Air Filtration in the Free Molecular Flow Regime: A Review of High-Efficiency Particulate Air Filters Based on Carbon Nanotubes
Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 10; no. 22; pp. 4543 - 4561 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.11.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high‐efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single‐walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.
Free molecular flow air filtration based on carbon nanotube air filters – from theoretical modeling to structure design. |
---|---|
AbstractList | Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high‐efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single‐walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. Free molecular flow air filtration based on carbon nanotube air filters – from theoretical modeling to structure design. Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. Free molecular flow air filtration based on carbon nanotube air filters - from theoretical modeling to structure design. Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. |
Author | Li, Peng Wang, Chunya Zhang, Yingying Wei, Fei |
Author_xml | – sequence: 1 givenname: Peng surname: Li fullname: Li, Peng organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China – sequence: 2 givenname: Chunya surname: Wang fullname: Wang, Chunya organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China – sequence: 3 givenname: Yingying surname: Zhang fullname: Zhang, Yingying email: wf-dce@tsinghua.edu.cn organization: Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China – sequence: 4 givenname: Fei surname: Wei fullname: Wei, Fei email: wf-dce@tsinghua.edu.cn organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25288476$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAURiNURB-wZYkssWGTwfE77IZRZwqdFsRDLC3HuWldPEmxE6az6l_HYdoRqoRgde_inM-6_g6zvbZrIcueF3hSYExex5X3E4ILhgvO6aPsoBAFzYUi5d5uL_B-dhjjFca0IEw-yfYJJ0oxKQ6y26kLaO58H0zvuha5FvWXgOYBAJ11HuzgTQJ8t0af4MKt4A2apu2ngzXqGnTiLi7z46Zx1kFrN-ijCb0bnR7QfTKEiN6aCDVK-TMTqjTOTdv1QwXxafa4MT7Cs7t5lH2dH3-ZneTLD4t3s-kyt5xJmktDhKirqsYNYY0AaRWVBBrFrS25pdKm22pe1rZUVS1ZBaIivCoZU1Y1ytCj7NU29zp0PwaIvV65aMF700I3RF0IRggthST_gRKJpeJcJfTlA_SqG0KbDhkpkf4fqzHwxR01VCuo9XVwKxM2-r6FBEy2gA1djAGaHVJgPdasx5r1ruYksAeCdf3vAlOPzv9dK7fa2nnY_OMR_flsufzTzbeuiz3c7FwTvmshqeT62_lC81N2-n5JuV7QX4kiyl8 |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_2c00704 crossref_primary_10_1039_C5RA18200J crossref_primary_10_1016_j_jece_2024_114877 crossref_primary_10_3390_polym12112494 crossref_primary_10_1021_acsanm_2c01468 crossref_primary_10_1016_j_apsusc_2015_08_211 crossref_primary_10_1002_smll_201603306 crossref_primary_10_2139_ssrn_3978666 crossref_primary_10_1016_j_partic_2020_11_006 crossref_primary_10_1016_j_seppur_2024_129354 crossref_primary_10_1002_marc_202401058 crossref_primary_10_15406_jteft_2021_07_00278 crossref_primary_10_1016_j_cej_2020_125373 crossref_primary_10_1021_acsami_4c00523 crossref_primary_10_1016_j_colsurfa_2021_127643 crossref_primary_10_1016_j_memsci_2024_122518 crossref_primary_10_1134_S1995080222110191 crossref_primary_10_1016_j_cap_2022_01_014 crossref_primary_10_1016_j_scitotenv_2020_138297 crossref_primary_10_1002_mame_202100278 crossref_primary_10_3390_nano10091806 crossref_primary_10_1016_j_jclepro_2022_134567 crossref_primary_10_1016_j_jhazmat_2024_135862 crossref_primary_10_1002_mame_201600353 crossref_primary_10_1016_j_colcom_2020_100275 crossref_primary_10_1088_2632_959X_abfe3d crossref_primary_10_1063_5_0061847 crossref_primary_10_1039_C7TA03870D crossref_primary_10_1016_j_polymer_2020_123278 crossref_primary_10_1016_j_jhazmat_2022_128514 crossref_primary_10_1016_j_seppur_2021_119258 crossref_primary_10_1002_app_54113 crossref_primary_10_1021_acsami_4c15332 crossref_primary_10_1021_acsanm_0c01619 crossref_primary_10_1016_j_seppur_2022_121093 crossref_primary_10_1002_pat_4594 crossref_primary_10_1039_D0EN00683A crossref_primary_10_1088_2053_1591_aaed80 crossref_primary_10_1063_5_0135718 crossref_primary_10_1016_j_seppur_2024_131093 crossref_primary_10_3389_fenrg_2022_854913 crossref_primary_10_1002_mame_202300072 crossref_primary_10_1007_s12274_016_1145_3 crossref_primary_10_1016_j_memsci_2017_04_053 crossref_primary_10_1016_j_seppur_2022_122175 crossref_primary_10_1021_acsami_4c22310 crossref_primary_10_1016_j_memsci_2017_12_032 crossref_primary_10_1021_acsami_6b08262 crossref_primary_10_1080_00405000_2019_1627981 crossref_primary_10_3390_polym13193235 crossref_primary_10_1021_acs_nanolett_1c00050 crossref_primary_10_1063_5_0020802 crossref_primary_10_1021_acsami_0c18143 crossref_primary_10_3390_su16010179 crossref_primary_10_3390_su151914232 crossref_primary_10_1021_acsami_8b01287 crossref_primary_10_1016_j_nanoen_2022_107237 crossref_primary_10_1016_j_indcrop_2023_116331 crossref_primary_10_1016_j_ijbiomac_2022_02_029 crossref_primary_10_1016_j_jcis_2020_05_081 crossref_primary_10_1021_acsnano_9b07293 crossref_primary_10_1021_acsami_8b21116 crossref_primary_10_1021_acsanm_4c00631 crossref_primary_10_1016_j_icheatmasstransfer_2024_107349 crossref_primary_10_1021_acsapm_3c02109 crossref_primary_10_1007_s42247_023_00622_9 crossref_primary_10_1016_j_memsci_2023_121996 crossref_primary_10_3390_nano13030431 crossref_primary_10_1039_D1TA01505B crossref_primary_10_1016_j_jaerosci_2019_01_001 crossref_primary_10_1016_j_jhazmat_2021_126835 crossref_primary_10_7883_yoken_JJID_2022_184 crossref_primary_10_1039_D1TA00794G crossref_primary_10_1016_j_jclepro_2024_144562 crossref_primary_10_1016_j_rinma_2025_100688 crossref_primary_10_1021_acsami_8b16564 crossref_primary_10_3390_su13126553 crossref_primary_10_1016_j_oneear_2020_10_014 crossref_primary_10_1016_j_seppur_2024_130422 crossref_primary_10_1021_acs_nanolett_2c04667 crossref_primary_10_1016_j_ceramint_2018_12_046 crossref_primary_10_1016_j_carbon_2020_09_070 crossref_primary_10_1002_smll_202410639 crossref_primary_10_1016_j_jhazmat_2024_134740 crossref_primary_10_3390_pollutants3010011 crossref_primary_10_1021_acs_iecr_8b05770 crossref_primary_10_1038_s41467_019_09444_y crossref_primary_10_1016_j_ceramint_2018_12_162 crossref_primary_10_1021_acs_iecr_1c03051 crossref_primary_10_1016_j_ces_2020_115523 crossref_primary_10_1002_adma_202413777 crossref_primary_10_1039_C8EN01084F crossref_primary_10_1021_acsami_6b04720 crossref_primary_10_1021_acs_est_6b02563 crossref_primary_10_1007_s10853_022_07133_8 crossref_primary_10_1016_j_memsci_2017_02_042 crossref_primary_10_1038_s41598_022_12505_w crossref_primary_10_1016_j_seppur_2024_130417 crossref_primary_10_1007_s42765_023_00275_7 crossref_primary_10_1016_j_ijbiomac_2022_08_188 crossref_primary_10_1016_j_seppur_2022_122070 crossref_primary_10_1021_acsami_5b03645 crossref_primary_10_1177_00405175241268799 crossref_primary_10_1016_j_seppur_2024_130416 crossref_primary_10_1007_s42765_024_00427_3 crossref_primary_10_1016_j_apsusc_2024_160623 crossref_primary_10_3390_ma14226766 crossref_primary_10_1002_app_54705 crossref_primary_10_1016_j_ces_2024_120855 crossref_primary_10_1016_j_progpolymsci_2018_07_002 crossref_primary_10_1016_j_apmt_2022_101369 crossref_primary_10_3390_polym13111864 crossref_primary_10_1016_j_seppur_2024_127005 crossref_primary_10_1016_j_powtec_2019_11_012 crossref_primary_10_1039_D3TA05039D crossref_primary_10_1039_D4NR01688B crossref_primary_10_1007_s13369_025_10092_2 crossref_primary_10_1016_j_ijbiomac_2023_123676 crossref_primary_10_1088_1361_6528_aae611 crossref_primary_10_1016_j_jobe_2023_106737 crossref_primary_10_1021_acs_chas_1c00016 crossref_primary_10_1021_acssuschemeng_8b01827 crossref_primary_10_1016_j_cej_2023_146415 crossref_primary_10_15406_mseij_2022_06_00173 crossref_primary_10_3390_polym11091511 crossref_primary_10_1002_adfm_202402969 crossref_primary_10_1039_C8RA07789D crossref_primary_10_3390_polym15234586 crossref_primary_10_1016_j_nantod_2022_101723 crossref_primary_10_1038_srep35472 crossref_primary_10_1002_advs_202003155 crossref_primary_10_1016_j_jhazmat_2023_133232 crossref_primary_10_1080_00405000_2022_2151085 crossref_primary_10_1155_2016_6272983 crossref_primary_10_1007_s42765_023_00309_0 crossref_primary_10_3390_ma13245714 crossref_primary_10_1007_s41061_017_0102_2 crossref_primary_10_1103_PhysRevFluids_6_114201 crossref_primary_10_1007_s13204_022_02595_3 crossref_primary_10_1002_adma_202311129 crossref_primary_10_1016_j_ces_2022_117984 crossref_primary_10_1021_acsanm_1c04021 crossref_primary_10_1002_aic_18052 crossref_primary_10_1021_acsami_7b03047 crossref_primary_10_1007_s10853_023_08620_2 crossref_primary_10_1007_s41810_022_00161_6 crossref_primary_10_1016_j_seppur_2021_119623 crossref_primary_10_1002_pen_26236 crossref_primary_10_1002_smll_202105570 crossref_primary_10_1002_smtd_201800012 crossref_primary_10_1002_app_49149 crossref_primary_10_1016_j_cej_2021_134069 crossref_primary_10_1016_j_jece_2022_107832 crossref_primary_10_1021_acs_nanolett_2c03585 crossref_primary_10_1007_s12221_024_00831_x crossref_primary_10_1016_j_seppur_2024_128793 crossref_primary_10_47992_IJCSBE_2581_6942_0094 crossref_primary_10_1039_C6EN00696E crossref_primary_10_1039_D4RA02064B crossref_primary_10_1007_s40684_024_00666_0 crossref_primary_10_1016_j_jece_2022_108923 crossref_primary_10_1021_acsami_8b00455 crossref_primary_10_1007_s00289_022_04311_1 crossref_primary_10_1177_15280837231199259 crossref_primary_10_1002_app_51582 crossref_primary_10_1002_admi_202101848 crossref_primary_10_1177_1528083719888674 crossref_primary_10_1016_j_memsci_2019_117445 crossref_primary_10_1016_j_memsci_2019_117561 crossref_primary_10_1039_D0RA01656J crossref_primary_10_1002_adfm_202306777 crossref_primary_10_1039_D0EN00980F crossref_primary_10_3390_gels9030208 crossref_primary_10_3390_ma15030976 crossref_primary_10_1002_adma_202002361 crossref_primary_10_1016_j_envres_2020_109192 crossref_primary_10_1021_acsnano_3c06060 crossref_primary_10_3390_molecules30061214 crossref_primary_10_1021_acsami_1c06520 crossref_primary_10_1016_j_apmt_2023_101833 crossref_primary_10_1016_j_nanoen_2022_108021 crossref_primary_10_1002_smll_202406619 crossref_primary_10_1021_acsami_7b00351 crossref_primary_10_1016_j_colsurfa_2021_126831 crossref_primary_10_1016_j_rineng_2024_101809 crossref_primary_10_1007_s12541_024_01146_w crossref_primary_10_1016_j_ccr_2020_213477 crossref_primary_10_1016_j_pss_2020_104975 crossref_primary_10_1016_j_carbpol_2017_01_015 crossref_primary_10_3390_nano12071077 crossref_primary_10_1002_pat_6454 crossref_primary_10_1177_1528083720909462 crossref_primary_10_1088_1742_6596_1796_1_012084 crossref_primary_10_2139_ssrn_4132444 crossref_primary_10_1039_C9NR08851B crossref_primary_10_1134_S1061933X24600726 crossref_primary_10_3390_ma14195551 crossref_primary_10_1007_s12221_022_4652_8 crossref_primary_10_3390_nano12224094 crossref_primary_10_3390_powders2020017 crossref_primary_10_1021_acsanm_3c02263 crossref_primary_10_1038_s41598_018_23960_9 crossref_primary_10_1016_j_psep_2018_12_029 crossref_primary_10_1080_00405000_2022_2145440 crossref_primary_10_1016_j_cej_2022_139168 crossref_primary_10_3390_polym13213773 crossref_primary_10_1021_acs_nanolett_4c00079 crossref_primary_10_1038_s41598_018_23257_x crossref_primary_10_1021_acs_est_7b01494 crossref_primary_10_1016_j_jcis_2019_08_099 crossref_primary_10_3390_polym16020209 crossref_primary_10_1134_S1995080222130303 crossref_primary_10_1016_j_seppur_2022_120726 crossref_primary_10_1016_j_carbon_2021_06_087 crossref_primary_10_1142_S1793292021300048 crossref_primary_10_1002_admi_201801832 crossref_primary_10_1016_j_seppur_2018_05_033 crossref_primary_10_1007_s11051_015_3177_0 crossref_primary_10_1007_s42823_022_00345_7 crossref_primary_10_1177_0263617418807111 crossref_primary_10_1002_smll_201603151 crossref_primary_10_1021_acsami_5b06810 crossref_primary_10_1016_j_memsci_2023_121545 crossref_primary_10_1039_C9EN00816K crossref_primary_10_1021_acs_nanolett_7b04673 crossref_primary_10_1021_acsami_3c06491 crossref_primary_10_1021_acs_nanolett_6b00771 crossref_primary_10_1002_mame_202000239 crossref_primary_10_1016_j_memsci_2021_119392 crossref_primary_10_1016_j_nanoen_2017_03_011 crossref_primary_10_1007_s10924_022_02564_5 crossref_primary_10_1016_j_ijbiomac_2024_137627 crossref_primary_10_1155_2015_168392 crossref_primary_10_1021_acsnano_1c00238 crossref_primary_10_1002_adfm_202423284 crossref_primary_10_1021_acsami_1c04253 crossref_primary_10_1021_acs_iecr_7b02850 crossref_primary_10_1016_j_mtcomm_2020_100897 crossref_primary_10_1093_oxfmat_itad012 crossref_primary_10_1002_smll_201702139 crossref_primary_10_1016_j_jcis_2022_06_046 crossref_primary_10_1016_j_seppur_2018_03_053 crossref_primary_10_1021_acsanm_9b00806 crossref_primary_10_1016_j_envpol_2019_03_122 crossref_primary_10_1039_C7TA09054D crossref_primary_10_3390_nano12162855 crossref_primary_10_1016_j_apsusc_2023_159062 crossref_primary_10_1007_s42765_022_00133_y crossref_primary_10_1002_adfm_201910426 crossref_primary_10_1109_TNANO_2018_2824343 crossref_primary_10_1080_00405000_2023_2278373 crossref_primary_10_1039_C6NR09779K crossref_primary_10_1016_j_buildenv_2017_08_040 crossref_primary_10_3390_polym16121656 crossref_primary_10_1007_s12221_022_3418_7 crossref_primary_10_1007_s42765_022_00231_x crossref_primary_10_1016_j_seppur_2021_119243 crossref_primary_10_1016_j_seppur_2022_122235 crossref_primary_10_1021_acs_iecr_0c03581 crossref_primary_10_1039_D3NR03808D crossref_primary_10_1039_D3RA03840H crossref_primary_10_1002_app_45766 crossref_primary_10_1016_j_coco_2019_06_003 crossref_primary_10_1007_s11214_020_00782_8 crossref_primary_10_1016_j_memsci_2018_01_025 crossref_primary_10_1002_adhm_202403061 crossref_primary_10_1016_j_carbpol_2018_06_090 crossref_primary_10_1177_15280837221079274 crossref_primary_10_1038_s41467_023_36050_w crossref_primary_10_1021_acsami_3c08490 crossref_primary_10_1039_C8TA08717B crossref_primary_10_1021_acsami_1c01286 crossref_primary_10_1021_acsami_8b07203 crossref_primary_10_1021_acsapm_3c03055 crossref_primary_10_2139_ssrn_4021705 crossref_primary_10_1021_acs_iecr_2c03670 crossref_primary_10_1177_1420326X18816353 crossref_primary_10_1002_adfm_202113040 crossref_primary_10_1021_acsapm_0c01203 crossref_primary_10_1016_j_ensm_2023_01_051 crossref_primary_10_1021_acs_nanolett_3c03968 crossref_primary_10_1002_app_56613 crossref_primary_10_1016_j_memsci_2021_119463 crossref_primary_10_1016_j_gee_2022_03_012 crossref_primary_10_1016_j_mtadv_2021_100134 crossref_primary_10_1021_acs_nanolett_0c01107 crossref_primary_10_1016_j_polymer_2019_121649 crossref_primary_10_1016_j_powtec_2023_118978 crossref_primary_10_2139_ssrn_4059273 crossref_primary_10_3390_qubs3040020 crossref_primary_10_1002_aesr_202100005 crossref_primary_10_1016_j_compositesb_2021_109342 crossref_primary_10_1021_acssuschemeng_8b06567 crossref_primary_10_1021_acsami_6b10094 crossref_primary_10_3390_su16072808 crossref_primary_10_1021_acs_iecr_0c04400 crossref_primary_10_1088_1742_6596_2083_2_022109 crossref_primary_10_1007_s12274_018_2013_0 crossref_primary_10_1016_j_carbon_2021_07_004 crossref_primary_10_1021_acsanm_0c02484 crossref_primary_10_1007_s11630_022_1668_8 crossref_primary_10_1002_admt_201900101 crossref_primary_10_1088_1873_7005_ad8376 crossref_primary_10_3390_math11163465 |
Cites_doi | 10.1002/adma.201003989 10.1016/j.powtec.2011.06.025 10.1080/15583724.2011.599507 10.1016/j.carbon.2014.07.086 10.1016/j.ces.2006.02.020 10.1016/j.carbon.2014.04.019 10.1016/j.partic.2013.05.004 10.1038/354056a0 10.1021/ie403093t 10.1016/j.polymertesting.2009.09.008 10.1016/j.seppur.2012.02.009 10.1016/j.seppur.2011.02.020 10.1080/02786820802187077 10.1007/s12182-009-0067-z 10.1016/j.seppur.2011.11.026 10.1016/S0032-5910(02)00199-7 10.1016/j.yrtph.2009.12.012 10.1080/02786820903261086 10.1016/j.seppur.2009.10.017 10.1016/S0927-7757(01)00616-1 10.1002/aic.690441218 10.1016/j.cap.2005.07.013 10.1016/S0021-8502(98)90647-4 10.1007/978-1-4612-1039-9_2 10.1016/0021-8502(92)90039-X 10.1080/15287390490253688 10.1016/j.memsci.2007.03.038 10.1016/j.jaerosci.2003.07.003 10.3390/membranes1030232 10.1016/0009-2509(80)85097-4 10.1039/c3nr34325a 10.1039/C4RA08746A 10.1080/02786829208959551 10.1016/j.ces.2004.12.026 10.1038/nnano.2007.37 10.1016/j.taap.2005.01.008 10.1016/j.ces.2006.07.022 10.1016/S0021-8502(03)00027-2 10.1039/b804128h 10.1016/j.carbon.2013.07.066 10.1016/S1004-9541(12)60356-5 10.1016/j.cherd.2007.11.008 10.1143/JPSJ.14.527 10.1016/S0021-8502(98)00042-1 10.1016/j.seppur.2011.03.008 10.1063/1.3060900 10.1016/S0015-1882(12)70107-6 10.1016/0021-8502(96)00381-3 10.1016/j.ces.2006.05.027 10.1002/smll.201101786 10.1126/science.1222453 10.1016/j.cap.2006.01.035 10.1016/j.ces.2010.10.035 10.1126/science.1104962 10.1002/adma.200400463 10.1016/S0921-4526(02)00869-4 10.1126/science.1115311 10.1016/S0032-5910(01)00307-2 10.1002/adma.200306205 10.1016/j.jaerosci.2007.03.008 10.1016/j.scitotenv.2011.08.011 10.1016/j.polymer.2013.02.034 10.1039/C1JM14299B 10.1002/smll.201203252 10.1016/S0021-8502(98)00036-6 10.1038/419801a 10.1002/cssc.201100177 10.1021/nn200338r 10.1016/j.carbon.2012.11.032 10.1021/cr50003a004 10.1016/S0021-8502(99)00029-4 10.1016/j.carbon.2009.11.043 10.1002/adma.200601344 10.1016/j.seppur.2008.07.015 10.1016/j.carbon.2010.04.017 10.1016/j.polymer.2014.05.016 10.1021/nn100150x 10.1016/j.ces.2012.07.031 10.1016/0021-9797(75)90255-6 10.1016/j.ces.2009.11.037 10.1016/S0021-8502(96)00473-9 10.1016/0021-8502(74)90005-6 10.1002/smll.201202334 10.1016/j.ces.2009.12.002 10.1016/j.powtec.2008.01.020 10.1016/j.carbon.2006.02.005 10.1016/j.scitotenv.2011.04.060 10.1016/j.powtec.2006.01.016 10.1016/0021-9797(71)90372-9 |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 |
DOI | 10.1002/smll.201401553 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Materials Research Database Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 4561 |
ExternalDocumentID | 3501871301 25288476 10_1002_smll_201401553 SMLL201401553 ark_67375_WNG_5K4KJL35_G |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AGHNM AGQPQ AGYGG CITATION NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c5473-7a266dbbd0f24f6e7c8372ef85cc95c37c031d59dc98bd74be6b25b9448c8f8a3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 19:18:49 EDT 2025 Fri Jul 11 04:05:06 EDT 2025 Fri Jul 25 12:19:24 EDT 2025 Thu Apr 03 06:59:09 EDT 2025 Tue Jul 01 02:10:15 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 Wed Jan 22 16:22:30 EST 2025 Wed Oct 30 09:52:56 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | air filtration free molecular flow regime air filters carbon nanotubes particulates |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5473-7a266dbbd0f24f6e7c8372ef85cc95c37c031d59dc98bd74be6b25b9448c8f8a3 |
Notes | ark:/67375/WNG-5K4KJL35-G ArticleID:SMLL201401553 istex:07AD3084B1DE7E33014146E8EF864A87D216B93E ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25288476 |
PQID | 1626161082 |
PQPubID | 1046358 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1642239672 proquest_miscellaneous_1627078558 proquest_journals_1626161082 pubmed_primary_25288476 crossref_primary_10_1002_smll_201401553 crossref_citationtrail_10_1002_smll_201401553 wiley_primary_10_1002_smll_201401553_SMLL201401553 istex_primary_ark_67375_WNG_5K4KJL35_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-Nov |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-Nov |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | R. C. Brown, Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters, Pergamon Press, Oxford 1993. c) M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, Science 2005, 309, 1215 d) Q. Zhang, D.-G. Wang, J.-Q. Huang, W.-P. Zhou, G.-H. Luo, W.-Z. Qian, F. Wei, Carbon 2010, 48, 2855. b) D. Cho, A. Naydich, M. W. Frey, Y. L. Joo, Polymer 2013, 54, 2364 b) A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, Nat. Nanotechnol. 2007, 2, 156. A. Lushnikov, J. Aerosol. Sci. 1997, 28, 545. b) Q. Zhang, J. Q. Huang, M. Q. Zhao, W. Z. Qian, F. Wei, ChemSusChem 2011, 4, 864 R.-J. Roe, J. Colloid Interf. Sci 1975, 50, 70. W. W.-F. Leung, C.-H. Hung, P.-T. Yuen, Aerosol. Sci. Tech. 2009, 43, 1174. c) I. M. Hutten, Nanofiltration: Principles and Applications, Elsevier, Oxford, UK 2007. M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 2013, 339, 535. c) C. B. Song, H. S. Park, K. W. Lee, Powder Technol. 2006, 163, 152 A. Kirsch, I. Stechkina, N. Fuchs, J. Aerosol. Sci. 1974, 5, 39. a) A. N. Karwa, B. J. Tatarchuk, Sep. Purif. Technol. 2012, 87, 84 a) K. Sutherland, Filters and Filtration Handbook, Elsevier, Oxford, UK 2008 a) K. L. Jiang, Q. Q. Li, S. S. Fan, Nature 2002, 419, 801 P. Li, Y. Zong, Y. Zhang, M. Yang, R. Zhang, S. Li, F. Wei, Nanoscale 2013, 5, 3367. A. Kirsch, I. Stechkina, The Theory of Aerosol Filtration with Fibrous Filters, Wiley, New York 1978. J. Quevedo, G. Patel, R. Pfeffer, R. Dave, Powder Technol. 2008, 183, 480. D. Shou, L. Ye, J. Fan, Polymer 2014, 55, 3149. T. Grafe, K. Graham, Nonwoven Technol. Rev. 2003, 51. b) S. Iijima, Physica B: Condensed Matter 2002, 323, 1. B. Maze, H. Vahedi Tafreshi, Q. Wang, B. Pourdeyhimi, J. Aerosol. Sci. 2007, 38, 550. C. Cercignani, in The Boltzmann Equation and its Applications, Vol. 67, Springer, New York 1988, p.40. C. Wang, P. Li, Y. Zong, Y. Zhang, S. Li, F. Wei, Carbon 2014, 79, 424. d) K. Yoon, B. S. Hsiao, B. Chu, J. Mater. Chem. 2008, 18, 5326. a) S. Payet, D. Boulaud, G. Madelaine, A. Renoux, J. Aerosol. Sci. 1992, 23, 723 T. Frising, D. Thomas, D. Bémer, P. Contal, hem. Eng. Sci. 2005, 60, 2751. A. F. Miguel, J. Aerosol. Sci. 2003, 34, 783. J. Muller, F. Huaux, N. Moreau, P. Misson, J.-F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy, D. Lison, Toxicol. Appl. Pharm. 2005, 207, 221. B.-S. Kim, I.-S. Kim, Polym. Rev. 2011, 51, 235. b) S. J. Park, D. G. Lee, Current Applied Physics 2006, 6, e182. D. Thomas, P. Contal, V. Renaudin, P. Penicot, D. Leclerc, J. Vendel, J. Aerosol. Sci. 1999, 30, 235. N. Halonen, A. Rautio, A.-R. Leino, T. Kyllonen, G. Toth, J. Lappalainen, K. Kordás, M. Huuhtanen, R. L. Keiski, A. Sápi, ACS Nano 2010, 4, 2003. C.-S. Wang, Powder Technol. 2001, 118, 166. W. Sambaer, M. Zatloukal, D. Kimmer, Chem. Eng. Sci. 2012, 82, 299. O. Yildiz, P. D. Bradford, Carbon 2013, 64, 295. a) Q. Zhang, J. Q. Huang, W. Z. Qian, Y. Y. Zhang, F. Wei, Small 2013, 9, 1237 G. Viswanathan, D. B. Kane, P. J. Lipowicz, Adv. Mater. 2004, 16, 2045. J. Pauluhn, Regul. Toxicol. Pharm. 2010, 57, 78. P. Gibson, H. Schreuder-Gibson, D. Rivin, Colloid Surface., A 2001, 187-188, 469. a) J. H. Park, K. Y. Yoon, H. Na, Y. S. Kim, J. Hwang, J. Kim, Y. H. Yoon, Sci. Total. Environ. 2011, 409, 4132 a) K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 2004, 306, 1362 b) K.-T. Park, J. Hwang, Carbon 2014, 75, 401. S. Iijima, Nature 1991, 354, 56. R. S. Barhate, S. Ramakrishna, J. Membrane. Sci. 2007, 296, 1. W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, Hoboken, USA 2012. C.-H. Hung, W. W.-F. Leung, Sep. Purif. Technol. 2011, 79, 34. Z. Zhang, B. Y. H. Liu, Aerosol. Sci. Tech. 1992, 16, 227. A. Bennett, Filtr. Separat. 2012, 49, 22. b) H. Misslitz, K. Kreger, H.-W. Schmidt, Small 2013, 9, 2053. J. Pich, J. Colloid Interf. Sci 1971, 37, 912. a) N. Wang, X. Wang, B. Ding, J. Yu, G. Sun, J. Mater. Chem. 2012, 22, 1445 A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivisto, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, ACS Nano 2011, 5, 3214. b) Q. W. Li, X. F. Zhang, R. F. DePaula, L. X. Zheng, Y. H. Zhao, L. Stan, T. G. Holesinger, P. N. Arendt, D. E. Peterson, Y. T. Zhu, Adv. Mater. 2006, 18, 3160 c) Y. C. Ahn, S. K. Park, G. T. Kim, Y. J. Hwang, C. G. Lee, H. S. Shin, J. K. Lee, Curr. Appl. Phys. 2006, 6, 1030 a) S. J. Park, D. G. Lee, Carbon 2006, 44, 1930 C. N. Davies, Air Filtration, Academic Press, New York 1973. e) B. Li, Z. Ji, X. Yang, Pet. Sci. 2009, 6, 438. a) M. Lalagiri, G. Bhat, V. Singh, S. Parameswaran, R. J. Kendall, S. Ramkumar, Ind. Eng. Chem. Res. 2013, 52, 16513 b) H. Parham, S. Bates, Y. Xia, Y. Zhu, Carbon 2013, 54, 215. b) S. A. Hosseini, H. V. Tafreshi, Powder Technol. 2011, 212, 425. W. Sambaer, M. Zatloukal, D. Kimmer, Chem. Eng. Sci. 2011, 66, 613. F. Devienne, R. B. Lindsay, Phys. Today 1959, 12, 48. W. W.-F. Leung, C.-H. Hung, Sep. Purif. Technol. 2008, 63, 691. C. Y. Chen, Chem. Rev. 1955, 55, 595. A. Bredin, B. J. Mullins, Sep. Purif. Technol. 2012, 90, 53. a) A. Podgórski, J. Aerosol. Sci. 1998, 29, Supp2, S929 a) S. A. Hosseini, H. V. Tafreshi, Chem. Eng. Sci. 2010, 65, 2249 a) A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, E. I. Kauppinen, Chem. Eng. Sci. 2006, 61, 4393 S. Kuwabara, J. Phys. Soc. Jpn. 1959, 14, 527. b) Z. Xu, Fundamentals of Air Cleaning Technology and Its Application in Cleanrooms, Springer-Verlag GmbH, Heidelberg, Germany 2013 b) I. E. Agranovski, R. D. Braddock, Aiche J. 1998, 44, 2775 B. Xu, Y. Wu, P. Cui, Particuology 2014, 13, 60. e) A. Charvet, Y. Gonthier, E. Gonze, A. Bernis, Chem. Eng. Sci. 2010, 65, 1875. R. Balamurugan, S. Sundarrajan, S. Ramakrishna, Membranes 2011, 1, 232. b) P. C. Raynor, D. Leith, J. Aerosol. Sci. 2000, 31, 19 H. Hou, D. H. Reneker, Adv. Mater. 2004, 16, 69. d) A. Charvet, Y. Gonthier, A. Bernis, E. Gonze, Chem. Engin. Res. Design 2008, 86, 569 A. D. Maynard, P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, V. Castranova, J. Toxicol. Environ. Health, Part A 2004, 67, 87. T. Premkumar, R. Mezzenga, K. E. Geckeler, Small 2012, 8, 1299. c) S. Callé, P. Contal, D. Thomas, D. Bémer, D. Leclerc, Powder Technol. 2002, 128, 213 K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu, S. Fan, Adv. Mater. 2011, 23, 1154. P. Contal, J. Simao, D. Thomas, T. Frising, S. Callé, J. C. Appert-Collin, D. Bémer, J. Aerosol. Sci. 2004, 35, 263. a) W. W.-F. Leung, C.-H. Hung, P.-T. Yuen, Sep. Purif. Technol. 2010, 71, 30 b) W. W.-F. Leung, C.-H. Hung, Sep. Purif. Technol. 2012, 92, 174. R. C. Brown, D. Wake, J. Aerosol. Sci. 1999, 30, 227. b) A. Podgórski, A. Bałazy, L. Gradoń, Chem. Eng. Sci. 2006, 61, 6804. D. C. Walsh, J. I. T. Stenhouse, K. L. Scurrah, A. Graef, J. Aerosol. Sci. 1996, 27, Supp1, S617. a) J. Liu, D. Y. H. Pui, J. Wang, Sci. Total. Environ. 2011, 409, 4868 C. YANG, Chinese. J. Chem. Eng. 2012, 20, 1. c) Q. Zhang, M.-Q. Zhao, J.-Q. Huang, J.-Q. Nie, F. Wei, Carbon 2010, 48, 1196. B. J. Mullins, G. Kasper, Chem. Eng. Sci. 2006, 61, 6223. d) R. Przekop, L. Gradoń, Aerosol. Sci. Tech. 2008, 42, 483 W. Sambaer, M. Zatloukal, D. Kimmer, Polym. Test. 2010, 29, 82. A. C. Payatakes, L. Gradoń, Chem. Eng. Sci. 1980, 35, 1083. 2011 2014; 409 75 2011 2006; 409 61 1998 2000 2002 2008 2010; 29 31 128 42 65 2012 2013; 87 54 2009; 43 1991; 354 2010; 57 2013 2011 2010; 9 4 48 2013 2013 2006 2008; 52 54 6 18 2013; 64 2004; 67 1973 2005; 60 1992; 16 2013; 5 1975; 50 1992 1998 2006 2008 2009; 23 44 163 86 6 1978 1974; 5 2008; 183 2007; 38 2012 2013; 22 9 2006; 61 2010; 29 1980; 35 2004; 35 2007; 296 2011; 66 2014; 13 2011; 23 2008; 63 1996; 27 2010; 4 2014; 55 2010 2011; 65 212 2012; 20 1955; 55 1989 2012; 82 2008 2013 2007 2006 2007; 61 2 2011; 1 2012 1997; 28 2011; 79 2001; 187–188 1993 2003 2011; 5 2010 2012; 71 92 2003; 34 2004 2002; 306 323 2012; 90 2002 2006 2005 2010; 419 18 309 48 2013; 339 2004; 16 2006 2006; 44 6 2011; 51 1971; 37 2005; 207 1988; 67 2014; 79 1999; 30 2012; 49 2014 1959; 14 2001; 118 2012; 8 1959; 12 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_41_3 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_15_2 e_1_2_8_19_3 e_1_2_8_19_4 e_1_2_8_19_5 Kirsch A. (e_1_2_8_16_1) 1978 Davies C. N. (e_1_2_8_1_1) 1973 e_1_2_8_30_3 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_30_5 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_30_4 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 Sutherland K. (e_1_2_8_4_1) 2008 Hutten I. M. (e_1_2_8_4_3) 2007 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 Hinds W. C. (e_1_2_8_6_1) 2012 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_52_2 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_7_4 e_1_2_8_3_1 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_62_1 e_1_2_8_62_2 Grafe T. (e_1_2_8_18_1) 2003 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_59_2 e_1_2_8_70_1 Brown R. C. (e_1_2_8_14_1) 1993 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_55_2 e_1_2_8_32_2 e_1_2_8_51_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_8_2 e_1_2_8_8_1 Xu Z. (e_1_2_8_4_2) 2013 e_1_2_8_65_2 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_61_2 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_58_4 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_58_3 e_1_2_8_58_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – reference: A. C. Payatakes, L. Gradoń, Chem. Eng. Sci. 1980, 35, 1083. – reference: C. Wang, P. Li, Y. Zong, Y. Zhang, S. Li, F. Wei, Carbon 2014, 79, 424. – reference: B.-S. Kim, I.-S. Kim, Polym. Rev. 2011, 51, 235. – reference: H. Hou, D. H. Reneker, Adv. Mater. 2004, 16, 69. – reference: a) A. Podgórski, J. Aerosol. Sci. 1998, 29, Supp2, S929; – reference: b) I. E. Agranovski, R. D. Braddock, Aiche J. 1998, 44, 2775; – reference: b) S. J. Park, D. G. Lee, Current Applied Physics 2006, 6, e182. – reference: c) Y. C. Ahn, S. K. Park, G. T. Kim, Y. J. Hwang, C. G. Lee, H. S. Shin, J. K. Lee, Curr. Appl. Phys. 2006, 6, 1030; – reference: D. Thomas, P. Contal, V. Renaudin, P. Penicot, D. Leclerc, J. Vendel, J. Aerosol. Sci. 1999, 30, 235. – reference: a) W. W.-F. Leung, C.-H. Hung, P.-T. Yuen, Sep. Purif. Technol. 2010, 71, 30; – reference: A. Kirsch, I. Stechkina, The Theory of Aerosol Filtration with Fibrous Filters, Wiley, New York 1978. – reference: B. J. Mullins, G. Kasper, Chem. Eng. Sci. 2006, 61, 6223. – reference: A. Lushnikov, J. Aerosol. Sci. 1997, 28, 545. – reference: A. F. Miguel, J. Aerosol. Sci. 2003, 34, 783. – reference: A. Bennett, Filtr. Separat. 2012, 49, 22. – reference: d) A. Charvet, Y. Gonthier, A. Bernis, E. Gonze, Chem. Engin. Res. Design 2008, 86, 569; – reference: b) W. W.-F. Leung, C.-H. Hung, Sep. Purif. Technol. 2012, 92, 174. – reference: J. Pich, J. Colloid Interf. Sci 1971, 37, 912. – reference: C. YANG, Chinese. J. Chem. Eng. 2012, 20, 1. – reference: T. Frising, D. Thomas, D. Bémer, P. Contal, hem. Eng. Sci. 2005, 60, 2751. – reference: a) K. Sutherland, Filters and Filtration Handbook, Elsevier, Oxford, UK 2008; – reference: b) Q. Zhang, J. Q. Huang, M. Q. Zhao, W. Z. Qian, F. Wei, ChemSusChem 2011, 4, 864; – reference: b) H. Misslitz, K. Kreger, H.-W. Schmidt, Small 2013, 9, 2053. – reference: P. Gibson, H. Schreuder-Gibson, D. Rivin, Colloid Surface., A 2001, 187-188, 469. – reference: P. Li, Y. Zong, Y. Zhang, M. Yang, R. Zhang, S. Li, F. Wei, Nanoscale 2013, 5, 3367. – reference: O. Yildiz, P. D. Bradford, Carbon 2013, 64, 295. – reference: a) J. Liu, D. Y. H. Pui, J. Wang, Sci. Total. Environ. 2011, 409, 4868; – reference: A. D. Maynard, P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, V. Castranova, J. Toxicol. Environ. Health, Part A 2004, 67, 87. – reference: C.-H. Hung, W. W.-F. Leung, Sep. Purif. Technol. 2011, 79, 34. – reference: S. Kuwabara, J. Phys. Soc. Jpn. 1959, 14, 527. – reference: b) Q. W. Li, X. F. Zhang, R. F. DePaula, L. X. Zheng, Y. H. Zhao, L. Stan, T. G. Holesinger, P. N. Arendt, D. E. Peterson, Y. T. Zhu, Adv. Mater. 2006, 18, 3160; – reference: R. C. Brown, Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters, Pergamon Press, Oxford 1993. – reference: b) S. A. Hosseini, H. V. Tafreshi, Powder Technol. 2011, 212, 425. – reference: W. Sambaer, M. Zatloukal, D. Kimmer, Polym. Test. 2010, 29, 82. – reference: c) S. Callé, P. Contal, D. Thomas, D. Bémer, D. Leclerc, Powder Technol. 2002, 128, 213; – reference: G. Viswanathan, D. B. Kane, P. J. Lipowicz, Adv. Mater. 2004, 16, 2045. – reference: R. S. Barhate, S. Ramakrishna, J. Membrane. Sci. 2007, 296, 1. – reference: b) K.-T. Park, J. Hwang, Carbon 2014, 75, 401. – reference: c) Q. Zhang, M.-Q. Zhao, J.-Q. Huang, J.-Q. Nie, F. Wei, Carbon 2010, 48, 1196. – reference: b) S. Iijima, Physica B: Condensed Matter 2002, 323, 1. – reference: a) J. H. Park, K. Y. Yoon, H. Na, Y. S. Kim, J. Hwang, J. Kim, Y. H. Yoon, Sci. Total. Environ. 2011, 409, 4132; – reference: J. Pauluhn, Regul. Toxicol. Pharm. 2010, 57, 78. – reference: W. Sambaer, M. Zatloukal, D. Kimmer, Chem. Eng. Sci. 2011, 66, 613. – reference: b) P. C. Raynor, D. Leith, J. Aerosol. Sci. 2000, 31, 19; – reference: J. Quevedo, G. Patel, R. Pfeffer, R. Dave, Powder Technol. 2008, 183, 480. – reference: C. Y. Chen, Chem. Rev. 1955, 55, 595. – reference: a) S. J. Park, D. G. Lee, Carbon 2006, 44, 1930; – reference: C. Cercignani, in The Boltzmann Equation and its Applications, Vol. 67, Springer, New York 1988, p.40. – reference: D. C. Walsh, J. I. T. Stenhouse, K. L. Scurrah, A. Graef, J. Aerosol. Sci. 1996, 27, Supp1, S617. – reference: Z. Zhang, B. Y. H. Liu, Aerosol. Sci. Tech. 1992, 16, 227. – reference: a) M. Lalagiri, G. Bhat, V. Singh, S. Parameswaran, R. J. Kendall, S. Ramkumar, Ind. Eng. Chem. Res. 2013, 52, 16513; – reference: M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 2013, 339, 535. – reference: b) D. Cho, A. Naydich, M. W. Frey, Y. L. Joo, Polymer 2013, 54, 2364; – reference: a) K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 2004, 306, 1362; – reference: B. Maze, H. Vahedi Tafreshi, Q. Wang, B. Pourdeyhimi, J. Aerosol. Sci. 2007, 38, 550. – reference: e) A. Charvet, Y. Gonthier, E. Gonze, A. Bernis, Chem. Eng. Sci. 2010, 65, 1875. – reference: b) A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, Nat. Nanotechnol. 2007, 2, 156. – reference: a) Q. Zhang, J. Q. Huang, W. Z. Qian, Y. Y. Zhang, F. Wei, Small 2013, 9, 1237; – reference: a) N. Wang, X. Wang, B. Ding, J. Yu, G. Sun, J. Mater. Chem. 2012, 22, 1445; – reference: N. Halonen, A. Rautio, A.-R. Leino, T. Kyllonen, G. Toth, J. Lappalainen, K. Kordás, M. Huuhtanen, R. L. Keiski, A. Sápi, ACS Nano 2010, 4, 2003. – reference: W. W.-F. Leung, C.-H. Hung, P.-T. Yuen, Aerosol. Sci. Tech. 2009, 43, 1174. – reference: C.-S. Wang, Powder Technol. 2001, 118, 166. – reference: K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu, S. Fan, Adv. Mater. 2011, 23, 1154. – reference: c) C. B. Song, H. S. Park, K. W. Lee, Powder Technol. 2006, 163, 152; – reference: c) M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, Science 2005, 309, 1215; – reference: e) B. Li, Z. Ji, X. Yang, Pet. Sci. 2009, 6, 438. – reference: d) K. Yoon, B. S. Hsiao, B. Chu, J. Mater. Chem. 2008, 18, 5326. – reference: W. Sambaer, M. Zatloukal, D. Kimmer, Chem. Eng. Sci. 2012, 82, 299. – reference: R.-J. Roe, J. Colloid Interf. Sci 1975, 50, 70. – reference: S. Iijima, Nature 1991, 354, 56. – reference: T. Grafe, K. Graham, Nonwoven Technol. Rev. 2003, 51. – reference: d) Q. Zhang, D.-G. Wang, J.-Q. Huang, W.-P. Zhou, G.-H. Luo, W.-Z. Qian, F. Wei, Carbon 2010, 48, 2855. – reference: W. W.-F. Leung, C.-H. Hung, Sep. Purif. Technol. 2008, 63, 691. – reference: A. Bredin, B. J. Mullins, Sep. Purif. Technol. 2012, 90, 53. – reference: a) S. Payet, D. Boulaud, G. Madelaine, A. Renoux, J. Aerosol. Sci. 1992, 23, 723; – reference: W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, Hoboken, USA 2012. – reference: R. Balamurugan, S. Sundarrajan, S. Ramakrishna, Membranes 2011, 1, 232. – reference: C. N. Davies, Air Filtration, Academic Press, New York 1973. – reference: D. Shou, L. Ye, J. Fan, Polymer 2014, 55, 3149. – reference: a) S. A. Hosseini, H. V. Tafreshi, Chem. Eng. Sci. 2010, 65, 2249; – reference: J. Muller, F. Huaux, N. Moreau, P. Misson, J.-F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy, D. Lison, Toxicol. Appl. Pharm. 2005, 207, 221. – reference: a) K. L. Jiang, Q. Q. Li, S. S. Fan, Nature 2002, 419, 801; – reference: b) Z. Xu, Fundamentals of Air Cleaning Technology and Its Application in Cleanrooms, Springer-Verlag GmbH, Heidelberg, Germany 2013; – reference: A. Kirsch, I. Stechkina, N. Fuchs, J. Aerosol. Sci. 1974, 5, 39. – reference: B. Xu, Y. Wu, P. Cui, Particuology 2014, 13, 60. – reference: P. Contal, J. Simao, D. Thomas, T. Frising, S. Callé, J. C. Appert-Collin, D. Bémer, J. Aerosol. Sci. 2004, 35, 263. – reference: R. C. Brown, D. Wake, J. Aerosol. Sci. 1999, 30, 227. – reference: a) A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, E. I. Kauppinen, Chem. Eng. Sci. 2006, 61, 4393; – reference: A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivisto, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, ACS Nano 2011, 5, 3214. – reference: b) A. Podgórski, A. Bałazy, L. Gradoń, Chem. Eng. Sci. 2006, 61, 6804. – reference: c) I. M. Hutten, Nanofiltration: Principles and Applications, Elsevier, Oxford, UK 2007. – reference: d) R. Przekop, L. Gradoń, Aerosol. Sci. Tech. 2008, 42, 483; – reference: F. Devienne, R. B. Lindsay, Phys. Today 1959, 12, 48. – reference: a) A. N. Karwa, B. J. Tatarchuk, Sep. Purif. Technol. 2012, 87, 84; – reference: T. Premkumar, R. Mezzenga, K. E. Geckeler, Small 2012, 8, 1299. – reference: b) H. Parham, S. Bates, Y. Xia, Y. Zhu, Carbon 2013, 54, 215. – volume: 49 start-page: 22 year: 2012 publication-title: Filtr. Separat. – volume: 35 start-page: 1083 year: 1980 publication-title: Chem. Eng. Sci. – volume: 16 start-page: 227 year: 1992 publication-title: Aerosol. Sci. Tech. – volume: 50 start-page: 70 year: 1975 publication-title: J. Colloid Interf. Sci – volume: 51 start-page: 235 year: 2011 publication-title: Polym. Rev. – volume: 43 start-page: 1174 year: 2009 publication-title: Aerosol. Sci. Tech. – volume: 12 start-page: 48 year: 1959 publication-title: Phys. Today – volume: 66 start-page: 613 year: 2011 publication-title: Chem. Eng. Sci. – volume: 37 start-page: 912 year: 1971 publication-title: J. Colloid Interf. Sci – volume: 35 start-page: 263 year: 2004 publication-title: J. Aerosol. Sci. – volume: 29 31 128 42 65 start-page: S929 19 213 483 1875 issue: Supp2 year: 1998 2000 2002 2008 2010 publication-title: J. Aerosol. Sci. J. Aerosol. Sci. Powder Technol. Aerosol. Sci. Tech. Chem. Eng. Sci. – volume: 23 44 163 86 6 start-page: 723 2775 152 569 438 year: 1992 1998 2006 2008 2009 publication-title: J. Aerosol. Sci. Aiche J. Powder Technol. Chem. Engin. Res. Design Pet. Sci. – volume: 82 start-page: 299 year: 2012 publication-title: Chem. Eng. Sci. – volume: 23 start-page: 1154 year: 2011 publication-title: Adv. Mater. – volume: 4 start-page: 2003 year: 2010 publication-title: ACS Nano – year: 1989 – volume: 67 start-page: 40 year: 1988 – volume: 61 2 start-page: 4393 156 year: 2006 2007 publication-title: Chem. Eng. Sci. Nat. Nanotechnol. – volume: 183 start-page: 480 year: 2008 publication-title: Powder Technol. – volume: 306 323 start-page: 1362 1 year: 2004 2002 publication-title: Science Physica B: Condensed Matter – volume: 9 4 48 start-page: 1237 864 1196 year: 2013 2011 2010 publication-title: Small ChemSusChem Carbon – year: 2014 – volume: 30 start-page: 235 year: 1999 publication-title: J. Aerosol. Sci. – volume: 29 start-page: 82 year: 2010 publication-title: Polym. Test. – volume: 187–188 start-page: 469 year: 2001 publication-title: Colloid Surface., A – volume: 296 start-page: 1 year: 2007 publication-title: J. Membrane. Sci. – volume: 28 start-page: 545 year: 1997 publication-title: J. Aerosol. Sci. – volume: 14 start-page: 527 year: 1959 publication-title: J. Phys. Soc. Jpn. – volume: 79 start-page: 424 year: 2014 publication-title: Carbon – volume: 61 start-page: 6223 year: 2006 publication-title: Chem. Eng. Sci. – volume: 90 start-page: 53 year: 2012 publication-title: Sep. Purif. Technol. – volume: 5 start-page: 3367 year: 2013 publication-title: Nanoscale – volume: 71 92 start-page: 30 174 year: 2010 2012 publication-title: Sep. Purif. Technol. Sep. Purif. Technol. – volume: 8 start-page: 1299 year: 2012 publication-title: Small – volume: 87 54 start-page: 84 215 year: 2012 2013 publication-title: Sep. Purif. Technol. Carbon – year: 1993 – volume: 5 start-page: 39 year: 1974 publication-title: J. Aerosol. Sci. – volume: 38 start-page: 550 year: 2007 publication-title: J. Aerosol. Sci. – volume: 63 start-page: 691 year: 2008 publication-title: Sep. Purif. Technol. – volume: 27 start-page: S617 issue: Supp1 year: 1996 publication-title: J. Aerosol. Sci. – volume: 64 start-page: 295 year: 2013 publication-title: Carbon – volume: 13 start-page: 60 year: 2014 publication-title: Particuology – volume: 22 9 start-page: 1445 2053 year: 2012 2013 publication-title: J. Mater. Chem. Small – volume: 419 18 309 48 start-page: 801 3160 1215 2855 year: 2002 2006 2005 2010 publication-title: Nature Adv. Mater. Science Carbon – year: 1973 – volume: 67 start-page: 87 year: 2004 publication-title: J. Toxicol. Environ. Health, Part A – year: 2008 2013 2007 – volume: 16 start-page: 2045 year: 2004 publication-title: Adv. Mater. – volume: 60 start-page: 2751 year: 2005 publication-title: hem. Eng. Sci. – volume: 118 start-page: 166 year: 2001 publication-title: Powder Technol. – volume: 207 start-page: 221 year: 2005 publication-title: Toxicol. Appl. Pharm. – volume: 354 start-page: 56 year: 1991 publication-title: Nature – volume: 339 start-page: 535 year: 2013 publication-title: Science – year: 2012 – volume: 55 start-page: 595 year: 1955 publication-title: Chem. Rev. – volume: 5 start-page: 3214 year: 2011 publication-title: ACS Nano – volume: 409 75 start-page: 4132 401 year: 2011 2014 publication-title: Sci. Total. Environ. Carbon – volume: 30 start-page: 227 year: 1999 publication-title: J. Aerosol. Sci. – volume: 52 54 6 18 start-page: 16513 2364 1030 5326 year: 2013 2013 2006 2008 publication-title: Ind. Eng. Chem. Res. Polymer Curr. Appl. Phys. J. Mater. Chem. – volume: 1 start-page: 232 year: 2011 publication-title: Membranes – volume: 79 start-page: 34 year: 2011 publication-title: Sep. Purif. Technol. – volume: 44 6 start-page: 1930 e182 year: 2006 2006 publication-title: Carbon Current Applied Physics – volume: 65 212 start-page: 2249 425 year: 2010 2011 publication-title: Chem. Eng. Sci. Powder Technol. – volume: 20 start-page: 1 year: 2012 publication-title: Chinese. J. Chem. Eng. – volume: 409 61 start-page: 4868 6804 year: 2011 2006 publication-title: Sci. Total. Environ. Chem. Eng. Sci. – year: 1978 – volume: 55 start-page: 3149 year: 2014 publication-title: Polymer – start-page: 51 year: 2003 publication-title: Nonwoven Technol. Rev. – volume: 34 start-page: 783 year: 2003 publication-title: J. Aerosol. Sci. – volume: 16 start-page: 69 year: 2004 publication-title: Adv. Mater. – volume: 57 start-page: 78 year: 2010 publication-title: Regul. Toxicol. Pharm. – ident: e_1_2_8_56_1 doi: 10.1002/adma.201003989 – ident: e_1_2_8_15_2 doi: 10.1016/j.powtec.2011.06.025 – ident: e_1_2_8_40_1 doi: 10.1080/15583724.2011.599507 – ident: e_1_2_8_67_1 doi: 10.1016/j.carbon.2014.07.086 – ident: e_1_2_8_55_1 doi: 10.1016/j.ces.2006.02.020 – volume-title: Filters and Filtration Handbook year: 2008 ident: e_1_2_8_4_1 – volume-title: The Theory of Aerosol Filtration with Fibrous Filters year: 1978 ident: e_1_2_8_16_1 – ident: e_1_2_8_61_2 doi: 10.1016/j.carbon.2014.04.019 – ident: e_1_2_8_29_1 doi: 10.1016/j.partic.2013.05.004 – ident: e_1_2_8_50_1 doi: 10.1038/354056a0 – ident: e_1_2_8_7_1 doi: 10.1021/ie403093t – ident: e_1_2_8_49_1 doi: 10.1016/j.polymertesting.2009.09.008 – volume-title: Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters year: 1993 ident: e_1_2_8_14_1 – ident: e_1_2_8_21_1 doi: 10.1016/j.seppur.2012.02.009 – ident: e_1_2_8_32_2 doi: 10.1016/j.seppur.2011.02.020 – ident: e_1_2_8_30_4 doi: 10.1080/02786820802187077 – ident: e_1_2_8_19_5 doi: 10.1007/s12182-009-0067-z – ident: e_1_2_8_62_1 doi: 10.1016/j.seppur.2011.11.026 – ident: e_1_2_8_30_3 doi: 10.1016/S0032-5910(02)00199-7 – ident: e_1_2_8_70_1 doi: 10.1016/j.yrtph.2009.12.012 – ident: e_1_2_8_31_1 doi: 10.1080/02786820903261086 – ident: e_1_2_8_32_1 doi: 10.1016/j.seppur.2009.10.017 – volume-title: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles year: 2012 ident: e_1_2_8_6_1 – ident: e_1_2_8_34_1 doi: 10.1016/S0927-7757(01)00616-1 – ident: e_1_2_8_19_2 doi: 10.1002/aic.690441218 – ident: e_1_2_8_7_3 doi: 10.1016/j.cap.2005.07.013 – ident: e_1_2_8_30_1 doi: 10.1016/S0021-8502(98)90647-4 – ident: e_1_2_8_44_1 doi: 10.1007/978-1-4612-1039-9_2 – ident: e_1_2_8_19_1 doi: 10.1016/0021-8502(92)90039-X – ident: e_1_2_8_71_1 doi: 10.1080/15287390490253688 – ident: e_1_2_8_43_1 doi: 10.1016/j.memsci.2007.03.038 – ident: e_1_2_8_25_1 doi: 10.1016/j.jaerosci.2003.07.003 – ident: e_1_2_8_9_1 doi: 10.3390/membranes1030232 – ident: e_1_2_8_23_1 doi: 10.1016/0009-2509(80)85097-4 – ident: e_1_2_8_63_1 doi: 10.1039/c3nr34325a – ident: e_1_2_8_66_1 doi: 10.1039/C4RA08746A – ident: e_1_2_8_39_1 doi: 10.1080/02786829208959551 – volume-title: Air Filtration year: 1973 ident: e_1_2_8_1_1 – ident: e_1_2_8_26_1 doi: 10.1016/j.ces.2004.12.026 – ident: e_1_2_8_55_2 doi: 10.1038/nnano.2007.37 – ident: e_1_2_8_69_1 doi: 10.1016/j.taap.2005.01.008 – ident: e_1_2_8_65_2 doi: 10.1016/j.ces.2006.07.022 – ident: e_1_2_8_33_1 doi: 10.1016/S0021-8502(03)00027-2 – ident: e_1_2_8_7_4 doi: 10.1039/b804128h – ident: e_1_2_8_45_1 – ident: e_1_2_8_57_1 doi: 10.1016/j.carbon.2013.07.066 – ident: e_1_2_8_17_1 doi: 10.1016/S1004-9541(12)60356-5 – volume-title: Nanofiltration: Principles and Applications year: 2007 ident: e_1_2_8_4_3 – ident: e_1_2_8_19_4 doi: 10.1016/j.cherd.2007.11.008 – ident: e_1_2_8_38_1 doi: 10.1143/JPSJ.14.527 – ident: e_1_2_8_24_1 doi: 10.1016/S0021-8502(98)00042-1 – ident: e_1_2_8_10_1 doi: 10.1016/j.seppur.2011.03.008 – ident: e_1_2_8_36_1 doi: 10.1063/1.3060900 – ident: e_1_2_8_2_1 doi: 10.1016/S0015-1882(12)70107-6 – volume-title: Fundamentals of Air Cleaning Technology and Its Application in Cleanrooms year: 2013 ident: e_1_2_8_4_2 – ident: e_1_2_8_20_1 doi: 10.1016/0021-8502(96)00381-3 – ident: e_1_2_8_27_1 doi: 10.1016/j.ces.2006.05.027 – ident: e_1_2_8_13_1 doi: 10.1002/smll.201101786 – ident: e_1_2_8_51_1 doi: 10.1126/science.1222453 – ident: e_1_2_8_59_2 doi: 10.1016/j.cap.2006.01.035 – ident: e_1_2_8_46_1 doi: 10.1016/j.ces.2010.10.035 – ident: e_1_2_8_52_1 doi: 10.1126/science.1104962 – ident: e_1_2_8_53_1 doi: 10.1002/adma.200400463 – ident: e_1_2_8_52_2 doi: 10.1016/S0921-4526(02)00869-4 – ident: e_1_2_8_58_3 doi: 10.1126/science.1115311 – ident: e_1_2_8_35_1 doi: 10.1016/S0032-5910(01)00307-2 – ident: e_1_2_8_64_1 doi: 10.1002/adma.200306205 – ident: e_1_2_8_12_1 doi: 10.1016/j.jaerosci.2007.03.008 – ident: e_1_2_8_65_1 doi: 10.1016/j.scitotenv.2011.08.011 – ident: e_1_2_8_7_2 doi: 10.1016/j.polymer.2013.02.034 – ident: e_1_2_8_8_1 doi: 10.1039/C1JM14299B – ident: e_1_2_8_41_1 doi: 10.1002/smll.201203252 – ident: e_1_2_8_22_1 doi: 10.1016/S0021-8502(98)00036-6 – ident: e_1_2_8_58_1 doi: 10.1038/419801a – ident: e_1_2_8_41_2 doi: 10.1002/cssc.201100177 – ident: e_1_2_8_54_1 doi: 10.1021/nn200338r – ident: e_1_2_8_62_2 doi: 10.1016/j.carbon.2012.11.032 – ident: e_1_2_8_5_1 doi: 10.1021/cr50003a004 – ident: e_1_2_8_30_2 doi: 10.1016/S0021-8502(99)00029-4 – ident: e_1_2_8_41_3 doi: 10.1016/j.carbon.2009.11.043 – ident: e_1_2_8_58_2 doi: 10.1002/adma.200601344 – ident: e_1_2_8_42_1 doi: 10.1016/j.seppur.2008.07.015 – ident: e_1_2_8_58_4 doi: 10.1016/j.carbon.2010.04.017 – ident: e_1_2_8_11_1 doi: 10.1016/j.polymer.2014.05.016 – ident: e_1_2_8_60_1 doi: 10.1021/nn100150x – ident: e_1_2_8_47_1 doi: 10.1016/j.ces.2012.07.031 – ident: e_1_2_8_28_1 doi: 10.1016/0021-9797(75)90255-6 – ident: e_1_2_8_30_5 doi: 10.1016/j.ces.2009.11.037 – ident: e_1_2_8_3_1 doi: 10.1016/S0021-8502(96)00473-9 – ident: e_1_2_8_37_1 doi: 10.1016/0021-8502(74)90005-6 – ident: e_1_2_8_8_2 doi: 10.1002/smll.201202334 – ident: e_1_2_8_15_1 doi: 10.1016/j.ces.2009.12.002 – ident: e_1_2_8_68_1 doi: 10.1016/j.powtec.2008.01.020 – ident: e_1_2_8_59_1 doi: 10.1016/j.carbon.2006.02.005 – ident: e_1_2_8_61_1 doi: 10.1016/j.scitotenv.2011.04.060 – ident: e_1_2_8_19_3 doi: 10.1016/j.powtec.2006.01.016 – ident: e_1_2_8_48_1 doi: 10.1016/0021-9797(71)90372-9 – start-page: 51 year: 2003 ident: e_1_2_8_18_1 publication-title: Nonwoven Technol. Rev. |
SSID | ssj0031247 |
Score | 2.5853782 |
SecondaryResourceType | review_article |
Snippet | Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4543 |
SubjectTerms | Air filters air filtration Carbon nanotubes Efficiency Filtration Free molecular flow free molecular flow regime Indoor air quality Mean free path Molecular structure Nanostructure Nanotechnology particulates Pressure drop |
Title | Air Filtration in the Free Molecular Flow Regime: A Review of High-Efficiency Particulate Air Filters Based on Carbon Nanotubes |
URI | https://api.istex.fr/ark:/67375/WNG-5K4KJL35-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201401553 https://www.ncbi.nlm.nih.gov/pubmed/25288476 https://www.proquest.com/docview/1626161082 https://www.proquest.com/docview/1627078558 https://www.proquest.com/docview/1642239672 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQucCBdyFQkCuh9uQ268R5cFuqplW7W1WFqr1Z8SNo1W2CsrsCcYJ_wG_klzDjPOhWUCQ4JVHGTmLPeL6J7W8IeW1TYUNtBFPg-1gIiJalvgqY8UF_NJhY6HJGjo-i_dPw4FycX9nF3_BD9D_c0DLceI0GnqvZ9i_S0NnlFKcOMEAQAuk-ccEWoqKTnj8qAOflsquAz2JIvNWxNvp8e7n4kle6jQ38-XeQcxnBOheU3Sd59_LNypOLrcVcbekv13gd_-frHpB7LT6lw0ahHpJbtnxE7l5hLXxMvg0nNc0m05Zwl05KCiiSZrW1dNxl26XZtPpET-yHyaV9Q4e0mYOgVUFxZcmPr993HXcFbvykx059MY-YpV3dgErpW_CwhsITdvJawQE8QTVfKDt7Qk6z3fc7-6zN5MA05jZmcQ44wChl_IKHRWRjDXExt0UitE6FDmINfWVEanSaKBOHykaKC5VC7KiTIsmDVbJSVqV9RmhhBhZAFqDWAQZ3BURkvo5x8jXlNgp8j7CuJ6Vuac4x28ZUNgTNXGLTyr5pPbLZy39sCD7-KLnhFKMXy-sLXBYXC3l2tCfFYXh4MAqE3PPIWqc5sh0RZnIAkSPoISAuj6z3t8GWcYImL221cDJIviREcpNMCIgujWKo52mjlf0LccETQBuRR7jTrb98kHw3Ho36q-f_UugFuYPnzebMNbIyrxf2JaC0uXrlLPEn42IxxA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2F5AAc2JeBAI3Ecppk3DM9CxIHk8Rx4kUoJCK3ZrqnB1lxbORFAU7wB_wKv8In8CVU9SxgxCIh5cDJsl3uGXdXdb2a7n4P4IFJhAl0JlyFuc8NENG6iad8N_PQfzSGWGA1I3v9sH0Q7B6KwyX4XJ2FKfgh6gduFBl2vqYApwfS699ZQ6fHQ1o7oApBiEq_umPenWDVNn26s4lD_JDz1tb-RtsthQVcTVK7bpRiWsqUyrycB3loIo1lGjd5LLROhPYjja6eiSTTSayyKFAmVFyoBEsZHedx6mO7Z2CFZMSJrn9zr2as8jFdWj0XzJIuUX1VPJEeX1-834U8uEJD-vZXIHcRM9uk17oIX6ruKva6HK3NZ2pNv_-JSfK_6s9LcKGE4KxZxMxlWDKjK3D-B2LGq_CxOZiw1mBYcgqzwYghUGatiTGsVwkKs9ZwfML2zOvBsXnCmqxYZmHjnNHmma8fPm1Zeg4628qe2wglqTTDqrYReLNnCCIyhlfYSCcKXzDZjWdzZabX4OBU-uA6LI_GI3MTWJ41DOJIBOYNql9zLDo9HdH6csJN6HsOuJXrSF0yuZOgyFAWHNRc0lDKeigdeFzbvyk4TH5r-ch6Ym2WTo5o518k5Mv-thSdoLPb9YXcdmC1clVZTnpT2cDiGB0fQaUD9-uvcbqiNah0ZMZza0P8UkLEf7IJELQmYYTt3CjCoL4hLniMgCp0gFtn_ssfki963W797ta__OgenG3v97qyu9Pv3IZz9HlxFnUVlmeTubmDoHSm7tppgMGr046Tb1dIkRQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4am4TYA3dYYYCRuDxlS504FyQeyrrs0oumsYm9mdhxULUumdJWA57gH_BT-Cv8BX4Jx84FirhISHvgqUp74qb2OT7fqe3vA3ikQqZcmTBLYO6zXES0VmgLx0ps9B-JIeYazcjB0Ns-dHeP2NECfK7PwpT8EM0fbjoyzHytA_w0Sde_k4ZOTsZ66UAXCIzV8tU99e4Mi7bJ850ujvBjSqPNg41tq9IVsKRW2rX8GLNSIkRip9RNPeVLrNKoSgMmZcik40v09ISFiQwDkfiuUJ6gTIRYycggDWIH270AS65nh1osorvfEFY5mC2NnAsmSUszfdU0kTZdn3_euTS4pEf07a8w7jxkNjkvugJf6t4qt7ocr82mYk2-_4lI8n_qzqtwuQLgpFNGzDVYUNl1WP6BlvEGfOyMChKNxhWjMBllBGEyiQqlyKCWEybROD8j--rN6EQ9Ix1SLrKQPCV668zXD582DTmHPtlK9kx8aqE0Req2EXaTFwghEoLfsBEXAl8w1eXTmVCTm3B4Ln1wCxazPFMrQNKkrRBFIixv6-o1xZLTlr5eXQ6p8hy7BVbtOVxWPO5aTmTMSwZqyvVQ8mYoW_C0sT8tGUx-a_nEOGJjFhfHet-fz_ir4RZnPbe323cY32rBau2pvJryJryNpTH6PULKFjxsPsbJSq9AxZnKZ8ZGs0sxFvzJxkXIGno-tnO7jILmgSijAcIprwXU-PJffhB_Oej3m6s7_3LTA7i41414f2fYuwuX9NvlQdRVWJwWM3UPEelU3DeTAIHX5x0m3wD6EY_D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+Filtration+in+the+Free+Molecular+Flow+Regime%3A+A+Review+of+High-Efficiency+Particulate+Air+Filters+Based+on+Carbon+Nanotubes&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Peng&rft.au=Wang%2C+Chunya&rft.au=Zhang%2C+Yingying&rft.au=Wei%2C+Fei&rft.date=2014-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=10&rft.issue=22&rft.spage=4543&rft_id=info:doi/10.1002%2Fsmll.201401553&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3501871301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |