_1
  doi: 10.1162/jocn.2008.20131
– ident: e_1_2_7_19_1
  doi: 10.1097/01.wnr.0000132919.12990.34
– ident: e_1_2_7_4_1
  doi: 10.1093/cercor/bhq198
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.1910390305
– ident: e_1_2_7_11_1
  doi: 10.1044/jshr.1501.05
– ident: e_1_2_7_33_1
  doi: 10.1152/jn.1988.60.6.1799
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2004.09.019
– ident: e_1_2_7_14_1
  doi: 10.1152/jn.00359.2007
– ident: e_1_2_7_24_1
  doi: 10.5194/npg-11-561-2004
– volume-title: Rhythm and Transforms
  year: 2007
  ident: e_1_2_7_53_1
– ident: e_1_2_7_46_1
  doi: 10.1038/90557
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.201400998
– ident: e_1_2_7_45_1
  doi: 10.1196/annals.1360.048
– ident: e_1_2_7_32_1
  doi: 10.1016/j.conb.2005.03.005
– ident: e_1_2_7_37_1
  doi: 10.1525/mp.2005.22.3.563
– ident: e_1_2_7_38_1
  doi: 10.1038/87502
– ident: e_1_2_7_61_1
  doi: 10.1152/jn.1995.74.6.2685
– ident: e_1_2_7_52_1
  doi: 10.1093/brain/123.12.2400
– ident: e_1_2_7_36_1
  doi: 10.1016/j.neuroimage.2003.08.016
– ident: e_1_2_7_26_1
  doi: 10.1016/j.tics.2009.10.011
– ident: e_1_2_7_42_1
  doi: 10.1152/jn.00632.2001
– ident: e_1_2_7_43_1
  doi: 10.1002/hbm.1058
– ident: e_1_2_7_12_1
  doi: 10.1038/nn1409
– ident: e_1_2_7_48_1
  doi: 10.1103/PhysRevLett.73.951
– ident: e_1_2_7_56_1
  doi: 10.1016/j.cogbrainres.2004.12.014
– ident: e_1_2_7_23_1
  doi: 10.1038/88459
– volume-title: The World in Six Songs: How the Musical Brain Created Human Nature
  year: 2008
  ident: e_1_2_7_35_1
– ident: e_1_2_7_28_1
  doi: 10.7551/mitpress/6575.001.0001
– ident: e_1_2_7_44_1
  doi: 10.1093/cercor/bhs206
– ident: e_1_2_7_62_1
  doi: 10.1523/JNEUROSCI.3907-06.2006
– ident: e_1_2_7_65_1
  doi: 10.1016/S1364-6613(00)01816-7
– ident: e_1_2_7_10_1
  doi: 10.1038/nn.2771
– ident: e_1_2_7_2_1
  doi: 10.1523/JNEUROSCI.0187-08.2008
– ident: e_1_2_7_51_1
  doi: 10.1523/JNEUROSCI.2751-09.2010
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neuroimage.2011.11.019
– ident: e_1_2_7_17_1
  doi: 10.1093/cercor/bhn042
– ident: e_1_2_7_3_1
  doi: 10.1523/JNEUROSCI.5242-08.2009
– ident: e_1_2_7_31_1
  doi: 10.1073/pnas.97.22.11793
– ident: e_1_2_7_5_1
  doi: 10.1093/cercor/bhs165
– ident: e_1_2_7_50_1
  doi: 10.1155/2000/421719
– ident: e_1_2_7_22_1
  doi: 10.1523/JNEUROSCI.2018-08.2009
– ident: e_1_2_7_41_1
  doi: 10.1093/cercor/bhj070
– ident: e_1_2_7_34_1
  doi: 10.1523/JNEUROSCI.4921-08.2009
– ident: e_1_2_7_13_1
  doi: 10.1016/j.neuroimage.2006.06.054
– ident: e_1_2_7_27_1
  doi: 10.1073/pnas.1206628109
– volume-title: Keeping Togther in Time: Dance and Drill in Human History
  year: 1995
  ident: e_1_2_7_39_1
– reference: 17167096 - J Neurosci. 2006 Dec 13;26(50):13067-75
– reference: 11477431 - Nat Neurosci. 2001 Aug;4(8):839-44
– reference: 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25
– reference: 22832388 - Cereb Cortex. 2013 Sep;23(9):2213-24
– reference: 19244522 - J Neurosci. 2009 Feb 25;29(8):2477-85
– reference: 15194885 - Neuroreport. 2004 Jun 28;15(9):1511-4
– reference: 6874603 - Hear Res. 1983 Jun;10(3):301-30
– reference: 16280464 - Cereb Cortex. 2006 Sep;16(9):1283-8
– reference: 17493921 - J Neurophysiol. 2007 Jul;98(1):224-31
– reference: 10057582 - Phys Rev Lett. 1994 Aug 15;73(7):951-954
– reference: 11849614 - Trends Cogn Sci. 2002 Jan 1;6(1):37-46
– reference: 11099443 - Brain. 2000 Dec;123 Pt 12:2400-6
– reference: 11698688 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13367-72
– reference: 9498591 - Magn Reson Med. 1998 Mar;39(3):361-8
– reference: 11568431 - Behav Neurol. 2000;12(4):191-200
– reference: 15528084 - Neuroimage. 2004 Nov;23(3):840-8
– reference: 15831404 - Curr Opin Neurobiol. 2005 Apr;15(2):207-12
– reference: 18595182 - Ear Hear. 2008 Apr;29(2):139-57
– reference: 11050211 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11793-9
– reference: 12498748 - Neuroimage. 2002 Dec;17(4):1742-54
– reference: 14527585 - Neuroimage. 2003 Sep;20(1):244-56
– reference: 11929894 - J Neurophysiol. 2002 Apr;87(4):1723-37
– reference: 20219991 - J Neurosci. 2010 Mar 10;30(10):3572-8
– reference: 5012812 - J Speech Hear Res. 1972 Mar;15(1):5-41
– reference: 17678862 - Neuron. 2007 Aug 2;55(3):521-32
– reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
– reference: 8747224 - J Neurophysiol. 1995 Dec;74(6):2685-706
– reference: 19914180 - Neuron. 2009 Nov 12;64(3):311-9
– reference: 11369945 - Nat Neurosci. 2001 Jun;4(6):633-7
– reference: 19515922 - J Neurosci. 2009 Jun 10;29(23):7540-8
– reference: 19535580 - J Neurosci. 2009 Jun 17;29(24):7686-93
– reference: 15044682 - Physiol Rev. 2004 Apr;84(2):541-77
– reference: 21378972 - Nat Neurosci. 2011 Apr;14(4):423-5
– reference: 15016991 - Science. 2004 Mar 12;303(5664):1634-40
– reference: 12481131 - Science. 2002 Dec 13;298(5601):2167-70
– reference: 11319564 - Nat Neurosci. 2001 May;4(5):540-5
– reference: 23401541 - Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4357-62
– reference: 22116038 - Neuroimage. 2012 Feb 15;59(4):3677-89
– reference: 14683718 - Neuroimage. 2003 Dec;20(4):2142-52
– reference: 17585307 - Nat Rev Neurosci. 2007 Jul;8(7):547-58
– reference: 22693339 - Cereb Cortex. 2013 Jul;23(7):1703-14
– reference: 3236052 - J Neurophysiol. 1988 Dec;60(6):1799-822
– reference: 17504783 - Cereb Cortex. 2008 Jan;18(1):230-42
– reference: 22949632 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16731-6
– reference: 18370594 - J Cogn Neurosci. 2008 Oct;20(10):1892-902
– reference: 6247179 - Exp Brain Res. 1980;39(1):87-104
– reference: 18400895 - J Neurosci. 2008 Apr 9;28(15):3958-65
– reference: 16597802 - Ann N Y Acad Sci. 2005 Dec;1060:454-6
– reference: 15922164 - Brain Res Cogn Brain Res. 2005 Jun;24(1):117-26
– reference: 15723061 - Nat Neurosci. 2005 Mar;8(3):389-95
– reference: 8158246 - J Neurosci. 1994 Apr;14(4):1908-19
– reference: 21071617 - Cereb Cortex. 2011 Jul;21(7):1507-18
– reference: 22131377 - J Neurophysiol. 2012 Mar;107(5):1325-36
– reference: 22915097 - J Neurosci. 2012 Aug 22;32(34):11507-10
– reference: 20004608 - Trends Cogn Sci. 2010 Jan;14(1):40-8
– reference: 16949304 - Neuroimage. 2006 Nov 1;33(2):430-48
– reference: 18388350 - Cereb Cortex. 2008 Dec;18(12):2844-54
– reference: 19477149 - Neuron. 2009 May 28;62(4):463-9
SSID ssj0008645
Score 2.4176366
Snippet Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1458
SubjectTerms Acoustic Stimulation
Adult
auditory cortex
Auditory Perception
Biological and medical sciences
Brain - physiology
Brain Mapping
Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation
Female
Fundamental and applied biological sciences. Psychology
Humans
inferior colliculus
inferior frontal gyrus
Male
medial geniculate
Music
Nerve Net - physiology
parietal cortex
Vertebrates: nervous system and sense organs
Title Inter-subject synchronization of brain responses during natural music listening
URI https://api.istex.fr/ark:/67375/WNG-BFQSBG4L-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12173
https://www.ncbi.nlm.nih.gov/pubmed/23578016
https://www.proquest.com/docview/1349398849
https://www.proquest.com/docview/1356930312
https://pubmed.ncbi.nlm.nih.gov/PMC4487043
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOLSXQqGPQItcVCEuQXk4L_UEiAWhshJtUfdQyYodW22BLNrsSqWn_oT-xv6SztibwLa0QtwiZSLLk7E9M575PoDXkQ6KCg8WP4qCzOexDvwiyQvfGBmaTPMk1pSHPO6nh6f8aJAM5uBN2wvj8CG6hButDLtf0wIvZXNjkeuvNUEjZIT0SbVa5BC9u4aOylNLUExwan4epoMpqhBV8XRfzpxFC6TWb1QbWTaoHuN4LW5zPP-un7zp19qDqbcIn9opuXqUs-3JWG6r73-gPd5zzkvwaOqwsh1nYY9hTtfLsLJTY7B-ccU2mS0htbn5ZXiw19LHrcCJzTX--vGzmUjK9bDmqlYWidc1frKhYZL4KdjIlenqhrmeSWbBRnHMC-KgZuekMcrePIHT3v6HvUN_yt_gK2I09it0zrRMbTsrnYpplVRloXRgdFUatJDK4PsQt350Ojj10Bp0UEIlw1SZQsbxU5ivh7V-Dkxh1GUqzXMtCx6rSiZEX67iXEU8kzr0YKv9k0JNwc2JY-NctEEOqk5Y1Xmw0YleOkSP24Q2rTl0EuXojErgskR87B-I3d7J-90D_lYEHqzP2Ev3AV2BYzCae_CqNSCBf4CuY8paDyeNIGDIuMhzXvxPJiGuyjiMPHjmjO56BAIqQo_dg2zGHDsBQg6ffVN_-WwRxDEmzwKOs9yy1vZvPYj9o759WL276Bo8jCxnCFWFvoD58WiiX6LnNpbrdon-BqtlQec
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fTxQxEJ8gPOALKKisf7AaQ3hZsrvt_kt8AeQ48bgEhXgvptl226jAHrm9S8QnP4Kf0U9ip71dOEVjfNtkZ9N0dtrOTGd-P4AXkQry0hwsfhQFqc-oCvw8znJfaxHqVLGYKsxDHvaT7gk7GMSDOXjZ9MI4fIg24YYrw-7XuMAxIX1tlavPFWIjpPQWLCCjN_IXvHp7BR6VJZaiGAHV_CxMBlNcIazjaT-dOY0WULFfsDqyqI2CtGO2uMn1_L2C8rpna4-mzjJ8aCblKlJOtyZjsSW__oL3-L-zvgNLU5-VbDsjuwtzqlqB1e3KxOvnl2SD2CpSm55fgcXdhkFuFY5suvHHt-_1RGC6h9SXlbRgvK73kww1EUhRQUauUlfVxLVNEos3asY8RxpqcoYqwwTOPTjp7B3vdv0phYMvkdTYL41_pkRiO1rxYEzKuCxyqQKtykIbIym1eR-a3d_4HQzbaLXxUUIpwkTqXFB6H-arYaXWgEgTeOlSsUyJnFFZihgZzCXNZMRSoUIPNptfyeUU3xxpNs54E-cY1XGrOg-et6IXDtTjJqENaw-tRDE6xSq4NObv-_t8p3P0bmef9XjgwfqMwbQf4C24iUczD541FsTNH8AbmaJSw0nNERuS5lnG8r_JxEhXScPIgwfO6q5GQKwi47R7kM7YYyuA4OGzb6pPHy2IuAnL04CZWW5ac_uzHvjeQd8-PPx30aew2D0-7PHe6_6bR3A7shQiWCT6GObHo4l6Yhy5sVi36_UnjAVGAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuPFoe4VEMQlUvqZLYeYlTW7otpawoULEHJCt2bAFts9VmV6Kc-An8Rn4JM84m7UJBiFukTBR5MhPPjGe-D-BpZIK8xI3Fj6Ig9QU3gZ_HWe5bq0KbGhFzQ3XIV_1k50DsDuLBHDxrZ2EafIiu4Eae4f7X5OAnpT3n5OZzRdAIKb8ECyJBZ6GI6M0ZdlSWOIZiwlPzszAZTGGFqI2ne3RmM1ogvX6h5siiRv3Yhtjiosjz9wbK84Gt25l61-FDu6amIeVwbTJWa_rrL3CP_7noG3BtGrGy9cbEbsKcqRZhab3CbP34lK0w10PqivOLcGWz5Y9bgn1XbPzx7Xs9UVTsYfVppR0UbzP5yYaWKSKoYKOmT9fUrBmaZA5tFN95TCTU7Ig0RuWbW3DQ23q3ueNPCRx8TZTGfonRmVGJm2elbTEp47LItQmsKQuLJlJavB_ivx-jDkFDtBYjlFCrMNE2V5zfhvlqWJm7wDSmXbY0IjMqF1yXKib-cs0zHYlUmdCD1fZLSj1FNyeSjSPZZjmoOulU58GTTvSkgfS4SGjFmUMnUYwOqQcujeX7_rbc6O2_3dgWezLwYHnGXroH6Awcs9HMg8etAUn8AnQeU1RmOKklIUPyPMtE_jeZmMgqeRh5cKcxurM3EFIRhuwepDPm2AkQdPjsnerTRwchjkl5Gghc5aqztj_rQW7t9t3FvX8XfQSXXz_vyb0X_Zf34Wrk-EOoQ_QBzI9HE_MQo7ixWnbe-hOz0US5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-subject+synchronization+of+brain+responses+during+natural+music+listening&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Abrams%2C+Daniel+A&rft.au=Ryali%2C+Srikanth&rft.au=Chen%2C+Tianwen&rft.au=Chordia%2C+Parag&rft.date=2013-05-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=37&rft.issue=9&rft.spage=1458&rft.epage=1469&rft_id=info:doi/10.1111%2Fejn.12173&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon