Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions

Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions,...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 53; no. 1; pp. 250 - 254
Main Authors Shang, Lu, Bian, Tong, Zhang, Baihui, Zhang, Donghui, Wu, Li-Zhu, Tung, Chen-Ho, Yin, Yadong, Zhang, Tierui
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 03.01.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions, and their high catalytic activity can be fully recovered by high‐temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions. Layer cake: The synthesis of graphene‐nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous silica layers is reported. The resulting class of robust catalysts was shown to possess high activity, good stability under high temperature conditions, and excellent recyclability and reusability in both gas‐ and solution‐phase reactions.
AbstractList Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions. [PUBLICATION ABSTRACT]
Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions, and their high catalytic activity can be fully recovered by high‐temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions. Layer cake: The synthesis of graphene‐nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous silica layers is reported. The resulting class of robust catalysts was shown to possess high activity, good stability under high temperature conditions, and excellent recyclability and reusability in both gas‐ and solution‐phase reactions.
Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions.
Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions.Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions.
Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO 2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions, and their high catalytic activity can be fully recovered by high‐temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO 2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions.
Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO sub(2) layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO sub(2) layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions. Layer cake: The synthesis of graphene-nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous silica layers is reported. The resulting class of robust catalysts was shown to possess high activity, good stability under high temperature conditions, and excellent recyclability and reusability in both gas- and solution-phase reactions.
Author Zhang, Donghui
Zhang, Tierui
Yin, Yadong
Shang, Lu
Bian, Tong
Wu, Li-Zhu
Tung, Chen-Ho
Zhang, Baihui
Author_xml – sequence: 1
  givenname: Lu
  surname: Shang
  fullname: Shang, Lu
  organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China)
– sequence: 2
  givenname: Tong
  surname: Bian
  fullname: Bian, Tong
  organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China)
– sequence: 3
  givenname: Baihui
  surname: Zhang
  fullname: Zhang, Baihui
  organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China)
– sequence: 4
  givenname: Donghui
  surname: Zhang
  fullname: Zhang, Donghui
  organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China)
– sequence: 5
  givenname: Li-Zhu
  surname: Wu
  fullname: Wu, Li-Zhu
  organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China)
– sequence: 6
  givenname: Chen-Ho
  surname: Tung
  fullname: Tung, Chen-Ho
  organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China)
– sequence: 7
  givenname: Yadong
  surname: Yin
  fullname: Yin, Yadong
  email: yadong.yin@ucr.edu
  organization: Department of Chemistry, University of California, Riverside, CA 92521 (USA)
– sequence: 8
  givenname: Tierui
  surname: Zhang
  fullname: Zhang, Tierui
  email: tierui@mail.ipc.ac.cn
  organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24288240$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhiNURD_gyhFZ4sIlix3bccKtjZalqGzFthVHy-uMhUvWDnYiun-hv7re3bJClVBPHkvPM6OZ9zg7cN5Blr0leEIwLj4qZ2FSYEJxWZX0RXZEeEFyKgQ9SDWjNBcVJ4fZcYy3ia8qXL7KDguWqoLho-x-FlT_ExzkV2Pf-zBAi266IShjHaBvMKgOzZXzvQqD1R1ENHVa9XHs1AZdrhMTfRL9GNGV7axWn9DCL8c4oEYlex2HiIwP6PLOtmqw3iHlWrSAdtTb3wLUtoivs5dGdRHePL4n2c3n6XXzJb-4nJ03pxe55kzQnJqKqFpjQU0hqFhWVIM2JVCtMWOsFLjlpuUETGtYVQCIusSgqQHCRckpPck-7Pr2wf8eIQ5yZaOGrlMO0haSCExIwRnmz6OsxqJIY-uEvn-C3voxuLRIogRmBa34puG7R2pcrqCVfbArFdbybyAJmOwAHXyMAcweIVhuEpebxOU-8SSwJ4K2w_bOKUTb_V-rd9of28H6mSHydH4-_dfNd66NA9ztXRV-yTIlwuWP-UzOvjbXzffqTM7oA5Pr0Hk
CODEN ACIEAY
CitedBy_id crossref_primary_10_1002_anie_201801103
crossref_primary_10_1016_j_micromeso_2019_109711
crossref_primary_10_1021_acsanm_3c03294
crossref_primary_10_1016_j_jcis_2016_07_031
crossref_primary_10_1039_C5NR00640F
crossref_primary_10_1021_acs_chemmater_9b02718
crossref_primary_10_1002_ange_201405669
crossref_primary_10_1016_j_jece_2023_109680
crossref_primary_10_1039_C5TA05092H
crossref_primary_10_1016_j_ccr_2015_12_005
crossref_primary_10_1038_s41598_020_57483_z
crossref_primary_10_2139_ssrn_4154290
crossref_primary_10_1016_j_isci_2019_08_026
crossref_primary_10_1021_acssuschemeng_7b02281
crossref_primary_10_1039_C7CE01350G
crossref_primary_10_1002_cssc_202300477
crossref_primary_10_1016_j_cej_2022_139545
crossref_primary_10_1039_C6AY00335D
crossref_primary_10_1088_2053_1591_aae22a
crossref_primary_10_1016_j_jcrysgro_2015_09_031
crossref_primary_10_1016_j_ultsonch_2017_04_035
crossref_primary_10_1371_journal_pone_0136805
crossref_primary_10_1016_j_jallcom_2019_151877
crossref_primary_10_1039_C9RA06709D
crossref_primary_10_1016_j_apcatb_2018_09_018
crossref_primary_10_1016_j_solidstatesciences_2015_05_008
crossref_primary_10_1021_am5065409
crossref_primary_10_1002_advs_202104972
crossref_primary_10_1039_C5GC00641D
crossref_primary_10_3390_ma12152486
crossref_primary_10_1016_j_jcis_2019_06_062
crossref_primary_10_3390_nano10071290
crossref_primary_10_1016_j_materresbull_2015_01_011
crossref_primary_10_1038_ncomms11819
crossref_primary_10_1007_s11706_021_0542_z
crossref_primary_10_1038_srep21904
crossref_primary_10_1039_C9TA09448B
crossref_primary_10_1002_smll_201500539
crossref_primary_10_1016_j_jallcom_2019_03_323
crossref_primary_10_1039_C8NR03443E
crossref_primary_10_1002_smtd_201800105
crossref_primary_10_1016_j_scib_2018_01_017
crossref_primary_10_1038_srep41773
crossref_primary_10_1016_j_materresbull_2015_08_027
crossref_primary_10_1016_j_cclet_2023_108904
crossref_primary_10_1039_C6CY00201C
crossref_primary_10_1002_ange_202003651
crossref_primary_10_1039_D0GC01835J
crossref_primary_10_1016_j_jes_2023_06_027
crossref_primary_10_1016_j_nantod_2022_101493
crossref_primary_10_1039_C6RA04880C
crossref_primary_10_1016_j_cej_2018_03_075
crossref_primary_10_1016_j_fuel_2020_118971
crossref_primary_10_1039_C8SE00629F
crossref_primary_10_1002_ejic_201601487
crossref_primary_10_1039_C5GC02508G
crossref_primary_10_1016_j_inoche_2014_12_005
crossref_primary_10_1021_am505747w
crossref_primary_10_1016_j_apcatb_2016_06_020
crossref_primary_10_1016_j_cej_2022_138597
crossref_primary_10_1039_C4CY01301H
crossref_primary_10_1002_asia_201600453
crossref_primary_10_1002_asia_201600454
crossref_primary_10_1007_s00396_016_3875_x
crossref_primary_10_1021_acsami_7b11086
crossref_primary_10_1016_j_talanta_2017_02_059
crossref_primary_10_1021_acs_jmedchem_8b00293
crossref_primary_10_1016_j_talanta_2016_07_034
crossref_primary_10_1016_j_apcatb_2018_03_046
crossref_primary_10_1021_acsami_0c07703
crossref_primary_10_1039_C7QI00318H
crossref_primary_10_1134_S1063783421100206
crossref_primary_10_1126_sciadv_aax6976
crossref_primary_10_1039_C5RA27422B
crossref_primary_10_1016_j_sna_2017_12_053
crossref_primary_10_1021_jacs_6b12780
crossref_primary_10_1021_acsomega_8b02746
crossref_primary_10_1039_C5TA00119F
crossref_primary_10_1016_j_ijhydene_2023_07_030
crossref_primary_10_1007_s40843_015_0034_5
crossref_primary_10_1016_j_jcis_2017_06_054
crossref_primary_10_1016_j_molcata_2015_11_011
crossref_primary_10_1021_acsami_5b01758
crossref_primary_10_1002_smll_201500635
crossref_primary_10_1016_j_jssc_2015_05_027
crossref_primary_10_1039_D1TA00468A
crossref_primary_10_1016_j_materresbull_2014_11_032
crossref_primary_10_1016_j_colsurfa_2014_11_007
crossref_primary_10_1021_acsami_6b03008
crossref_primary_10_1016_j_apsusc_2019_06_039
crossref_primary_10_1016_j_electacta_2019_02_020
crossref_primary_10_1016_j_electacta_2018_06_107
crossref_primary_10_1021_acsnano_5b04138
crossref_primary_10_1016_j_apsusc_2015_07_049
crossref_primary_10_1158_0008_5472_CAN_16_1681
crossref_primary_10_1016_j_est_2019_01_001
crossref_primary_10_1021_acs_chemmater_2c00262
crossref_primary_10_1002_adma_201500644
crossref_primary_10_1007_s40242_022_1504_4
crossref_primary_10_1016_j_bios_2022_114664
crossref_primary_10_1039_C8NR06916F
crossref_primary_10_1007_s12598_019_01350_y
crossref_primary_10_1016_j_chempr_2019_09_005
crossref_primary_10_1021_jz5024948
crossref_primary_10_1021_acs_jpclett_6b00219
crossref_primary_10_1021_acsaem_4c01886
crossref_primary_10_1002_cctc_201402934
crossref_primary_10_1016_j_ccr_2016_05_003
crossref_primary_10_1002_ange_201607812
crossref_primary_10_1039_C8NR00137E
crossref_primary_10_1007_s11814_015_0094_y
crossref_primary_10_1016_j_jcis_2017_09_005
crossref_primary_10_1039_C5RA14405A
crossref_primary_10_1021_acs_chemmater_6b05364
crossref_primary_10_1039_D1MA00840D
crossref_primary_10_1016_j_mssp_2015_09_021
crossref_primary_10_1021_ja511511q
crossref_primary_10_1016_j_jallcom_2021_163260
crossref_primary_10_1039_C5NR02329G
crossref_primary_10_1021_acs_jpcc_3c03327
crossref_primary_10_2174_0115734110269897231020065609
crossref_primary_10_1016_j_electacta_2016_04_095
crossref_primary_10_1002_cctc_201500074
crossref_primary_10_1016_j_cej_2022_137853
crossref_primary_10_1016_S1872_2067_20_63697_X
crossref_primary_10_1016_j_apmt_2023_101903
crossref_primary_10_1039_C4CC09466B
crossref_primary_10_1021_acsomega_2c01603
crossref_primary_10_1002_cctc_201501283
crossref_primary_10_1021_acscatal_5b00444
crossref_primary_10_1021_acscatal_5b01411
crossref_primary_10_1039_C4RA12916D
crossref_primary_10_1039_C4DT01924E
crossref_primary_10_1039_C7NR04752E
crossref_primary_10_1039_C5TA07655B
crossref_primary_10_1016_j_compscitech_2016_01_011
crossref_primary_10_1016_j_apsusc_2016_11_035
crossref_primary_10_1016_j_ceramint_2023_11_275
crossref_primary_10_1016_j_matdes_2016_07_036
crossref_primary_10_1155_2015_601484
crossref_primary_10_1016_j_apcatb_2019_04_053
crossref_primary_10_1021_acsomega_7b00382
crossref_primary_10_1039_C9CC05682C
crossref_primary_10_1039_D0DT01922D
crossref_primary_10_1016_j_jtice_2020_09_027
crossref_primary_10_1039_D1NJ03106F
crossref_primary_10_1002_ange_201609663
crossref_primary_10_1007_s10562_018_2558_2
crossref_primary_10_1021_acsomega_6b00050
crossref_primary_10_1016_j_cej_2019_123471
crossref_primary_10_1038_s41467_021_25116_2
crossref_primary_10_1002_chem_201601724
crossref_primary_10_1021_acscatal_0c01569
crossref_primary_10_1021_acsami_7b17544
crossref_primary_10_1071_CH18356
crossref_primary_10_1134_S0030400X19030111
crossref_primary_10_1016_j_ensm_2018_08_023
crossref_primary_10_1088_1361_6528_abe66e
crossref_primary_10_3390_ma14102597
crossref_primary_10_1002_ange_201801103
crossref_primary_10_1002_smll_202006442
crossref_primary_10_1039_D4NJ00970C
crossref_primary_10_1039_D4NR01116C
crossref_primary_10_1021_acsnano_0c05740
crossref_primary_10_1021_acssuschemeng_6b01852
crossref_primary_10_1002_anie_201609663
crossref_primary_10_1002_anie_202003651
crossref_primary_10_1016_j_solidstatesciences_2016_10_015
crossref_primary_10_1039_C4TA02282C
crossref_primary_10_1039_C8NJ00254A
crossref_primary_10_1002_anie_201405669
crossref_primary_10_1039_C6CP01964A
crossref_primary_10_1021_acsami_6b05350
crossref_primary_10_1039_C7NJ03598E
crossref_primary_10_1007_s11244_019_01134_9
crossref_primary_10_1039_C5RA10852G
crossref_primary_10_1088_1361_6528_aab9c2
crossref_primary_10_1016_j_apsusc_2020_148101
crossref_primary_10_1021_acs_langmuir_7b01214
crossref_primary_10_1016_j_inoche_2019_107506
crossref_primary_10_1021_cg501527k
crossref_primary_10_1149_2_1321814jes
crossref_primary_10_1039_C5RA00878F
crossref_primary_10_1039_C6RA09618B
crossref_primary_10_1002_cctc_201701457
crossref_primary_10_1007_s10118_019_2245_9
crossref_primary_10_1021_acs_langmuir_6b04069
crossref_primary_10_1039_C4CP04842C
crossref_primary_10_1039_C7TA04905F
crossref_primary_10_1021_acsami_1c00497
crossref_primary_10_1016_j_apcatb_2016_10_082
crossref_primary_10_1021_acssuschemeng_6b00884
crossref_primary_10_1016_j_snb_2018_10_098
crossref_primary_10_1002_adma_201602197
crossref_primary_10_1039_C6TA08537G
crossref_primary_10_15407_hftp14_04_561
crossref_primary_10_1016_j_chemosphere_2021_132668
crossref_primary_10_1021_am503110s
crossref_primary_10_1002_adsu_201800161
crossref_primary_10_1016_j_apsusc_2017_01_069
crossref_primary_10_1016_j_apcata_2015_02_026
crossref_primary_10_1021_acs_langmuir_7b00141
crossref_primary_10_1039_C4NR04283B
crossref_primary_10_1016_j_nanoen_2019_06_008
crossref_primary_10_1039_C7RA01188A
crossref_primary_10_1016_j_scib_2018_11_020
crossref_primary_10_1007_s11356_022_21970_9
crossref_primary_10_1039_C9TA03934A
crossref_primary_10_1016_j_electacta_2016_07_098
crossref_primary_10_3390_catal5010145
crossref_primary_10_1002_anie_202104219
crossref_primary_10_2166_wst_2018_250
crossref_primary_10_1039_C5NR02959G
crossref_primary_10_1002_ange_202011347
crossref_primary_10_1016_j_cej_2023_144567
crossref_primary_10_1016_j_apcatb_2018_01_052
crossref_primary_10_1016_j_jcis_2020_01_097
crossref_primary_10_1039_C4CY01415D
crossref_primary_10_1039_C5TA03669K
crossref_primary_10_1007_s12274_022_4890_5
crossref_primary_10_1021_acs_inorgchem_9b01117
crossref_primary_10_1016_j_matdes_2020_109367
crossref_primary_10_1039_c4tb00509k
crossref_primary_10_1016_j_jcis_2021_10_174
crossref_primary_10_1039_C5TA05664K
crossref_primary_10_1016_j_colsurfa_2019_05_059
crossref_primary_10_1002_solr_201800148
crossref_primary_10_1007_s11434_016_1052_8
crossref_primary_10_1039_C7NH00095B
crossref_primary_10_1002_anie_201607812
crossref_primary_10_3390_nano12122081
crossref_primary_10_1016_j_apcatb_2021_120254
crossref_primary_10_1063_1_4966199
crossref_primary_10_1021_acsaenm_4c00165
crossref_primary_10_1002_slct_202000727
crossref_primary_10_1021_acsami_1c06771
crossref_primary_10_1021_acs_jpcb_6b04272
crossref_primary_10_1039_C5DT03007B
crossref_primary_10_1039_D2DT03600B
crossref_primary_10_1021_acssuschemeng_5b01032
crossref_primary_10_1016_j_matchar_2015_01_016
crossref_primary_10_1016_j_inoche_2021_108602
crossref_primary_10_1016_j_materresbull_2016_05_016
crossref_primary_10_1002_chem_201704056
crossref_primary_10_1016_j_ijhydene_2016_03_066
crossref_primary_10_1039_C5TA06875D
crossref_primary_10_1002_adom_201400560
crossref_primary_10_1016_j_apmt_2021_101053
crossref_primary_10_1039_C4CY01486C
crossref_primary_10_1002_cctc_202200134
crossref_primary_10_1039_D1CY00129A
crossref_primary_10_1007_s11144_015_0902_8
crossref_primary_10_1039_C5TA09215A
crossref_primary_10_1016_j_cej_2019_122469
crossref_primary_10_1002_anie_201712202
crossref_primary_10_1016_j_jelechem_2014_11_001
crossref_primary_10_1021_acs_langmuir_7b00838
crossref_primary_10_1007_s40242_022_2002_4
crossref_primary_10_1039_C6NJ04062D
crossref_primary_10_1039_C5CC08239K
crossref_primary_10_1016_j_colsurfa_2019_01_059
crossref_primary_10_1039_D1RA06853A
crossref_primary_10_1039_C4DT03905J
crossref_primary_10_1021_acs_cgd_5b01101
crossref_primary_10_1039_D3NR05884K
crossref_primary_10_1007_s12274_022_4705_8
crossref_primary_10_1016_j_jallcom_2019_153427
crossref_primary_10_2139_ssrn_4175920
crossref_primary_10_1016_j_apcatb_2019_03_084
crossref_primary_10_1016_j_jclepro_2017_05_162
crossref_primary_10_1039_C4RA04811C
crossref_primary_10_1016_j_apcata_2021_118249
crossref_primary_10_1021_accountsmr_3c00245
crossref_primary_10_1021_acsami_8b18675
crossref_primary_10_1021_acs_jpcc_5b03707
crossref_primary_10_1021_cs501329c
crossref_primary_10_1016_j_jallcom_2014_08_262
crossref_primary_10_1016_j_apsusc_2018_02_030
crossref_primary_10_1016_j_tet_2014_05_044
crossref_primary_10_1002_ange_201712202
crossref_primary_10_1007_s11705_023_2299_7
crossref_primary_10_1007_s11706_022_0607_7
crossref_primary_10_1021_acsomega_8b01141
crossref_primary_10_1016_j_ijhydene_2023_11_343
crossref_primary_10_1002_smll_202207689
crossref_primary_10_1002_anie_202011347
crossref_primary_10_1039_C7TA11052A
crossref_primary_10_1016_j_poly_2018_12_036
crossref_primary_10_1016_j_cej_2023_141701
crossref_primary_10_1039_C5CY01414J
crossref_primary_10_1039_C4TA04006F
crossref_primary_10_1002_cssc_201701450
crossref_primary_10_1002_smll_202101173
crossref_primary_10_1021_acsami_5b01503
crossref_primary_10_1002_asia_202000643
crossref_primary_10_1039_C8TA09545K
crossref_primary_10_1039_C4CE01872A
crossref_primary_10_1039_C4RA07533A
crossref_primary_10_1039_C8NJ04517H
crossref_primary_10_1016_j_jcat_2019_07_007
crossref_primary_10_1016_j_apsusc_2019_143781
crossref_primary_10_1016_j_ijhydene_2014_10_129
crossref_primary_10_1016_j_jallcom_2017_04_298
crossref_primary_10_1039_C6TA04758K
crossref_primary_10_3390_app10217533
crossref_primary_10_1016_j_clay_2019_03_024
crossref_primary_10_1021_acs_langmuir_5b01099
crossref_primary_10_1021_acssuschemeng_0c05155
crossref_primary_10_1016_j_carbpol_2016_12_004
crossref_primary_10_1007_s12274_024_6809_9
crossref_primary_10_1039_D0TA05175F
crossref_primary_10_1016_j_jpcs_2017_10_031
crossref_primary_10_1021_acsami_7b04196
crossref_primary_10_1088_1742_6596_2175_1_012002
crossref_primary_10_1007_s10854_021_05399_3
crossref_primary_10_1007_s11164_016_2667_8
crossref_primary_10_1016_j_cplett_2014_10_051
crossref_primary_10_1016_j_colsurfa_2018_08_069
crossref_primary_10_1016_j_molcata_2016_09_007
crossref_primary_10_1039_C4CC09131K
crossref_primary_10_1016_j_heliyon_2019_e01831
crossref_primary_10_1021_acs_chemrev_0c00237
crossref_primary_10_1039_C7TA03629A
crossref_primary_10_1016_j_pmatsci_2018_01_003
crossref_primary_10_1016_j_pmatsci_2024_101335
crossref_primary_10_1021_jacs_7b07918
crossref_primary_10_1039_D4SC04001E
crossref_primary_10_1039_C5NR03773E
crossref_primary_10_1002_chem_201904208
crossref_primary_10_1007_s10854_019_02119_w
crossref_primary_10_1016_j_snb_2022_131675
crossref_primary_10_1039_C8TA01093E
crossref_primary_10_3390_app12199945
crossref_primary_10_1021_acs_chemrev_6b00075
crossref_primary_10_1007_s12274_020_3144_7
crossref_primary_10_1002_cplu_201600633
crossref_primary_10_1021_acsaem_0c02989
crossref_primary_10_1002_adma_202107088
crossref_primary_10_1016_j_optmat_2017_06_059
crossref_primary_10_1039_C7CS00650K
crossref_primary_10_1080_03067319_2019_1638919
crossref_primary_10_1039_C4RA07547A
crossref_primary_10_1039_C5DT03094C
crossref_primary_10_1016_j_apcata_2022_118572
crossref_primary_10_1002_adfm_201606215
crossref_primary_10_1016_j_jenvman_2020_110299
crossref_primary_10_1039_D0NJ05875K
crossref_primary_10_1002_aenm_201702780
crossref_primary_10_1021_ic501127d
crossref_primary_10_1039_C8NR05267K
crossref_primary_10_1021_jacs_6b13279
crossref_primary_10_1039_C4NR03624G
crossref_primary_10_1007_s13762_024_05704_7
crossref_primary_10_1039_D1DT00408E
crossref_primary_10_1016_j_jechem_2018_04_015
crossref_primary_10_1016_j_matre_2022_100090
crossref_primary_10_1039_C8NA00095F
crossref_primary_10_1016_j_micromeso_2020_110225
crossref_primary_10_1002_adma_201505045
crossref_primary_10_1016_j_electacta_2015_02_100
crossref_primary_10_1016_j_apcatb_2019_05_025
crossref_primary_10_1016_j_snb_2015_01_040
crossref_primary_10_1039_C5NR02246K
crossref_primary_10_1155_2020_5819062
crossref_primary_10_1039_C6RA22389C
crossref_primary_10_1016_j_colsurfa_2014_11_049
crossref_primary_10_1039_C8TC00263K
crossref_primary_10_1002_ange_202104219
crossref_primary_10_1039_D2TA03860A
crossref_primary_10_1007_s40242_015_5171_6
crossref_primary_10_1039_C6NR09245D
crossref_primary_10_1039_C6TA04365H
Cites_doi 10.1021/nl900397t
10.1021/ja905749e
10.1021/cr040090g
10.1002/cssc.201100565
10.1006/jcat.1997.1489
10.1002/ange.200901678
10.1021/la105087f
10.1039/C1CS15078B
10.1016/j.apcata.2005.01.034
10.1002/anie.201001634
10.1002/anie.200901678
10.1021/ja110313d
10.1016/S0926-860X(00)00843-7
10.1021/ja201269b
10.1002/ange.201001839
10.1039/C1CY00361E
10.1021/ja101110m
10.1038/nmat2329
10.1039/c1jm11231g
10.1002/anie.201001839
10.1039/C0JM01007C
10.1038/nmat3087
10.1021/jp045917p
10.1002/cssc.200900151
10.1002/adma.201204419
10.1126/science.1102896
10.1021/ja053038q
10.1002/adma.200401085
10.1021/ja901105a
10.1039/C2CC16239C
10.1021/jz900265j
10.1016/j.carbon.2011.09.017
10.1039/c1ee01040a
10.1021/cm990661z
10.1021/nl904082k
10.1063/1.3427246
10.1021/ar3002427
10.1039/C1CS15172J
10.1007/s12274-010-0059-8
10.1002/ange.201001634
10.1016/j.carbon.2009.11.034
10.1021/la027029w
10.1002/adma.201003695
ContentType Journal Article
Copyright Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/anie.201306863
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

PubMed
MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 254
ExternalDocumentID 3163886761
24288240
10_1002_anie_201306863
ANIE201306863
ark_67375_WNG_GJCTCQ8B_G
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: 100 Talents Program of the Chinese Academy of Sciences
– fundername: Knowledge Innovation Project of the Chinese Academy of Sciences
  funderid: KGCX2‐EW‐311‐3
– fundername: Ministry of Science and Technology of China
  funderid: 2014CB239402; 2013CB834505
– fundername: National Natural Science Foundation of China
  funderid: 51322213; 20901081; 51172245; 91127005; 21201172
– fundername: U.S. Department of Energy
  funderid: DE‐FG02‐09ER16096
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGQPQ
AGYGG
CITATION
NPM
7TM
K9.
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c5473-3f81a9c073f2737b83cecf6e3cc0444670d5fd51efdf482ee7960ec3fe1576533
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 10:31:52 EDT 2025
Thu Jul 10 17:06:41 EDT 2025
Fri Jul 25 12:34:08 EDT 2025
Mon Jul 21 05:55:49 EDT 2025
Tue Jul 01 02:53:23 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Wed Jan 22 17:08:15 EST 2025
Wed Oct 30 09:56:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords heterogeneous catalysis
metal nanoparticles
mesoporous materials
graphene
stability
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5473-3f81a9c073f2737b83cecf6e3cc0444670d5fd51efdf482ee7960ec3fe1576533
Notes ArticleID:ANIE201306863
istex:04C07F3E496372ADE56BB7EF01DB8ED128990A27
100 Talents Program of the Chinese Academy of Sciences
We acknowledge support from the Ministry of Science and Technology of China (2014CB239402, 2013CB834505), the National Natural Science Foundation of China (51322213, 20901081, 51172245, 91127005, 21201172), the Knowledge Innovation Project of the Chinese Academy of Sciences (KGCX2-EW-311-3), and the 100 Talents Program of the Chinese Academy of Sciences. Y.Y. also thanks the U.S. Department of Energy (DE-FG02-09ER16096) for financial support.
Knowledge Innovation Project of the Chinese Academy of Sciences - No. KGCX2-EW-311-3
National Natural Science Foundation of China - No. 51322213; No. 20901081; No. 51172245; No. 91127005; No. 21201172
U.S. Department of Energy - No. DE-FG02-09ER16096
ark:/67375/WNG-GJCTCQ8B-G
Ministry of Science and Technology of China - No. 2014CB239402; No. 2013CB834505
We acknowledge support from the Ministry of Science and Technology of China (2014CB239402, 2013CB834505), the National Natural Science Foundation of China (51322213, 20901081, 51172245, 91127005, 21201172), the Knowledge Innovation Project of the Chinese Academy of Sciences (KGCX2‐EW‐311‐3), and the 100 Talents Program of the Chinese Academy of Sciences. Y.Y. also thanks the U.S. Department of Energy (DE‐FG02‐09ER16096) for financial support.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24288240
PQID 1470423855
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1701125405
proquest_miscellaneous_1490720449
proquest_journals_1470423855
pubmed_primary_24288240
crossref_primary_10_1002_anie_201306863
crossref_citationtrail_10_1002_anie_201306863
wiley_primary_10_1002_anie_201306863_ANIE201306863
istex_primary_ark_67375_WNG_GJCTCQ8B_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 3, 2014
PublicationDateYYYYMMDD 2014-01-03
PublicationDate_xml – month: 01
  year: 2014
  text: January 3, 2014
  day: 03
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References B. F. Machado, P. Serp, Catal. Sci. Technol. 2012, 2, 54.
Z. Sun, H. Zhang, Y. Zhao, C. Huang, R. Tao, Z. Liu, Z. Wu, Langmuir 2011, 27, 6244
R. Ferrando, J. Jellinek, R. L. Johnston, Chem. Rev. 2008, 108, 845.
R. F. Nie, J. H. Wang, L. N. Wang, Y. Qin, P. Chen, Z. Y. Hou, Carbon 2012, 50, 586
D. Wang, Y. Li, Adv. Mater. 2011, 23, 1044
J. Zhu, X. Xie, S. A. C. Carabineiro, P. B. Tavares, J. L. Figueiredo, R. Schomacker, A. Thomas, Energy Environ. Sci. 2011, 4, 2020.
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296
P. V. Kamat, J. Phys. Chem. Lett. 2009, 1, 520.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666
C. E. Chan-Thaw, A. Villa, P. Katekomol, D. Su, A. Thomas, L. Prati, Nano Lett. 2010, 10, 537.
Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782.
Y. S. Chi, H. P. Lin, C. Y. Mou, Appl. Catal. A 2005, 284, 199
X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666.
Angew. Chem. Int. Ed. 2009, 48, 7752
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. 2009, 121, 7890
M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2009, 109, 132
J. L. Gu, J. L. Shi, G. J. You, L. M. Xiong, S. X. Qian, Z. L. Hua, H. R. Chen, Adv. Mater. 2005, 17, 557
G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc. 2009, 131, 8262
I. Lee, Q. Zhang, J. Ge, Y. Yin, F. Zaera, Nano Res. 2011, 4, 115.
Y. Li, W. Gao, L. Ci, C. Wang, P. M. Ajayan, Carbon 2010, 48, 1124.
Q. Cai, Z. S. Luo, W. Q. Pang, Y. W. Fan, X. H. Chen, F. Z. Cui, Chem. Mater. 2001, 13, 258
M. Zhou, A. Zhang, Z. Dai, C. Zhang, Y. P. Feng, J. Chem. Phys. 2010, 132, 194704.
B. Fang, N. K. Chaudhari, M. S. Kim, J. H. Kim, J. S. Yu, J. Am. Chem. Soc. 2009, 131, 15330
J. H. Vleeming, B. F. M. Kuster, G. B. Marin, F. Oudet, P. Courtine, J. Catal. 1997, 166, 148
S. B. Yang, X. L. Feng, L. Wang, K. Tang, J. Maier, K. Mullen, Angew. Chem. 2010, 122, 4905
L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, P. Fornasiero, ChemSusChem 2010, 3, 24.
H. Zhu, B. Lee, S. Dai, S. H. Overbury, Langmuir 2003, 19, 3974.
S. H. Park, S. M. Bak, K. H. Kim, J. P. Jegal, S. I. Lee, J. Lee, K. B. Kim, J. Mater. Chem. 2011, 21, 680.
B. G. Choi, H. S. Park, ChemSusChem 2012, 5, 709.
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780
H. Zhang, S. Chen, X. Quan, H. Yu, H. Zhao, J. Mater. Chem. 2011, 21, 12986.
M. T. Bore, H. N. Pham, E. E. Switzer, T. L. Ward, A. Fukuoka, A. K. Datye, J. Phys. Chem. B 2005, 109, 2873
M. K. van der Lee, J. van Dillen, J. H. Bitter, K. P. de Jong, J. Am. Chem. Soc. 2005, 127, 13573.
T. W. Hansen, A. T. DeLaRiva, S. R. Challa, A. K. Datye, Acc. Chem. Res. 2013, 46, 1720.
Angew. Chem. Int. Ed. 2010, 49, 4795.
E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Nano Lett. 2009, 9, 2255
X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, J. Am. Chem. Soc. 2011, 133, 3693.
Angew. Chem. Int. Ed. 2010, 49, 8165
H. P. Zhou, H. S. Wu, J. Shen, A. X. Yin, L. D. Sun, C. H. Yan, J. Am. Chem. Soc. 2010, 132, 4998.
Y. Dai, B. Lim, Y. Yang, C. M. Cobley, W. Li, E. C. Cho, B. Grayson, P. T. Fanson, C. T. Campbell, Y. Sun, Y. Xia, Angew. Chem. 2010, 122, 8341
Z. Wang, D. Xu, Y. Huang, Z. Wu, L. Wang, X. Zhang, Chem. Commun. 2012, 48, 976.
C. H. Bartholomew, Appl. Catal. A 2001, 212, 17.
Y. Tao, Y. Lin, Z. Huang, J. Ren, X. Qu, Adv. Mater. 2013, 25, 2594.
S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, G. A. Somorjai, Nat. Mater. 2009, 8, 126
2010; 10
2013; 25
2013; 46
2010 2010; 122 49
2008; 108
2011; 10
2003; 19
2009; 131
2011; 4
2004; 306
2009 2009; 121 48
2011; 133
2012; 50
2001; 212
2012; 2
2010; 48
2005; 284
2005; 127
1997; 166
2010; 132
2009; 9
2005; 109
2011; 21
2009; 8
2011; 23
2012; 48
2010; 3
2011; 27
2009; 109
2009; 1
2001; 13
2005; 17
2012; 5
2012; 41
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_24_3
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_32_3
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_3_2
e_1_2_2_3_3
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_2
Allen M. J. (e_1_2_2_4_2) 2009; 109
e_1_2_2_40_2
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_50_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – reference: H. Zhang, S. Chen, X. Quan, H. Yu, H. Zhao, J. Mater. Chem. 2011, 21, 12986.
– reference: X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, J. Am. Chem. Soc. 2011, 133, 3693.
– reference: R. Ferrando, J. Jellinek, R. L. Johnston, Chem. Rev. 2008, 108, 845.
– reference: Angew. Chem. Int. Ed. 2009, 48, 7752;
– reference: S. B. Yang, X. L. Feng, L. Wang, K. Tang, J. Maier, K. Mullen, Angew. Chem. 2010, 122, 4905;
– reference: H. P. Zhou, H. S. Wu, J. Shen, A. X. Yin, L. D. Sun, C. H. Yan, J. Am. Chem. Soc. 2010, 132, 4998.
– reference: S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, G. A. Somorjai, Nat. Mater. 2009, 8, 126;
– reference: B. Fang, N. K. Chaudhari, M. S. Kim, J. H. Kim, J. S. Yu, J. Am. Chem. Soc. 2009, 131, 15330;
– reference: P. V. Kamat, J. Phys. Chem. Lett. 2009, 1, 520.
– reference: M. T. Bore, H. N. Pham, E. E. Switzer, T. L. Ward, A. Fukuoka, A. K. Datye, J. Phys. Chem. B 2005, 109, 2873;
– reference: Z. Sun, H. Zhang, Y. Zhao, C. Huang, R. Tao, Z. Liu, Z. Wu, Langmuir 2011, 27, 6244;
– reference: Y. Tao, Y. Lin, Z. Huang, J. Ren, X. Qu, Adv. Mater. 2013, 25, 2594.
– reference: C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. 2009, 121, 7890;
– reference: T. W. Hansen, A. T. DeLaRiva, S. R. Challa, A. K. Datye, Acc. Chem. Res. 2013, 46, 1720.
– reference: M. K. van der Lee, J. van Dillen, J. H. Bitter, K. P. de Jong, J. Am. Chem. Soc. 2005, 127, 13573.
– reference: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666;
– reference: L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, P. Fornasiero, ChemSusChem 2010, 3, 24.
– reference: Angew. Chem. Int. Ed. 2010, 49, 4795.
– reference: B. G. Choi, H. S. Park, ChemSusChem 2012, 5, 709.
– reference: Y. Li, W. Gao, L. Ci, C. Wang, P. M. Ajayan, Carbon 2010, 48, 1124.
– reference: M. Zhou, A. Zhang, Z. Dai, C. Zhang, Y. P. Feng, J. Chem. Phys. 2010, 132, 194704.
– reference: Y. Dai, B. Lim, Y. Yang, C. M. Cobley, W. Li, E. C. Cho, B. Grayson, P. T. Fanson, C. T. Campbell, Y. Sun, Y. Xia, Angew. Chem. 2010, 122, 8341;
– reference: Q. Cai, Z. S. Luo, W. Q. Pang, Y. W. Fan, X. H. Chen, F. Z. Cui, Chem. Mater. 2001, 13, 258;
– reference: Y. S. Chi, H. P. Lin, C. Y. Mou, Appl. Catal. A 2005, 284, 199;
– reference: H. Zhu, B. Lee, S. Dai, S. H. Overbury, Langmuir 2003, 19, 3974.
– reference: B. F. Machado, P. Serp, Catal. Sci. Technol. 2012, 2, 54.
– reference: M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2009, 109, 132;
– reference: I. Lee, Q. Zhang, J. Ge, Y. Yin, F. Zaera, Nano Res. 2011, 4, 115.
– reference: J. L. Gu, J. L. Shi, G. J. You, L. M. Xiong, S. X. Qian, Z. L. Hua, H. R. Chen, Adv. Mater. 2005, 17, 557;
– reference: Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782.
– reference: J. H. Vleeming, B. F. M. Kuster, G. B. Marin, F. Oudet, P. Courtine, J. Catal. 1997, 166, 148;
– reference: D. Wang, Y. Li, Adv. Mater. 2011, 23, 1044;
– reference: Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780;
– reference: G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc. 2009, 131, 8262;
– reference: Angew. Chem. Int. Ed. 2010, 49, 8165;
– reference: E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Nano Lett. 2009, 9, 2255;
– reference: R. F. Nie, J. H. Wang, L. N. Wang, Y. Qin, P. Chen, Z. Y. Hou, Carbon 2012, 50, 586;
– reference: J. Zhu, X. Xie, S. A. C. Carabineiro, P. B. Tavares, J. L. Figueiredo, R. Schomacker, A. Thomas, Energy Environ. Sci. 2011, 4, 2020.
– reference: Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296;
– reference: Z. Wang, D. Xu, Y. Huang, Z. Wu, L. Wang, X. Zhang, Chem. Commun. 2012, 48, 976.
– reference: C. H. Bartholomew, Appl. Catal. A 2001, 212, 17.
– reference: C. E. Chan-Thaw, A. Villa, P. Katekomol, D. Su, A. Thomas, L. Prati, Nano Lett. 2010, 10, 537.
– reference: S. H. Park, S. M. Bak, K. H. Kim, J. P. Jegal, S. I. Lee, J. Lee, K. B. Kim, J. Mater. Chem. 2011, 21, 680.
– reference: X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666.
– volume: 25
  start-page: 2594
  year: 2013
  publication-title: Adv. Mater.
– volume: 122 49
  start-page: 8341 8165
  year: 2010 2010
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 127
  start-page: 13573
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 194704
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 122 49
  start-page: 4905 4795
  year: 2010 2010
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 2
  start-page: 54
  year: 2012
  publication-title: Catal. Sci. Technol.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 166
  start-page: 148
  year: 1997
  publication-title: J. Catal.
– volume: 284
  start-page: 199
  year: 2005
  publication-title: Appl. Catal. A
– volume: 121 48
  start-page: 7890 7752
  year: 2009 2009
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 46
  start-page: 1720
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 24
  year: 2010
  publication-title: ChemSusChem
– volume: 50
  start-page: 586
  year: 2012
  publication-title: Carbon
– volume: 10
  start-page: 780
  year: 2011
  publication-title: Nat. Mater.
– volume: 48
  start-page: 1124
  year: 2010
  publication-title: Carbon
– volume: 131
  start-page: 15330
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 7296
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 132
  year: 2009
  publication-title: Chem. Rev.
– volume: 17
  start-page: 557
  year: 2005
  publication-title: Adv. Mater.
– volume: 8
  start-page: 126
  year: 2009
  publication-title: Nat. Mater.
– volume: 108
  start-page: 845
  year: 2008
  publication-title: Chem. Rev.
– volume: 9
  start-page: 2255
  year: 2009
  publication-title: Nano Lett.
– volume: 21
  start-page: 680
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 1
  start-page: 520
  year: 2009
  publication-title: J. Phys. Chem. Lett.
– volume: 212
  start-page: 17
  year: 2001
  publication-title: Appl. Catal. A
– volume: 131
  start-page: 8262
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 12986
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 23
  start-page: 1044
  year: 2011
  publication-title: Adv. Mater.
– volume: 5
  start-page: 709
  year: 2012
  publication-title: ChemSusChem
– volume: 41
  start-page: 666
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 132
  start-page: 4998
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 537
  year: 2010
  publication-title: Nano Lett.
– volume: 4
  start-page: 115
  year: 2011
  publication-title: Nano Res.
– volume: 41
  start-page: 782
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 19
  start-page: 3974
  year: 2003
  publication-title: Langmuir
– volume: 13
  start-page: 258
  year: 2001
  publication-title: Chem. Mater.
– volume: 109
  start-page: 2873
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 48
  start-page: 976
  year: 2012
  publication-title: Chem. Commun.
– volume: 133
  start-page: 3693
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2020
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 6244
  year: 2011
  publication-title: Langmuir
– ident: e_1_2_2_12_2
  doi: 10.1021/nl900397t
– ident: e_1_2_2_28_2
  doi: 10.1021/ja905749e
– ident: e_1_2_2_52_2
  doi: 10.1021/cr040090g
– ident: e_1_2_2_30_2
– ident: e_1_2_2_34_2
  doi: 10.1002/cssc.201100565
– ident: e_1_2_2_47_2
  doi: 10.1006/jcat.1997.1489
– ident: e_1_2_2_3_2
  doi: 10.1002/ange.200901678
– ident: e_1_2_2_25_2
  doi: 10.1021/la105087f
– ident: e_1_2_2_5_2
  doi: 10.1039/C1CS15078B
– ident: e_1_2_2_14_2
– ident: e_1_2_2_22_2
– ident: e_1_2_2_36_2
  doi: 10.1016/j.apcata.2005.01.034
– ident: e_1_2_2_32_3
  doi: 10.1002/anie.201001634
– ident: e_1_2_2_3_3
  doi: 10.1002/anie.200901678
– ident: e_1_2_2_19_2
  doi: 10.1021/ja110313d
– ident: e_1_2_2_45_2
  doi: 10.1016/S0926-860X(00)00843-7
– ident: e_1_2_2_9_2
  doi: 10.1021/ja201269b
– volume: 109
  start-page: 132
  year: 2009
  ident: e_1_2_2_4_2
  publication-title: Chem. Rev.
– ident: e_1_2_2_24_2
  doi: 10.1002/ange.201001839
– ident: e_1_2_2_17_2
  doi: 10.1039/C1CY00361E
– ident: e_1_2_2_46_2
– ident: e_1_2_2_43_2
  doi: 10.1021/ja101110m
– ident: e_1_2_2_40_2
– ident: e_1_2_2_23_2
  doi: 10.1038/nmat2329
– ident: e_1_2_2_35_2
– ident: e_1_2_2_20_2
  doi: 10.1039/c1jm11231g
– ident: e_1_2_2_24_3
  doi: 10.1002/anie.201001839
– ident: e_1_2_2_27_2
– ident: e_1_2_2_33_2
  doi: 10.1039/C0JM01007C
– ident: e_1_2_2_8_2
  doi: 10.1038/nmat3087
– ident: e_1_2_2_41_2
  doi: 10.1021/jp045917p
– ident: e_1_2_2_38_2
  doi: 10.1002/cssc.200900151
– ident: e_1_2_2_49_2
  doi: 10.1002/adma.201204419
– ident: e_1_2_2_2_2
  doi: 10.1126/science.1102896
– ident: e_1_2_2_11_2
– ident: e_1_2_2_29_2
  doi: 10.1021/ja053038q
– ident: e_1_2_2_37_2
  doi: 10.1002/adma.200401085
– ident: e_1_2_2_15_2
  doi: 10.1021/ja901105a
– ident: e_1_2_2_39_2
  doi: 10.1039/C2CC16239C
– ident: e_1_2_2_18_2
  doi: 10.1021/jz900265j
– ident: e_1_2_2_16_2
  doi: 10.1016/j.carbon.2011.09.017
– ident: e_1_2_2_1_2
– ident: e_1_2_2_7_2
– ident: e_1_2_2_44_2
  doi: 10.1039/c1ee01040a
– ident: e_1_2_2_31_2
  doi: 10.1021/cm990661z
– ident: e_1_2_2_48_2
  doi: 10.1021/nl904082k
– ident: e_1_2_2_13_2
  doi: 10.1063/1.3427246
– ident: e_1_2_2_42_2
  doi: 10.1021/ar3002427
– ident: e_1_2_2_6_2
  doi: 10.1039/C1CS15172J
– ident: e_1_2_2_26_2
  doi: 10.1007/s12274-010-0059-8
– ident: e_1_2_2_32_2
  doi: 10.1002/ange.201001634
– ident: e_1_2_2_50_2
– ident: e_1_2_2_10_2
  doi: 10.1016/j.carbon.2009.11.034
– ident: e_1_2_2_21_2
  doi: 10.1021/la027029w
– ident: e_1_2_2_51_2
  doi: 10.1002/adma.201003695
SSID ssj0028806
Score 2.589434
Snippet Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high...
Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO 2 layers were prepared and used as robust catalysts with high...
Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high...
Graphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO sub(2) layers were prepared and used as robust catalysts with...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 250
SubjectTerms Catalysis
Catalysts
Catalytic activity
Encapsulation
Gold
Graphene
heterogeneous catalysis
High temperature
mesoporous materials
metal nanoparticles
Metals
Nanoparticles
Nanostructure
Oxidation
Silica
Silicon dioxide
stability
Title Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions
URI https://api.istex.fr/ark:/67375/WNG-GJCTCQ8B-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201306863
https://www.ncbi.nlm.nih.gov/pubmed/24288240
https://www.proquest.com/docview/1470423855
https://www.proquest.com/docview/1490720449
https://www.proquest.com/docview/1701125405
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzRQkJEQnNImcZ69tdF2S6UuYumK3izbGUtVV1m0yUotJ34AB35jf0ln8oJFPCS4JcpYSZzx-JvJzDeMvfJ9q2KtIrcAI1zEt5GLfpbCdRUnYJNChEBxyONJfDgLj06j0x-q-Ft-iCHgRiujsde0wJWudr6ThlIFNqVmCSpyILpPStgiVDQd-KMCVM62vEgIl7rQ96yNXrCzPnxtV7pJE3zxK8i5jmCbLejgLlP9w7eZJ-fbq1pvm88_8Tr-z9vdY3c6fMr3WoW6z25A-YDdyvu2cA_Z1zFRXKOFvPryjVqCUrJuwWfzeqks3pUfA8J5jkYbvfEu6Y6PSqPQG58rEtWXKFMtcOBiVfEPZxQ13OXThV5VNc8pmnRZ1RVHMM3fXZy1LZ-4Kgs-JZbZ5mwKbTlG9YjNDkYn-aHbtXRwDTU5doVNfZUZtCsWcVOiU2HA2BiEMURcFydeEdki8sEWNkwDgAQ9LNQiCz46RghNH7ONclHCJhWb2ywLldUmREyXGR14KeDWCwro72HmMLf_pNJ0fOfUdmMuW6bmQNIcy2GOHfZmkP_UMn38VvJ1oyGDmFqeU35cEsmPk7EcH-Un-ft0X44dttWrkOxMQ4W-VkK5SGkUOezlcBk_Iv2pUSXg3KNM5lH3oDD7g0yCpjkgwO2wJ616Dg-EuAs9p9BzWNAo2V9eSO5N3o6Gs6f_MugZu43HYROcEltso16u4DnCtVq_aJbkNXS4ONg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeygX3g9DgUVCcHJre_3kVkyatDRBhERwW63Xu1LVyEGxI7Wc-AEc-I38Emb8QkE8JDjanpXt9ezsN-OZbwCeuq6RYSYDO9eK24hvAxv9LInrKoy0iXLua4pDjifhaO4ffwi6bEKqhWn4IfqAG62M2l7TAqeA9P4P1lAqwabcLE5VDvwybFNbb6LPfzXtGaQ8VM-mwIhzm_rQd7yNjre_OX5jX9qmKT7_FejcxLD1JnR4DbLu8Zvck7O9dZXtqU8_MTv-1_tdh6stRGUHjU7dgEu6uAk7adcZ7hZ8GRLLNRrJb5-_UldQytfN2XxRraTB27KxRkTP0G6jQ97m3bFBoSQ65AtJotkFypRLHLhcl-zdKQUOX7DpMluXFUspoHRRViVDPM3enJ82XZ-YLHI2JaLZ-miqm4qM8jbMDwezdGS3XR1sRX2ObW5iVyYKTYtB6BRlMVdamVBzpYi7LoycPDB54GqTGz_2tI7QyUJFMtpF3wjR6R3YKpaFvkf15iZJfGky5SOsS1TmObHG3VdLTT8QEwvs7psK1VKeU-eNhWjImj1Bcyz6ObbgeS__sSH7-K3ks1pFejG5OqMUuSgQ7ydDMTxOZ-nb-KUYWrDb6ZBorUOJ7lZE6UhxEFjwpL-MH5F-1shC49yjTOJQAyE_-YNMhNbZI8xtwd1GP_sHQuiFzpPvWODVWvaXFxIHk6NBf3T_XwY9hp3RbHwiTo4mrx_AFTzv17Eqvgtb1WqtHyJ6q7JH9fr8DucPPPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3o9AASMhOKVN4jy5lXR320IXWLqiN8txbKnqKlttslLLiR_Agd_IL2EmL1jEQ4JjkrGSOOPxN5OZbwCeuq6RYSYDO9eK24hvAxv9LInrKoy0iXLua4pDHozD3am_fxQc_VDF3_BD9AE3Whm1vaYFfpqbre-koVSBTalZnIoc-EVY90MnoeYNO5OeQMpD7Wzqizi3qQ19R9voeFur41e2pXWa4bNfYc5VCFvvQcNrILunb1JPTjaXVbapPv5E7Pg_r3cdrrYAlW03GnUDLujiJlxOu75wt-DziDiu0UR-_fSFeoJStm7OprNqIQ3elR1oxPMMrTa6423WHRsUSqI7PpMkmp2jTDnHgfNlyd4fU9jwBZvMs2VZsZTCSedlVTJE0-zN2XHT84nJImcTopmtjya6qccob8N0ODhMd-22p4OtqMuxzU3sykShYTEInKIs5korE2quFDHXhZGTByYPXG1y48ee1hG6WKhGRrvoGSE2vQNrxbzQ96ja3CSJL02mfAR1ico8J9a492qp6fdhYoHdfVKhWsJz6rsxEw1VsydojkU_xxY87-VPG6qP30o-qzWkF5OLE0qQiwLxYTwSo_30MH0XvxQjCzY6FRKtbSjR2YooGSkOAgue9JfxI9KvGllonHuUSRxqH-Qnf5CJ0DZ7hLgtuNuoZ_9ACLzQdfIdC7xayf7yQmJ7vDfoj-7_y6DHcOntzlC83hu_egBX8LRfB6r4BqxVi6V-iNCtyh7Vq_Mb_gg7ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-Supported+Ultrafine+Metal+Nanoparticles+Encapsulated+by+Mesoporous+Silica%3A+Robust+Catalysts+for+Oxidation+and+Reduction+Reactions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shang%2C+Lu&rft.au=Bian%2C+Tong&rft.au=Zhang%2C+Baihui&rft.au=Zhang%2C+Donghui&rft.date=2014-01-03&rft.pub=WILEY-VCH+Verlag&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=1&rft.spage=250&rft.epage=254&rft_id=info:doi/10.1002%2Fanie.201306863&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_GJCTCQ8B_G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon