Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions
Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions,...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 53; no. 1; pp. 250 - 254 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
03.01.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions, and their high catalytic activity can be fully recovered by high‐temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions.
Layer cake: The synthesis of graphene‐nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous silica layers is reported. The resulting class of robust catalysts was shown to possess high activity, good stability under high temperature conditions, and excellent recyclability and reusability in both gas‐ and solution‐phase reactions. |
---|---|
AbstractList | Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions. [PUBLICATION ABSTRACT] Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions, and their high catalytic activity can be fully recovered by high‐temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions. Layer cake: The synthesis of graphene‐nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous silica layers is reported. The resulting class of robust catalysts was shown to possess high activity, good stability under high temperature conditions, and excellent recyclability and reusability in both gas‐ and solution‐phase reactions. Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions. Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions.Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions. Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO 2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions, and their high catalytic activity can be fully recovered by high‐temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO 2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions. Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO sub(2) layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO sub(2) layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions. Layer cake: The synthesis of graphene-nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous silica layers is reported. The resulting class of robust catalysts was shown to possess high activity, good stability under high temperature conditions, and excellent recyclability and reusability in both gas- and solution-phase reactions. |
Author | Zhang, Donghui Zhang, Tierui Yin, Yadong Shang, Lu Bian, Tong Wu, Li-Zhu Tung, Chen-Ho Zhang, Baihui |
Author_xml | – sequence: 1 givenname: Lu surname: Shang fullname: Shang, Lu organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China) – sequence: 2 givenname: Tong surname: Bian fullname: Bian, Tong organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China) – sequence: 3 givenname: Baihui surname: Zhang fullname: Zhang, Baihui organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China) – sequence: 4 givenname: Donghui surname: Zhang fullname: Zhang, Donghui organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China) – sequence: 5 givenname: Li-Zhu surname: Wu fullname: Wu, Li-Zhu organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China) – sequence: 6 givenname: Chen-Ho surname: Tung fullname: Tung, Chen-Ho organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China) – sequence: 7 givenname: Yadong surname: Yin fullname: Yin, Yadong email: yadong.yin@ucr.edu organization: Department of Chemistry, University of California, Riverside, CA 92521 (USA) – sequence: 8 givenname: Tierui surname: Zhang fullname: Zhang, Tierui email: tierui@mail.ipc.ac.cn organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24288240$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhiNURD_gyhFZ4sIlix3bccKtjZalqGzFthVHy-uMhUvWDnYiun-hv7re3bJClVBPHkvPM6OZ9zg7cN5Blr0leEIwLj4qZ2FSYEJxWZX0RXZEeEFyKgQ9SDWjNBcVJ4fZcYy3ia8qXL7KDguWqoLho-x-FlT_ExzkV2Pf-zBAi266IShjHaBvMKgOzZXzvQqD1R1ENHVa9XHs1AZdrhMTfRL9GNGV7axWn9DCL8c4oEYlex2HiIwP6PLOtmqw3iHlWrSAdtTb3wLUtoivs5dGdRHePL4n2c3n6XXzJb-4nJ03pxe55kzQnJqKqFpjQU0hqFhWVIM2JVCtMWOsFLjlpuUETGtYVQCIusSgqQHCRckpPck-7Pr2wf8eIQ5yZaOGrlMO0haSCExIwRnmz6OsxqJIY-uEvn-C3voxuLRIogRmBa34puG7R2pcrqCVfbArFdbybyAJmOwAHXyMAcweIVhuEpebxOU-8SSwJ4K2w_bOKUTb_V-rd9of28H6mSHydH4-_dfNd66NA9ztXRV-yTIlwuWP-UzOvjbXzffqTM7oA5Pr0Hk |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1002_anie_201801103 crossref_primary_10_1016_j_micromeso_2019_109711 crossref_primary_10_1021_acsanm_3c03294 crossref_primary_10_1016_j_jcis_2016_07_031 crossref_primary_10_1039_C5NR00640F crossref_primary_10_1021_acs_chemmater_9b02718 crossref_primary_10_1002_ange_201405669 crossref_primary_10_1016_j_jece_2023_109680 crossref_primary_10_1039_C5TA05092H crossref_primary_10_1016_j_ccr_2015_12_005 crossref_primary_10_1038_s41598_020_57483_z crossref_primary_10_2139_ssrn_4154290 crossref_primary_10_1016_j_isci_2019_08_026 crossref_primary_10_1021_acssuschemeng_7b02281 crossref_primary_10_1039_C7CE01350G crossref_primary_10_1002_cssc_202300477 crossref_primary_10_1016_j_cej_2022_139545 crossref_primary_10_1039_C6AY00335D crossref_primary_10_1088_2053_1591_aae22a crossref_primary_10_1016_j_jcrysgro_2015_09_031 crossref_primary_10_1016_j_ultsonch_2017_04_035 crossref_primary_10_1371_journal_pone_0136805 crossref_primary_10_1016_j_jallcom_2019_151877 crossref_primary_10_1039_C9RA06709D crossref_primary_10_1016_j_apcatb_2018_09_018 crossref_primary_10_1016_j_solidstatesciences_2015_05_008 crossref_primary_10_1021_am5065409 crossref_primary_10_1002_advs_202104972 crossref_primary_10_1039_C5GC00641D crossref_primary_10_3390_ma12152486 crossref_primary_10_1016_j_jcis_2019_06_062 crossref_primary_10_3390_nano10071290 crossref_primary_10_1016_j_materresbull_2015_01_011 crossref_primary_10_1038_ncomms11819 crossref_primary_10_1007_s11706_021_0542_z crossref_primary_10_1038_srep21904 crossref_primary_10_1039_C9TA09448B crossref_primary_10_1002_smll_201500539 crossref_primary_10_1016_j_jallcom_2019_03_323 crossref_primary_10_1039_C8NR03443E crossref_primary_10_1002_smtd_201800105 crossref_primary_10_1016_j_scib_2018_01_017 crossref_primary_10_1038_srep41773 crossref_primary_10_1016_j_materresbull_2015_08_027 crossref_primary_10_1016_j_cclet_2023_108904 crossref_primary_10_1039_C6CY00201C crossref_primary_10_1002_ange_202003651 crossref_primary_10_1039_D0GC01835J crossref_primary_10_1016_j_jes_2023_06_027 crossref_primary_10_1016_j_nantod_2022_101493 crossref_primary_10_1039_C6RA04880C crossref_primary_10_1016_j_cej_2018_03_075 crossref_primary_10_1016_j_fuel_2020_118971 crossref_primary_10_1039_C8SE00629F crossref_primary_10_1002_ejic_201601487 crossref_primary_10_1039_C5GC02508G crossref_primary_10_1016_j_inoche_2014_12_005 crossref_primary_10_1021_am505747w crossref_primary_10_1016_j_apcatb_2016_06_020 crossref_primary_10_1016_j_cej_2022_138597 crossref_primary_10_1039_C4CY01301H crossref_primary_10_1002_asia_201600453 crossref_primary_10_1002_asia_201600454 crossref_primary_10_1007_s00396_016_3875_x crossref_primary_10_1021_acsami_7b11086 crossref_primary_10_1016_j_talanta_2017_02_059 crossref_primary_10_1021_acs_jmedchem_8b00293 crossref_primary_10_1016_j_talanta_2016_07_034 crossref_primary_10_1016_j_apcatb_2018_03_046 crossref_primary_10_1021_acsami_0c07703 crossref_primary_10_1039_C7QI00318H crossref_primary_10_1134_S1063783421100206 crossref_primary_10_1126_sciadv_aax6976 crossref_primary_10_1039_C5RA27422B crossref_primary_10_1016_j_sna_2017_12_053 crossref_primary_10_1021_jacs_6b12780 crossref_primary_10_1021_acsomega_8b02746 crossref_primary_10_1039_C5TA00119F crossref_primary_10_1016_j_ijhydene_2023_07_030 crossref_primary_10_1007_s40843_015_0034_5 crossref_primary_10_1016_j_jcis_2017_06_054 crossref_primary_10_1016_j_molcata_2015_11_011 crossref_primary_10_1021_acsami_5b01758 crossref_primary_10_1002_smll_201500635 crossref_primary_10_1016_j_jssc_2015_05_027 crossref_primary_10_1039_D1TA00468A crossref_primary_10_1016_j_materresbull_2014_11_032 crossref_primary_10_1016_j_colsurfa_2014_11_007 crossref_primary_10_1021_acsami_6b03008 crossref_primary_10_1016_j_apsusc_2019_06_039 crossref_primary_10_1016_j_electacta_2019_02_020 crossref_primary_10_1016_j_electacta_2018_06_107 crossref_primary_10_1021_acsnano_5b04138 crossref_primary_10_1016_j_apsusc_2015_07_049 crossref_primary_10_1158_0008_5472_CAN_16_1681 crossref_primary_10_1016_j_est_2019_01_001 crossref_primary_10_1021_acs_chemmater_2c00262 crossref_primary_10_1002_adma_201500644 crossref_primary_10_1007_s40242_022_1504_4 crossref_primary_10_1016_j_bios_2022_114664 crossref_primary_10_1039_C8NR06916F crossref_primary_10_1007_s12598_019_01350_y crossref_primary_10_1016_j_chempr_2019_09_005 crossref_primary_10_1021_jz5024948 crossref_primary_10_1021_acs_jpclett_6b00219 crossref_primary_10_1021_acsaem_4c01886 crossref_primary_10_1002_cctc_201402934 crossref_primary_10_1016_j_ccr_2016_05_003 crossref_primary_10_1002_ange_201607812 crossref_primary_10_1039_C8NR00137E crossref_primary_10_1007_s11814_015_0094_y crossref_primary_10_1016_j_jcis_2017_09_005 crossref_primary_10_1039_C5RA14405A crossref_primary_10_1021_acs_chemmater_6b05364 crossref_primary_10_1039_D1MA00840D crossref_primary_10_1016_j_mssp_2015_09_021 crossref_primary_10_1021_ja511511q crossref_primary_10_1016_j_jallcom_2021_163260 crossref_primary_10_1039_C5NR02329G crossref_primary_10_1021_acs_jpcc_3c03327 crossref_primary_10_2174_0115734110269897231020065609 crossref_primary_10_1016_j_electacta_2016_04_095 crossref_primary_10_1002_cctc_201500074 crossref_primary_10_1016_j_cej_2022_137853 crossref_primary_10_1016_S1872_2067_20_63697_X crossref_primary_10_1016_j_apmt_2023_101903 crossref_primary_10_1039_C4CC09466B crossref_primary_10_1021_acsomega_2c01603 crossref_primary_10_1002_cctc_201501283 crossref_primary_10_1021_acscatal_5b00444 crossref_primary_10_1021_acscatal_5b01411 crossref_primary_10_1039_C4RA12916D crossref_primary_10_1039_C4DT01924E crossref_primary_10_1039_C7NR04752E crossref_primary_10_1039_C5TA07655B crossref_primary_10_1016_j_compscitech_2016_01_011 crossref_primary_10_1016_j_apsusc_2016_11_035 crossref_primary_10_1016_j_ceramint_2023_11_275 crossref_primary_10_1016_j_matdes_2016_07_036 crossref_primary_10_1155_2015_601484 crossref_primary_10_1016_j_apcatb_2019_04_053 crossref_primary_10_1021_acsomega_7b00382 crossref_primary_10_1039_C9CC05682C crossref_primary_10_1039_D0DT01922D crossref_primary_10_1016_j_jtice_2020_09_027 crossref_primary_10_1039_D1NJ03106F crossref_primary_10_1002_ange_201609663 crossref_primary_10_1007_s10562_018_2558_2 crossref_primary_10_1021_acsomega_6b00050 crossref_primary_10_1016_j_cej_2019_123471 crossref_primary_10_1038_s41467_021_25116_2 crossref_primary_10_1002_chem_201601724 crossref_primary_10_1021_acscatal_0c01569 crossref_primary_10_1021_acsami_7b17544 crossref_primary_10_1071_CH18356 crossref_primary_10_1134_S0030400X19030111 crossref_primary_10_1016_j_ensm_2018_08_023 crossref_primary_10_1088_1361_6528_abe66e crossref_primary_10_3390_ma14102597 crossref_primary_10_1002_ange_201801103 crossref_primary_10_1002_smll_202006442 crossref_primary_10_1039_D4NJ00970C crossref_primary_10_1039_D4NR01116C crossref_primary_10_1021_acsnano_0c05740 crossref_primary_10_1021_acssuschemeng_6b01852 crossref_primary_10_1002_anie_201609663 crossref_primary_10_1002_anie_202003651 crossref_primary_10_1016_j_solidstatesciences_2016_10_015 crossref_primary_10_1039_C4TA02282C crossref_primary_10_1039_C8NJ00254A crossref_primary_10_1002_anie_201405669 crossref_primary_10_1039_C6CP01964A crossref_primary_10_1021_acsami_6b05350 crossref_primary_10_1039_C7NJ03598E crossref_primary_10_1007_s11244_019_01134_9 crossref_primary_10_1039_C5RA10852G crossref_primary_10_1088_1361_6528_aab9c2 crossref_primary_10_1016_j_apsusc_2020_148101 crossref_primary_10_1021_acs_langmuir_7b01214 crossref_primary_10_1016_j_inoche_2019_107506 crossref_primary_10_1021_cg501527k crossref_primary_10_1149_2_1321814jes crossref_primary_10_1039_C5RA00878F crossref_primary_10_1039_C6RA09618B crossref_primary_10_1002_cctc_201701457 crossref_primary_10_1007_s10118_019_2245_9 crossref_primary_10_1021_acs_langmuir_6b04069 crossref_primary_10_1039_C4CP04842C crossref_primary_10_1039_C7TA04905F crossref_primary_10_1021_acsami_1c00497 crossref_primary_10_1016_j_apcatb_2016_10_082 crossref_primary_10_1021_acssuschemeng_6b00884 crossref_primary_10_1016_j_snb_2018_10_098 crossref_primary_10_1002_adma_201602197 crossref_primary_10_1039_C6TA08537G crossref_primary_10_15407_hftp14_04_561 crossref_primary_10_1016_j_chemosphere_2021_132668 crossref_primary_10_1021_am503110s crossref_primary_10_1002_adsu_201800161 crossref_primary_10_1016_j_apsusc_2017_01_069 crossref_primary_10_1016_j_apcata_2015_02_026 crossref_primary_10_1021_acs_langmuir_7b00141 crossref_primary_10_1039_C4NR04283B crossref_primary_10_1016_j_nanoen_2019_06_008 crossref_primary_10_1039_C7RA01188A crossref_primary_10_1016_j_scib_2018_11_020 crossref_primary_10_1007_s11356_022_21970_9 crossref_primary_10_1039_C9TA03934A crossref_primary_10_1016_j_electacta_2016_07_098 crossref_primary_10_3390_catal5010145 crossref_primary_10_1002_anie_202104219 crossref_primary_10_2166_wst_2018_250 crossref_primary_10_1039_C5NR02959G crossref_primary_10_1002_ange_202011347 crossref_primary_10_1016_j_cej_2023_144567 crossref_primary_10_1016_j_apcatb_2018_01_052 crossref_primary_10_1016_j_jcis_2020_01_097 crossref_primary_10_1039_C4CY01415D crossref_primary_10_1039_C5TA03669K crossref_primary_10_1007_s12274_022_4890_5 crossref_primary_10_1021_acs_inorgchem_9b01117 crossref_primary_10_1016_j_matdes_2020_109367 crossref_primary_10_1039_c4tb00509k crossref_primary_10_1016_j_jcis_2021_10_174 crossref_primary_10_1039_C5TA05664K crossref_primary_10_1016_j_colsurfa_2019_05_059 crossref_primary_10_1002_solr_201800148 crossref_primary_10_1007_s11434_016_1052_8 crossref_primary_10_1039_C7NH00095B crossref_primary_10_1002_anie_201607812 crossref_primary_10_3390_nano12122081 crossref_primary_10_1016_j_apcatb_2021_120254 crossref_primary_10_1063_1_4966199 crossref_primary_10_1021_acsaenm_4c00165 crossref_primary_10_1002_slct_202000727 crossref_primary_10_1021_acsami_1c06771 crossref_primary_10_1021_acs_jpcb_6b04272 crossref_primary_10_1039_C5DT03007B crossref_primary_10_1039_D2DT03600B crossref_primary_10_1021_acssuschemeng_5b01032 crossref_primary_10_1016_j_matchar_2015_01_016 crossref_primary_10_1016_j_inoche_2021_108602 crossref_primary_10_1016_j_materresbull_2016_05_016 crossref_primary_10_1002_chem_201704056 crossref_primary_10_1016_j_ijhydene_2016_03_066 crossref_primary_10_1039_C5TA06875D crossref_primary_10_1002_adom_201400560 crossref_primary_10_1016_j_apmt_2021_101053 crossref_primary_10_1039_C4CY01486C crossref_primary_10_1002_cctc_202200134 crossref_primary_10_1039_D1CY00129A crossref_primary_10_1007_s11144_015_0902_8 crossref_primary_10_1039_C5TA09215A crossref_primary_10_1016_j_cej_2019_122469 crossref_primary_10_1002_anie_201712202 crossref_primary_10_1016_j_jelechem_2014_11_001 crossref_primary_10_1021_acs_langmuir_7b00838 crossref_primary_10_1007_s40242_022_2002_4 crossref_primary_10_1039_C6NJ04062D crossref_primary_10_1039_C5CC08239K crossref_primary_10_1016_j_colsurfa_2019_01_059 crossref_primary_10_1039_D1RA06853A crossref_primary_10_1039_C4DT03905J crossref_primary_10_1021_acs_cgd_5b01101 crossref_primary_10_1039_D3NR05884K crossref_primary_10_1007_s12274_022_4705_8 crossref_primary_10_1016_j_jallcom_2019_153427 crossref_primary_10_2139_ssrn_4175920 crossref_primary_10_1016_j_apcatb_2019_03_084 crossref_primary_10_1016_j_jclepro_2017_05_162 crossref_primary_10_1039_C4RA04811C crossref_primary_10_1016_j_apcata_2021_118249 crossref_primary_10_1021_accountsmr_3c00245 crossref_primary_10_1021_acsami_8b18675 crossref_primary_10_1021_acs_jpcc_5b03707 crossref_primary_10_1021_cs501329c crossref_primary_10_1016_j_jallcom_2014_08_262 crossref_primary_10_1016_j_apsusc_2018_02_030 crossref_primary_10_1016_j_tet_2014_05_044 crossref_primary_10_1002_ange_201712202 crossref_primary_10_1007_s11705_023_2299_7 crossref_primary_10_1007_s11706_022_0607_7 crossref_primary_10_1021_acsomega_8b01141 crossref_primary_10_1016_j_ijhydene_2023_11_343 crossref_primary_10_1002_smll_202207689 crossref_primary_10_1002_anie_202011347 crossref_primary_10_1039_C7TA11052A crossref_primary_10_1016_j_poly_2018_12_036 crossref_primary_10_1016_j_cej_2023_141701 crossref_primary_10_1039_C5CY01414J crossref_primary_10_1039_C4TA04006F crossref_primary_10_1002_cssc_201701450 crossref_primary_10_1002_smll_202101173 crossref_primary_10_1021_acsami_5b01503 crossref_primary_10_1002_asia_202000643 crossref_primary_10_1039_C8TA09545K crossref_primary_10_1039_C4CE01872A crossref_primary_10_1039_C4RA07533A crossref_primary_10_1039_C8NJ04517H crossref_primary_10_1016_j_jcat_2019_07_007 crossref_primary_10_1016_j_apsusc_2019_143781 crossref_primary_10_1016_j_ijhydene_2014_10_129 crossref_primary_10_1016_j_jallcom_2017_04_298 crossref_primary_10_1039_C6TA04758K crossref_primary_10_3390_app10217533 crossref_primary_10_1016_j_clay_2019_03_024 crossref_primary_10_1021_acs_langmuir_5b01099 crossref_primary_10_1021_acssuschemeng_0c05155 crossref_primary_10_1016_j_carbpol_2016_12_004 crossref_primary_10_1007_s12274_024_6809_9 crossref_primary_10_1039_D0TA05175F crossref_primary_10_1016_j_jpcs_2017_10_031 crossref_primary_10_1021_acsami_7b04196 crossref_primary_10_1088_1742_6596_2175_1_012002 crossref_primary_10_1007_s10854_021_05399_3 crossref_primary_10_1007_s11164_016_2667_8 crossref_primary_10_1016_j_cplett_2014_10_051 crossref_primary_10_1016_j_colsurfa_2018_08_069 crossref_primary_10_1016_j_molcata_2016_09_007 crossref_primary_10_1039_C4CC09131K crossref_primary_10_1016_j_heliyon_2019_e01831 crossref_primary_10_1021_acs_chemrev_0c00237 crossref_primary_10_1039_C7TA03629A crossref_primary_10_1016_j_pmatsci_2018_01_003 crossref_primary_10_1016_j_pmatsci_2024_101335 crossref_primary_10_1021_jacs_7b07918 crossref_primary_10_1039_D4SC04001E crossref_primary_10_1039_C5NR03773E crossref_primary_10_1002_chem_201904208 crossref_primary_10_1007_s10854_019_02119_w crossref_primary_10_1016_j_snb_2022_131675 crossref_primary_10_1039_C8TA01093E crossref_primary_10_3390_app12199945 crossref_primary_10_1021_acs_chemrev_6b00075 crossref_primary_10_1007_s12274_020_3144_7 crossref_primary_10_1002_cplu_201600633 crossref_primary_10_1021_acsaem_0c02989 crossref_primary_10_1002_adma_202107088 crossref_primary_10_1016_j_optmat_2017_06_059 crossref_primary_10_1039_C7CS00650K crossref_primary_10_1080_03067319_2019_1638919 crossref_primary_10_1039_C4RA07547A crossref_primary_10_1039_C5DT03094C crossref_primary_10_1016_j_apcata_2022_118572 crossref_primary_10_1002_adfm_201606215 crossref_primary_10_1016_j_jenvman_2020_110299 crossref_primary_10_1039_D0NJ05875K crossref_primary_10_1002_aenm_201702780 crossref_primary_10_1021_ic501127d crossref_primary_10_1039_C8NR05267K crossref_primary_10_1021_jacs_6b13279 crossref_primary_10_1039_C4NR03624G crossref_primary_10_1007_s13762_024_05704_7 crossref_primary_10_1039_D1DT00408E crossref_primary_10_1016_j_jechem_2018_04_015 crossref_primary_10_1016_j_matre_2022_100090 crossref_primary_10_1039_C8NA00095F crossref_primary_10_1016_j_micromeso_2020_110225 crossref_primary_10_1002_adma_201505045 crossref_primary_10_1016_j_electacta_2015_02_100 crossref_primary_10_1016_j_apcatb_2019_05_025 crossref_primary_10_1016_j_snb_2015_01_040 crossref_primary_10_1039_C5NR02246K crossref_primary_10_1155_2020_5819062 crossref_primary_10_1039_C6RA22389C crossref_primary_10_1016_j_colsurfa_2014_11_049 crossref_primary_10_1039_C8TC00263K crossref_primary_10_1002_ange_202104219 crossref_primary_10_1039_D2TA03860A crossref_primary_10_1007_s40242_015_5171_6 crossref_primary_10_1039_C6NR09245D crossref_primary_10_1039_C6TA04365H |
Cites_doi | 10.1021/nl900397t 10.1021/ja905749e 10.1021/cr040090g 10.1002/cssc.201100565 10.1006/jcat.1997.1489 10.1002/ange.200901678 10.1021/la105087f 10.1039/C1CS15078B 10.1016/j.apcata.2005.01.034 10.1002/anie.201001634 10.1002/anie.200901678 10.1021/ja110313d 10.1016/S0926-860X(00)00843-7 10.1021/ja201269b 10.1002/ange.201001839 10.1039/C1CY00361E 10.1021/ja101110m 10.1038/nmat2329 10.1039/c1jm11231g 10.1002/anie.201001839 10.1039/C0JM01007C 10.1038/nmat3087 10.1021/jp045917p 10.1002/cssc.200900151 10.1002/adma.201204419 10.1126/science.1102896 10.1021/ja053038q 10.1002/adma.200401085 10.1021/ja901105a 10.1039/C2CC16239C 10.1021/jz900265j 10.1016/j.carbon.2011.09.017 10.1039/c1ee01040a 10.1021/cm990661z 10.1021/nl904082k 10.1063/1.3427246 10.1021/ar3002427 10.1039/C1CS15172J 10.1007/s12274-010-0059-8 10.1002/ange.201001634 10.1016/j.carbon.2009.11.034 10.1021/la027029w 10.1002/adma.201003695 |
ContentType | Journal Article |
Copyright | Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7TM K9. 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/anie.201306863 |
DatabaseName | Istex CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 254 |
ExternalDocumentID | 3163886761 24288240 10_1002_anie_201306863 ANIE201306863 ark_67375_WNG_GJCTCQ8B_G |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: 100 Talents Program of the Chinese Academy of Sciences – fundername: Knowledge Innovation Project of the Chinese Academy of Sciences funderid: KGCX2‐EW‐311‐3 – fundername: Ministry of Science and Technology of China funderid: 2014CB239402; 2013CB834505 – fundername: National Natural Science Foundation of China funderid: 51322213; 20901081; 51172245; 91127005; 21201172 – fundername: U.S. Department of Energy funderid: DE‐FG02‐09ER16096 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABDBF ABJNI AETEA AEYWJ AGQPQ AGYGG CITATION NPM 7TM K9. 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c5473-3f81a9c073f2737b83cecf6e3cc0444670d5fd51efdf482ee7960ec3fe1576533 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 10:31:52 EDT 2025 Thu Jul 10 17:06:41 EDT 2025 Fri Jul 25 12:34:08 EDT 2025 Mon Jul 21 05:55:49 EDT 2025 Tue Jul 01 02:53:23 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 Wed Jan 22 17:08:15 EST 2025 Wed Oct 30 09:56:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | heterogeneous catalysis metal nanoparticles mesoporous materials graphene stability |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5473-3f81a9c073f2737b83cecf6e3cc0444670d5fd51efdf482ee7960ec3fe1576533 |
Notes | ArticleID:ANIE201306863 istex:04C07F3E496372ADE56BB7EF01DB8ED128990A27 100 Talents Program of the Chinese Academy of Sciences We acknowledge support from the Ministry of Science and Technology of China (2014CB239402, 2013CB834505), the National Natural Science Foundation of China (51322213, 20901081, 51172245, 91127005, 21201172), the Knowledge Innovation Project of the Chinese Academy of Sciences (KGCX2-EW-311-3), and the 100 Talents Program of the Chinese Academy of Sciences. Y.Y. also thanks the U.S. Department of Energy (DE-FG02-09ER16096) for financial support. Knowledge Innovation Project of the Chinese Academy of Sciences - No. KGCX2-EW-311-3 National Natural Science Foundation of China - No. 51322213; No. 20901081; No. 51172245; No. 91127005; No. 21201172 U.S. Department of Energy - No. DE-FG02-09ER16096 ark:/67375/WNG-GJCTCQ8B-G Ministry of Science and Technology of China - No. 2014CB239402; No. 2013CB834505 We acknowledge support from the Ministry of Science and Technology of China (2014CB239402, 2013CB834505), the National Natural Science Foundation of China (51322213, 20901081, 51172245, 91127005, 21201172), the Knowledge Innovation Project of the Chinese Academy of Sciences (KGCX2‐EW‐311‐3), and the 100 Talents Program of the Chinese Academy of Sciences. Y.Y. also thanks the U.S. Department of Energy (DE‐FG02‐09ER16096) for financial support. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24288240 |
PQID | 1470423855 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1701125405 proquest_miscellaneous_1490720449 proquest_journals_1470423855 pubmed_primary_24288240 crossref_primary_10_1002_anie_201306863 crossref_citationtrail_10_1002_anie_201306863 wiley_primary_10_1002_anie_201306863_ANIE201306863 istex_primary_ark_67375_WNG_GJCTCQ8B_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 3, 2014 |
PublicationDateYYYYMMDD | 2014-01-03 |
PublicationDate_xml | – month: 01 year: 2014 text: January 3, 2014 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | B. F. Machado, P. Serp, Catal. Sci. Technol. 2012, 2, 54. Z. Sun, H. Zhang, Y. Zhao, C. Huang, R. Tao, Z. Liu, Z. Wu, Langmuir 2011, 27, 6244 R. Ferrando, J. Jellinek, R. L. Johnston, Chem. Rev. 2008, 108, 845. R. F. Nie, J. H. Wang, L. N. Wang, Y. Qin, P. Chen, Z. Y. Hou, Carbon 2012, 50, 586 D. Wang, Y. Li, Adv. Mater. 2011, 23, 1044 J. Zhu, X. Xie, S. A. C. Carabineiro, P. B. Tavares, J. L. Figueiredo, R. Schomacker, A. Thomas, Energy Environ. Sci. 2011, 4, 2020. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296 P. V. Kamat, J. Phys. Chem. Lett. 2009, 1, 520. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666 C. E. Chan-Thaw, A. Villa, P. Katekomol, D. Su, A. Thomas, L. Prati, Nano Lett. 2010, 10, 537. Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782. Y. S. Chi, H. P. Lin, C. Y. Mou, Appl. Catal. A 2005, 284, 199 X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666. Angew. Chem. Int. Ed. 2009, 48, 7752 C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. 2009, 121, 7890 M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2009, 109, 132 J. L. Gu, J. L. Shi, G. J. You, L. M. Xiong, S. X. Qian, Z. L. Hua, H. R. Chen, Adv. Mater. 2005, 17, 557 G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc. 2009, 131, 8262 I. Lee, Q. Zhang, J. Ge, Y. Yin, F. Zaera, Nano Res. 2011, 4, 115. Y. Li, W. Gao, L. Ci, C. Wang, P. M. Ajayan, Carbon 2010, 48, 1124. Q. Cai, Z. S. Luo, W. Q. Pang, Y. W. Fan, X. H. Chen, F. Z. Cui, Chem. Mater. 2001, 13, 258 M. Zhou, A. Zhang, Z. Dai, C. Zhang, Y. P. Feng, J. Chem. Phys. 2010, 132, 194704. B. Fang, N. K. Chaudhari, M. S. Kim, J. H. Kim, J. S. Yu, J. Am. Chem. Soc. 2009, 131, 15330 J. H. Vleeming, B. F. M. Kuster, G. B. Marin, F. Oudet, P. Courtine, J. Catal. 1997, 166, 148 S. B. Yang, X. L. Feng, L. Wang, K. Tang, J. Maier, K. Mullen, Angew. Chem. 2010, 122, 4905 L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, P. Fornasiero, ChemSusChem 2010, 3, 24. H. Zhu, B. Lee, S. Dai, S. H. Overbury, Langmuir 2003, 19, 3974. S. H. Park, S. M. Bak, K. H. Kim, J. P. Jegal, S. I. Lee, J. Lee, K. B. Kim, J. Mater. Chem. 2011, 21, 680. B. G. Choi, H. S. Park, ChemSusChem 2012, 5, 709. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780 H. Zhang, S. Chen, X. Quan, H. Yu, H. Zhao, J. Mater. Chem. 2011, 21, 12986. M. T. Bore, H. N. Pham, E. E. Switzer, T. L. Ward, A. Fukuoka, A. K. Datye, J. Phys. Chem. B 2005, 109, 2873 M. K. van der Lee, J. van Dillen, J. H. Bitter, K. P. de Jong, J. Am. Chem. Soc. 2005, 127, 13573. T. W. Hansen, A. T. DeLaRiva, S. R. Challa, A. K. Datye, Acc. Chem. Res. 2013, 46, 1720. Angew. Chem. Int. Ed. 2010, 49, 4795. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Nano Lett. 2009, 9, 2255 X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, J. Am. Chem. Soc. 2011, 133, 3693. Angew. Chem. Int. Ed. 2010, 49, 8165 H. P. Zhou, H. S. Wu, J. Shen, A. X. Yin, L. D. Sun, C. H. Yan, J. Am. Chem. Soc. 2010, 132, 4998. Y. Dai, B. Lim, Y. Yang, C. M. Cobley, W. Li, E. C. Cho, B. Grayson, P. T. Fanson, C. T. Campbell, Y. Sun, Y. Xia, Angew. Chem. 2010, 122, 8341 Z. Wang, D. Xu, Y. Huang, Z. Wu, L. Wang, X. Zhang, Chem. Commun. 2012, 48, 976. C. H. Bartholomew, Appl. Catal. A 2001, 212, 17. Y. Tao, Y. Lin, Z. Huang, J. Ren, X. Qu, Adv. Mater. 2013, 25, 2594. S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, G. A. Somorjai, Nat. Mater. 2009, 8, 126 2010; 10 2013; 25 2013; 46 2010 2010; 122 49 2008; 108 2011; 10 2003; 19 2009; 131 2011; 4 2004; 306 2009 2009; 121 48 2011; 133 2012; 50 2001; 212 2012; 2 2010; 48 2005; 284 2005; 127 1997; 166 2010; 132 2009; 9 2005; 109 2011; 21 2009; 8 2011; 23 2012; 48 2010; 3 2011; 27 2009; 109 2009; 1 2001; 13 2005; 17 2012; 5 2012; 41 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_24_3 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_51_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_32_3 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_3_2 e_1_2_2_3_3 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_2 Allen M. J. (e_1_2_2_4_2) 2009; 109 e_1_2_2_40_2 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_50_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – reference: H. Zhang, S. Chen, X. Quan, H. Yu, H. Zhao, J. Mater. Chem. 2011, 21, 12986. – reference: X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, J. Am. Chem. Soc. 2011, 133, 3693. – reference: R. Ferrando, J. Jellinek, R. L. Johnston, Chem. Rev. 2008, 108, 845. – reference: Angew. Chem. Int. Ed. 2009, 48, 7752; – reference: S. B. Yang, X. L. Feng, L. Wang, K. Tang, J. Maier, K. Mullen, Angew. Chem. 2010, 122, 4905; – reference: H. P. Zhou, H. S. Wu, J. Shen, A. X. Yin, L. D. Sun, C. H. Yan, J. Am. Chem. Soc. 2010, 132, 4998. – reference: S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, G. A. Somorjai, Nat. Mater. 2009, 8, 126; – reference: B. Fang, N. K. Chaudhari, M. S. Kim, J. H. Kim, J. S. Yu, J. Am. Chem. Soc. 2009, 131, 15330; – reference: P. V. Kamat, J. Phys. Chem. Lett. 2009, 1, 520. – reference: M. T. Bore, H. N. Pham, E. E. Switzer, T. L. Ward, A. Fukuoka, A. K. Datye, J. Phys. Chem. B 2005, 109, 2873; – reference: Z. Sun, H. Zhang, Y. Zhao, C. Huang, R. Tao, Z. Liu, Z. Wu, Langmuir 2011, 27, 6244; – reference: Y. Tao, Y. Lin, Z. Huang, J. Ren, X. Qu, Adv. Mater. 2013, 25, 2594. – reference: C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. 2009, 121, 7890; – reference: T. W. Hansen, A. T. DeLaRiva, S. R. Challa, A. K. Datye, Acc. Chem. Res. 2013, 46, 1720. – reference: M. K. van der Lee, J. van Dillen, J. H. Bitter, K. P. de Jong, J. Am. Chem. Soc. 2005, 127, 13573. – reference: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666; – reference: L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, P. Fornasiero, ChemSusChem 2010, 3, 24. – reference: Angew. Chem. Int. Ed. 2010, 49, 4795. – reference: B. G. Choi, H. S. Park, ChemSusChem 2012, 5, 709. – reference: Y. Li, W. Gao, L. Ci, C. Wang, P. M. Ajayan, Carbon 2010, 48, 1124. – reference: M. Zhou, A. Zhang, Z. Dai, C. Zhang, Y. P. Feng, J. Chem. Phys. 2010, 132, 194704. – reference: Y. Dai, B. Lim, Y. Yang, C. M. Cobley, W. Li, E. C. Cho, B. Grayson, P. T. Fanson, C. T. Campbell, Y. Sun, Y. Xia, Angew. Chem. 2010, 122, 8341; – reference: Q. Cai, Z. S. Luo, W. Q. Pang, Y. W. Fan, X. H. Chen, F. Z. Cui, Chem. Mater. 2001, 13, 258; – reference: Y. S. Chi, H. P. Lin, C. Y. Mou, Appl. Catal. A 2005, 284, 199; – reference: H. Zhu, B. Lee, S. Dai, S. H. Overbury, Langmuir 2003, 19, 3974. – reference: B. F. Machado, P. Serp, Catal. Sci. Technol. 2012, 2, 54. – reference: M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2009, 109, 132; – reference: I. Lee, Q. Zhang, J. Ge, Y. Yin, F. Zaera, Nano Res. 2011, 4, 115. – reference: J. L. Gu, J. L. Shi, G. J. You, L. M. Xiong, S. X. Qian, Z. L. Hua, H. R. Chen, Adv. Mater. 2005, 17, 557; – reference: Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782. – reference: J. H. Vleeming, B. F. M. Kuster, G. B. Marin, F. Oudet, P. Courtine, J. Catal. 1997, 166, 148; – reference: D. Wang, Y. Li, Adv. Mater. 2011, 23, 1044; – reference: Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780; – reference: G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc. 2009, 131, 8262; – reference: Angew. Chem. Int. Ed. 2010, 49, 8165; – reference: E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Nano Lett. 2009, 9, 2255; – reference: R. F. Nie, J. H. Wang, L. N. Wang, Y. Qin, P. Chen, Z. Y. Hou, Carbon 2012, 50, 586; – reference: J. Zhu, X. Xie, S. A. C. Carabineiro, P. B. Tavares, J. L. Figueiredo, R. Schomacker, A. Thomas, Energy Environ. Sci. 2011, 4, 2020. – reference: Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296; – reference: Z. Wang, D. Xu, Y. Huang, Z. Wu, L. Wang, X. Zhang, Chem. Commun. 2012, 48, 976. – reference: C. H. Bartholomew, Appl. Catal. A 2001, 212, 17. – reference: C. E. Chan-Thaw, A. Villa, P. Katekomol, D. Su, A. Thomas, L. Prati, Nano Lett. 2010, 10, 537. – reference: S. H. Park, S. M. Bak, K. H. Kim, J. P. Jegal, S. I. Lee, J. Lee, K. B. Kim, J. Mater. Chem. 2011, 21, 680. – reference: X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666. – volume: 25 start-page: 2594 year: 2013 publication-title: Adv. Mater. – volume: 122 49 start-page: 8341 8165 year: 2010 2010 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 127 start-page: 13573 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 194704 year: 2010 publication-title: J. Chem. Phys. – volume: 122 49 start-page: 4905 4795 year: 2010 2010 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 2 start-page: 54 year: 2012 publication-title: Catal. Sci. Technol. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 166 start-page: 148 year: 1997 publication-title: J. Catal. – volume: 284 start-page: 199 year: 2005 publication-title: Appl. Catal. A – volume: 121 48 start-page: 7890 7752 year: 2009 2009 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 46 start-page: 1720 year: 2013 publication-title: Acc. Chem. Res. – volume: 3 start-page: 24 year: 2010 publication-title: ChemSusChem – volume: 50 start-page: 586 year: 2012 publication-title: Carbon – volume: 10 start-page: 780 year: 2011 publication-title: Nat. Mater. – volume: 48 start-page: 1124 year: 2010 publication-title: Carbon – volume: 131 start-page: 15330 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 7296 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 132 year: 2009 publication-title: Chem. Rev. – volume: 17 start-page: 557 year: 2005 publication-title: Adv. Mater. – volume: 8 start-page: 126 year: 2009 publication-title: Nat. Mater. – volume: 108 start-page: 845 year: 2008 publication-title: Chem. Rev. – volume: 9 start-page: 2255 year: 2009 publication-title: Nano Lett. – volume: 21 start-page: 680 year: 2011 publication-title: J. Mater. Chem. – volume: 1 start-page: 520 year: 2009 publication-title: J. Phys. Chem. Lett. – volume: 212 start-page: 17 year: 2001 publication-title: Appl. Catal. A – volume: 131 start-page: 8262 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 12986 year: 2011 publication-title: J. Mater. Chem. – volume: 23 start-page: 1044 year: 2011 publication-title: Adv. Mater. – volume: 5 start-page: 709 year: 2012 publication-title: ChemSusChem – volume: 41 start-page: 666 year: 2012 publication-title: Chem. Soc. Rev. – volume: 132 start-page: 4998 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 537 year: 2010 publication-title: Nano Lett. – volume: 4 start-page: 115 year: 2011 publication-title: Nano Res. – volume: 41 start-page: 782 year: 2012 publication-title: Chem. Soc. Rev. – volume: 19 start-page: 3974 year: 2003 publication-title: Langmuir – volume: 13 start-page: 258 year: 2001 publication-title: Chem. Mater. – volume: 109 start-page: 2873 year: 2005 publication-title: J. Phys. Chem. B – volume: 48 start-page: 976 year: 2012 publication-title: Chem. Commun. – volume: 133 start-page: 3693 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2020 year: 2011 publication-title: Energy Environ. Sci. – volume: 27 start-page: 6244 year: 2011 publication-title: Langmuir – ident: e_1_2_2_12_2 doi: 10.1021/nl900397t – ident: e_1_2_2_28_2 doi: 10.1021/ja905749e – ident: e_1_2_2_52_2 doi: 10.1021/cr040090g – ident: e_1_2_2_30_2 – ident: e_1_2_2_34_2 doi: 10.1002/cssc.201100565 – ident: e_1_2_2_47_2 doi: 10.1006/jcat.1997.1489 – ident: e_1_2_2_3_2 doi: 10.1002/ange.200901678 – ident: e_1_2_2_25_2 doi: 10.1021/la105087f – ident: e_1_2_2_5_2 doi: 10.1039/C1CS15078B – ident: e_1_2_2_14_2 – ident: e_1_2_2_22_2 – ident: e_1_2_2_36_2 doi: 10.1016/j.apcata.2005.01.034 – ident: e_1_2_2_32_3 doi: 10.1002/anie.201001634 – ident: e_1_2_2_3_3 doi: 10.1002/anie.200901678 – ident: e_1_2_2_19_2 doi: 10.1021/ja110313d – ident: e_1_2_2_45_2 doi: 10.1016/S0926-860X(00)00843-7 – ident: e_1_2_2_9_2 doi: 10.1021/ja201269b – volume: 109 start-page: 132 year: 2009 ident: e_1_2_2_4_2 publication-title: Chem. Rev. – ident: e_1_2_2_24_2 doi: 10.1002/ange.201001839 – ident: e_1_2_2_17_2 doi: 10.1039/C1CY00361E – ident: e_1_2_2_46_2 – ident: e_1_2_2_43_2 doi: 10.1021/ja101110m – ident: e_1_2_2_40_2 – ident: e_1_2_2_23_2 doi: 10.1038/nmat2329 – ident: e_1_2_2_35_2 – ident: e_1_2_2_20_2 doi: 10.1039/c1jm11231g – ident: e_1_2_2_24_3 doi: 10.1002/anie.201001839 – ident: e_1_2_2_27_2 – ident: e_1_2_2_33_2 doi: 10.1039/C0JM01007C – ident: e_1_2_2_8_2 doi: 10.1038/nmat3087 – ident: e_1_2_2_41_2 doi: 10.1021/jp045917p – ident: e_1_2_2_38_2 doi: 10.1002/cssc.200900151 – ident: e_1_2_2_49_2 doi: 10.1002/adma.201204419 – ident: e_1_2_2_2_2 doi: 10.1126/science.1102896 – ident: e_1_2_2_11_2 – ident: e_1_2_2_29_2 doi: 10.1021/ja053038q – ident: e_1_2_2_37_2 doi: 10.1002/adma.200401085 – ident: e_1_2_2_15_2 doi: 10.1021/ja901105a – ident: e_1_2_2_39_2 doi: 10.1039/C2CC16239C – ident: e_1_2_2_18_2 doi: 10.1021/jz900265j – ident: e_1_2_2_16_2 doi: 10.1016/j.carbon.2011.09.017 – ident: e_1_2_2_1_2 – ident: e_1_2_2_7_2 – ident: e_1_2_2_44_2 doi: 10.1039/c1ee01040a – ident: e_1_2_2_31_2 doi: 10.1021/cm990661z – ident: e_1_2_2_48_2 doi: 10.1021/nl904082k – ident: e_1_2_2_13_2 doi: 10.1063/1.3427246 – ident: e_1_2_2_42_2 doi: 10.1021/ar3002427 – ident: e_1_2_2_6_2 doi: 10.1039/C1CS15172J – ident: e_1_2_2_26_2 doi: 10.1007/s12274-010-0059-8 – ident: e_1_2_2_32_2 doi: 10.1002/ange.201001634 – ident: e_1_2_2_50_2 – ident: e_1_2_2_10_2 doi: 10.1016/j.carbon.2009.11.034 – ident: e_1_2_2_21_2 doi: 10.1021/la027029w – ident: e_1_2_2_51_2 doi: 10.1002/adma.201003695 |
SSID | ssj0028806 |
Score | 2.589434 |
Snippet | Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high... Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO 2 layers were prepared and used as robust catalysts with high... Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high... Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO sub(2) layers were prepared and used as robust catalysts with... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 250 |
SubjectTerms | Catalysis Catalysts Catalytic activity Encapsulation Gold Graphene heterogeneous catalysis High temperature mesoporous materials metal nanoparticles Metals Nanoparticles Nanostructure Oxidation Silica Silicon dioxide stability |
Title | Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions |
URI | https://api.istex.fr/ark:/67375/WNG-GJCTCQ8B-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201306863 https://www.ncbi.nlm.nih.gov/pubmed/24288240 https://www.proquest.com/docview/1470423855 https://www.proquest.com/docview/1490720449 https://www.proquest.com/docview/1701125405 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzRQkJEQnNImcZ69tdF2S6UuYumK3izbGUtVV1m0yUotJ34AB35jf0ln8oJFPCS4JcpYSZzx-JvJzDeMvfJ9q2KtIrcAI1zEt5GLfpbCdRUnYJNChEBxyONJfDgLj06j0x-q-Ft-iCHgRiujsde0wJWudr6ThlIFNqVmCSpyILpPStgiVDQd-KMCVM62vEgIl7rQ96yNXrCzPnxtV7pJE3zxK8i5jmCbLejgLlP9w7eZJ-fbq1pvm88_8Tr-z9vdY3c6fMr3WoW6z25A-YDdyvu2cA_Z1zFRXKOFvPryjVqCUrJuwWfzeqks3pUfA8J5jkYbvfEu6Y6PSqPQG58rEtWXKFMtcOBiVfEPZxQ13OXThV5VNc8pmnRZ1RVHMM3fXZy1LZ-4Kgs-JZbZ5mwKbTlG9YjNDkYn-aHbtXRwDTU5doVNfZUZtCsWcVOiU2HA2BiEMURcFydeEdki8sEWNkwDgAQ9LNQiCz46RghNH7ONclHCJhWb2ywLldUmREyXGR14KeDWCwro72HmMLf_pNJ0fOfUdmMuW6bmQNIcy2GOHfZmkP_UMn38VvJ1oyGDmFqeU35cEsmPk7EcH-Un-ft0X44dttWrkOxMQ4W-VkK5SGkUOezlcBk_Iv2pUSXg3KNM5lH3oDD7g0yCpjkgwO2wJ616Dg-EuAs9p9BzWNAo2V9eSO5N3o6Gs6f_MugZu43HYROcEltso16u4DnCtVq_aJbkNXS4ONg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeygX3g9DgUVCcHJre_3kVkyatDRBhERwW63Xu1LVyEGxI7Wc-AEc-I38Emb8QkE8JDjanpXt9ezsN-OZbwCeuq6RYSYDO9eK24hvAxv9LInrKoy0iXLua4pDjifhaO4ffwi6bEKqhWn4IfqAG62M2l7TAqeA9P4P1lAqwabcLE5VDvwybFNbb6LPfzXtGaQ8VM-mwIhzm_rQd7yNjre_OX5jX9qmKT7_FejcxLD1JnR4DbLu8Zvck7O9dZXtqU8_MTv-1_tdh6stRGUHjU7dgEu6uAk7adcZ7hZ8GRLLNRrJb5-_UldQytfN2XxRraTB27KxRkTP0G6jQ97m3bFBoSQ65AtJotkFypRLHLhcl-zdKQUOX7DpMluXFUspoHRRViVDPM3enJ82XZ-YLHI2JaLZ-miqm4qM8jbMDwezdGS3XR1sRX2ObW5iVyYKTYtB6BRlMVdamVBzpYi7LoycPDB54GqTGz_2tI7QyUJFMtpF3wjR6R3YKpaFvkf15iZJfGky5SOsS1TmObHG3VdLTT8QEwvs7psK1VKeU-eNhWjImj1Bcyz6ObbgeS__sSH7-K3ks1pFejG5OqMUuSgQ7ydDMTxOZ-nb-KUYWrDb6ZBorUOJ7lZE6UhxEFjwpL-MH5F-1shC49yjTOJQAyE_-YNMhNbZI8xtwd1GP_sHQuiFzpPvWODVWvaXFxIHk6NBf3T_XwY9hp3RbHwiTo4mrx_AFTzv17Eqvgtb1WqtHyJ6q7JH9fr8DucPPPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3o9AASMhOKVN4jy5lXR320IXWLqiN8txbKnqKlttslLLiR_Agd_IL2EmL1jEQ4JjkrGSOOPxN5OZbwCeuq6RYSYDO9eK24hvAxv9LInrKoy0iXLua4pDHozD3am_fxQc_VDF3_BD9AE3Whm1vaYFfpqbre-koVSBTalZnIoc-EVY90MnoeYNO5OeQMpD7Wzqizi3qQ19R9voeFur41e2pXWa4bNfYc5VCFvvQcNrILunb1JPTjaXVbapPv5E7Pg_r3cdrrYAlW03GnUDLujiJlxOu75wt-DziDiu0UR-_fSFeoJStm7OprNqIQ3elR1oxPMMrTa6423WHRsUSqI7PpMkmp2jTDnHgfNlyd4fU9jwBZvMs2VZsZTCSedlVTJE0-zN2XHT84nJImcTopmtjya6qccob8N0ODhMd-22p4OtqMuxzU3sykShYTEInKIs5korE2quFDHXhZGTByYPXG1y48ee1hG6WKhGRrvoGSE2vQNrxbzQ96ja3CSJL02mfAR1ico8J9a492qp6fdhYoHdfVKhWsJz6rsxEw1VsydojkU_xxY87-VPG6qP30o-qzWkF5OLE0qQiwLxYTwSo_30MH0XvxQjCzY6FRKtbSjR2YooGSkOAgue9JfxI9KvGllonHuUSRxqH-Qnf5CJ0DZ7hLgtuNuoZ_9ACLzQdfIdC7xayf7yQmJ7vDfoj-7_y6DHcOntzlC83hu_egBX8LRfB6r4BqxVi6V-iNCtyh7Vq_Mb_gg7ow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-Supported+Ultrafine+Metal+Nanoparticles+Encapsulated+by+Mesoporous+Silica%3A+Robust+Catalysts+for+Oxidation+and+Reduction+Reactions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shang%2C+Lu&rft.au=Bian%2C+Tong&rft.au=Zhang%2C+Baihui&rft.au=Zhang%2C+Donghui&rft.date=2014-01-03&rft.pub=WILEY-VCH+Verlag&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=1&rft.spage=250&rft.epage=254&rft_id=info:doi/10.1002%2Fanie.201306863&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_GJCTCQ8B_G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |