Air Filtration in the Free Molecular Flow Regime: A Review of High-Efficiency Particulate Air Filters Based on Carbon Nanotubes

Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 10; no. 22; pp. 4543 - 4561
Main Authors Li, Peng, Wang, Chunya, Zhang, Yingying, Wei, Fei
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.11.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high‐efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single‐walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. Free molecular flow air filtration based on carbon nanotube air filters – from theoretical modeling to structure design.
AbstractList Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.
Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high‐efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single‐walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. Free molecular flow air filtration based on carbon nanotube air filters – from theoretical modeling to structure design.
Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. Free molecular flow air filtration based on carbon nanotube air filters - from theoretical modeling to structure design.
Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.
Author Li, Peng
Wang, Chunya
Zhang, Yingying
Wei, Fei
Author_xml – sequence: 1
  givenname: Peng
  surname: Li
  fullname: Li, Peng
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
– sequence: 2
  givenname: Chunya
  surname: Wang
  fullname: Wang, Chunya
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
– sequence: 3
  givenname: Yingying
  surname: Zhang
  fullname: Zhang, Yingying
  email: wf-dce@tsinghua.edu.cn
  organization: Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China
– sequence: 4
  givenname: Fei
  surname: Wei
  fullname: Wei, Fei
  email: wf-dce@tsinghua.edu.cn
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25288476$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAURiNURB-wZYkssWGTwfE77IZRZwqdFsRDLC3HuWldPEmxE6az6l_HYdoRqoRgde_inM-6_g6zvbZrIcueF3hSYExex5X3E4ILhgvO6aPsoBAFzYUi5d5uL_B-dhjjFca0IEw-yfYJJ0oxKQ6y26kLaO58H0zvuha5FvWXgOYBAJ11HuzgTQJ8t0af4MKt4A2apu2ngzXqGnTiLi7z46Zx1kFrN-ijCb0bnR7QfTKEiN6aCDVK-TMTqjTOTdv1QwXxafa4MT7Cs7t5lH2dH3-ZneTLD4t3s-kyt5xJmktDhKirqsYNYY0AaRWVBBrFrS25pdKm22pe1rZUVS1ZBaIivCoZU1Y1ytCj7NU29zp0PwaIvV65aMF700I3RF0IRggthST_gRKJpeJcJfTlA_SqG0KbDhkpkf4fqzHwxR01VCuo9XVwKxM2-r6FBEy2gA1djAGaHVJgPdasx5r1ruYksAeCdf3vAlOPzv9dK7fa2nnY_OMR_flsufzTzbeuiz3c7FwTvmshqeT62_lC81N2-n5JuV7QX4kiyl8
CitedBy_id crossref_primary_10_1021_acs_nanolett_2c00704
crossref_primary_10_1039_C5RA18200J
crossref_primary_10_1016_j_jece_2024_114877
crossref_primary_10_3390_polym12112494
crossref_primary_10_1021_acsanm_2c01468
crossref_primary_10_1016_j_apsusc_2015_08_211
crossref_primary_10_1002_smll_201603306
crossref_primary_10_2139_ssrn_3978666
crossref_primary_10_1016_j_partic_2020_11_006
crossref_primary_10_1016_j_seppur_2024_129354
crossref_primary_10_1002_marc_202401058
crossref_primary_10_15406_jteft_2021_07_00278
crossref_primary_10_1016_j_cej_2020_125373
crossref_primary_10_1021_acsami_4c00523
crossref_primary_10_1016_j_colsurfa_2021_127643
crossref_primary_10_1016_j_memsci_2024_122518
crossref_primary_10_1134_S1995080222110191
crossref_primary_10_1016_j_cap_2022_01_014
crossref_primary_10_1016_j_scitotenv_2020_138297
crossref_primary_10_1002_mame_202100278
crossref_primary_10_3390_nano10091806
crossref_primary_10_1016_j_jclepro_2022_134567
crossref_primary_10_1016_j_jhazmat_2024_135862
crossref_primary_10_1002_mame_201600353
crossref_primary_10_1016_j_colcom_2020_100275
crossref_primary_10_1088_2632_959X_abfe3d
crossref_primary_10_1063_5_0061847
crossref_primary_10_1039_C7TA03870D
crossref_primary_10_1016_j_polymer_2020_123278
crossref_primary_10_1016_j_jhazmat_2022_128514
crossref_primary_10_1016_j_seppur_2021_119258
crossref_primary_10_1002_app_54113
crossref_primary_10_1021_acsami_4c15332
crossref_primary_10_1021_acsanm_0c01619
crossref_primary_10_1016_j_seppur_2022_121093
crossref_primary_10_1002_pat_4594
crossref_primary_10_1039_D0EN00683A
crossref_primary_10_1088_2053_1591_aaed80
crossref_primary_10_1063_5_0135718
crossref_primary_10_1016_j_seppur_2024_131093
crossref_primary_10_3389_fenrg_2022_854913
crossref_primary_10_1002_mame_202300072
crossref_primary_10_1007_s12274_016_1145_3
crossref_primary_10_1016_j_memsci_2017_04_053
crossref_primary_10_1016_j_seppur_2022_122175
crossref_primary_10_1021_acsami_4c22310
crossref_primary_10_1016_j_memsci_2017_12_032
crossref_primary_10_1021_acsami_6b08262
crossref_primary_10_1080_00405000_2019_1627981
crossref_primary_10_3390_polym13193235
crossref_primary_10_1021_acs_nanolett_1c00050
crossref_primary_10_1063_5_0020802
crossref_primary_10_1021_acsami_0c18143
crossref_primary_10_3390_su16010179
crossref_primary_10_3390_su151914232
crossref_primary_10_1021_acsami_8b01287
crossref_primary_10_1016_j_nanoen_2022_107237
crossref_primary_10_1016_j_indcrop_2023_116331
crossref_primary_10_1016_j_ijbiomac_2022_02_029
crossref_primary_10_1016_j_jcis_2020_05_081
crossref_primary_10_1021_acsnano_9b07293
crossref_primary_10_1021_acsami_8b21116
crossref_primary_10_1021_acsanm_4c00631
crossref_primary_10_1016_j_icheatmasstransfer_2024_107349
crossref_primary_10_1021_acsapm_3c02109
crossref_primary_10_1007_s42247_023_00622_9
crossref_primary_10_1016_j_memsci_2023_121996
crossref_primary_10_3390_nano13030431
crossref_primary_10_1039_D1TA01505B
crossref_primary_10_1016_j_jaerosci_2019_01_001
crossref_primary_10_1016_j_jhazmat_2021_126835
crossref_primary_10_7883_yoken_JJID_2022_184
crossref_primary_10_1039_D1TA00794G
crossref_primary_10_1016_j_jclepro_2024_144562
crossref_primary_10_1016_j_rinma_2025_100688
crossref_primary_10_1021_acsami_8b16564
crossref_primary_10_3390_su13126553
crossref_primary_10_1016_j_oneear_2020_10_014
crossref_primary_10_1016_j_seppur_2024_130422
crossref_primary_10_1021_acs_nanolett_2c04667
crossref_primary_10_1016_j_ceramint_2018_12_046
crossref_primary_10_1016_j_carbon_2020_09_070
crossref_primary_10_1002_smll_202410639
crossref_primary_10_1016_j_jhazmat_2024_134740
crossref_primary_10_3390_pollutants3010011
crossref_primary_10_1021_acs_iecr_8b05770
crossref_primary_10_1038_s41467_019_09444_y
crossref_primary_10_1016_j_ceramint_2018_12_162
crossref_primary_10_1021_acs_iecr_1c03051
crossref_primary_10_1016_j_ces_2020_115523
crossref_primary_10_1002_adma_202413777
crossref_primary_10_1039_C8EN01084F
crossref_primary_10_1021_acsami_6b04720
crossref_primary_10_1021_acs_est_6b02563
crossref_primary_10_1007_s10853_022_07133_8
crossref_primary_10_1016_j_memsci_2017_02_042
crossref_primary_10_1038_s41598_022_12505_w
crossref_primary_10_1016_j_seppur_2024_130417
crossref_primary_10_1007_s42765_023_00275_7
crossref_primary_10_1016_j_ijbiomac_2022_08_188
crossref_primary_10_1016_j_seppur_2022_122070
crossref_primary_10_1021_acsami_5b03645
crossref_primary_10_1177_00405175241268799
crossref_primary_10_1016_j_seppur_2024_130416
crossref_primary_10_1007_s42765_024_00427_3
crossref_primary_10_1016_j_apsusc_2024_160623
crossref_primary_10_3390_ma14226766
crossref_primary_10_1002_app_54705
crossref_primary_10_1016_j_ces_2024_120855
crossref_primary_10_1016_j_progpolymsci_2018_07_002
crossref_primary_10_1016_j_apmt_2022_101369
crossref_primary_10_3390_polym13111864
crossref_primary_10_1016_j_seppur_2024_127005
crossref_primary_10_1016_j_powtec_2019_11_012
crossref_primary_10_1039_D3TA05039D
crossref_primary_10_1039_D4NR01688B
crossref_primary_10_1007_s13369_025_10092_2
crossref_primary_10_1016_j_ijbiomac_2023_123676
crossref_primary_10_1088_1361_6528_aae611
crossref_primary_10_1016_j_jobe_2023_106737
crossref_primary_10_1021_acs_chas_1c00016
crossref_primary_10_1021_acssuschemeng_8b01827
crossref_primary_10_1016_j_cej_2023_146415
crossref_primary_10_15406_mseij_2022_06_00173
crossref_primary_10_3390_polym11091511
crossref_primary_10_1002_adfm_202402969
crossref_primary_10_1039_C8RA07789D
crossref_primary_10_3390_polym15234586
crossref_primary_10_1016_j_nantod_2022_101723
crossref_primary_10_1038_srep35472
crossref_primary_10_1002_advs_202003155
crossref_primary_10_1016_j_jhazmat_2023_133232
crossref_primary_10_1080_00405000_2022_2151085
crossref_primary_10_1155_2016_6272983
crossref_primary_10_1007_s42765_023_00309_0
crossref_primary_10_3390_ma13245714
crossref_primary_10_1007_s41061_017_0102_2
crossref_primary_10_1103_PhysRevFluids_6_114201
crossref_primary_10_1007_s13204_022_02595_3
crossref_primary_10_1002_adma_202311129
crossref_primary_10_1016_j_ces_2022_117984
crossref_primary_10_1021_acsanm_1c04021
crossref_primary_10_1002_aic_18052
crossref_primary_10_1021_acsami_7b03047
crossref_primary_10_1007_s10853_023_08620_2
crossref_primary_10_1007_s41810_022_00161_6
crossref_primary_10_1016_j_seppur_2021_119623
crossref_primary_10_1002_pen_26236
crossref_primary_10_1002_smll_202105570
crossref_primary_10_1002_smtd_201800012
crossref_primary_10_1002_app_49149
crossref_primary_10_1016_j_cej_2021_134069
crossref_primary_10_1016_j_jece_2022_107832
crossref_primary_10_1021_acs_nanolett_2c03585
crossref_primary_10_1007_s12221_024_00831_x
crossref_primary_10_1016_j_seppur_2024_128793
crossref_primary_10_47992_IJCSBE_2581_6942_0094
crossref_primary_10_1039_C6EN00696E
crossref_primary_10_1039_D4RA02064B
crossref_primary_10_1007_s40684_024_00666_0
crossref_primary_10_1016_j_jece_2022_108923
crossref_primary_10_1021_acsami_8b00455
crossref_primary_10_1007_s00289_022_04311_1
crossref_primary_10_1177_15280837231199259
crossref_primary_10_1002_app_51582
crossref_primary_10_1002_admi_202101848
crossref_primary_10_1177_1528083719888674
crossref_primary_10_1016_j_memsci_2019_117445
crossref_primary_10_1016_j_memsci_2019_117561
crossref_primary_10_1039_D0RA01656J
crossref_primary_10_1002_adfm_202306777
crossref_primary_10_1039_D0EN00980F
crossref_primary_10_3390_gels9030208
crossref_primary_10_3390_ma15030976
crossref_primary_10_1002_adma_202002361
crossref_primary_10_1016_j_envres_2020_109192
crossref_primary_10_1021_acsnano_3c06060
crossref_primary_10_3390_molecules30061214
crossref_primary_10_1021_acsami_1c06520
crossref_primary_10_1016_j_apmt_2023_101833
crossref_primary_10_1016_j_nanoen_2022_108021
crossref_primary_10_1002_smll_202406619
crossref_primary_10_1021_acsami_7b00351
crossref_primary_10_1016_j_colsurfa_2021_126831
crossref_primary_10_1016_j_rineng_2024_101809
crossref_primary_10_1007_s12541_024_01146_w
crossref_primary_10_1016_j_ccr_2020_213477
crossref_primary_10_1016_j_pss_2020_104975
crossref_primary_10_1016_j_carbpol_2017_01_015
crossref_primary_10_3390_nano12071077
crossref_primary_10_1002_pat_6454
crossref_primary_10_1177_1528083720909462
crossref_primary_10_1088_1742_6596_1796_1_012084
crossref_primary_10_2139_ssrn_4132444
crossref_primary_10_1039_C9NR08851B
crossref_primary_10_1134_S1061933X24600726
crossref_primary_10_3390_ma14195551
crossref_primary_10_1007_s12221_022_4652_8
crossref_primary_10_3390_nano12224094
crossref_primary_10_3390_powders2020017
crossref_primary_10_1021_acsanm_3c02263
crossref_primary_10_1038_s41598_018_23960_9
crossref_primary_10_1016_j_psep_2018_12_029
crossref_primary_10_1080_00405000_2022_2145440
crossref_primary_10_1016_j_cej_2022_139168
crossref_primary_10_3390_polym13213773
crossref_primary_10_1021_acs_nanolett_4c00079
crossref_primary_10_1038_s41598_018_23257_x
crossref_primary_10_1021_acs_est_7b01494
crossref_primary_10_1016_j_jcis_2019_08_099
crossref_primary_10_3390_polym16020209
crossref_primary_10_1134_S1995080222130303
crossref_primary_10_1016_j_seppur_2022_120726
crossref_primary_10_1016_j_carbon_2021_06_087
crossref_primary_10_1142_S1793292021300048
crossref_primary_10_1002_admi_201801832
crossref_primary_10_1016_j_seppur_2018_05_033
crossref_primary_10_1007_s11051_015_3177_0
crossref_primary_10_1007_s42823_022_00345_7
crossref_primary_10_1177_0263617418807111
crossref_primary_10_1002_smll_201603151
crossref_primary_10_1021_acsami_5b06810
crossref_primary_10_1016_j_memsci_2023_121545
crossref_primary_10_1039_C9EN00816K
crossref_primary_10_1021_acs_nanolett_7b04673
crossref_primary_10_1021_acsami_3c06491
crossref_primary_10_1021_acs_nanolett_6b00771
crossref_primary_10_1002_mame_202000239
crossref_primary_10_1016_j_memsci_2021_119392
crossref_primary_10_1016_j_nanoen_2017_03_011
crossref_primary_10_1007_s10924_022_02564_5
crossref_primary_10_1016_j_ijbiomac_2024_137627
crossref_primary_10_1155_2015_168392
crossref_primary_10_1021_acsnano_1c00238
crossref_primary_10_1002_adfm_202423284
crossref_primary_10_1021_acsami_1c04253
crossref_primary_10_1021_acs_iecr_7b02850
crossref_primary_10_1016_j_mtcomm_2020_100897
crossref_primary_10_1093_oxfmat_itad012
crossref_primary_10_1002_smll_201702139
crossref_primary_10_1016_j_jcis_2022_06_046
crossref_primary_10_1016_j_seppur_2018_03_053
crossref_primary_10_1021_acsanm_9b00806
crossref_primary_10_1016_j_envpol_2019_03_122
crossref_primary_10_1039_C7TA09054D
crossref_primary_10_3390_nano12162855
crossref_primary_10_1016_j_apsusc_2023_159062
crossref_primary_10_1007_s42765_022_00133_y
crossref_primary_10_1002_adfm_201910426
crossref_primary_10_1109_TNANO_2018_2824343
crossref_primary_10_1080_00405000_2023_2278373
crossref_primary_10_1039_C6NR09779K
crossref_primary_10_1016_j_buildenv_2017_08_040
crossref_primary_10_3390_polym16121656
crossref_primary_10_1007_s12221_022_3418_7
crossref_primary_10_1007_s42765_022_00231_x
crossref_primary_10_1016_j_seppur_2021_119243
crossref_primary_10_1016_j_seppur_2022_122235
crossref_primary_10_1021_acs_iecr_0c03581
crossref_primary_10_1039_D3NR03808D
crossref_primary_10_1039_D3RA03840H
crossref_primary_10_1002_app_45766
crossref_primary_10_1016_j_coco_2019_06_003
crossref_primary_10_1007_s11214_020_00782_8
crossref_primary_10_1016_j_memsci_2018_01_025
crossref_primary_10_1002_adhm_202403061
crossref_primary_10_1016_j_carbpol_2018_06_090
crossref_primary_10_1177_15280837221079274
crossref_primary_10_1038_s41467_023_36050_w
crossref_primary_10_1021_acsami_3c08490
crossref_primary_10_1039_C8TA08717B
crossref_primary_10_1021_acsami_1c01286
crossref_primary_10_1021_acsami_8b07203
crossref_primary_10_1021_acsapm_3c03055
crossref_primary_10_2139_ssrn_4021705
crossref_primary_10_1021_acs_iecr_2c03670
crossref_primary_10_1177_1420326X18816353
crossref_primary_10_1002_adfm_202113040
crossref_primary_10_1021_acsapm_0c01203
crossref_primary_10_1016_j_ensm_2023_01_051
crossref_primary_10_1021_acs_nanolett_3c03968
crossref_primary_10_1002_app_56613
crossref_primary_10_1016_j_memsci_2021_119463
crossref_primary_10_1016_j_gee_2022_03_012
crossref_primary_10_1016_j_mtadv_2021_100134
crossref_primary_10_1021_acs_nanolett_0c01107
crossref_primary_10_1016_j_polymer_2019_121649
crossref_primary_10_1016_j_powtec_2023_118978
crossref_primary_10_2139_ssrn_4059273
crossref_primary_10_3390_qubs3040020
crossref_primary_10_1002_aesr_202100005
crossref_primary_10_1016_j_compositesb_2021_109342
crossref_primary_10_1021_acssuschemeng_8b06567
crossref_primary_10_1021_acsami_6b10094
crossref_primary_10_3390_su16072808
crossref_primary_10_1021_acs_iecr_0c04400
crossref_primary_10_1088_1742_6596_2083_2_022109
crossref_primary_10_1007_s12274_018_2013_0
crossref_primary_10_1016_j_carbon_2021_07_004
crossref_primary_10_1021_acsanm_0c02484
crossref_primary_10_1007_s11630_022_1668_8
crossref_primary_10_1002_admt_201900101
crossref_primary_10_1088_1873_7005_ad8376
crossref_primary_10_3390_math11163465
Cites_doi 10.1002/adma.201003989
10.1016/j.powtec.2011.06.025
10.1080/15583724.2011.599507
10.1016/j.carbon.2014.07.086
10.1016/j.ces.2006.02.020
10.1016/j.carbon.2014.04.019
10.1016/j.partic.2013.05.004
10.1038/354056a0
10.1021/ie403093t
10.1016/j.polymertesting.2009.09.008
10.1016/j.seppur.2012.02.009
10.1016/j.seppur.2011.02.020
10.1080/02786820802187077
10.1007/s12182-009-0067-z
10.1016/j.seppur.2011.11.026
10.1016/S0032-5910(02)00199-7
10.1016/j.yrtph.2009.12.012
10.1080/02786820903261086
10.1016/j.seppur.2009.10.017
10.1016/S0927-7757(01)00616-1
10.1002/aic.690441218
10.1016/j.cap.2005.07.013
10.1016/S0021-8502(98)90647-4
10.1007/978-1-4612-1039-9_2
10.1016/0021-8502(92)90039-X
10.1080/15287390490253688
10.1016/j.memsci.2007.03.038
10.1016/j.jaerosci.2003.07.003
10.3390/membranes1030232
10.1016/0009-2509(80)85097-4
10.1039/c3nr34325a
10.1039/C4RA08746A
10.1080/02786829208959551
10.1016/j.ces.2004.12.026
10.1038/nnano.2007.37
10.1016/j.taap.2005.01.008
10.1016/j.ces.2006.07.022
10.1016/S0021-8502(03)00027-2
10.1039/b804128h
10.1016/j.carbon.2013.07.066
10.1016/S1004-9541(12)60356-5
10.1016/j.cherd.2007.11.008
10.1143/JPSJ.14.527
10.1016/S0021-8502(98)00042-1
10.1016/j.seppur.2011.03.008
10.1063/1.3060900
10.1016/S0015-1882(12)70107-6
10.1016/0021-8502(96)00381-3
10.1016/j.ces.2006.05.027
10.1002/smll.201101786
10.1126/science.1222453
10.1016/j.cap.2006.01.035
10.1016/j.ces.2010.10.035
10.1126/science.1104962
10.1002/adma.200400463
10.1016/S0921-4526(02)00869-4
10.1126/science.1115311
10.1016/S0032-5910(01)00307-2
10.1002/adma.200306205
10.1016/j.jaerosci.2007.03.008
10.1016/j.scitotenv.2011.08.011
10.1016/j.polymer.2013.02.034
10.1039/C1JM14299B
10.1002/smll.201203252
10.1016/S0021-8502(98)00036-6
10.1038/419801a
10.1002/cssc.201100177
10.1021/nn200338r
10.1016/j.carbon.2012.11.032
10.1021/cr50003a004
10.1016/S0021-8502(99)00029-4
10.1016/j.carbon.2009.11.043
10.1002/adma.200601344
10.1016/j.seppur.2008.07.015
10.1016/j.carbon.2010.04.017
10.1016/j.polymer.2014.05.016
10.1021/nn100150x
10.1016/j.ces.2012.07.031
10.1016/0021-9797(75)90255-6
10.1016/j.ces.2009.11.037
10.1016/S0021-8502(96)00473-9
10.1016/0021-8502(74)90005-6
10.1002/smll.201202334
10.1016/j.ces.2009.12.002
10.1016/j.powtec.2008.01.020
10.1016/j.carbon.2006.02.005
10.1016/j.scitotenv.2011.04.060
10.1016/j.powtec.2006.01.016
10.1016/0021-9797(71)90372-9
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
DOI 10.1002/smll.201401553
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database

Materials Research Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 4561
ExternalDocumentID 3501871301
25288476
10_1002_smll_201401553
SMLL201401553
ark_67375_WNG_5K4KJL35_G
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
F28
FR3
ID FETCH-LOGICAL-c5473-7a266dbbd0f24f6e7c8372ef85cc95c37c031d59dc98bd74be6b25b9448c8f8a3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 19:18:49 EDT 2025
Fri Jul 11 04:05:06 EDT 2025
Fri Jul 25 12:19:24 EDT 2025
Thu Apr 03 06:59:09 EDT 2025
Tue Jul 01 02:10:15 EDT 2025
Thu Apr 24 23:12:59 EDT 2025
Wed Jan 22 16:22:30 EST 2025
Wed Oct 30 09:52:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords air filtration
free molecular flow regime
air filters
carbon nanotubes
particulates
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5473-7a266dbbd0f24f6e7c8372ef85cc95c37c031d59dc98bd74be6b25b9448c8f8a3
Notes ark:/67375/WNG-5K4KJL35-G
ArticleID:SMLL201401553
istex:07AD3084B1DE7E33014146E8EF864A87D216B93E
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25288476
PQID 1626161082
PQPubID 1046358
PageCount 19
ParticipantIDs proquest_miscellaneous_1642239672
proquest_miscellaneous_1627078558
proquest_journals_1626161082
pubmed_primary_25288476
crossref_primary_10_1002_smll_201401553
crossref_citationtrail_10_1002_smll_201401553
wiley_primary_10_1002_smll_201401553_SMLL201401553
istex_primary_ark_67375_WNG_5K4KJL35_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-Nov
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-Nov
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References R. C. Brown, Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters, Pergamon Press, Oxford 1993.
c) M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, Science 2005, 309, 1215
d) Q. Zhang, D.-G. Wang, J.-Q. Huang, W.-P. Zhou, G.-H. Luo, W.-Z. Qian, F. Wei, Carbon 2010, 48, 2855.
b) D. Cho, A. Naydich, M. W. Frey, Y. L. Joo, Polymer 2013, 54, 2364
b) A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, Nat. Nanotechnol. 2007, 2, 156.
A. Lushnikov, J. Aerosol. Sci. 1997, 28, 545.
b) Q. Zhang, J. Q. Huang, M. Q. Zhao, W. Z. Qian, F. Wei, ChemSusChem 2011, 4, 864
R.-J. Roe, J. Colloid Interf. Sci 1975, 50, 70.
W. W.-F. Leung, C.-H. Hung, P.-T. Yuen, Aerosol. Sci. Tech. 2009, 43, 1174.
c) I. M. Hutten, Nanofiltration: Principles and Applications, Elsevier, Oxford, UK 2007.
M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 2013, 339, 535.
c) C. B. Song, H. S. Park, K. W. Lee, Powder Technol. 2006, 163, 152
A. Kirsch, I. Stechkina, N. Fuchs, J. Aerosol. Sci. 1974, 5, 39.
a) A. N. Karwa, B. J. Tatarchuk, Sep. Purif. Technol. 2012, 87, 84
a) K. Sutherland, Filters and Filtration Handbook, Elsevier, Oxford, UK 2008
a) K. L. Jiang, Q. Q. Li, S. S. Fan, Nature 2002, 419, 801
P. Li, Y. Zong, Y. Zhang, M. Yang, R. Zhang, S. Li, F. Wei, Nanoscale 2013, 5, 3367.
A. Kirsch, I. Stechkina, The Theory of Aerosol Filtration with Fibrous Filters, Wiley, New York 1978.
J. Quevedo, G. Patel, R. Pfeffer, R. Dave, Powder Technol. 2008, 183, 480.
D. Shou, L. Ye, J. Fan, Polymer 2014, 55, 3149.
T. Grafe, K. Graham, Nonwoven Technol. Rev. 2003, 51.
b) S. Iijima, Physica B: Condensed Matter 2002, 323, 1.
B. Maze, H. Vahedi Tafreshi, Q. Wang, B. Pourdeyhimi, J. Aerosol. Sci. 2007, 38, 550.
C. Cercignani, in The Boltzmann Equation and its Applications, Vol. 67, Springer, New York 1988, p.40.
C. Wang, P. Li, Y. Zong, Y. Zhang, S. Li, F. Wei, Carbon 2014, 79, 424.
d) K. Yoon, B. S. Hsiao, B. Chu, J. Mater. Chem. 2008, 18, 5326.
a) S. Payet, D. Boulaud, G. Madelaine, A. Renoux, J. Aerosol. Sci. 1992, 23, 723
T. Frising, D. Thomas, D. Bémer, P. Contal, hem. Eng. Sci. 2005, 60, 2751.
A. F. Miguel, J. Aerosol. Sci. 2003, 34, 783.
J. Muller, F. Huaux, N. Moreau, P. Misson, J.-F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy, D. Lison, Toxicol. Appl. Pharm. 2005, 207, 221.
B.-S. Kim, I.-S. Kim, Polym. Rev. 2011, 51, 235.
b) S. J. Park, D. G. Lee, Current Applied Physics 2006, 6, e182.
D. Thomas, P. Contal, V. Renaudin, P. Penicot, D. Leclerc, J. Vendel, J. Aerosol. Sci. 1999, 30, 235.
N. Halonen, A. Rautio, A.-R. Leino, T. Kyllonen, G. Toth, J. Lappalainen, K. Kordás, M. Huuhtanen, R. L. Keiski, A. Sápi, ACS Nano 2010, 4, 2003.
C.-S. Wang, Powder Technol. 2001, 118, 166.
W. Sambaer, M. Zatloukal, D. Kimmer, Chem. Eng. Sci. 2012, 82, 299.
O. Yildiz, P. D. Bradford, Carbon 2013, 64, 295.
a) Q. Zhang, J. Q. Huang, W. Z. Qian, Y. Y. Zhang, F. Wei, Small 2013, 9, 1237
G. Viswanathan, D. B. Kane, P. J. Lipowicz, Adv. Mater. 2004, 16, 2045.
J. Pauluhn, Regul. Toxicol. Pharm. 2010, 57, 78.
P. Gibson, H. Schreuder-Gibson, D. Rivin, Colloid Surface., A 2001, 187-188, 469.
a) J. H. Park, K. Y. Yoon, H. Na, Y. S. Kim, J. Hwang, J. Kim, Y. H. Yoon, Sci. Total. Environ. 2011, 409, 4132
a) K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 2004, 306, 1362
b) K.-T. Park, J. Hwang, Carbon 2014, 75, 401.
S. Iijima, Nature 1991, 354, 56.
R. S. Barhate, S. Ramakrishna, J. Membrane. Sci. 2007, 296, 1.
W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, Hoboken, USA 2012.
C.-H. Hung, W. W.-F. Leung, Sep. Purif. Technol. 2011, 79, 34.
Z. Zhang, B. Y. H. Liu, Aerosol. Sci. Tech. 1992, 16, 227.
A. Bennett, Filtr. Separat. 2012, 49, 22.
b) H. Misslitz, K. Kreger, H.-W. Schmidt, Small 2013, 9, 2053.
J. Pich, J. Colloid Interf. Sci 1971, 37, 912.
a) N. Wang, X. Wang, B. Ding, J. Yu, G. Sun, J. Mater. Chem. 2012, 22, 1445
A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivisto, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, ACS Nano 2011, 5, 3214.
b) Q. W. Li, X. F. Zhang, R. F. DePaula, L. X. Zheng, Y. H. Zhao, L. Stan, T. G. Holesinger, P. N. Arendt, D. E. Peterson, Y. T. Zhu, Adv. Mater. 2006, 18, 3160
c) Y. C. Ahn, S. K. Park, G. T. Kim, Y. J. Hwang, C. G. Lee, H. S. Shin, J. K. Lee, Curr. Appl. Phys. 2006, 6, 1030
a) S. J. Park, D. G. Lee, Carbon 2006, 44, 1930
C. N. Davies, Air Filtration, Academic Press, New York 1973.
e) B. Li, Z. Ji, X. Yang, Pet. Sci. 2009, 6, 438.
a) M. Lalagiri, G. Bhat, V. Singh, S. Parameswaran, R. J. Kendall, S. Ramkumar, Ind. Eng. Chem. Res. 2013, 52, 16513
b) H. Parham, S. Bates, Y. Xia, Y. Zhu, Carbon 2013, 54, 215.
b) S. A. Hosseini, H. V. Tafreshi, Powder Technol. 2011, 212, 425.
W. Sambaer, M. Zatloukal, D. Kimmer, Chem. Eng. Sci. 2011, 66, 613.
F. Devienne, R. B. Lindsay, Phys. Today 1959, 12, 48.
W. W.-F. Leung, C.-H. Hung, Sep. Purif. Technol. 2008, 63, 691.
C. Y. Chen, Chem. Rev. 1955, 55, 595.
A. Bredin, B. J. Mullins, Sep. Purif. Technol. 2012, 90, 53.
a) A. Podgórski, J. Aerosol. Sci. 1998, 29, Supp2, S929
a) S. A. Hosseini, H. V. Tafreshi, Chem. Eng. Sci. 2010, 65, 2249
a) A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, E. I. Kauppinen, Chem. Eng. Sci. 2006, 61, 4393
S. Kuwabara, J. Phys. Soc. Jpn. 1959, 14, 527.
b) Z. Xu, Fundamentals of Air Cleaning Technology and Its Application in Cleanrooms, Springer-Verlag GmbH, Heidelberg, Germany 2013
b) I. E. Agranovski, R. D. Braddock, Aiche J. 1998, 44, 2775
B. Xu, Y. Wu, P. Cui, Particuology 2014, 13, 60.
e) A. Charvet, Y. Gonthier, E. Gonze, A. Bernis, Chem. Eng. Sci. 2010, 65, 1875.
R. Balamurugan, S. Sundarrajan, S. Ramakrishna, Membranes 2011, 1, 232.
b) P. C. Raynor, D. Leith, J. Aerosol. Sci. 2000, 31, 19
H. Hou, D. H. Reneker, Adv. Mater. 2004, 16, 69.
d) A. Charvet, Y. Gonthier, A. Bernis, E. Gonze, Chem. Engin. Res. Design 2008, 86, 569
A. D. Maynard, P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, V. Castranova, J. Toxicol. Environ. Health, Part A 2004, 67, 87.
T. Premkumar, R. Mezzenga, K. E. Geckeler, Small 2012, 8, 1299.
c) S. Callé, P. Contal, D. Thomas, D. Bémer, D. Leclerc, Powder Technol. 2002, 128, 213
K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu, S. Fan, Adv. Mater. 2011, 23, 1154.
P. Contal, J. Simao, D. Thomas, T. Frising, S. Callé, J. C. Appert-Collin, D. Bémer, J. Aerosol. Sci. 2004, 35, 263.
a) W. W.-F. Leung, C.-H. Hung, P.-T. Yuen, Sep. Purif. Technol. 2010, 71, 30
b) W. W.-F. Leung, C.-H. Hung, Sep. Purif. Technol. 2012, 92, 174.
R. C. Brown, D. Wake, J. Aerosol. Sci. 1999, 30, 227.
b) A. Podgórski, A. Bałazy, L. Gradoń, Chem. Eng. Sci. 2006, 61, 6804.
D. C. Walsh, J. I. T. Stenhouse, K. L. Scurrah, A. Graef, J. Aerosol. Sci. 1996, 27, Supp1, S617.
a) J. Liu, D. Y. H. Pui, J. Wang, Sci. Total. Environ. 2011, 409, 4868
C. YANG, Chinese. J. Chem. Eng. 2012, 20, 1.
c) Q. Zhang, M.-Q. Zhao, J.-Q. Huang, J.-Q. Nie, F. Wei, Carbon 2010, 48, 1196.
B. J. Mullins, G. Kasper, Chem. Eng. Sci. 2006, 61, 6223.
d) R. Przekop, L. Gradoń, Aerosol. Sci. Tech. 2008, 42, 483
W. Sambaer, M. Zatloukal, D. Kimmer, Polym. Test. 2010, 29, 82.
A. C. Payatakes, L. Gradoń, Chem. Eng. Sci. 1980, 35, 1083.
2011 2014; 409 75
2011 2006; 409 61
1998 2000 2002 2008 2010; 29 31 128 42 65
2012 2013; 87 54
2009; 43
1991; 354
2010; 57
2013 2011 2010; 9 4 48
2013 2013 2006 2008; 52 54 6 18
2013; 64
2004; 67
1973
2005; 60
1992; 16
2013; 5
1975; 50
1992 1998 2006 2008 2009; 23 44 163 86 6
1978
1974; 5
2008; 183
2007; 38
2012 2013; 22 9
2006; 61
2010; 29
1980; 35
2004; 35
2007; 296
2011; 66
2014; 13
2011; 23
2008; 63
1996; 27
2010; 4
2014; 55
2010 2011; 65 212
2012; 20
1955; 55
1989
2012; 82
2008 2013 2007
2006 2007; 61 2
2011; 1
2012
1997; 28
2011; 79
2001; 187–188
1993
2003
2011; 5
2010 2012; 71 92
2003; 34
2004 2002; 306 323
2012; 90
2002 2006 2005 2010; 419 18 309 48
2013; 339
2004; 16
2006 2006; 44 6
2011; 51
1971; 37
2005; 207
1988; 67
2014; 79
1999; 30
2012; 49
2014
1959; 14
2001; 118
2012; 8
1959; 12
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_41_3
e_1_2_8_41_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_15_2
e_1_2_8_19_3
e_1_2_8_19_4
e_1_2_8_19_5
Kirsch A. (e_1_2_8_16_1) 1978
Davies C. N. (e_1_2_8_1_1) 1973
e_1_2_8_30_3
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_30_5
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_4
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
Sutherland K. (e_1_2_8_4_1) 2008
Hutten I. M. (e_1_2_8_4_3) 2007
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
Hinds W. C. (e_1_2_8_6_1) 2012
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_52_2
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_7_4
e_1_2_8_3_1
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_62_1
e_1_2_8_62_2
Grafe T. (e_1_2_8_18_1) 2003
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_59_2
e_1_2_8_70_1
Brown R. C. (e_1_2_8_14_1) 1993
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_55_2
e_1_2_8_32_2
e_1_2_8_51_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_8_2
e_1_2_8_8_1
Xu Z. (e_1_2_8_4_2) 2013
e_1_2_8_65_2
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_61_2
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_58_4
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_58_3
e_1_2_8_58_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – reference: A. C. Payatakes, L. Gradoń, Chem. Eng. Sci. 1980, 35, 1083.
– reference: C. Wang, P. Li, Y. Zong, Y. Zhang, S. Li, F. Wei, Carbon 2014, 79, 424.
– reference: B.-S. Kim, I.-S. Kim, Polym. Rev. 2011, 51, 235.
– reference: H. Hou, D. H. Reneker, Adv. Mater. 2004, 16, 69.
– reference: a) A. Podgórski, J. Aerosol. Sci. 1998, 29, Supp2, S929;
– reference: b) I. E. Agranovski, R. D. Braddock, Aiche J. 1998, 44, 2775;
– reference: b) S. J. Park, D. G. Lee, Current Applied Physics 2006, 6, e182.
– reference: c) Y. C. Ahn, S. K. Park, G. T. Kim, Y. J. Hwang, C. G. Lee, H. S. Shin, J. K. Lee, Curr. Appl. Phys. 2006, 6, 1030;
– reference: D. Thomas, P. Contal, V. Renaudin, P. Penicot, D. Leclerc, J. Vendel, J. Aerosol. Sci. 1999, 30, 235.
– reference: a) W. W.-F. Leung, C.-H. Hung, P.-T. Yuen, Sep. Purif. Technol. 2010, 71, 30;
– reference: A. Kirsch, I. Stechkina, The Theory of Aerosol Filtration with Fibrous Filters, Wiley, New York 1978.
– reference: B. J. Mullins, G. Kasper, Chem. Eng. Sci. 2006, 61, 6223.
– reference: A. Lushnikov, J. Aerosol. Sci. 1997, 28, 545.
– reference: A. F. Miguel, J. Aerosol. Sci. 2003, 34, 783.
– reference: A. Bennett, Filtr. Separat. 2012, 49, 22.
– reference: d) A. Charvet, Y. Gonthier, A. Bernis, E. Gonze, Chem. Engin. Res. Design 2008, 86, 569;
– reference: b) W. W.-F. Leung, C.-H. Hung, Sep. Purif. Technol. 2012, 92, 174.
– reference: J. Pich, J. Colloid Interf. Sci 1971, 37, 912.
– reference: C. YANG, Chinese. J. Chem. Eng. 2012, 20, 1.
– reference: T. Frising, D. Thomas, D. Bémer, P. Contal, hem. Eng. Sci. 2005, 60, 2751.
– reference: a) K. Sutherland, Filters and Filtration Handbook, Elsevier, Oxford, UK 2008;
– reference: b) Q. Zhang, J. Q. Huang, M. Q. Zhao, W. Z. Qian, F. Wei, ChemSusChem 2011, 4, 864;
– reference: b) H. Misslitz, K. Kreger, H.-W. Schmidt, Small 2013, 9, 2053.
– reference: P. Gibson, H. Schreuder-Gibson, D. Rivin, Colloid Surface., A 2001, 187-188, 469.
– reference: P. Li, Y. Zong, Y. Zhang, M. Yang, R. Zhang, S. Li, F. Wei, Nanoscale 2013, 5, 3367.
– reference: O. Yildiz, P. D. Bradford, Carbon 2013, 64, 295.
– reference: a) J. Liu, D. Y. H. Pui, J. Wang, Sci. Total. Environ. 2011, 409, 4868;
– reference: A. D. Maynard, P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, V. Castranova, J. Toxicol. Environ. Health, Part A 2004, 67, 87.
– reference: C.-H. Hung, W. W.-F. Leung, Sep. Purif. Technol. 2011, 79, 34.
– reference: S. Kuwabara, J. Phys. Soc. Jpn. 1959, 14, 527.
– reference: b) Q. W. Li, X. F. Zhang, R. F. DePaula, L. X. Zheng, Y. H. Zhao, L. Stan, T. G. Holesinger, P. N. Arendt, D. E. Peterson, Y. T. Zhu, Adv. Mater. 2006, 18, 3160;
– reference: R. C. Brown, Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters, Pergamon Press, Oxford 1993.
– reference: b) S. A. Hosseini, H. V. Tafreshi, Powder Technol. 2011, 212, 425.
– reference: W. Sambaer, M. Zatloukal, D. Kimmer, Polym. Test. 2010, 29, 82.
– reference: c) S. Callé, P. Contal, D. Thomas, D. Bémer, D. Leclerc, Powder Technol. 2002, 128, 213;
– reference: G. Viswanathan, D. B. Kane, P. J. Lipowicz, Adv. Mater. 2004, 16, 2045.
– reference: R. S. Barhate, S. Ramakrishna, J. Membrane. Sci. 2007, 296, 1.
– reference: b) K.-T. Park, J. Hwang, Carbon 2014, 75, 401.
– reference: c) Q. Zhang, M.-Q. Zhao, J.-Q. Huang, J.-Q. Nie, F. Wei, Carbon 2010, 48, 1196.
– reference: b) S. Iijima, Physica B: Condensed Matter 2002, 323, 1.
– reference: a) J. H. Park, K. Y. Yoon, H. Na, Y. S. Kim, J. Hwang, J. Kim, Y. H. Yoon, Sci. Total. Environ. 2011, 409, 4132;
– reference: J. Pauluhn, Regul. Toxicol. Pharm. 2010, 57, 78.
– reference: W. Sambaer, M. Zatloukal, D. Kimmer, Chem. Eng. Sci. 2011, 66, 613.
– reference: b) P. C. Raynor, D. Leith, J. Aerosol. Sci. 2000, 31, 19;
– reference: J. Quevedo, G. Patel, R. Pfeffer, R. Dave, Powder Technol. 2008, 183, 480.
– reference: C. Y. Chen, Chem. Rev. 1955, 55, 595.
– reference: a) S. J. Park, D. G. Lee, Carbon 2006, 44, 1930;
– reference: C. Cercignani, in The Boltzmann Equation and its Applications, Vol. 67, Springer, New York 1988, p.40.
– reference: D. C. Walsh, J. I. T. Stenhouse, K. L. Scurrah, A. Graef, J. Aerosol. Sci. 1996, 27, Supp1, S617.
– reference: Z. Zhang, B. Y. H. Liu, Aerosol. Sci. Tech. 1992, 16, 227.
– reference: a) M. Lalagiri, G. Bhat, V. Singh, S. Parameswaran, R. J. Kendall, S. Ramkumar, Ind. Eng. Chem. Res. 2013, 52, 16513;
– reference: M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 2013, 339, 535.
– reference: b) D. Cho, A. Naydich, M. W. Frey, Y. L. Joo, Polymer 2013, 54, 2364;
– reference: a) K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 2004, 306, 1362;
– reference: B. Maze, H. Vahedi Tafreshi, Q. Wang, B. Pourdeyhimi, J. Aerosol. Sci. 2007, 38, 550.
– reference: e) A. Charvet, Y. Gonthier, E. Gonze, A. Bernis, Chem. Eng. Sci. 2010, 65, 1875.
– reference: b) A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, Nat. Nanotechnol. 2007, 2, 156.
– reference: a) Q. Zhang, J. Q. Huang, W. Z. Qian, Y. Y. Zhang, F. Wei, Small 2013, 9, 1237;
– reference: a) N. Wang, X. Wang, B. Ding, J. Yu, G. Sun, J. Mater. Chem. 2012, 22, 1445;
– reference: N. Halonen, A. Rautio, A.-R. Leino, T. Kyllonen, G. Toth, J. Lappalainen, K. Kordás, M. Huuhtanen, R. L. Keiski, A. Sápi, ACS Nano 2010, 4, 2003.
– reference: W. W.-F. Leung, C.-H. Hung, P.-T. Yuen, Aerosol. Sci. Tech. 2009, 43, 1174.
– reference: C.-S. Wang, Powder Technol. 2001, 118, 166.
– reference: K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu, S. Fan, Adv. Mater. 2011, 23, 1154.
– reference: c) C. B. Song, H. S. Park, K. W. Lee, Powder Technol. 2006, 163, 152;
– reference: c) M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, Science 2005, 309, 1215;
– reference: e) B. Li, Z. Ji, X. Yang, Pet. Sci. 2009, 6, 438.
– reference: d) K. Yoon, B. S. Hsiao, B. Chu, J. Mater. Chem. 2008, 18, 5326.
– reference: W. Sambaer, M. Zatloukal, D. Kimmer, Chem. Eng. Sci. 2012, 82, 299.
– reference: R.-J. Roe, J. Colloid Interf. Sci 1975, 50, 70.
– reference: S. Iijima, Nature 1991, 354, 56.
– reference: T. Grafe, K. Graham, Nonwoven Technol. Rev. 2003, 51.
– reference: d) Q. Zhang, D.-G. Wang, J.-Q. Huang, W.-P. Zhou, G.-H. Luo, W.-Z. Qian, F. Wei, Carbon 2010, 48, 2855.
– reference: W. W.-F. Leung, C.-H. Hung, Sep. Purif. Technol. 2008, 63, 691.
– reference: A. Bredin, B. J. Mullins, Sep. Purif. Technol. 2012, 90, 53.
– reference: a) S. Payet, D. Boulaud, G. Madelaine, A. Renoux, J. Aerosol. Sci. 1992, 23, 723;
– reference: W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, Hoboken, USA 2012.
– reference: R. Balamurugan, S. Sundarrajan, S. Ramakrishna, Membranes 2011, 1, 232.
– reference: C. N. Davies, Air Filtration, Academic Press, New York 1973.
– reference: D. Shou, L. Ye, J. Fan, Polymer 2014, 55, 3149.
– reference: a) S. A. Hosseini, H. V. Tafreshi, Chem. Eng. Sci. 2010, 65, 2249;
– reference: J. Muller, F. Huaux, N. Moreau, P. Misson, J.-F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy, D. Lison, Toxicol. Appl. Pharm. 2005, 207, 221.
– reference: a) K. L. Jiang, Q. Q. Li, S. S. Fan, Nature 2002, 419, 801;
– reference: b) Z. Xu, Fundamentals of Air Cleaning Technology and Its Application in Cleanrooms, Springer-Verlag GmbH, Heidelberg, Germany 2013;
– reference: A. Kirsch, I. Stechkina, N. Fuchs, J. Aerosol. Sci. 1974, 5, 39.
– reference: B. Xu, Y. Wu, P. Cui, Particuology 2014, 13, 60.
– reference: P. Contal, J. Simao, D. Thomas, T. Frising, S. Callé, J. C. Appert-Collin, D. Bémer, J. Aerosol. Sci. 2004, 35, 263.
– reference: R. C. Brown, D. Wake, J. Aerosol. Sci. 1999, 30, 227.
– reference: a) A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, E. I. Kauppinen, Chem. Eng. Sci. 2006, 61, 4393;
– reference: A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivisto, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, ACS Nano 2011, 5, 3214.
– reference: b) A. Podgórski, A. Bałazy, L. Gradoń, Chem. Eng. Sci. 2006, 61, 6804.
– reference: c) I. M. Hutten, Nanofiltration: Principles and Applications, Elsevier, Oxford, UK 2007.
– reference: d) R. Przekop, L. Gradoń, Aerosol. Sci. Tech. 2008, 42, 483;
– reference: F. Devienne, R. B. Lindsay, Phys. Today 1959, 12, 48.
– reference: a) A. N. Karwa, B. J. Tatarchuk, Sep. Purif. Technol. 2012, 87, 84;
– reference: T. Premkumar, R. Mezzenga, K. E. Geckeler, Small 2012, 8, 1299.
– reference: b) H. Parham, S. Bates, Y. Xia, Y. Zhu, Carbon 2013, 54, 215.
– volume: 49
  start-page: 22
  year: 2012
  publication-title: Filtr. Separat.
– volume: 35
  start-page: 1083
  year: 1980
  publication-title: Chem. Eng. Sci.
– volume: 16
  start-page: 227
  year: 1992
  publication-title: Aerosol. Sci. Tech.
– volume: 50
  start-page: 70
  year: 1975
  publication-title: J. Colloid Interf. Sci
– volume: 51
  start-page: 235
  year: 2011
  publication-title: Polym. Rev.
– volume: 43
  start-page: 1174
  year: 2009
  publication-title: Aerosol. Sci. Tech.
– volume: 12
  start-page: 48
  year: 1959
  publication-title: Phys. Today
– volume: 66
  start-page: 613
  year: 2011
  publication-title: Chem. Eng. Sci.
– volume: 37
  start-page: 912
  year: 1971
  publication-title: J. Colloid Interf. Sci
– volume: 35
  start-page: 263
  year: 2004
  publication-title: J. Aerosol. Sci.
– volume: 29 31 128 42 65
  start-page: S929 19 213 483 1875
  issue: Supp2
  year: 1998 2000 2002 2008 2010
  publication-title: J. Aerosol. Sci. J. Aerosol. Sci. Powder Technol. Aerosol. Sci. Tech. Chem. Eng. Sci.
– volume: 23 44 163 86 6
  start-page: 723 2775 152 569 438
  year: 1992 1998 2006 2008 2009
  publication-title: J. Aerosol. Sci. Aiche J. Powder Technol. Chem. Engin. Res. Design Pet. Sci.
– volume: 82
  start-page: 299
  year: 2012
  publication-title: Chem. Eng. Sci.
– volume: 23
  start-page: 1154
  year: 2011
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2003
  year: 2010
  publication-title: ACS Nano
– year: 1989
– volume: 67
  start-page: 40
  year: 1988
– volume: 61 2
  start-page: 4393 156
  year: 2006 2007
  publication-title: Chem. Eng. Sci. Nat. Nanotechnol.
– volume: 183
  start-page: 480
  year: 2008
  publication-title: Powder Technol.
– volume: 306 323
  start-page: 1362 1
  year: 2004 2002
  publication-title: Science Physica B: Condensed Matter
– volume: 9 4 48
  start-page: 1237 864 1196
  year: 2013 2011 2010
  publication-title: Small ChemSusChem Carbon
– year: 2014
– volume: 30
  start-page: 235
  year: 1999
  publication-title: J. Aerosol. Sci.
– volume: 29
  start-page: 82
  year: 2010
  publication-title: Polym. Test.
– volume: 187–188
  start-page: 469
  year: 2001
  publication-title: Colloid Surface., A
– volume: 296
  start-page: 1
  year: 2007
  publication-title: J. Membrane. Sci.
– volume: 28
  start-page: 545
  year: 1997
  publication-title: J. Aerosol. Sci.
– volume: 14
  start-page: 527
  year: 1959
  publication-title: J. Phys. Soc. Jpn.
– volume: 79
  start-page: 424
  year: 2014
  publication-title: Carbon
– volume: 61
  start-page: 6223
  year: 2006
  publication-title: Chem. Eng. Sci.
– volume: 90
  start-page: 53
  year: 2012
  publication-title: Sep. Purif. Technol.
– volume: 5
  start-page: 3367
  year: 2013
  publication-title: Nanoscale
– volume: 71 92
  start-page: 30 174
  year: 2010 2012
  publication-title: Sep. Purif. Technol. Sep. Purif. Technol.
– volume: 8
  start-page: 1299
  year: 2012
  publication-title: Small
– volume: 87 54
  start-page: 84 215
  year: 2012 2013
  publication-title: Sep. Purif. Technol. Carbon
– year: 1993
– volume: 5
  start-page: 39
  year: 1974
  publication-title: J. Aerosol. Sci.
– volume: 38
  start-page: 550
  year: 2007
  publication-title: J. Aerosol. Sci.
– volume: 63
  start-page: 691
  year: 2008
  publication-title: Sep. Purif. Technol.
– volume: 27
  start-page: S617
  issue: Supp1
  year: 1996
  publication-title: J. Aerosol. Sci.
– volume: 64
  start-page: 295
  year: 2013
  publication-title: Carbon
– volume: 13
  start-page: 60
  year: 2014
  publication-title: Particuology
– volume: 22 9
  start-page: 1445 2053
  year: 2012 2013
  publication-title: J. Mater. Chem. Small
– volume: 419 18 309 48
  start-page: 801 3160 1215 2855
  year: 2002 2006 2005 2010
  publication-title: Nature Adv. Mater. Science Carbon
– year: 1973
– volume: 67
  start-page: 87
  year: 2004
  publication-title: J. Toxicol. Environ. Health, Part A
– year: 2008 2013 2007
– volume: 16
  start-page: 2045
  year: 2004
  publication-title: Adv. Mater.
– volume: 60
  start-page: 2751
  year: 2005
  publication-title: hem. Eng. Sci.
– volume: 118
  start-page: 166
  year: 2001
  publication-title: Powder Technol.
– volume: 207
  start-page: 221
  year: 2005
  publication-title: Toxicol. Appl. Pharm.
– volume: 354
  start-page: 56
  year: 1991
  publication-title: Nature
– volume: 339
  start-page: 535
  year: 2013
  publication-title: Science
– year: 2012
– volume: 55
  start-page: 595
  year: 1955
  publication-title: Chem. Rev.
– volume: 5
  start-page: 3214
  year: 2011
  publication-title: ACS Nano
– volume: 409 75
  start-page: 4132 401
  year: 2011 2014
  publication-title: Sci. Total. Environ. Carbon
– volume: 30
  start-page: 227
  year: 1999
  publication-title: J. Aerosol. Sci.
– volume: 52 54 6 18
  start-page: 16513 2364 1030 5326
  year: 2013 2013 2006 2008
  publication-title: Ind. Eng. Chem. Res. Polymer Curr. Appl. Phys. J. Mater. Chem.
– volume: 1
  start-page: 232
  year: 2011
  publication-title: Membranes
– volume: 79
  start-page: 34
  year: 2011
  publication-title: Sep. Purif. Technol.
– volume: 44 6
  start-page: 1930 e182
  year: 2006 2006
  publication-title: Carbon Current Applied Physics
– volume: 65 212
  start-page: 2249 425
  year: 2010 2011
  publication-title: Chem. Eng. Sci. Powder Technol.
– volume: 20
  start-page: 1
  year: 2012
  publication-title: Chinese. J. Chem. Eng.
– volume: 409 61
  start-page: 4868 6804
  year: 2011 2006
  publication-title: Sci. Total. Environ. Chem. Eng. Sci.
– year: 1978
– volume: 55
  start-page: 3149
  year: 2014
  publication-title: Polymer
– start-page: 51
  year: 2003
  publication-title: Nonwoven Technol. Rev.
– volume: 34
  start-page: 783
  year: 2003
  publication-title: J. Aerosol. Sci.
– volume: 16
  start-page: 69
  year: 2004
  publication-title: Adv. Mater.
– volume: 57
  start-page: 78
  year: 2010
  publication-title: Regul. Toxicol. Pharm.
– ident: e_1_2_8_56_1
  doi: 10.1002/adma.201003989
– ident: e_1_2_8_15_2
  doi: 10.1016/j.powtec.2011.06.025
– ident: e_1_2_8_40_1
  doi: 10.1080/15583724.2011.599507
– ident: e_1_2_8_67_1
  doi: 10.1016/j.carbon.2014.07.086
– ident: e_1_2_8_55_1
  doi: 10.1016/j.ces.2006.02.020
– volume-title: Filters and Filtration Handbook
  year: 2008
  ident: e_1_2_8_4_1
– volume-title: The Theory of Aerosol Filtration with Fibrous Filters
  year: 1978
  ident: e_1_2_8_16_1
– ident: e_1_2_8_61_2
  doi: 10.1016/j.carbon.2014.04.019
– ident: e_1_2_8_29_1
  doi: 10.1016/j.partic.2013.05.004
– ident: e_1_2_8_50_1
  doi: 10.1038/354056a0
– ident: e_1_2_8_7_1
  doi: 10.1021/ie403093t
– ident: e_1_2_8_49_1
  doi: 10.1016/j.polymertesting.2009.09.008
– volume-title: Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters
  year: 1993
  ident: e_1_2_8_14_1
– ident: e_1_2_8_21_1
  doi: 10.1016/j.seppur.2012.02.009
– ident: e_1_2_8_32_2
  doi: 10.1016/j.seppur.2011.02.020
– ident: e_1_2_8_30_4
  doi: 10.1080/02786820802187077
– ident: e_1_2_8_19_5
  doi: 10.1007/s12182-009-0067-z
– ident: e_1_2_8_62_1
  doi: 10.1016/j.seppur.2011.11.026
– ident: e_1_2_8_30_3
  doi: 10.1016/S0032-5910(02)00199-7
– ident: e_1_2_8_70_1
  doi: 10.1016/j.yrtph.2009.12.012
– ident: e_1_2_8_31_1
  doi: 10.1080/02786820903261086
– ident: e_1_2_8_32_1
  doi: 10.1016/j.seppur.2009.10.017
– volume-title: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
  year: 2012
  ident: e_1_2_8_6_1
– ident: e_1_2_8_34_1
  doi: 10.1016/S0927-7757(01)00616-1
– ident: e_1_2_8_19_2
  doi: 10.1002/aic.690441218
– ident: e_1_2_8_7_3
  doi: 10.1016/j.cap.2005.07.013
– ident: e_1_2_8_30_1
  doi: 10.1016/S0021-8502(98)90647-4
– ident: e_1_2_8_44_1
  doi: 10.1007/978-1-4612-1039-9_2
– ident: e_1_2_8_19_1
  doi: 10.1016/0021-8502(92)90039-X
– ident: e_1_2_8_71_1
  doi: 10.1080/15287390490253688
– ident: e_1_2_8_43_1
  doi: 10.1016/j.memsci.2007.03.038
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jaerosci.2003.07.003
– ident: e_1_2_8_9_1
  doi: 10.3390/membranes1030232
– ident: e_1_2_8_23_1
  doi: 10.1016/0009-2509(80)85097-4
– ident: e_1_2_8_63_1
  doi: 10.1039/c3nr34325a
– ident: e_1_2_8_66_1
  doi: 10.1039/C4RA08746A
– ident: e_1_2_8_39_1
  doi: 10.1080/02786829208959551
– volume-title: Air Filtration
  year: 1973
  ident: e_1_2_8_1_1
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ces.2004.12.026
– ident: e_1_2_8_55_2
  doi: 10.1038/nnano.2007.37
– ident: e_1_2_8_69_1
  doi: 10.1016/j.taap.2005.01.008
– ident: e_1_2_8_65_2
  doi: 10.1016/j.ces.2006.07.022
– ident: e_1_2_8_33_1
  doi: 10.1016/S0021-8502(03)00027-2
– ident: e_1_2_8_7_4
  doi: 10.1039/b804128h
– ident: e_1_2_8_45_1
– ident: e_1_2_8_57_1
  doi: 10.1016/j.carbon.2013.07.066
– ident: e_1_2_8_17_1
  doi: 10.1016/S1004-9541(12)60356-5
– volume-title: Nanofiltration: Principles and Applications
  year: 2007
  ident: e_1_2_8_4_3
– ident: e_1_2_8_19_4
  doi: 10.1016/j.cherd.2007.11.008
– ident: e_1_2_8_38_1
  doi: 10.1143/JPSJ.14.527
– ident: e_1_2_8_24_1
  doi: 10.1016/S0021-8502(98)00042-1
– ident: e_1_2_8_10_1
  doi: 10.1016/j.seppur.2011.03.008
– ident: e_1_2_8_36_1
  doi: 10.1063/1.3060900
– ident: e_1_2_8_2_1
  doi: 10.1016/S0015-1882(12)70107-6
– volume-title: Fundamentals of Air Cleaning Technology and Its Application in Cleanrooms
  year: 2013
  ident: e_1_2_8_4_2
– ident: e_1_2_8_20_1
  doi: 10.1016/0021-8502(96)00381-3
– ident: e_1_2_8_27_1
  doi: 10.1016/j.ces.2006.05.027
– ident: e_1_2_8_13_1
  doi: 10.1002/smll.201101786
– ident: e_1_2_8_51_1
  doi: 10.1126/science.1222453
– ident: e_1_2_8_59_2
  doi: 10.1016/j.cap.2006.01.035
– ident: e_1_2_8_46_1
  doi: 10.1016/j.ces.2010.10.035
– ident: e_1_2_8_52_1
  doi: 10.1126/science.1104962
– ident: e_1_2_8_53_1
  doi: 10.1002/adma.200400463
– ident: e_1_2_8_52_2
  doi: 10.1016/S0921-4526(02)00869-4
– ident: e_1_2_8_58_3
  doi: 10.1126/science.1115311
– ident: e_1_2_8_35_1
  doi: 10.1016/S0032-5910(01)00307-2
– ident: e_1_2_8_64_1
  doi: 10.1002/adma.200306205
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jaerosci.2007.03.008
– ident: e_1_2_8_65_1
  doi: 10.1016/j.scitotenv.2011.08.011
– ident: e_1_2_8_7_2
  doi: 10.1016/j.polymer.2013.02.034
– ident: e_1_2_8_8_1
  doi: 10.1039/C1JM14299B
– ident: e_1_2_8_41_1
  doi: 10.1002/smll.201203252
– ident: e_1_2_8_22_1
  doi: 10.1016/S0021-8502(98)00036-6
– ident: e_1_2_8_58_1
  doi: 10.1038/419801a
– ident: e_1_2_8_41_2
  doi: 10.1002/cssc.201100177
– ident: e_1_2_8_54_1
  doi: 10.1021/nn200338r
– ident: e_1_2_8_62_2
  doi: 10.1016/j.carbon.2012.11.032
– ident: e_1_2_8_5_1
  doi: 10.1021/cr50003a004
– ident: e_1_2_8_30_2
  doi: 10.1016/S0021-8502(99)00029-4
– ident: e_1_2_8_41_3
  doi: 10.1016/j.carbon.2009.11.043
– ident: e_1_2_8_58_2
  doi: 10.1002/adma.200601344
– ident: e_1_2_8_42_1
  doi: 10.1016/j.seppur.2008.07.015
– ident: e_1_2_8_58_4
  doi: 10.1016/j.carbon.2010.04.017
– ident: e_1_2_8_11_1
  doi: 10.1016/j.polymer.2014.05.016
– ident: e_1_2_8_60_1
  doi: 10.1021/nn100150x
– ident: e_1_2_8_47_1
  doi: 10.1016/j.ces.2012.07.031
– ident: e_1_2_8_28_1
  doi: 10.1016/0021-9797(75)90255-6
– ident: e_1_2_8_30_5
  doi: 10.1016/j.ces.2009.11.037
– ident: e_1_2_8_3_1
  doi: 10.1016/S0021-8502(96)00473-9
– ident: e_1_2_8_37_1
  doi: 10.1016/0021-8502(74)90005-6
– ident: e_1_2_8_8_2
  doi: 10.1002/smll.201202334
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ces.2009.12.002
– ident: e_1_2_8_68_1
  doi: 10.1016/j.powtec.2008.01.020
– ident: e_1_2_8_59_1
  doi: 10.1016/j.carbon.2006.02.005
– ident: e_1_2_8_61_1
  doi: 10.1016/j.scitotenv.2011.04.060
– ident: e_1_2_8_19_3
  doi: 10.1016/j.powtec.2006.01.016
– ident: e_1_2_8_48_1
  doi: 10.1016/0021-9797(71)90372-9
– start-page: 51
  year: 2003
  ident: e_1_2_8_18_1
  publication-title: Nonwoven Technol. Rev.
SSID ssj0031247
Score 2.5853782
SecondaryResourceType review_article
Snippet Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4543
SubjectTerms Air filters
air filtration
Carbon nanotubes
Efficiency
Filtration
Free molecular flow
free molecular flow regime
Indoor air quality
Mean free path
Molecular structure
Nanostructure
Nanotechnology
particulates
Pressure drop
Title Air Filtration in the Free Molecular Flow Regime: A Review of High-Efficiency Particulate Air Filters Based on Carbon Nanotubes
URI https://api.istex.fr/ark:/67375/WNG-5K4KJL35-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201401553
https://www.ncbi.nlm.nih.gov/pubmed/25288476
https://www.proquest.com/docview/1626161082
https://www.proquest.com/docview/1627078558
https://www.proquest.com/docview/1642239672
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQucCBdyFQkCuh9uQ268R5cFuqplW7W1WFqr1Z8SNo1W2CsrsCcYJ_wG_klzDjPOhWUCQ4JVHGTmLPeL6J7W8IeW1TYUNtBFPg-1gIiJalvgqY8UF_NJhY6HJGjo-i_dPw4FycX9nF3_BD9D_c0DLceI0GnqvZ9i_S0NnlFKcOMEAQAuk-ccEWoqKTnj8qAOflsquAz2JIvNWxNvp8e7n4kle6jQ38-XeQcxnBOheU3Sd59_LNypOLrcVcbekv13gd_-frHpB7LT6lw0ahHpJbtnxE7l5hLXxMvg0nNc0m05Zwl05KCiiSZrW1dNxl26XZtPpET-yHyaV9Q4e0mYOgVUFxZcmPr993HXcFbvykx059MY-YpV3dgErpW_CwhsITdvJawQE8QTVfKDt7Qk6z3fc7-6zN5MA05jZmcQ44wChl_IKHRWRjDXExt0UitE6FDmINfWVEanSaKBOHykaKC5VC7KiTIsmDVbJSVqV9RmhhBhZAFqDWAQZ3BURkvo5x8jXlNgp8j7CuJ6Vuac4x28ZUNgTNXGLTyr5pPbLZy39sCD7-KLnhFKMXy-sLXBYXC3l2tCfFYXh4MAqE3PPIWqc5sh0RZnIAkSPoISAuj6z3t8GWcYImL221cDJIviREcpNMCIgujWKo52mjlf0LccETQBuRR7jTrb98kHw3Ho36q-f_UugFuYPnzebMNbIyrxf2JaC0uXrlLPEn42IxxA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2F5AAc2JeBAI3Ecppk3DM9CxIHk8Rx4kUoJCK3ZrqnB1lxbORFAU7wB_wKv8In8CVU9SxgxCIh5cDJsl3uGXdXdb2a7n4P4IFJhAl0JlyFuc8NENG6iad8N_PQfzSGWGA1I3v9sH0Q7B6KwyX4XJ2FKfgh6gduFBl2vqYApwfS699ZQ6fHQ1o7oApBiEq_umPenWDVNn26s4lD_JDz1tb-RtsthQVcTVK7bpRiWsqUyrycB3loIo1lGjd5LLROhPYjja6eiSTTSayyKFAmVFyoBEsZHedx6mO7Z2CFZMSJrn9zr2as8jFdWj0XzJIuUX1VPJEeX1-834U8uEJD-vZXIHcRM9uk17oIX6ruKva6HK3NZ2pNv_-JSfK_6s9LcKGE4KxZxMxlWDKjK3D-B2LGq_CxOZiw1mBYcgqzwYghUGatiTGsVwkKs9ZwfML2zOvBsXnCmqxYZmHjnNHmma8fPm1Zeg4628qe2wglqTTDqrYReLNnCCIyhlfYSCcKXzDZjWdzZabX4OBU-uA6LI_GI3MTWJ41DOJIBOYNql9zLDo9HdH6csJN6HsOuJXrSF0yuZOgyFAWHNRc0lDKeigdeFzbvyk4TH5r-ch6Ym2WTo5o518k5Mv-thSdoLPb9YXcdmC1clVZTnpT2cDiGB0fQaUD9-uvcbqiNah0ZMZza0P8UkLEf7IJELQmYYTt3CjCoL4hLniMgCp0gFtn_ssfki963W797ta__OgenG3v97qyu9Pv3IZz9HlxFnUVlmeTubmDoHSm7tppgMGr046Tb1dIkRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4am4TYA3dYYYCRuDxlS504FyQeyrrs0oumsYm9mdhxULUumdJWA57gH_BT-Cv8BX4Jx84FirhISHvgqUp74qb2OT7fqe3vA3ikQqZcmTBLYO6zXES0VmgLx0ps9B-JIeYazcjB0Ns-dHeP2NECfK7PwpT8EM0fbjoyzHytA_w0Sde_k4ZOTsZ66UAXCIzV8tU99e4Mi7bJ850ujvBjSqPNg41tq9IVsKRW2rX8GLNSIkRip9RNPeVLrNKoSgMmZcik40v09ISFiQwDkfiuUJ6gTIRYycggDWIH270AS65nh1osorvfEFY5mC2NnAsmSUszfdU0kTZdn3_euTS4pEf07a8w7jxkNjkvugJf6t4qt7ocr82mYk2-_4lI8n_qzqtwuQLgpFNGzDVYUNl1WP6BlvEGfOyMChKNxhWjMBllBGEyiQqlyKCWEybROD8j--rN6EQ9Ix1SLrKQPCV668zXD582DTmHPtlK9kx8aqE0Req2EXaTFwghEoLfsBEXAl8w1eXTmVCTm3B4Ln1wCxazPFMrQNKkrRBFIixv6-o1xZLTlr5eXQ6p8hy7BVbtOVxWPO5aTmTMSwZqyvVQ8mYoW_C0sT8tGUx-a_nEOGJjFhfHet-fz_ir4RZnPbe323cY32rBau2pvJryJryNpTH6PULKFjxsPsbJSq9AxZnKZ8ZGs0sxFvzJxkXIGno-tnO7jILmgSijAcIprwXU-PJffhB_Oej3m6s7_3LTA7i41414f2fYuwuX9NvlQdRVWJwWM3UPEelU3DeTAIHX5x0m3wD6EY_D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+Filtration+in+the+Free+Molecular+Flow+Regime%3A+A+Review+of+High-Efficiency+Particulate+Air+Filters+Based+on+Carbon+Nanotubes&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Peng&rft.au=Wang%2C+Chunya&rft.au=Zhang%2C+Yingying&rft.au=Wei%2C+Fei&rft.date=2014-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=10&rft.issue=22&rft.spage=4543&rft_id=info:doi/10.1002%2Fsmll.201401553&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3501871301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon