The role of the circadian system in fractal neurophysiological control

ABSTRACT Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations – similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological condi...

Full description

Saved in:
Bibliographic Details
Published inBiological reviews of the Cambridge Philosophical Society Vol. 88; no. 4; pp. 873 - 894
Main Authors Pittman-Polletta, Benjamin R., Scheer, Frank A. J. L., Butler, Matthew P., Shea, Steven A., Hu, Kun
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations – similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation.
AbstractList Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation.
ABSTRACT Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations – similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation.
Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation.Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation.
Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations -- similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation. [PUBLICATION ABSTRACT]
Author Hu, Kun
Scheer, Frank A. J. L.
Butler, Matthew P.
Shea, Steven A.
Pittman-Polletta, Benjamin R.
AuthorAffiliation 2 Medical Chronobiology Program, Division of Sleep Medicine, Brigham and Women’s Hospital, Boston, MA 02115, U.S.A
5 Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, 32054, Taiwan
3 Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, U.S.A
4 Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, U.S.A
1 Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women’s Hospital, Boston, MA 02115, U.S.A
AuthorAffiliation_xml – name: 3 Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, U.S.A
– name: 1 Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women’s Hospital, Boston, MA 02115, U.S.A
– name: 5 Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, 32054, Taiwan
– name: 2 Medical Chronobiology Program, Division of Sleep Medicine, Brigham and Women’s Hospital, Boston, MA 02115, U.S.A
– name: 4 Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, U.S.A
Author_xml – sequence: 1
  givenname: Benjamin R.
  surname: Pittman-Polletta
  fullname: Pittman-Polletta, Benjamin R.
  email: Address for correspondence ( or )., bpolletta@partners.orgkhu1@partners.org
  organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, 02115, Boston, MA, U.S.A
– sequence: 2
  givenname: Frank A. J. L.
  surname: Scheer
  fullname: Scheer, Frank A. J. L.
  organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, 02115, Boston, MA, U.S.A
– sequence: 3
  givenname: Matthew P.
  surname: Butler
  fullname: Butler, Matthew P.
  organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, 02115, Boston, MA, U.S.A
– sequence: 4
  givenname: Steven A.
  surname: Shea
  fullname: Shea, Steven A.
  organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, 02115, Boston, MA, U.S.A
– sequence: 5
  givenname: Kun
  surname: Hu
  fullname: Hu, Kun
  email: Address for correspondence ( or )., bpolletta@partners.orgkhu1@partners.org
  organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, 02115, Boston, MA, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23573942$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1PHCEUhomx8ate9A80k3jTXowChxlmbkzU1G2TTZsaP3pHGIZxsSysMGO7_76su2vUVG4gh-d9OZx3F2067zRCHwg-JGkdNeHhkFAMdAPtEFbWOamKX5uPZ5bzGsg22o3xDuNUKGELbVMoONSM7qDzy4nOgrc6813Wp7MyQcnWSJfFeez1NDMu64JUvbSZ00Pws8k8Gm_9rVGppLzrk_w9etdJG_X-at9DV-dfLs--5uMfo29nJ-NcFYzTvJM15ZJCiytgRDcVU7hogelata2SmPCuAdCKcuigYUlSM9YVNaiSVUAV7KHjpe9saKa6VTq9Lq2YBTOVYS68NOLljTMTcesfBPCyZDVNBp9WBsHfDzr2Ymqi0tZKp_0QBWEsdVZWvEzowSv0zg_Bpe8tKIIrwghP1MfnHT21sh5xAo6WgAo-xqA7oUwve7MYnDRWECwWIYoUongMMSk-v1KsTf_Hrtz_GKvnb4Pi9OJ6rciXCpPi_fukkOG3KDnwQtx8H4nr6uInHbGx4PAPGDa6Xg
CODEN BRCPAH
CitedBy_id crossref_primary_10_1080_10407413_2023_2287752
crossref_primary_10_1016_j_neuroscience_2018_06_025
crossref_primary_10_1038_srep27742
crossref_primary_10_1016_j_csfx_2024_100125
crossref_primary_10_1016_j_neurobiolaging_2019_08_023
crossref_primary_10_1007_s40675_023_00267_4
crossref_primary_10_1098_rsif_2014_0318
crossref_primary_10_1002_adbi_202200324
crossref_primary_10_1016_j_jns_2016_05_025
crossref_primary_10_1017_S0033291720000331
crossref_primary_10_1093_sleep_zsx092
crossref_primary_10_1038_srep02229
crossref_primary_10_1080_07420528_2017_1407779
crossref_primary_10_3233_JAD_230928
crossref_primary_10_1111_ejn_16551
crossref_primary_10_3389_fphys_2018_01567
crossref_primary_10_1016_j_bspc_2023_105916
crossref_primary_10_1038_s41598_017_00743_2
crossref_primary_10_3389_fneur_2017_00753
crossref_primary_10_1007_s11571_014_9313_1
crossref_primary_10_1073_pnas_1424706112
crossref_primary_10_1002_dad2_12211
crossref_primary_10_1016_j_applanim_2018_05_014
crossref_primary_10_1016_j_neubiorev_2016_05_023
crossref_primary_10_1038_npjmgrav_2015_18
crossref_primary_10_1371_journal_pone_0105092
crossref_primary_10_1016_j_jalz_2018_03_010
crossref_primary_10_1093_cercor_bhac363
crossref_primary_10_1177_0748730418797820
crossref_primary_10_1007_s00359_018_1303_z
crossref_primary_10_1002_adbi_202200136
crossref_primary_10_1002_adbi_202200235
crossref_primary_10_1017_S0033291724002769
crossref_primary_10_1038_s41598_024_52905_8
crossref_primary_10_1002_alz_13747
crossref_primary_10_1111_psyp_13488
crossref_primary_10_1016_j_mvr_2021_104205
crossref_primary_10_1371_journal_pone_0062585
crossref_primary_10_1002_jcp_25037
crossref_primary_10_1155_2024_5514002
crossref_primary_10_3389_fphys_2016_00174
crossref_primary_10_1177_0748730415627035
crossref_primary_10_1126_scitranslmed_aax1977
crossref_primary_10_1016_j_ijpsycho_2015_07_007
Cites_doi 10.1007/978-1-4614-7572-9
10.3389/fphys.2010.00128
10.1114/1.1481053
10.1088/0034-4885/62/10/201
10.1523/JNEUROSCI.3688-08.2009
10.1038/251599a0
10.1016/j.automatica.2011.01.074
10.1063/1.3143035
10.1109/IEMBS.2006.259760
10.1152/jappl.1996.80.5.1448
10.1152/japplphysiol.00657.2004
10.1038/nature00965
10.1103/PhysRevE.63.031912
10.1016/S0002-9149(00)01312-6
10.1103/PhysRevLett.84.2529
10.1016/S0092-8674(00)81199-X
10.1038/nn1395
10.1073/pnas.0808180106
10.1016/S0735-1097(01)01171-8
10.1016/0030-4220(92)90222-C
10.1016/j.tics.2007.05.003
10.1103/PhysRevE.60.1412
10.1002/clc.4960200710
10.1016/j.neuroimage.2007.11.032
10.1073/pnas.0810524105
10.1136/oem.2006.026716
10.1037/0096-3445.136.4.551
10.1016/j.physa.2003.12.049
10.1016/j.resp.2004.07.010
10.1103/PhysRevE.83.051130
10.1016/j.tics.2010.09.001
10.1038/nature04176
10.1038/ncomms1705
10.1103/PhysRevE.80.021110
10.1103/PhysRevLett.101.264103
10.1016/j.neulet.2008.10.058
10.1002/ajim.20099
10.1137/070710111
10.1016/S0378-4371(01)00460-5
10.1209/epl/i1999-00525-0
10.1103/PhysRevE.65.051908
10.1177/0748730406296319
10.1016/S0960-9822(02)01155-7
10.1177/0748730403253840
10.1177/0748730409352843
10.1016/j.neuron.2010.04.020
10.1103/PhysRevE.80.061914
10.1371/journal.pcbi.0030068
10.1016/S0079-6123(08)60403-3
10.3389/fphys.2012.00052
10.1016/j.cub.2004.04.034
10.1038/nphys289
10.1152/japplphysiol.00390.2010
10.1016/j.neuroscience.2004.12.012
10.1136/oem.58.11.747
10.1103/PhysRevLett.86.6026
10.1016/j.pbiomolbio.2010.09.007
10.1073/pnas.79.8.2554
10.1063/1.166141
10.1146/annurev.bioeng.6.040803.140100
10.1177/074873001129002240
10.1038/nature08932
10.1016/S0140-6736(86)91619-3
10.1152/jappl.1991.71.1.1
10.1016/j.humov.2009.01.001
10.1016/S0378-4371(02)01377-8
10.1006/meth.2001.1206
10.1142/1025
10.1016/S0002-9149(97)00516-X
10.1103/PhysRevLett.59.381
10.1006/jtbi.2001.2367
10.1111/j.1365-2826.2010.01955.x
10.1590/S0103-97332000000100004
10.1073/pnas.0806087106
10.1061/TACEAT.0006518
10.1001/jama.299.22.2642
10.1016/0896-6273(95)90214-7
10.1177/0748730409352054
10.1175/2009JCLI2669.1
10.1038/216588a0
10.1073/pnas.0709957104
10.1177/0748730408314572
10.1056/NEJMcibr1204644
10.1016/S0022-5193(03)00141-3
10.1038/356168a0
10.1016/S0378-4371(00)00195-3
10.1016/S0079-6123(06)53020-1
10.1073/pnas.012579499
10.1007/s00421-003-0915-2
10.1364/JOSAA.14.000529
10.1515/BC.2003.078
10.5194/npg-8-193-2001
10.1513/pats.200603-028MS
10.1016/j.neuroscience.2005.10.030
10.1038/378554a0
10.1046/j.1540-8167.2005.04358.x
10.1016/S0378-4371(02)01453-X
10.1093/imammb/21.1.63
10.1093/aje/kwj355
10.1177/074873098128999952
10.1177/0748730411409715
10.1073/pnas.0911531107
10.1016/S0959-437X(03)00055-8
10.1074/jbc.273.42.27039
10.1111/j.1460-9568.2011.07682.x
10.1016/S0022-0736(95)80017-4
10.1073/pnas.0404843101
10.1137/S003614450342480
10.1152/japplphysiol.00856.2006
10.1017/S1464793101005607
10.1161/01.CIR.100.20.2079
10.1103/PhysRevE.54.2154
10.1152/jappl.1997.82.1.262
10.1103/PhysRevE.84.036708
10.1016/S0165-0270(96)00080-5
10.1016/0002-9149(87)91027-7
10.1016/S0006-8993(01)02890-6
10.1164/rccm.200202-152PP
10.1046/j.1365-2281.1999.00146.x
10.1038/nn1361
10.1016/0006-8993(72)90054-6
10.1103/PhysRevE.49.1685
10.1016/0006-8993(92)90191-B
10.3389/fphys.2010.00012
10.1103/PhysRevLett.85.461
10.1097/00003246-200007000-00045
10.1152/physrev.1929.9.3.399
10.1209/epl/i1998-00366-3
10.3389/fphys.2010.00001
10.1186/2190-8567-2-5
10.1177/0748730409344800
10.1038/nphys1803
10.1016/S1386-5056(97)00029-4
10.1056/NEJM198511213132103
10.1038/416409a
10.1073/pnas.0408243101
10.1177/0748730406287357
10.1002/hbm.20016
10.1103/PhysRevE.66.062902
10.1371/journal.pone.0048927
10.1126/science.288.5466.682
10.1073/pnas.1110586109
10.1210/jcem-73-6-1276
10.1073/pnas.0308709101
10.1126/science.2305266
10.1186/1740-3391-7-8
10.1371/journal.pone.0028489
10.1101/gad.183500
10.1016/S1566-0702(01)00273-9
10.1161/01.CIR.100.4.393
10.1046/j.1365-2443.2001.00419.x
10.1161/CIRCULATIONAHA.104.523712
10.1016/S0306-4522(98)00472-2
10.1016/j.jneumeth.2011.08.014
10.1016/S0002-9149(01)01578-8
10.1006/jtbi.2000.2131
10.1161/01.CIR.92.11.3178
10.1152/ajpheart.2001.280.3.H1391
10.1103/PhysRevLett.86.1900
10.1161/01.CIR.101.1.47
10.1103/PhysRevLett.70.1343
10.1073/pnas.69.6.1583
10.1371/journal.pone.0000721
10.2165/00003495-200666180-00007
10.1523/JNEUROSCI.23-35-11167.2003
10.1016/j.neuroscience.2007.03.058
10.1212/01.WNL.0000125190.10967.D5
10.1063/1.3211189
10.1177/0748730407301238
10.1093/cvr/cvn150
10.1371/journal.pcbi.1002038
10.1016/0378-4371(92)90497-E
10.1007/978-3-540-89506-0_15
10.1113/jphysiol.2012.227892
10.1103/PhysRevLett.85.3736
10.1038/20924
10.1016/j.physa.2004.01.042
10.1103/PhysRevE.79.041920
10.1152/jn.00106.2010
ContentType Journal Article
Copyright 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society
2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
Copyright Blackwell Publishing Ltd. Nov 2013
Copyright_xml – notice: 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society
– notice: 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
– notice: Copyright Blackwell Publishing Ltd. Nov 2013
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
C1K
7X8
5PM
DOI 10.1111/brv.12032
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Ecology Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef
Entomology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1469-185X
EndPage 894
ExternalDocumentID PMC3766492
3095358341
23573942
10_1111_brv_12032
BRV12032
ark_67375_WNG_V8RQ2G4L_7
Genre article
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: xxx
  funderid: 5K99HL102241
– fundername: NIH
  funderid: T32 HL07901
– fundername: xxx
  funderid: P30HL101299
– fundername: xxx
  funderid: K24 HL076446
– fundername: NHLBI NIH HHS
  grantid: T32 HL007901
– fundername: NHLBI NIH HHS
  grantid: P30 HL101299
– fundername: NHLBI NIH HHS
  grantid: K24 HL076446
– fundername: NHLBI NIH HHS
  grantid: R01 HL094806
– fundername: NHLBI NIH HHS
  grantid: 5K99HL102241
– fundername: NHLBI NIH HHS
  grantid: R00 HL102241
– fundername: NHLBI NIH HHS
  grantid: T32 HL07901
– fundername: NHLBI NIH HHS
  grantid: P30HL101299
– fundername: NHLBI NIH HHS
  grantid: K99 HL102241
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: P30 HL101299 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: K99 HL102241 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: K24 HL076446 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: T32 HL007901 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R00 HL102241 || HL
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
23N
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCQX
ABCUV
ABEML
ABITZ
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACGOF
ACMXC
ACPOU
ACPRK
ACQPF
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKSM
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
K48
KBYEO
L7B
L98
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
RIWAO
RJQFR
ROL
RX1
RXW
SAMSI
SUPJJ
SV3
TAE
TEORI
TN5
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X6Y
XG1
XOL
XSW
YZZ
ZXP
~02
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ABVKB
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABGDZ
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
C1K
7X8
5PM
ID FETCH-LOGICAL-c5472-fa927a23d08341eb84c05d34e9cddca017fb33ec273f3b4472944f593c64832c3
IEDL.DBID DR2
ISSN 1464-7931
1469-185X
IngestDate Thu Aug 21 13:13:51 EDT 2025
Fri Jul 11 15:07:05 EDT 2025
Wed Aug 13 06:29:41 EDT 2025
Mon Jul 21 06:05:33 EDT 2025
Tue Jul 01 03:31:08 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Jan 22 17:06:57 EST 2025
Wed Oct 30 09:55:53 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords heart rate
fractal fluctuations
spontaneous motor activity
physiological control
fractal physiology
suprachiasmatic nucleus
nonlinear dynamics
circadian biology
scale-invariance
Language English
License 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5472-fa927a23d08341eb84c05d34e9cddca017fb33ec273f3b4472944f593c64832c3
Notes istex:BA6C6A1BFC60869E10F7D52709A1D23F03EE4E7E
xxx - No. 5K99HL102241
xxx - No. P30HL101299
ArticleID:BRV12032
NIH - No. T32 HL07901
ark:/67375/WNG-V8RQ2G4L-7
xxx - No. K24 HL076446
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://doi.org/10.1111/brv.12032
PMID 23573942
PQID 1441081417
PQPubID 36769
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3766492
proquest_miscellaneous_1443416876
proquest_journals_1441081417
pubmed_primary_23573942
crossref_citationtrail_10_1111_brv_12032
crossref_primary_10_1111_brv_12032
wiley_primary_10_1111_brv_12032_BRV12032
istex_primary_ark_67375_WNG_V8RQ2G4L_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2013
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: November 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Cambridge
PublicationTitle Biological reviews of the Cambridge Philosophical Society
PublicationTitleAlternate Biol Rev
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Knutsson, A., Akerstedt, T., Jonsson, B. G. & Orth-Gomer, K. (1986). Increased risk of ischaemic heart disease in shift workers. Lancet 2, 89-92.
Moore, R. Y. & Eichler, V. B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Research 42, 201-206.
de la Iglesia, H. O., Cambras, T., Schwartz, W. J. & Diez-Noguera, A. (2004). Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Current Biology 14, 796-800.
Foley, N. C., Tong, T. Y., Foley, D., Lesauter, J., Welsh, D. K. & Silver, R. (2011). Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. European Journal of Neuroscience 33, 1851-1865.
Schwartz, J. R. & Roth, T. (2006). Shift work sleep disorder: burden of illness and approaches to management. Drugs 66, 2357-2370.
Bak, P., Tang, C. & Wiesenfeld, K. (1987). Self-organized criticality: an explanation of the 1/f noise. Physical Review Letters 59, 381-384.
Hara, R., Wan, K., Wakamatsu, H., Aida, R., Moriya, T., Akiyama, M. & Shibata, S. (2001). Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes to Cells 6, 269-278.
Chialvo, D. R. (2010). Emergent complex neural dynamics. Nature Physics 6, 744-750.
Makikallio, T. H., Huikuri, H. V., Makikallio, A., Sourander, L. B., Mitrani, R. D., Castellanos, A. & Myerburg, R. J. (2001b). Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. Journal of the American College of Cardiology 37, 1395-1402.
Chiesa, J. J., Cambras, T., Carpentieri, A. R. & Diez-Noguera, A. (2010). Arrhythmic rats after SCN lesions and constant light differ in short time scale regulation of locomotor activity. Journal of Biological Rhythms 25, 37-46.
Masters, B. R. (2004). Fractal analysis of the vascular tree in the human retina. Annual Review of Biomedical Engineering 6, 427-452.
Pikovsky, A. & Rosenblum, M. (2011). Dynamics of heterogeneous oscillator ensembles in terms of collective variables. Physica D240, 872-881.
Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697-706.
Perkiomaki, J. S., Zareba, W., Daubert, J. P., Couderc, J. P., Corsello, A. & Kremer, K. (2001). Fractal correlation properties of heart rate dynamics and adverse events in patients with implantable cardioverter-defibrillators. American Journal of Cardiology 88, 17-22.
Scafetta, N., Marchi, D. & West, B. J. (2009). Understanding the complexity of human gait dynamics. Chaos 19, 026108.
Verveen, A. A., Derksen, H. E. & Schick, K. L. (1967). Voltage fluctuations of neural membrane. Nature 216, 588-589.
Makikallio, T. H., Huikuri, H. V., Hintze, U., Videbaek, R. D., Mitrani, R. D., Castellanos, A., Mayerburg, R. J. & Moller, M. (2001a). Fractal analysis and time-and-frequency domain measures of heart rate variability as predictors of mortality in patients with heart failure. American Journal of Cardiology 87, 178-182.
Willich, S. N., Levy, D., Rocco, M. B., Tofler, G. H., Stone, P. H. & Muller, J. E. (1987). Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study population. American Journal of Cardiology 60, 801-806.
Ruttimann, U. E., Webber, R. L. & Hazelrig, J. B. (1992). Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 74, 98-110.
Stanley, H. E., Amaral, L. A. N., Gopikrishnan, P., Ivanov, P. C., Keitt, T. H. & Plerou, V. (2000). Scaling invariance and universality: organizing principles in complex systems. Physica A 281, 60-68.
Kawachi, I., Colditz, G. A., Stampfer, M. J., Willett, W. C., Manson, J. E., Speizer, F. E. & Hennekens, C. H. (1995). Prospective study of shift work and risk of coronary heart disease in women. Circulation 92, 3178-3182.
Hu, K., Ivanov, P. C., Hilton, M. F., Chen, Z., Ayers, R. T., Stanley, H. E. & Shea, S. A. (2004b). Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior. Proceedings of the National Academy of Sciences of the United States of America 101, 18223-18227.
Rennert, K. J. & Wallace, J. M. (2009). Cross-frequency coupling, skewness, and blocking in the Northern Hemisphere winter circulation. Journal of Climate 22, 5650-5666.
Kello, C. T., Beltz, B. C., Holden, J. G. & Van Orden, G. C. (2007). The emergent coordination of cognitive function. Journal of Experimental Psychology: General 136, 551-568.
Liebovitch, L. S., Scheurle, D., Rusek, M. & Zochowski, M. (2001). Fractal methods to analyze ion channel kinetics. Methods 24, 359-375.
Shea, S. A. (2012). Obesity and pharmacologic control of the body clock. New England Journal of Medicine 367, 175-178.
Kantelhardt, J. W., Ashkenazy, Y., Ivanov, P. C., Bunde, A., Havlin, S., Penzel, T., Peter, J. H. & Stanley, H. E. (2002). Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 65, 051908.
Torre, K. & Wagenmakers, E. J. (2009). Theories and models for 1/f(beta) noise in human movement science. Human Movement Science 28, 297-318.
Anteneodo, C. & Chialvo, D. R. (2009). Unraveling the fluctuations of animal motor activity. Chaos 19, 033123.
Darvas, F., Miller, K. J., Rao, R. P. & Ojemann, J. G. (2009). Nonlinear phase-phase cross-frequency coupling mediates communication between distant sites in human neocortex. Journal of Neuroscience 29, 426-435.
Huikuri, H. V. & Makikallio, T. H. (2001). Heart rate variability in ischemic heart disease. Autonomic Neuroscience 90, 95-101.
Sakamoto, K., Nagase, T., Fukui, H., Horikawa, K., Okada, T., Tanaka, H., Sato, K., Miyake, Y., Ohara, O., Kako, K. & Ishida, N. (1998). Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. Journal of Biological Chemistry 273, 27039-27042.
Laing, C. R., Zou, Y., Smith, B. & Kevrekidis, I. G. (2012). Managing heterogeneity in the study of neural oscillator dynamics. Journal of Mathematical Neuroscience 2, 5.
Stam, C. J. & de Bruin, E. A. (2004). Scale-free dynamics of global functional connectivity in the human brain. Human Brain Mapping 22, 97-109.
Amaral, L. A., Diaz-Guilera, A., Moreira, A. A., Goldberger, A. L. & Lipsitz, L. A. (2004). Emergence of complex dynamics in a simple model of signaling networks. Proceedings of the National Academy of Sciences of the United States of America 101, 15551-15555.
Allegrini, P., Menicucci, D., Bedini, R., Fronzoni, L., Gemignani, A., Grigolini, P., West, B. J. & Paradisi, P. (2009). Spontaneous brain activity as a source of ideal 1/f noise. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 80, 061914.
Antle, M. C., Foley, D. K., Foley, N. C. & Silver, R. (2003). Gates and oscillators: a network model of the brain clock. Journal of Biological Rhythms 18, 339-350.
Abrahamson, E. E. & Moore, R. Y. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Research 916, 172-191.
Gupta, V., Suryanarayanan, S. & Reddy, N. P. (1997). Fractal analysis of surface EMG signals from the biceps. International Journal of Medical Informatics 45, 185-192.
Goldberger, A. L., Amaral, L., Hausdorff, J. M. & Ivanov, P. C. (2002). Fractal dynamics in physiology: alterations with disease and aging. Proceedings of the National Academy of Sciences of the United States of America A99, 2466-2472.
Schick, K. L. & Verveen, A. A. (1974). 1/f noise with a low frequency white noise limit. Nature 251, 599-601.
Kunz, H. & Achermann, P. (2003). Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators. Journal of Theoretical Biology 224, 63-78.
Ivanov, P. C., Ma, Q. D., Bartsch, R. P., Hausdorff, J. M., Nunes Amaral, L. A., Schulte-Frohlinde, V., Stanley, H. E. & Yoneyama, M. (2009). Levels of complexity in scale-invariant neural signals. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 79, 041920.
Tort, A. B., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M. & Kopell, N. J. (2008). Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proceedings of the National Academy of Sciences of the United States of America 105, 20517-20522.
Brown, T. M., Coogan, A. N., Cutler, D. J., Hughes, A. T. & Piggins, H. D. (2008). Electrophysiological actions of orexins on rat suprachiasmatic neurons in vitro. Neuroscience Letters 448, 273-278.
Frey, U., Brodbeck, T., Majumdar, A., Taylor, D. R., Town, G. I., Silverman, M. & Suki, B. (2005). Risk of severe asthma episodes predicted from fluctuation analysis of airway function. Nature 438, 667-670.
Makikallio, A. M., Makikallio, T. H., Korpelainen, J. T., Sotaniemi, K. A., Huikuri, H. V. & Myllyla, V. V. (2004). Heart rate dynamics predict poststroke mortality. Neurology 62, 1822-1826.
Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E. & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 49, 1685-1689.
Hausdorff, J. M., Ashkenazy, Y., Peng, C. K., Ivanov, P. C., Stanley, H. E. & Goldberger, A. L. (2001). When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Physica A302, 138-147.
Wehr, T. A. (1991). The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). The Journal of Clinical Endocrinology & Metabolism 73, 1276-1280.
Ivanov, P. C., Nunes Amaral, L. A., Goldberger, A. L. & Stan
2004; 21
2007; 104
2004; 22
2007; 102
2010; 14
2010; 109
2010; 107
2009; 80
1995a; 28
2002; 12
2010; 104
2010; 464
2000; 85
1997; 45
2002; 316
2004; 6
1995; 378
2008; 105
1972; 42
1971
2008; 101
2012; 367
2004b; 101
1998; 273
2010; 22
1986; 2
1992; 191
2010; 1
2010; 25
2000; 14
1990
2006; 21
1992; 598
1992; 356
2008; 23
1999a; 399
1982
2007; 2
1998; 93
2007; 3
1996; 69
2009; 19
2001; 58
2010; 6
2003; 45
1998; 13
2004; A336
1990; 247
1997; 20
2005; 112
2001; 280
2007; 165
2011; 84
2011; 83
2004; 46
1991; 73
1994
2002; 418
2001a; 87
2002; 416
1999; 100
1972; 69
2007; 11
2001; 24
2011; 6
2011; 7
1987; 59
2012; 109
2012; 590
2009; 79
2011; D240
1987; 60
2005; 8
2002; 65
2002; 66
2000; 84
1991; 71
1985; 313
1996; 111
1996; 80
2000; 101
2003; 224
2008; 40
2005; 16
2007; 01
2010a; 1
2003; 23
2009; 106
1997; 80
2004; 62
1997; 82
2007; 149
2001; 90
2005; 132
1995b; 5
2003; 13
2003; 18
2004a; A337
2001; 88
2006; 137
1998; 43
2001; 86
2002; A99
2007; 136
2010; 66
2001; 212
2011; 201
2006; 63
2003; 90
2005; 145
1999; 19
1993; 70
2006; 66
1997; 14
2000; 206
2003; A318
2000; 281
2001b; 37
2001; 16
2011; 26
2000; 288
1974; 251
2007; 22
1999; 90
1996; 3
1951; 116
2004; 101
1982; 79
2009; 22
2009; 24
1995; 92
2000; 28
2012
2002; 30
1995; 14
2009
2005; 438
2008; 448
2011; 33
2010b; 1
2006; 153
1994; 49
2006; 1
1999; 62
2006; 2
1999; 60
1996; 54
1967; 216
2001; 63
2001; A302
2009; 29
1992; 74
2009; 28
1999b; 48
2011; 105
2004; 97
2012; 2
2012; 3
2001; 6
2004; 14
2000; 30
2002; 166
2001; 8
2009; 7
1929; 9
2001; 916
2011; 47
2008; 299
2012; 7
1989; 16
2008; 80
2003; 384
2001; 76
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
Diaz‐Guilera A. (e_1_2_9_41_1) 2007; 01
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
Vener K. J. (e_1_2_9_169_1) 1989; 16
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_172_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_72_1
McNamee J. E. (e_1_2_9_99_1) 1991; 71
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
Mandelbrot B. (e_1_2_9_95_1) 1982
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
Pikovsky A. (e_1_2_9_125_1) 2011; 240
e_1_2_9_171_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_185_1
e_1_2_9_181_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
Yan R. (e_1_2_9_183_1) 2012
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_85_1
Stanley H. E. (e_1_2_9_150_1) 1971
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
Hurst H. E. (e_1_2_9_66_1) 1951; 116
e_1_2_9_136_1
e_1_2_9_178_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_174_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
Nemati S. (e_1_2_9_108_1) 2012
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_173_1
e_1_2_9_48_1
e_1_2_9_29_1
2305266 - Science. 1990 Feb 23;247(4945):975-8
11760013 - J Biol Rhythms. 2001 Dec;16(6):552-63
21673863 - PLoS Comput Biol. 2011 Jun;7(6):e1002038
16876585 - Prog Brain Res. 2006;153:341-60
2873389 - Lancet. 1986 Jul 12;2(8498):89-92
11030994 - Phys Rev Lett. 2000 Oct 23;85(17):3736-9
1508517 - Oral Surg Oral Med Oral Pathol. 1992 Jul;74(1):98-110
18973790 - Neurosci Lett. 2008 Dec 31;448(3):273-8
18178105 - Neuroimage. 2008 Mar 1;40(1):308-17
7586301 - Circulation. 1995 Dec 1;92(11):3178-82
11969901 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Aug;60(2 Pt A):1412-27
15108297 - Hum Brain Mapp. 2004 Jun;22(2):97-109
11152835 - Am J Cardiol. 2001 Jan 15;87(2):178-82
16319891 - Nature. 2005 Dec 1;438(7068):667-70
18375863 - J Biol Rhythms. 2008 Apr;23(2):140-9
11466001 - Methods. 2001 Aug;24(4):359-75
15065739 - Math Med Biol. 2004 Mar;21(1):63-72
22355144 - Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):E680-9
12059594 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051908
20133762 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33
12119222 - Am J Respir Crit Care Med. 2002 Jul 15;166(2):133-7
21607201 - Automatica (Oxf). 2011 Jun 1;47(6):1236-1242
12513330 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 1):062902
11597605 - Brain Res. 2001 Oct 19;916(1-2):172-91
16338081 - Neuroscience. 2006;137(4):1285-97
22060530 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036708
17181377 - Drugs. 2006;66(18):2357-70
10562264 - Circulation. 1999 Nov 16;100(20):2079-84
15255776 - Annu Rev Biomed Eng. 2004;6:427-52
19792080 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021110
21775291 - J Biol Rhythms. 2011 Aug;26(4):324-34
9961383 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Feb;49(2):1685-9
17920204 - Neuroscience. 2007 Nov 9;149(3):508-17
4556464 - Proc Natl Acad Sci U S A. 1972 Jun;69(6):1583-6
21522484 - Front Physiol. 2010 Apr 23;1:1
16735480 - Occup Environ Med. 2006 Jul;63(7):451-5
19792003 - Chaos. 2009 Sep;19(3):033123
19566268 - Chaos. 2009 Jun;19(2):026108
18539630 - Cardiovasc Res. 2008 Oct 1;80(1):62-8
9554572 - J Biol Rhythms. 1998 Apr;13(2):100-12
11600731 - Occup Environ Med. 2001 Nov;58(11):747-52
22438845 - Front Physiol. 2012 Mar 16;3:52
10338284 - Neuroscience. 1999;90(4):1137-48
21423355 - Front Physiol. 2010 Oct 14;1:12
11260270 - Genes Cells. 2001 Mar;6(3):269-78
19437642 - Phys Rev Lett. 2008 Dec 31;101(26):264103
11537103 - Physica A. 1992 Dec 15;191(1-4):1-12
11542723 - Europhys Lett. 1998 Aug 15;43(4):363-8
5047187 - Brain Res. 1972 Jul 13;42(1):201-6
10365957 - Nature. 1999 Jun 3;399(6735):461-5
12787789 - Curr Opin Genet Dev. 2003 Jun;13(3):271-7
10068867 - Clin Physiol. 1999 Jan;19(1):56-67
8946315 - J Neurosci Methods. 1996 Nov;69(2):123-36
8656130 - J Electrocardiol. 1995;28 Suppl:59-65
23367424 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6526-9
11423052 - Am J Cardiol. 2001 Jul 1;88(1):17-22
2865677 - N Engl J Med. 1985 Nov 21;313(21):1315-22
1955509 - J Clin Endocrinol Metab. 1991 Dec;73(6):1276-80
9765215 - J Biol Chem. 1998 Oct 16;273(42):27039-42
12198538 - Nature. 2002 Aug 29;418(6901):935-41
19255424 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4453-8
11396846 - Biol Rev Camb Philos Soc. 2001 May;76(2):161-209
15505227 - Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15551-5
12361580 - Curr Biol. 2002 Oct 1;12(19):R644
5583506 - Nature. 1967 Nov 11;216(5115):588-9
12900204 - J Theor Biol. 2003 Sep 7;224(1):63-78
11114885 - Genes Dev. 2000 Dec 1;14(23):2950-61
22547633 - J Physiol. 2012 Jul 1;590(Pt 13):3035-45
17517911 - J Biol Rhythms. 2007 Jun;22(3):211-9
10035754 - Phys Rev Lett. 1987 Jul 27;59(4):381-384
14657176 - J Neurosci. 2003 Dec 3;23(35):11167-77
15746913 - Nat Neurosci. 2005 Mar;8(3):267-9
22658163 - J Math Neurosci. 2012 Mar 14;2(1):5
20070481 - J Neuroendocrinol. 2010 Mar;22(3):209-16
3661393 - Am J Cardiol. 1987 Oct 1;60(10):801-6
11542917 - Europhys Lett. 1999 Dec 1;48(5):594-600
1917729 - J Appl Physiol (1985). 1991 Jul;71(1):1-8
19518269 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 1):041920
9291030 - Int J Med Inform. 1997 Jul;45(3):185-92
15551368 - Am J Ind Med. 2004 Dec;46(6):586-98
9635423 - Cell. 1998 Jun 12;93(6):929-37
15611476 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18223-7
9220180 - Clin Cardiol. 1997 Jul;20(7):631-8
20365197 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 1):061914
10988020 - J Theor Biol. 2000 Oct 7;206(3):343-53
17229921 - J Biol Rhythms. 2007 Feb;22(1):14-25
15802197 - Neuroscience. 2005;132(2):465-77
17946835 - Conf Proc IEEE Eng Med Biol Soc. 2006;1:445-8
20393559 - Nature. 2010 Apr 15;464(7291):1025-8
10991308 - Phys Rev Lett. 2000 Jul 10;85(2):461-4
15759365 - Physica A. 2004 Jun;337(1-2):307-18
19403189 - Hum Mov Sci. 2009 Jun;28(3):297-318
22292564 - Comput Methods Biomech Biomed Engin. 2013;16(6):660-8
22426223 - Nat Commun. 2012;3:702
11531384 - J Theor Biol. 2001 Sep 21;212(2):183-90
20947715 - J Appl Physiol (1985). 2010 Dec;109(6):1786-91
6953413 - Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8
8727526 - J Appl Physiol (1985). 1996 May;80(5):1448-57
19074268 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20517-22
19144842 - J Neurosci. 2009 Jan 14;29(2):426-35
20869387 - Prog Biophys Mol Biol. 2011 Mar;105(1-2):49-57
16921107 - Proc Am Thorac Soc. 2006 Aug;3(6):467-71
11538314 - Chaos. 1995;5(1):82-7
12817466 - Biol Chem. 2003 May;384(5):697-709
20471349 - Neuron. 2010 May 13;66(3):353-69
17548233 - Trends Cogn Sci. 2007 Jul;11(7):267-9
11018927 - Phys Rev Lett. 2000 Mar 13;84(11):2529-32
21728513 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051130
17347385 - J Appl Physiol (1985). 2007 Jun;102(6):2315-23
17071844 - Am J Epidemiol. 2007 Jan 15;165(2):175-83
8990910 - Prog Brain Res. 1996;111:103-19
11308683 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Mar;63(3 Pt 1):031912
20075297 - J Biol Rhythms. 2010 Feb;25(1):19-27
10784453 - Science. 2000 Apr 28;288(5466):682-5
17684566 - PLoS One. 2007;2(8):e721
19615064 - J Circadian Rhythms. 2009 Jul 17;7:8
12942331 - Eur J Appl Physiol. 2003 Oct;90(3-4):305-16
17432930 - PLoS Comput Biol. 2007 Apr 13;3(4):e68
10421600 - Circulation. 1999 Jul 27;100(4):393-9
15286051 - J Appl Physiol (1985). 2004 Dec;97(6):2056-64
14963227 - Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5339-46
11415420 - Phys Rev Lett. 2001 Jun 25;86(26 Pt 1):6026-9
15120072 - Curr Biol. 2004 May 4;14(9):796-800
2697524 - Chronobiologia. 1989 Oct-Dec;16(4):421-39
16009791 - Circulation. 2005 Jul 19;112(3):314-9
10618303 - Circulation. 2000 Jan 4-11;101(1):47-53
21488990 - Eur J Neurosci. 2011 May;33(10):1851-65
15673380 - J Cardiovasc Electrophysiol. 2005 Jan;16(1):13-20
9315590 - Am J Cardiol. 1997 Sep 15;80(6):779-83
9965304 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Aug;54(2):2154-2157
12108842 - Ann Biomed Eng. 2002 May;30(5):683-92
11300452 - J Am Coll Cardiol. 2001 Apr;37(5):1395-402
10054352 - Phys Rev Lett. 1993 Mar 1;70(9):1343-6
21423370 - Front Physiol. 2010 Sep 15;1:128
15580271 - Nat Neurosci. 2005 Jan;8(1):61-6
21871489 - J Neurosci Methods. 2011 Oct 15;201(2):438-43
20932795 - Trends Cogn Sci. 2010 Nov;14(11):506-15
20075299 - J Biol Rhythms. 2010 Feb;25(1):37-46
22163023 - PLoS One. 2011;6(12):e28489
11875196 - Proc Natl Acad Sci U S A. 2002 Feb 19;99 Suppl 1:2466-72
11179089 - Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H1391-9
17999570 - J Exp Psychol Gen. 2007 Nov;136(4):551-68
18544724 - JAMA. 2008 Jun 11;299(22):2642-55
7718233 - Neuron. 1995 Apr;14(4):697-706
10921579 - Crit Care Med. 2000 Jul;28(7):2457-64
15159485 - Neurology. 2004 May 25;62(10):1822-6
19755580 - J Biol Rhythms. 2009 Oct;24(5):340-52
11290277 - Phys Rev Lett. 2001 Feb 26;86(9):1900-3
1486487 - Brain Res. 1992 Dec 11;598(1-2):257-63
12932086 - J Biol Rhythms. 2003 Aug;18(4):339-50
11919626 - Nature. 2002 Mar 28;416(6879):409-13
9058948 - J Opt Soc Am A Opt Image Sci Vis. 1997 Mar;14(3):529-46
18093917 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20702-7
19202078 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2490-4
20463205 - J Neurophysiol. 2010 Aug;104(2):1195-210
15705537 - Respir Physiol Neurobiol. 2005 Feb 15;145(2-3):219-33
1301010 - Nature. 1992 Mar 12;356(6365):168-70
9029225 - J Appl Physiol (1985). 1997 Jan;82(1):262-9
11485298 - Auton Neurosci. 2001 Jul 20;90(1-2):95-101
12033228 - Physica A. 2001 Dec 15;302(1-4):138-47
16731662 - J Biol Rhythms. 2006 Jun;21(3):222-32
References_xml – reference: Bonnefont, X. (2010). Circadian timekeeping and multiple timescale neuroendocrine rhythms. Journal of Neuroendocrinology 22, 209-216.
– reference: Turcotte, D. L. (1999). Self-organized criticality. Reports on Progress in Physics 62, 1377-1429.
– reference: Kawachi, I., Colditz, G. A., Stampfer, M. J., Willett, W. C., Manson, J. E., Speizer, F. E. & Hennekens, C. H. (1995). Prospective study of shift work and risk of coronary heart disease in women. Circulation 92, 3178-3182.
– reference: Canolty, R. T. & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Science 14, 506-515.
– reference: Riemersma-van der Lek, R. F., Swaab, D. F., Twisk, J., Hol, E. M., Hoogendijk, W. J. & Van Someren, E. J. (2008). Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. Journal of the American Medical Association 299, 2642-2655.
– reference: Peng, C. K., Mietus, J. E., Liu, Y., Lee, C., Hausdorff, J. M., Stanley, H. E., Goldbeger, A. L. & Lipsitz, L. A. (2002). Quantifying fractal dynamics of human respiration: age and gender effects. Annals of Biomedical Engineering 30, 683-692.
– reference: Hausdorff, J. M., Ashkenazy, Y., Peng, C. K., Ivanov, P. C., Stanley, H. E. & Goldberger, A. L. (2001). When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Physica A302, 138-147.
– reference: Manor, B., Costa, M. D., Hu, K., Newton, E., Starobinets, O., Kang, H. G., Peng, C. K., Novak, V. & Lipsitz, L. A. (2010). Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. Journal of Applied Physiology 109, 1786-1791.
– reference: Scheer, F. A. J. L., Ter Horst, G. J., Van der Vliet, J. & Buijs, R. M. (2001). Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats. American Journal of Physiology: Heart and Circulatory Physiology 280, H1391-H1399.
– reference: Pikovsky, A. & Rosenblum, M. (2011). Dynamics of heterogeneous oscillator ensembles in terms of collective variables. Physica D240, 872-881.
– reference: Schreiber, T. (2000). Measuring information transfer. Physical Review Letters 85, 461-464.
– reference: Scheer, F. A., Kalsbeek, A. & Buijs, R. M. (2003). Cardiovascular control by the suprachiasmatic nucleus: neural and neuroendocrine mechanisms in human and rat. Biological Chemistry 384, 697-709.
– reference: Carlson, J. M. & Doyle, J. (1999). Highly optimized tolerance: a mechanism for power laws in designed systems. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 60, 1412-1427.
– reference: Tort, A. B., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M. & Kopell, N. J. (2008). Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proceedings of the National Academy of Sciences of the United States of America 105, 20517-20522.
– reference: Pikovsky, A. & Rosenblum, M. (2008). Partially integrable dynamics of hierarchical populations of coupled oscillators. Physical Review Letters 101, 264103.
– reference: Chialvo, D. R. (2010). Emergent complex neural dynamics. Nature Physics 6, 744-750.
– reference: Diaz-Guilera, A., Moreira, A. A., Guzman, L. & Amaral, L. A. N. (2007). Complex fluctuations and robustness in stylized signalling networks. Journal of Statistical Mechanics 01, P01013.
– reference: Goldberger, A. L., Amaral, L., Hausdorff, J. M. & Ivanov, P. C. (2002). Fractal dynamics in physiology: alterations with disease and aging. Proceedings of the National Academy of Sciences of the United States of America A99, 2466-2472.
– reference: Nunes Amaral, L. A., Ivanov, P. C., Aoyagi, N., Hidaka, I., Tomono, S., Goldberger, A. L., Stanley, H. E. & Yamamoto, Y. (2001). Behavioral-independent features of complex heartbeat dynamics. Physical Review Letters 86, 6026-6029.
– reference: Turcotte, D. L. (2001). Self-organized criticality: does it have anything to do with criticality and is it useful? Nonlinear Processes in Geophysics 8, 193-196.
– reference: de la Iglesia, H. O., Cambras, T., Schwartz, W. J. & Diez-Noguera, A. (2004). Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Current Biology 14, 796-800.
– reference: Indic, P., Schwartz, W. J., Herzog, E. D., Foley, N. C. & Antle, M. C. (2007). Modeling the behavior of coupled cellular circadian oscillators in the suprachiasmatic nucleus. Journal of Biological Rhythms 22, 211-219.
– reference: Chiesa, J. J., Cambras, T., Carpentieri, A. R. & Diez-Noguera, A. (2010). Arrhythmic rats after SCN lesions and constant light differ in short time scale regulation of locomotor activity. Journal of Biological Rhythms 25, 37-46.
– reference: Stanley, H. E., Buldyrev, S. V., Goldberger, A. L., Hausdorff, J. M., Havlin, S., Mietus, J., Peng, C.-K., Sciortino, F. & Simons, M. (1992). Fractal landscapes in biological systems: long-range correlations in DNA and interbeat heart intervals. Physica A 191, 1-12.
– reference: Rajendran, K. & Kevrekidis, I. G. (2011). Coarse graining the dynamics of heterogeneous oscillators in networks with spectral gaps. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 84, 036708.
– reference: Muller, J. E., Stone, P. H., Turi, Z. G., Rutherford, J. D., Czeisler, C. A., Parker, C., Poole, W. K., Passamani, E., Roberts, R. & Robertson, T. (1985). Circadian variation in the frequency of onset of acute myocardial infarction. New England Journal of Medicine 313, 1315-1322.
– reference: Aquino, G., Bologna, M., West, B. J. & Grigolini, P. (2011). Transmission of information between complex systems: 1/f resonance. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 83, 051130.
– reference: Ivanov, P. C., Ma, Q. D., Bartsch, R. P., Hausdorff, J. M., Nunes Amaral, L. A., Schulte-Frohlinde, V., Stanley, H. E. & Yoneyama, M. (2009). Levels of complexity in scale-invariant neural signals. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 79, 041920.
– reference: Masters, B. R. (2004). Fractal analysis of the vascular tree in the human retina. Annual Review of Biomedical Engineering 6, 427-452.
– reference: Stanley, H. E., Amaral, L. A. N., Gopikrishnan, P., Ivanov, P. C., Keitt, T. H. & Plerou, V. (2000). Scaling invariance and universality: organizing principles in complex systems. Physica A 281, 60-68.
– reference: Damiola, F., Le, M. N., Preitner, N., Kornmann, B., Fleury-Olela, F. & Schibler, U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes and Development 14, 2950-2961.
– reference: Tulppo, M. P., Kiviniemi, A. M., Hautala, A. J., Kallio, M., Seppanen, T., Makikallio, T. H. & Huikuri, H. V. (2005). Physiological background of the loss of fractal heart rate dynamics. Circulation 112, 314-319.
– reference: Hausdorff, J. M., Mitchell, S. L., Firtion, R., Peng, C. K., Cudkowicz, M. E., Wei, J. Y. & Goldberger, A. L. (1997). Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease. Journal of Applied Physiology 82, 262-269.
– reference: Stephan, F. K. & Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proceedings of the National Academy of Sciences of the United States of America 69, 1583-1586.
– reference: Hausdorff, J. M., Purdon, P., Peng, C. K., Ladin, Z., Wei, J. Y. & Goldberger, A. L. (1996). Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. Journal of Applied Physiology 80, 1448-1457.
– reference: Jennings, H. D., Ivanov, P. C., Martins, A. M., da Silva, P. C. & Viswanathan, G. M. (2004). Variance fluctuations in nonstationary time series: a comparative study of music genres. Physica A336, 585-594.
– reference: Moore, R. Y. & Eichler, V. B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Research 42, 201-206.
– reference: Scheer, F. A., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proceedings of the National Academy of Sciences of the United States of America 106, 4453-4458.
– reference: Ashkenazy, Y., Hausdorff, J. M., Ivanov, P. C. & Stanley, H. E. (2002). A stochastic model of human gait dynamics. Physica A-Statistical Mechanics and Its Applications 316, 662-670.
– reference: Caruso, C. C., Lusk, S. L. & Gillespie, B. W. (2004). Relationship of work schedules to gastrointestinal diagnoses, symptoms, and medication use in auto factory workers. American Journal of Industrial Medicine 46, 586-598.
– reference: Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697-706.
– reference: McNamee, J. E. (1991). Fractal perspectives in pulmonary physiology. Journal of Applied Physiology 71, 1-8.
– reference: Vikman, S., Makikallio, T. H., Yli-Mayry, S., Pikkujamsa, S., Koivisto, A. M., Reinikainen, P., Airaksinen, K. E. & Huikuri, H. V. (1999). Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation. Circulation 100, 2079-2084.
– reference: Dickman, R., Munoz, M. A., Vespignani, A. & Zapperi, S. (2000). Paths to self-organized criticality. Brazilian Journal of Physics 30, 27-41.
– reference: Pikkujamsa, S. M., Makikallio, T. H., Sourander, L. B., Raiha, I. J., Puukka, P., Skytta, J., Peng, C. K., Goldberger, A. L. & Huikuri, H. V. (1999). Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory. Circulation 100, 393-399.
– reference: Hara, R., Wan, K., Wakamatsu, H., Aida, R., Moriya, T., Akiyama, M. & Shibata, S. (2001). Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes to Cells 6, 269-278.
– reference: Turalska, M., Geneston, E., West, B. J., Allegrini, P. & Grigolini, P. (2012). Cooperation-induced topological complexity: a promising road to fault tolerance and hebbian learning. Frontiers in Physiology 3, 52.
– reference: Zamir, M. (2001). Fractal dimensions and multifractility in vascular branching. Journal of Theoretical Biology 212, 183-190.
– reference: Jensen, O. & Colgin, L. L. (2007). Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Science 11, 267-269.
– reference: Perkiomaki, J. S., Zareba, W., Daubert, J. P., Couderc, J. P., Corsello, A. & Kremer, K. (2001). Fractal correlation properties of heart rate dynamics and adverse events in patients with implantable cardioverter-defibrillators. American Journal of Cardiology 88, 17-22.
– reference: Brown, T. M., Coogan, A. N., Cutler, D. J., Hughes, A. T. & Piggins, H. D. (2008). Electrophysiological actions of orexins on rat suprachiasmatic neurons in vitro. Neuroscience Letters 448, 273-278.
– reference: Darvas, F., Miller, K. J., Rao, R. P. & Ojemann, J. G. (2009). Nonlinear phase-phase cross-frequency coupling mediates communication between distant sites in human neocortex. Journal of Neuroscience 29, 426-435.
– reference: Knutsson, A., Akerstedt, T., Jonsson, B. G. & Orth-Gomer, K. (1986). Increased risk of ischaemic heart disease in shift workers. Lancet 2, 89-92.
– reference: Brummitt, C. D., D'Souza, R. M. & Leicht, E. A. (2012). Suppressing cascades of load in interdependent networks. Proceedings of the National Academy of Sciences of the United States of America 109, E680-E689.
– reference: Hu, K., Ivanov, P. C., Hilton, M. F., Chen, Z., Ayers, R. T., Stanley, H. E. & Shea, S. A. (2004b). Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior. Proceedings of the National Academy of Sciences of the United States of America 101, 18223-18227.
– reference: Chialvo, D. R. & Bak, P. (1999). Learning from mistakes. Neuroscience 90, 1137-1148.
– reference: Yum, M. K., Kim, N. S., Oh, J. W., Kim, C. R., Lee, J. W., Kim, S. K., Noh, C. I., Choi, J. Y. & Yun, Y. S. (1999). Non-linear cardiac dynamics and morning dip: an unsound circadian rhythm. Clinical Physiology 19, 56-67.
– reference: Morin, L. P., Shivers, K. Y., Blanchard, J. H. & Muscat, L. (2006). Complex organization of mouse and rat suprachiasmatic nucleus. Neuroscience 137, 1285-1297.
– reference: Rubinov, M., Sporns, O., Thivierge, J. P. & Breakspear, M. (2011). Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLOS Computational Biology 7, e1002038.
– reference: Ashkenazy, Y., Ivanov, P. C., Havlin, S., Peng, C. K., Goldberger, A. L. & Stanley, H. E. (2001). Magnitude and sign correlations in heartbeat fluctuations. Physical Review Letters 86, 1900-1903.
– reference: Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79, 2554-2558.
– reference: Goldberger, A. L. (1996). Complex systems. Proceedings of the American Thoracic Society 3, 467-471.
– reference: Huikuri, H. V., Makikallio, T. H., Peng, C. K., Goldberger, A. L., Hintze, U. & Moller, M. (2000). Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101, 47-53.
– reference: Torre, K. & Wagenmakers, E. J. (2009). Theories and models for 1/f(beta) noise in human movement science. Human Movement Science 28, 297-318.
– reference: Stanley, H. E. (1995). Phase-transitions - power laws and Universality. Nature 378, 554.
– reference: Mandelbrot, B. (1982). The Fractal Geometry of Nature. W.H. Freeman and Company, New York.
– reference: Varanda, W. A., Liebovitch, L. S., Figueiroa, J. N. & Nogueira, R. A. (2000). Hurst analysis applied to the study of single calcium-activated potassium channel kinetics. Journal of Theoretical Biology 206, 343-353.
– reference: Bak, P. & Chialvo, D. R. (2001). Adaptive learning by extremal dynamics and negative feedback. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 63, 031912.
– reference: Hausdorff, J. M. & Peng, C. (1996). Multiscaled randomness: a possible source of 1/f noise in biology. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 54, 2154-2157.
– reference: Peng, C. K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M. & Stanley, H. E. (1992). Long-range correlations in nucleotide sequences. Nature 356, 168-170.
– reference: Peng, C.-K., Havlin, S., Stanley, H. E. & Goldberger, A. L. (1995b). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82-87.
– reference: Frey, U., Brodbeck, T., Majumdar, A., Taylor, D. R., Town, G. I., Silverman, M. & Suki, B. (2005). Risk of severe asthma episodes predicted from fluctuation analysis of airway function. Nature 438, 667-670.
– reference: Shea, S. A. (2012). Obesity and pharmacologic control of the body clock. New England Journal of Medicine 367, 175-178.
– reference: He, B. J., Zempel, J. M., Snyder, A. Z. & Raichle, M. E. (2010). The temporal structures and functional significance of scale-free brain activity. Neuron 66, 353-369.
– reference: Peng, C.-K., Mietus, J., Hausdorff, J. M., Havlin, S., Stanley, H. E. & Goldberger, A. L. (1993). Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Physical Review Letters 70, 1343-1346.
– reference: Rennert, K. J. & Wallace, J. M. (2009). Cross-frequency coupling, skewness, and blocking in the Northern Hemisphere winter circulation. Journal of Climate 22, 5650-5666.
– reference: Schwartz, J. R. & Roth, T. (2006). Shift work sleep disorder: burden of illness and approaches to management. Drugs 66, 2357-2370.
– reference: Schick, K. L. & Verveen, A. A. (1974). 1/f noise with a low frequency white noise limit. Nature 251, 599-601.
– reference: Ohta, H., Yamazaki, S. & McMahon, D. G. (2005). Constant light desynchronizes mammalian clock neurons. Nature Neuroscience 8, 267-269.
– reference: Laing, C. R., Zou, Y., Smith, B. & Kevrekidis, I. G. (2012). Managing heterogeneity in the study of neural oscillator dynamics. Journal of Mathematical Neuroscience 2, 5.
– reference: Ivanov, P. C. (2006). Scale-invariant aspects of cardiac dynamics across sleep stages and circadian phases. Conference Proceedings of the IEEE Engineering in Medicine and Biology Society 1, 445-448.
– reference: Karasik, R., Sapir, N., Ashkenazy, Y., Ivanov, P. C., Dvir, I., Lavie, P. & Havlin, S. (2002). Correlation differences in heartbeat fluctuations during rest and exercise. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 66, 062902.
– reference: Kroenke, C. H., Spiegelman, D., Manson, J., Schernhammer, E. S., Colditz, G. A. & Kawachi, I. (2007). Work characteristics and incidence of type 2 diabetes in women. American Journal of Epidemiology 165, 175-183.
– reference: St Hilaire, M. A., Gooley, J. J., Khalsa, S. B., Kronauer, R. E., Czeisler, C. A. & Lockley, S. W. (2012). Human phase response curve to a 1 h pulse of bright white light. Journal of Physiology 590, 3035-3045.
– reference: Rohani, P., Miramontes, O. & Keeling, M. J. (2004). The colour of noise in short ecological time series data. Mathematical Medicine and Biology 21, 63-72.
– reference: Abrahamson, E. E. & Moore, R. Y. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Research 916, 172-191.
– reference: Vener, K. J., Szabo, S. & Moore, J. G. (1989). The effect of shift work on gastrointestinal (GI) function: a review. Chronobiologia 16, 421-439.
– reference: Balsalobre, A., Damiola, F. & Schibler, U. (1998). A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929-937.
– reference: Reppert, S. M. & Weaver, D. R. (2002). Coordination of circadian timing in mammals. Nature 418, 935-941.
– reference: Tort, A. B., Komorowski, R., Eichenbaum, H. & Kopell, N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology 104, 1195-1210.
– reference: Kello, C. T., Beltz, B. C., Holden, J. G. & Van Orden, G. C. (2007). The emergent coordination of cognitive function. Journal of Experimental Psychology: General 136, 551-568.
– reference: Cannon, W. B. (1929). Organization for physiological homeostasis. Physiological Reviews 9, 399-431.
– reference: Foley, N. C., Tong, T. Y., Foley, D., Lesauter, J., Welsh, D. K. & Silver, R. (2011). Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. European Journal of Neuroscience 33, 1851-1865.
– reference: Amaral, L. A., Diaz-Guilera, A., Moreira, A. A., Goldberger, A. L. & Lipsitz, L. A. (2004). Emergence of complex dynamics in a simple model of signaling networks. Proceedings of the National Academy of Sciences of the United States of America 101, 15551-15555.
– reference: Ivanov, P. C., Bunde, A., Amaral, L. A., Havlin, S., Fritsch-Yelle, J., Baevsky, R. M., Stanley, H. E. & Goldberger, A. L. (1999b). Sleep-wake differences in scaling behavior of the human heartbeat: analysis of terrestrial and long-term space flight data. Europhysics Letters 48, 594-600.
– reference: Long, M. A., Jutras, M. J., Connors, B. W. & Burwell, R. D. (2005). Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nature Neuroscience 8, 61-66.
– reference: Schwartz, W. J. (2002). Suprachiasmatic nucleus. Current Biology 12, R644.
– reference: Liebovitch, L. S., Scheurle, D., Rusek, M. & Zochowski, M. (2001). Fractal methods to analyze ion channel kinetics. Methods 24, 359-375.
– reference: Yan, R. & Guo, X. (2012). Nonlinear fractal dynamics of human colonic pressure activity based upon the box-counting method. Computer Methods in Biomechanics and Biomedical Engineering, 2229-2564.
– reference: Bak, P., Tang, C. & Wiesenfeld, K. (1987). Self-organized criticality: an explanation of the 1/f noise. Physical Review Letters 59, 381-384.
– reference: Onslow, A. C., Bogacz, R. & Jones, M. W. (2011). Quantifying phase-amplitude coupling in neuronal network oscillations. Progress in Biophysics and Molecular Biology 105, 49-57.
– reference: West, B. J., Latka, M., Glaubic-Latka, M. & Latka, D. (2003). Multifractality of cerebral blood flow. Physica A318, 453-460.
– reference: West, B. J. (2010b). The wisdom of the body; a contemporary view. Frontiers in Physiology 1, 1.
– reference: Scheer, F. A., Wright, K. P. Jr., Kronauer, R. E. & Czeisler, C. A. (2007). Plasticity of the intrinsic period of the human circadian timing system. PLoS ONE 2, e721.
– reference: Hu, K., Van Someren, E. J. W., Shea, S. A. & Scheer, F. A. J. L. (2009). Reduction of scale invariance of activity fluctuations with aging and Alzheimer's disease: involvement of the circadian pacemaker. Proceedings of the National Academy of Sciences of the United States of America 106, 2490-2494.
– reference: Karlsson, B., Knutsson, A. & Lindahl, B. (2001). Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occupational and Environmental Medicine 58, 747-752.
– reference: Ralph, M. R., Foster, R. G., Davis, F. C. & Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975-978.
– reference: Weaver, D. R. (1998). The suprachiasmatic nucleus: a 25-year retrospective. Journal of Biological Rhythms 13, 100-112.
– reference: Kinouchi, O. & Copelli, M. (2006). Optimal dynamical range of excitable networks at criticality. Nature Physics 2, 348-352.
– reference: Makikallio, T. H., Huikuri, H. V., Makikallio, A., Sourander, L. B., Mitrani, R. D., Castellanos, A. & Myerburg, R. J. (2001b). Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. Journal of the American College of Cardiology 37, 1395-1402.
– reference: Hurst, H. E. (1951). Long-term storage of reservoirs: an experimental study. Transactions of the American Society of Engineers 116, 770-799.
– reference: Anteneodo, C. & Chialvo, D. R. (2009). Unraveling the fluctuations of animal motor activity. Chaos 19, 033123.
– reference: Wang, Y. & Doyle, F. J. III (2011). On influences of global and local cues on the rate of synchronization of oscillator networks. Automatica (Oxford) 47, 1236-1242.
– reference: Makikallio, T. H., Seppanen, T., Airaksinen, K. E., Koistinen, J., Tulppo, M. P., Peng, C. K., Goldberger, A. L. & Huikuri, H. V. (1997). Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. American Journal of Cardiology 80, 779-783.
– reference: Meyer, M. & Stiedl, O. (2003). Self-affine fractal variability of human heartbeat interval dynamics in health and disease. European Journal of Applied Physiology 90, 305-316.
– reference: Nemati, S., Lehman, L. H., Adams, R. P. & Malhotra, A. (2012). Discovering shared cardiovascular dynamics within a patient cohort. Conference Proceedings, IEEE Engineering in Medicine and Biology Society, 6526-6529.
– reference: Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E. & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 49, 1685-1689.
– reference: Ruttimann, U. E., Webber, R. L. & Hazelrig, J. B. (1992). Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 74, 98-110.
– reference: Bernard, S., Gonze, D., Cajavec, B., Herzel, H. & Kramer, A. (2007). Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLOS Computational Biology 3, e68.
– reference: Meijer, J. H., Rusak, B. & Ganshirt, G. (1992). The relation between light-induced discharge in the suprachiasmatic nucleus and phase shifts of hamster circadian rhythms. Brain Research 598, 257-263.
– reference: Kamiya, A. & Takahashi, T. (2007). Quantitative assessments of morphological and functional properties of biological trees based on their fractal nature. Journal of Applied Physiology 102, 2315-2323.
– reference: Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S. & Ivanov, P. C. (2012). Network physiology reveals relations between network topology and physiological function. Nature Communications 3, 702.
– reference: Gupta, V., Suryanarayanan, S. & Reddy, N. P. (1997). Fractal analysis of surface EMG signals from the biceps. International Journal of Medical Informatics 45, 185-192.
– reference: Scheffzuk, C., Kukushka, V. I., Vyssotski, A. L., Draguhn, A., Tort, A. B. & Brankack, J. (2011). Selective coupling between theta phase and neocortical fast gamma oscillations during REM-sleep in mice. PLoS ONE 6, e28489.
– reference: Fadel, P. J., Barman, S. M., Phillips, S. W. & Gebber, G. L. (2004). Fractal fluctuations in human respiration. Journal of Applied Physiology 97, 2056-2064.
– reference: Verveen, A. A., Derksen, H. E. & Schick, K. L. (1967). Voltage fluctuations of neural membrane. Nature 216, 588-589.
– reference: Allegrini, P., Paradisi, P., Menicucci, D. & Gemignani, A. (2010). Fractal complexity in spontaneous EEG metastable-state transitions: new vistas on integrated neural dynamics. Frontiers in Physiology 1, 128.
– reference: Hu, K., Scheer, F. A., Buijs, R. M. & Shea, S. A. (2008). The circadian pacemaker generates similar circadian rhythms in the fractal structure of heart rate in humans and rats. Cardiovascular Research 80, 62-68.
– reference: Angeles-Castellanos, M., Amaya, J. M., Salgado-Delgado, R., Buijs, R. M. & Escobar, C. (2011). Scheduled food hastens re-entrainment more than melatonin does after a 6-h phase advance of the light-dark cycle in rats. Journal of Biological Rhythms 26, 324-334.
– reference: Hu, K., Scheer, F. A., Ivanov, P. C., Buijs, R. M. & Shea, S. A. (2007). The suprachiasmatic nucleus functions beyond circadian rhythm generation. Neuroscience 149, 508-517.
– reference: Bassingthwaighte, J. B., Liebovitch, L. S. & West, B. J. (1994). Fractal Physiology. Oxford University Press, New York.
– reference: Scheer, F. A., Pirovano, C., Van Someren, E. J. & Buijs, R. M. (2005). Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature. Neuroscience 132, 465-477.
– reference: Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., Block, G. D., Sakaki, Y., Menaker, M. & Tei, H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682-685.
– reference: Buijs, R. M., Scheer, F. A., Kreier, F., Yi, C., Bos, N., Goncharuk, V. D. & Kalsbeek, A. (2006). Organization of circadian functions: interaction with the body. Progress in Brain Research 153, 341-360.
– reference: Butler, M. P. & Silver, R. (2009). Basis of robustness and resilience in the suprachiasmatic nucleus: individual neurons form nodes in circuits that cycle daily. Journal of Biological Rhythms 24, 340-352.
– reference: Gisiger, T. (2001). Scale invariance in biology: coincidence or footprint of a universal mechanism? Biological Reviews of the Cambridge Philosophical Society 76, 161-209.
– reference: Antle, M. C., Foley, D. K., Foley, N. C. & Silver, R. (2003). Gates and oscillators: a network model of the brain clock. Journal of Biological Rhythms 18, 339-350.
– reference: Huikuri, H. V. & Makikallio, T. H. (2001). Heart rate variability in ischemic heart disease. Autonomic Neuroscience 90, 95-101.
– reference: Ivanov, P. C., Nunes Amaral, L. A., Goldberger, A. L. & Stanley, H. E. (1998). Stochastic feedback and the regulation of biological rhythms. Europhysics Letters 43, 363-368.
– reference: Stam, C. J. & de Bruin, E. A. (2004). Scale-free dynamics of global functional connectivity in the human brain. Human Brain Mapping 22, 97-109.
– reference: Canton, J. L., Smith, M. R., Choi, H. S. & Eastman, C. I. (2009). Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color. Journal of Circadian Rhythms 7, 8.
– reference: West, B. J., Griffin, L. A., Frederick, H. J. & Moon, R. E. (2005). The independently fractal nature of respiration and heart rate during exercise under normobaric and hyperbaric conditions. Respiratory Physiology and Neurobiology 145, 219-233.
– reference: West, B. J. (1990). Fractal Physiology and Chaos in Medicine. World Scientific, Singapore.
– reference: Gorman, M. R., Yellon, S. M. & Lee, T. M. (2001). Temporal reorganization of the suprachiasmatic nuclei in hamsters with split circadian rhythms. Journal of Biological Rhythms 16, 552-563.
– reference: Carlson, J. M. & Doyle, J. (2000). Highly optimized tolerance: robustness and design in complex systems. Physical Review Letters 84, 2529-2532.
– reference: Albrecht, U. & Eichele, G. (2003). The mammalian circadian clock. Current Opinion in Genetics and Development 13, 271-277.
– reference: Ozkurt, T. E. & Schnitzler, A. (2011). A critical note on the definition of phase-amplitude cross-frequency coupling. Journal of Neuroscience Methods 201, 438-443.
– reference: Moore, R. Y. (1996). Entrainment pathways and the functional organization of the circadian system. Progress in Brain Research 111, 103-119.
– reference: Ivanov, P. C., Hu, K., Hilton, M. F., Shea, S. A. & Stanley, H. E. (2007). Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics. Proceedings of the National Academy of Sciences of the United States of America 104, 20702-20707.
– reference: Makikallio, A. M., Makikallio, T. H., Korpelainen, J. T., Sotaniemi, K. A., Huikuri, H. V. & Myllyla, V. V. (2004). Heart rate dynamics predict poststroke mortality. Neurology 62, 1822-1826.
– reference: Buldryev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. (2010). Catastrophic cascades of failures in interdependent networks. Nature 464, 1025-1028.
– reference: Scafetta, N., Marchi, D. & West, B. J. (2009). Understanding the complexity of human gait dynamics. Chaos 19, 026108.
– reference: Tuchsen, F., Hannerz, H. & Burr, H. (2006). A 12 year prospective study of circulatory disease among Danish shift workers. Occupational and Environmental Medicine 63, 451-455.
– reference: Ivanov, P. C., Amaral, L. A., Goldberger, A. L., Havlin, S., Rosenblum, M. G., Struzik, Z. R. & Stanley, H. E. (1999a). Multifractality in human heartbeat dynamics. Nature 399, 461-465.
– reference: Antle, M. C., Foley, N. C., Foley, D. K. & Silver, R. (2007). Gates and oscillators II: zeitgebers and the network model of the brain clock. Journal of Biological Rhythms 22, 14-25.
– reference: Hu, K., Ivanov, P. C., Chen, Z., Hilton, M. F., Stanley, H. E. & Shea, S. A. (2004a). Non-random fluctuations and multi-scale dynamics regulation of human activity. Physica A337, 307-318.
– reference: Turalska, M., Lukovic, M., West, B. J. & Grigolini, P. (2009). Complexity and synchronization. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 80, 021110.
– reference: Willich, S. N., Levy, D., Rocco, M. B., Tofler, G. H., Stone, P. H. & Muller, J. E. (1987). Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study population. American Journal of Cardiology 60, 801-806.
– reference: Matsumoto, M., Saito, S. & Ohmine, I. (2002). Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416, 409-413.
– reference: Naito, E., Watanabe, T., Tei, H., Yoshimura, T. & Ebihara, S. (2008). Reorganization of the suprachiasmatic nucleus coding for day length. Journal of Biological Rhythms 23, 140-149.
– reference: Suki, B. (2002). Fluctuations and power laws in pulmonary physiology. American Journal of Respiratory and Critical Care Medicine 166, 133-137.
– reference: West, B. J. (2010a). Fractal physiology and the fractional calculus: a perspective. Frontiers in Physiology 1, 12.
– reference: Yoo, S. H., Yamazaki, S., Lowrey, P. L., Shimomura, K., Ko, C. H., Buhr, E. D., Siepka, S. M., Hong, H. K., Oh, W. J., Yoo, O. J., Menaker, M. & Takahashi, J. S. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proceedings of the National Academy of Sciences of the United States of America 101, 5339-5346.
– reference: Mutch, W. A. C., Harm, S., Lefevre, G. R., Graham, M. R., Girling, L. G. & Kowalski, S. E. (2000). Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome. Critical Care Medicine 28, 2457-2464.
– reference: Sauseng, P., Klimesch, W., Gruber, W. R. & Birbaumer, N. (2008). Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. Neuroimage 40, 308-317.
– reference: Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review 45, 167-256.
– reference: Kunz, H. & Achermann, P. (2003). Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators. Journal of Theoretical Biology 224, 63-78.
– reference: Wehr, T. A. (1991). The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). The Journal of Clinical Endocrinology & Metabolism 73, 1276-1280.
– reference: Hu, K., Meijer, J. H., Shea, S. A., Vanderleest, H. T., Pittman-Polletta, B., Houben, T., van Oosterhout, F., Deboer, T. & Scheer, F. A. (2012). Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions. PLoS ONE 7, e48927.
– reference: Teich, M. C., Heneghan, C., Lowen, S. B., Ozaki, T. & Kaplan, E. (1997). Fractal character of the neural spike train in the visual system of the cat. Journal of the Optical Society of America A: Optics, Image Science, and Vision 14, 529-546.
– reference: Beggs, J. M. & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience 23, 11167-11177.
– reference: Indic, P., Gurdziel, K., Kronauer, R. E. & Klerman, E. B. (2006). Development of a two-dimension manifold to represent high dimension mathematical models of the intracellular Mammalian circadian clock. Journal of Biological Rhythms 21, 222-232.
– reference: Sakamoto, K., Nagase, T., Fukui, H., Horikawa, K., Okada, T., Tanaka, H., Sato, K., Miyake, Y., Ohara, O., Kako, K. & Ishida, N. (1998). Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. Journal of Biological Chemistry 273, 27039-27042.
– reference: Stein, P. K., Domitrovich, P. P., Huikuri, H. V. & Kleiger, R. E. (2005). Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. Journal of Cardiovascular Electrophysiology 16, 13-20.
– reference: Otsuka, K., Cornelissen, G. & Halberg, F. (1997). Circadian rhythmic fractal scaling of heart rate variability in health and coronary artery disease. Clinical Cardiology 20, 631-638.
– reference: Smith, T. G. Jr., Lange, G. D. & Marks, W. B. (1996). Fractal methods and results in cellular morphology--dimensions, lacunarity and multifractals. Journal of Neuroscience Methods 69, 123-136.
– reference: Allegrini, P., Menicucci, D., Bedini, R., Fronzoni, L., Gemignani, A., Grigolini, P., West, B. J. & Paradisi, P. (2009). Spontaneous brain activity as a source of ideal 1/f noise. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 80, 061914.
– reference: Stanley, H. E. (1971). Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, London.
– reference: Kantelhardt, J. W., Ashkenazy, Y., Ivanov, P. C., Bunde, A., Havlin, S., Penzel, T., Peter, J. H. & Stanley, H. E. (2002). Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 65, 051908.
– reference: Yan, L., Silver, R. & Gorman, M. (2010). Reorganization of suprachiasmatic nucleus networks under 24-h LDLD conditions. Journal of Biological Rhythms 25, 19-27.
– reference: Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E. & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences of the United States of America 107, 3228-3233.
– reference: Peng, C. K., Havlin, S., Hausdorff, J. M., Mietus, J. E., Stanley, H. E. & Goldberger, A. L. (1995a). Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. Journal of Electrocardiology 28(Suppl), 59-65.
– reference: Bunde, A., Havlin, S., Kantelhardt, J. W., Penzel, T., Peter, J. H. & Voigt, K. (2000). Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Physical Review Letters 85, 3736-3739.
– reference: Makikallio, T. H., Huikuri, H. V., Hintze, U., Videbaek, R. D., Mitrani, R. D., Castellanos, A., Mayerburg, R. J. & Moller, M. (2001a). Fractal analysis and time-and-frequency domain measures of heart rate variability as predictors of mortality in patients with heart failure. American Journal of Cardiology 87, 178-182.
– volume: 22
  start-page: 209
  year: 2010
  end-page: 216
  article-title: Circadian timekeeping and multiple timescale neuroendocrine rhythms
  publication-title: Journal of Neuroendocrinology
– volume: 88
  start-page: 17
  year: 2001
  end-page: 22
  article-title: Fractal correlation properties of heart rate dynamics and adverse events in patients with implantable cardioverter‐defibrillators
  publication-title: American Journal of Cardiology
– volume: 24
  start-page: 340
  year: 2009
  end-page: 352
  article-title: Basis of robustness and resilience in the suprachiasmatic nucleus: individual neurons form nodes in circuits that cycle daily
  publication-title: Journal of Biological Rhythms
– volume: 65
  start-page: 051908
  year: 2002
  article-title: Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
– volume: 313
  start-page: 1315
  year: 1985
  end-page: 1322
  article-title: Circadian variation in the frequency of onset of acute myocardial infarction
  publication-title: New England Journal of Medicine
– volume: 30
  start-page: 683
  year: 2002
  end-page: 692
  article-title: Quantifying fractal dynamics of human respiration: age and gender effects
  publication-title: Annals of Biomedical Engineering
– volume: 165
  start-page: 175
  year: 2007
  end-page: 183
  article-title: Work characteristics and incidence of type 2 diabetes in women
  publication-title: American Journal of Epidemiology
– volume: 598
  start-page: 257
  year: 1992
  end-page: 263
  article-title: The relation between light‐induced discharge in the suprachiasmatic nucleus and phase shifts of hamster circadian rhythms
  publication-title: Brain Research
– volume: 59
  start-page: 381
  year: 1987
  end-page: 384
  article-title: Self‐organized criticality: an explanation of the 1/f noise
  publication-title: Physical Review Letters
– volume: 23
  start-page: 140
  year: 2008
  end-page: 149
  article-title: Reorganization of the suprachiasmatic nucleus coding for day length
  publication-title: Journal of Biological Rhythms
– volume: 14
  start-page: 697
  year: 1995
  end-page: 706
  article-title: Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms
  publication-title: Neuron
– volume: 107
  start-page: 3228
  year: 2010
  end-page: 3233
  article-title: Cross‐frequency coupling supports multi‐item working memory in the human hippocampus
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 12
  start-page: R644
  year: 2002
  article-title: Suprachiasmatic nucleus
  publication-title: Current Biology
– volume: 66
  start-page: 2357
  year: 2006
  end-page: 2370
  article-title: Shift work sleep disorder: burden of illness and approaches to management
  publication-title: Drugs
– volume: 63
  start-page: 451
  year: 2006
  end-page: 455
  article-title: A 12 year prospective study of circulatory disease among Danish shift workers
  publication-title: Occupational and Environmental Medicine
– volume: 92
  start-page: 3178
  year: 1995
  end-page: 3182
  article-title: Prospective study of shift work and risk of coronary heart disease in women
  publication-title: Circulation
– volume: 378
  start-page: 554
  year: 1995
  article-title: Phase‐transitions ‐ power laws and Universality
  publication-title: Nature
– volume: A318
  start-page: 453
  year: 2003
  end-page: 460
  article-title: Multifractality of cerebral blood flow
  publication-title: Physica
– volume: 136
  start-page: 551
  year: 2007
  end-page: 568
  article-title: The emergent coordination of cognitive function
  publication-title: Journal of Experimental Psychology: General
– volume: 22
  start-page: 97
  year: 2004
  end-page: 109
  article-title: Scale‐free dynamics of global functional connectivity in the human brain
  publication-title: Human Brain Mapping
– volume: 100
  start-page: 393
  year: 1999
  end-page: 399
  article-title: Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory
  publication-title: Circulation
– volume: 464
  start-page: 1025
  year: 2010
  end-page: 1028
  article-title: Catastrophic cascades of failures in interdependent networks
  publication-title: Nature
– year: 1990
– volume: 63
  start-page: 031912
  year: 2001
  article-title: Adaptive learning by extremal dynamics and negative feedback
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
– volume: 109
  start-page: E680
  year: 2012
  end-page: E689
  article-title: Suppressing cascades of load in interdependent networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 62
  start-page: 1822
  year: 2004
  end-page: 1826
  article-title: Heart rate dynamics predict poststroke mortality
  publication-title: Neurology
– volume: 97
  start-page: 2056
  year: 2004
  end-page: 2064
  article-title: Fractal fluctuations in human respiration
  publication-title: Journal of Applied Physiology
– volume: 28
  start-page: 59
  issue: Suppl
  year: 1995a
  end-page: 65
  article-title: Fractal mechanisms and heart rate dynamics. Long‐range correlations and their breakdown with disease
  publication-title: Journal of Electrocardiology
– volume: 251
  start-page: 599
  year: 1974
  end-page: 601
  article-title: 1/f noise with a low frequency white noise limit
  publication-title: Nature
– volume: 280
  start-page: H1391
  year: 2001
  end-page: H1399
  article-title: Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats
  publication-title: American Journal of Physiology: Heart and Circulatory Physiology
– volume: 60
  start-page: 801
  year: 1987
  end-page: 806
  article-title: Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study population
  publication-title: American Journal of Cardiology
– volume: 28
  start-page: 297
  year: 2009
  end-page: 318
  article-title: Theories and models for 1/f(beta) noise in human movement science
  publication-title: Human Movement Science
– volume: 14
  start-page: 2950
  year: 2000
  end-page: 2961
  article-title: Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
  publication-title: Genes and Development
– volume: 3
  start-page: 52
  year: 2012
  article-title: Cooperation‐induced topological complexity: a promising road to fault tolerance and hebbian learning
  publication-title: Frontiers in Physiology
– volume: 28
  start-page: 2457
  year: 2000
  end-page: 2464
  article-title: Biologically variable ventilation increases arterial oxygenation over that seen with positive end‐expiratory pressure alone in a porcine model of acute respiratory distress syndrome
  publication-title: Critical Care Medicine
– volume: 316
  start-page: 662
  year: 2002
  end-page: 670
  article-title: A stochastic model of human gait dynamics
  publication-title: Physica A‐Statistical Mechanics and Its Applications
– volume: 384
  start-page: 697
  year: 2003
  end-page: 709
  article-title: Cardiovascular control by the suprachiasmatic nucleus: neural and neuroendocrine mechanisms in human and rat
  publication-title: Biological Chemistry
– volume: 43
  start-page: 363
  year: 1998
  end-page: 368
  article-title: Stochastic feedback and the regulation of biological rhythms
  publication-title: Europhysics Letters
– volume: 104
  start-page: 1195
  year: 2010
  end-page: 1210
  article-title: Measuring phase‐amplitude coupling between neuronal oscillations of different frequencies
  publication-title: Journal of Neurophysiology
– volume: 216
  start-page: 588
  year: 1967
  end-page: 589
  article-title: Voltage fluctuations of neural membrane
  publication-title: Nature
– volume: 85
  start-page: 3736
  year: 2000
  end-page: 3739
  article-title: Correlated and uncorrelated regions in heart‐rate fluctuations during sleep
  publication-title: Physical Review Letters
– volume: 2
  start-page: 5
  year: 2012
  article-title: Managing heterogeneity in the study of neural oscillator dynamics
  publication-title: Journal of Mathematical Neuroscience
– volume: 49
  start-page: 1685
  year: 1994
  end-page: 1689
  article-title: Mosaic organization of DNA nucleotides
  publication-title: Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
– volume: 112
  start-page: 314
  year: 2005
  end-page: 319
  article-title: Physiological background of the loss of fractal heart rate dynamics
  publication-title: Circulation
– volume: 80
  start-page: 1448
  year: 1996
  end-page: 1457
  article-title: Fractal dynamics of human gait: stability of long‐range correlations in stride interval fluctuations
  publication-title: Journal of Applied Physiology
– volume: 111
  start-page: 103
  year: 1996
  end-page: 119
  article-title: Entrainment pathways and the functional organization of the circadian system
  publication-title: Progress in Brain Research
– volume: 367
  start-page: 175
  year: 2012
  end-page: 178
  article-title: Obesity and pharmacologic control of the body clock
  publication-title: New England Journal of Medicine
– volume: 916
  start-page: 172
  year: 2001
  end-page: 191
  article-title: Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections
  publication-title: Brain Research
– volume: 37
  start-page: 1395
  year: 2001b
  end-page: 1402
  article-title: Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects
  publication-title: Journal of the American College of Cardiology
– volume: D240
  start-page: 872
  year: 2011
  end-page: 881
  article-title: Dynamics of heterogeneous oscillator ensembles in terms of collective variables
  publication-title: Physica
– volume: 247
  start-page: 975
  year: 1990
  end-page: 978
  article-title: Transplanted suprachiasmatic nucleus determines circadian period
  publication-title: Science
– volume: 80
  start-page: 021110
  year: 2009
  article-title: Complexity and synchronization
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
– volume: 21
  start-page: 63
  year: 2004
  end-page: 72
  article-title: The colour of noise in short ecological time series data
  publication-title: Mathematical Medicine and Biology
– volume: 16
  start-page: 421
  year: 1989
  end-page: 439
  article-title: The effect of shift work on gastrointestinal (GI) function: a review
  publication-title: Chronobiologia
– volume: 2
  start-page: 89
  year: 1986
  end-page: 92
  article-title: Increased risk of ischaemic heart disease in shift workers
  publication-title: Lancet
– volume: 11
  start-page: 267
  year: 2007
  end-page: 269
  article-title: Cross‐frequency coupling between neuronal oscillations
  publication-title: Trends in Cognitive Science
– volume: 46
  start-page: 586
  year: 2004
  end-page: 598
  article-title: Relationship of work schedules to gastrointestinal diagnoses, symptoms, and medication use in auto factory workers
  publication-title: American Journal of Industrial Medicine
– volume: 1
  start-page: 445
  year: 2006
  end-page: 448
  article-title: Scale‐invariant aspects of cardiac dynamics across sleep stages and circadian phases
  publication-title: Conference Proceedings of the IEEE Engineering in Medicine and Biology Society
– volume: 3
  start-page: e68
  year: 2007
  article-title: Synchronization‐induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus
  publication-title: PLOS Computational Biology
– start-page: 2229
  year: 2012
  end-page: 2564
  article-title: Nonlinear fractal dynamics of human colonic pressure activity based upon the box‐counting method
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 48
  start-page: 594
  year: 1999b
  end-page: 600
  article-title: Sleep‐wake differences in scaling behavior of the human heartbeat: analysis of terrestrial and long‐term space flight data
  publication-title: Europhysics Letters
– volume: 79
  start-page: 041920
  year: 2009
  article-title: Levels of complexity in scale‐invariant neural signals
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
– volume: 69
  start-page: 123
  year: 1996
  end-page: 136
  article-title: Fractal methods and results in cellular morphology‐‐dimensions, lacunarity and multifractals
  publication-title: Journal of Neuroscience Methods
– volume: 19
  start-page: 56
  year: 1999
  end-page: 67
  article-title: Non‐linear cardiac dynamics and morning dip: an unsound circadian rhythm
  publication-title: Clinical Physiology
– volume: 82
  start-page: 262
  year: 1997
  end-page: 269
  article-title: Altered fractal dynamics of gait: reduced stride‐interval correlations with aging and Huntington's disease
  publication-title: Journal of Applied Physiology
– volume: 153
  start-page: 341
  year: 2006
  end-page: 360
  article-title: Organization of circadian functions: interaction with the body
  publication-title: Progress in Brain Research
– volume: 14
  start-page: 796
  year: 2004
  end-page: 800
  article-title: Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus
  publication-title: Current Biology
– volume: 448
  start-page: 273
  year: 2008
  end-page: 278
  article-title: Electrophysiological actions of orexins on rat suprachiasmatic neurons in vitro
  publication-title: Neuroscience Letters
– volume: 29
  start-page: 426
  year: 2009
  end-page: 435
  article-title: Nonlinear phase‐phase cross‐frequency coupling mediates communication between distant sites in human neocortex
  publication-title: Journal of Neuroscience
– volume: 16
  start-page: 552
  year: 2001
  end-page: 563
  article-title: Temporal reorganization of the suprachiasmatic nuclei in hamsters with split circadian rhythms
  publication-title: Journal of Biological Rhythms
– volume: 84
  start-page: 2529
  year: 2000
  end-page: 2532
  article-title: Highly optimized tolerance: robustness and design in complex systems
  publication-title: Physical Review Letters
– volume: 73
  start-page: 1276
  year: 1991
  end-page: 1280
  article-title: The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod)
  publication-title: The Journal of Clinical Endocrinology & Metabolism
– volume: 356
  start-page: 168
  year: 1992
  end-page: 170
  article-title: Long‐range correlations in nucleotide sequences
  publication-title: Nature
– volume: 22
  start-page: 5650
  year: 2009
  end-page: 5666
  article-title: Cross‐frequency coupling, skewness, and blocking in the Northern Hemisphere winter circulation
  publication-title: Journal of Climate
– volume: 45
  start-page: 185
  year: 1997
  end-page: 192
  article-title: Fractal analysis of surface EMG signals from the biceps
  publication-title: International Journal of Medical Informatics
– volume: 105
  start-page: 49
  year: 2011
  end-page: 57
  article-title: Quantifying phase‐amplitude coupling in neuronal network oscillations
  publication-title: Progress in Biophysics and Molecular Biology
– volume: 101
  start-page: 15551
  year: 2004
  end-page: 15555
  article-title: Emergence of complex dynamics in a simple model of signaling networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: 033123
  year: 2009
  article-title: Unraveling the fluctuations of animal motor activity
  publication-title: Chaos
– volume: 13
  start-page: 100
  year: 1998
  end-page: 112
  article-title: The suprachiasmatic nucleus: a 25‐year retrospective
  publication-title: Journal of Biological Rhythms
– volume: A302
  start-page: 138
  year: 2001
  end-page: 147
  article-title: When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations
  publication-title: Physica
– volume: 74
  start-page: 98
  year: 1992
  end-page: 110
  article-title: Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis
  publication-title: Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology
– volume: 23
  start-page: 11167
  year: 2003
  end-page: 11177
  article-title: Neuronal avalanches in neocortical circuits
  publication-title: Journal of Neuroscience
– volume: 76
  start-page: 161
  year: 2001
  end-page: 209
  article-title: Scale invariance in biology: coincidence or footprint of a universal mechanism?
  publication-title: Biological Reviews of the Cambridge Philosophical Society
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 40
  start-page: 308
  year: 2008
  end-page: 317
  article-title: Cross‐frequency phase synchronization: a brain mechanism of memory matching and attention
  publication-title: Neuroimage
– volume: 80
  start-page: 62
  year: 2008
  end-page: 68
  article-title: The circadian pacemaker generates similar circadian rhythms in the fractal structure of heart rate in humans and rats
  publication-title: Cardiovascular Research
– volume: 42
  start-page: 201
  year: 1972
  end-page: 206
  article-title: Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat
  publication-title: Brain Research
– volume: 212
  start-page: 183
  year: 2001
  end-page: 190
  article-title: Fractal dimensions and multifractility in vascular branching
  publication-title: Journal of Theoretical Biology
– volume: 166
  start-page: 133
  year: 2002
  end-page: 137
  article-title: Fluctuations and power laws in pulmonary physiology
  publication-title: American Journal of Respiratory and Critical Care Medicine
– volume: 80
  start-page: 061914
  year: 2009
  article-title: Spontaneous brain activity as a source of ideal 1/f noise
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
– volume: 20
  start-page: 631
  year: 1997
  end-page: 638
  article-title: Circadian rhythmic fractal scaling of heart rate variability in health and coronary artery disease
  publication-title: Clinical Cardiology
– volume: 2
  start-page: e721
  year: 2007
  article-title: Plasticity of the intrinsic period of the human circadian timing system
  publication-title: PLoS ONE
– volume: 18
  start-page: 339
  year: 2003
  end-page: 350
  article-title: Gates and oscillators: a network model of the brain clock
  publication-title: Journal of Biological Rhythms
– volume: 416
  start-page: 409
  year: 2002
  end-page: 413
  article-title: Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing
  publication-title: Nature
– volume: 109
  start-page: 1786
  year: 2010
  end-page: 1791
  article-title: Physiological complexity and system adaptability: evidence from postural control dynamics of older adults
  publication-title: Journal of Applied Physiology
– volume: 21
  start-page: 222
  year: 2006
  end-page: 232
  article-title: Development of a two‐dimension manifold to represent high dimension mathematical models of the intracellular Mammalian circadian clock
  publication-title: Journal of Biological Rhythms
– volume: 84
  start-page: 036708
  year: 2011
  article-title: Coarse graining the dynamics of heterogeneous oscillators in networks with spectral gaps
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
– volume: 106
  start-page: 4453
  year: 2009
  end-page: 4458
  article-title: Adverse metabolic and cardiovascular consequences of circadian misalignment
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 25
  start-page: 19
  year: 2010
  end-page: 27
  article-title: Reorganization of suprachiasmatic nucleus networks under 24‐h LDLD conditions
  publication-title: Journal of Biological Rhythms
– volume: 60
  start-page: 1412
  year: 1999
  end-page: 1427
  article-title: Highly optimized tolerance: a mechanism for power laws in designed systems
  publication-title: Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
– year: 2009
– volume: A336
  start-page: 585
  year: 2004
  end-page: 594
  article-title: Variance fluctuations in nonstationary time series: a comparative study of music genres
  publication-title: Physica
– volume: 83
  start-page: 051130
  year: 2011
  article-title: Transmission of information between complex systems: 1/f resonance
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
– volume: 30
  start-page: 27
  year: 2000
  end-page: 41
  article-title: Paths to self‐organized criticality
  publication-title: Brazilian Journal of Physics
– volume: 3
  start-page: 467
  year: 1996
  end-page: 471
  article-title: Complex systems
  publication-title: Proceedings of the American Thoracic Society
– volume: 101
  start-page: 18223
  year: 2004b
  end-page: 18227
  article-title: Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 288
  start-page: 682
  year: 2000
  end-page: 685
  article-title: Resetting central and peripheral circadian oscillators in transgenic rats
  publication-title: Science
– volume: 33
  start-page: 1851
  year: 2011
  end-page: 1865
  article-title: Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus
  publication-title: European Journal of Neuroscience
– volume: 101
  start-page: 264103
  year: 2008
  article-title: Partially integrable dynamics of hierarchical populations of coupled oscillators
  publication-title: Physical Review Letters
– volume: 149
  start-page: 508
  year: 2007
  end-page: 517
  article-title: The suprachiasmatic nucleus functions beyond circadian rhythm generation
  publication-title: Neuroscience
– volume: 22
  start-page: 211
  year: 2007
  end-page: 219
  article-title: Modeling the behavior of coupled cellular circadian oscillators in the suprachiasmatic nucleus
  publication-title: Journal of Biological Rhythms
– volume: 47
  start-page: 1236
  year: 2011
  end-page: 1242
  article-title: On influences of global and local cues on the rate of synchronization of oscillator networks
  publication-title: Automatica (Oxford)
– volume: 137
  start-page: 1285
  year: 2006
  end-page: 1297
  article-title: Complex organization of mouse and rat suprachiasmatic nucleus
  publication-title: Neuroscience
– volume: 102
  start-page: 2315
  year: 2007
  end-page: 2323
  article-title: Quantitative assessments of morphological and functional properties of biological trees based on their fractal nature
  publication-title: Journal of Applied Physiology
– volume: 273
  start-page: 27039
  year: 1998
  end-page: 27042
  article-title: Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain
  publication-title: Journal of Biological Chemistry
– volume: 1
  start-page: 12
  year: 2010a
  article-title: Fractal physiology and the fractional calculus: a perspective
  publication-title: Frontiers in Physiology
– volume: 58
  start-page: 747
  year: 2001
  end-page: 752
  article-title: Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people
  publication-title: Occupational and Environmental Medicine
– year: 1971
– volume: 85
  start-page: 461
  year: 2000
  end-page: 464
  article-title: Measuring information transfer
  publication-title: Physical Review Letters
– volume: 24
  start-page: 359
  year: 2001
  end-page: 375
  article-title: Fractal methods to analyze ion channel kinetics
  publication-title: Methods
– volume: 145
  start-page: 219
  year: 2005
  end-page: 233
  article-title: The independently fractal nature of respiration and heart rate during exercise under normobaric and hyperbaric conditions
  publication-title: Respiratory Physiology and Neurobiology
– year: 1994
– volume: 3
  start-page: 702
  year: 2012
  article-title: Network physiology reveals relations between network topology and physiological function
  publication-title: Nature Communications
– volume: 7
  start-page: e1002038
  year: 2011
  article-title: Neurobiologically realistic determinants of self‐organized criticality in networks of spiking neurons
  publication-title: PLOS Computational Biology
– volume: 6
  start-page: 427
  year: 2004
  end-page: 452
  article-title: Fractal analysis of the vascular tree in the human retina
  publication-title: Annual Review of Biomedical Engineering
– volume: 01
  start-page: P01013
  year: 2007
  article-title: Complex fluctuations and robustness in stylized signalling networks
  publication-title: Journal of Statistical Mechanics
– volume: 8
  start-page: 193
  year: 2001
  end-page: 196
  article-title: Self‐organized criticality: does it have anything to do with criticality and is it useful?
  publication-title: Nonlinear Processes in Geophysics
– year: 1982
– volume: 206
  start-page: 343
  year: 2000
  end-page: 353
  article-title: Hurst analysis applied to the study of single calcium‐activated potassium channel kinetics
  publication-title: Journal of Theoretical Biology
– volume: A337
  start-page: 307
  year: 2004a
  end-page: 318
  article-title: Non‐random fluctuations and multi‐scale dynamics regulation of human activity
  publication-title: Physica
– volume: 399
  start-page: 461
  year: 1999a
  end-page: 465
  article-title: Multifractality in human heartbeat dynamics
  publication-title: Nature
– volume: 8
  start-page: 267
  year: 2005
  end-page: 269
  article-title: Constant light desynchronizes mammalian clock neurons
  publication-title: Nature Neuroscience
– volume: 7
  start-page: 8
  year: 2009
  article-title: Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color
  publication-title: Journal of Circadian Rhythms
– volume: 7
  start-page: e48927
  year: 2012
  article-title: Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions
  publication-title: PLoS ONE
– volume: 191
  start-page: 1
  year: 1992
  end-page: 12
  article-title: Fractal landscapes in biological systems: long‐range correlations in DNA and interbeat heart intervals
  publication-title: Physica A
– volume: 70
  start-page: 1343
  year: 1993
  end-page: 1346
  article-title: Long‐range anticorrelations and non‐Gaussian behavior of the heartbeat
  publication-title: Physical Review Letters
– start-page: 307
  year: 2009
  end-page: 333
– volume: 19
  start-page: 026108
  year: 2009
  article-title: Understanding the complexity of human gait dynamics
  publication-title: Chaos
– volume: 54
  start-page: 2154
  year: 1996
  end-page: 2157
  article-title: Multiscaled randomness: a possible source of 1/f noise in biology
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
– volume: 9
  start-page: 399
  year: 1929
  end-page: 431
  article-title: Organization for physiological homeostasis
  publication-title: Physiological Reviews
– volume: 14
  start-page: 529
  year: 1997
  end-page: 546
  article-title: Fractal character of the neural spike train in the visual system of the cat
  publication-title: Journal of the Optical Society of America A: Optics, Image Science, and Vision
– volume: 438
  start-page: 667
  year: 2005
  end-page: 670
  article-title: Risk of severe asthma episodes predicted from fluctuation analysis of airway function
  publication-title: Nature
– volume: 71
  start-page: 1
  year: 1991
  end-page: 8
  article-title: Fractal perspectives in pulmonary physiology
  publication-title: Journal of Applied Physiology
– volume: 6
  start-page: e28489
  year: 2011
  article-title: Selective coupling between theta phase and neocortical fast gamma oscillations during REM‐sleep in mice
  publication-title: PLoS ONE
– volume: 69
  start-page: 1583
  year: 1972
  end-page: 1586
  article-title: Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 418
  start-page: 935
  year: 2002
  end-page: 941
  article-title: Coordination of circadian timing in mammals
  publication-title: Nature
– volume: 1
  start-page: 128
  year: 2010
  article-title: Fractal complexity in spontaneous EEG metastable‐state transitions: new vistas on integrated neural dynamics
  publication-title: Frontiers in Physiology
– volume: 25
  start-page: 37
  year: 2010
  end-page: 46
  article-title: Arrhythmic rats after SCN lesions and constant light differ in short time scale regulation of locomotor activity
  publication-title: Journal of Biological Rhythms
– volume: 66
  start-page: 353
  year: 2010
  end-page: 369
  article-title: The temporal structures and functional significance of scale‐free brain activity
  publication-title: Neuron
– volume: 105
  start-page: 20517
  year: 2008
  end-page: 20522
  article-title: Dynamic cross‐frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T‐maze task
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 116
  start-page: 770
  year: 1951
  end-page: 799
  article-title: Long‐term storage of reservoirs: an experimental study
  publication-title: Transactions of the American Society of Engineers
– volume: 80
  start-page: 779
  year: 1997
  end-page: 783
  article-title: Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction
  publication-title: American Journal of Cardiology
– volume: 1
  start-page: 1
  year: 2010b
  article-title: The wisdom of the body; a contemporary view
  publication-title: Frontiers in Physiology
– volume: 101
  start-page: 47
  year: 2000
  end-page: 53
  article-title: Fractal correlation properties of R‐R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction
  publication-title: Circulation
– volume: 45
  start-page: 167
  year: 2003
  end-page: 256
  article-title: The structure and function of complex networks
  publication-title: SIAM Review
– volume: 132
  start-page: 465
  year: 2005
  end-page: 477
  article-title: Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature
  publication-title: Neuroscience
– volume: 100
  start-page: 2079
  year: 1999
  end-page: 2084
  article-title: Altered complexity and correlation properties of R‐R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation
  publication-title: Circulation
– volume: 13
  start-page: 271
  year: 2003
  end-page: 277
  article-title: The mammalian circadian clock
  publication-title: Current Opinion in Genetics and Development
– start-page: 6526
  year: 2012
  end-page: 6529
  article-title: Discovering shared cardiovascular dynamics within a patient cohort
  publication-title: Conference Proceedings, IEEE Engineering in Medicine and Biology Society
– volume: 106
  start-page: 2490
  year: 2009
  end-page: 2494
  article-title: Reduction of scale invariance of activity fluctuations with aging and Alzheimer's disease: involvement of the circadian pacemaker
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 104
  start-page: 20702
  year: 2007
  end-page: 20707
  article-title: Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 6
  start-page: 269
  year: 2001
  end-page: 278
  article-title: Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus
  publication-title: Genes to Cells
– volume: 87
  start-page: 178
  year: 2001a
  end-page: 182
  article-title: Fractal analysis and time‐and‐frequency domain measures of heart rate variability as predictors of mortality in patients with heart failure
  publication-title: American Journal of Cardiology
– volume: 101
  start-page: 5339
  year: 2004
  end-page: 5346
  article-title: PERIOD2::LUCIFERASE real‐time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 224
  start-page: 63
  year: 2003
  end-page: 78
  article-title: Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self‐sustained oscillators
  publication-title: Journal of Theoretical Biology
– volume: 299
  start-page: 2642
  year: 2008
  end-page: 2655
  article-title: Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial
  publication-title: Journal of the American Medical Association
– volume: 86
  start-page: 6026
  year: 2001
  end-page: 6029
  article-title: Behavioral‐independent features of complex heartbeat dynamics
  publication-title: Physical Review Letters
– volume: 281
  start-page: 60
  year: 2000
  end-page: 68
  article-title: Scaling invariance and universality: organizing principles in complex systems
  publication-title: Physica A
– volume: 22
  start-page: 14
  year: 2007
  end-page: 25
  article-title: Gates and oscillators II: zeitgebers and the network model of the brain clock
  publication-title: Journal of Biological Rhythms
– volume: 6
  start-page: 744
  year: 2010
  end-page: 750
  article-title: Emergent complex neural dynamics
  publication-title: Nature Physics
– volume: 90
  start-page: 305
  year: 2003
  end-page: 316
  article-title: Self‐affine fractal variability of human heartbeat interval dynamics in health and disease
  publication-title: European Journal of Applied Physiology
– volume: 90
  start-page: 95
  year: 2001
  end-page: 101
  article-title: Heart rate variability in ischemic heart disease
  publication-title: Autonomic Neuroscience
– volume: 5
  start-page: 82
  year: 1995b
  end-page: 87
  article-title: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series
  publication-title: Chaos
– volume: 590
  start-page: 3035
  year: 2012
  end-page: 3045
  article-title: Human phase response curve to a 1 h pulse of bright white light
  publication-title: Journal of Physiology
– volume: 201
  start-page: 438
  year: 2011
  end-page: 443
  article-title: A critical note on the definition of phase‐amplitude cross‐frequency coupling
  publication-title: Journal of Neuroscience Methods
– volume: 16
  start-page: 13
  year: 2005
  end-page: 20
  article-title: Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction
  publication-title: Journal of Cardiovascular Electrophysiology
– volume: A99
  start-page: 2466
  year: 2002
  end-page: 2472
  article-title: Fractal dynamics in physiology: alterations with disease and aging
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 2
  start-page: 348
  year: 2006
  end-page: 352
  article-title: Optimal dynamical range of excitable networks at criticality
  publication-title: Nature Physics
– volume: 8
  start-page: 61
  year: 2005
  end-page: 66
  article-title: Electrical synapses coordinate activity in the suprachiasmatic nucleus
  publication-title: Nature Neuroscience
– volume: 66
  start-page: 062902
  year: 2002
  article-title: Correlation differences in heartbeat fluctuations during rest and exercise
  publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
– volume: 14
  start-page: 506
  year: 2010
  end-page: 515
  article-title: The functional role of cross‐frequency coupling
  publication-title: Trends in Cognitive Science
– volume: 62
  start-page: 1377
  year: 1999
  end-page: 1429
  article-title: Self‐organized criticality
  publication-title: Reports on Progress in Physics
– volume: 26
  start-page: 324
  year: 2011
  end-page: 334
  article-title: Scheduled food hastens re‐entrainment more than melatonin does after a 6‐h phase advance of the light‐dark cycle in rats
  publication-title: Journal of Biological Rhythms
– volume: 93
  start-page: 929
  year: 1998
  end-page: 937
  article-title: A serum shock induces circadian gene expression in mammalian tissue culture cells
  publication-title: Cell
– volume: 86
  start-page: 1900
  year: 2001
  end-page: 1903
  article-title: Magnitude and sign correlations in heartbeat fluctuations
  publication-title: Physical Review Letters
– volume: 90
  start-page: 1137
  year: 1999
  end-page: 1148
  article-title: Learning from mistakes
  publication-title: Neuroscience
– ident: e_1_2_9_19_1
  doi: 10.1007/978-1-4614-7572-9
– ident: e_1_2_9_5_1
  doi: 10.3389/fphys.2010.00128
– ident: e_1_2_9_121_1
  doi: 10.1114/1.1481053
– ident: e_1_2_9_166_1
  doi: 10.1088/0034-4885/62/10/201
– ident: e_1_2_9_40_1
  doi: 10.1523/JNEUROSCI.3688-08.2009
– ident: e_1_2_9_143_1
  doi: 10.1038/251599a0
– ident: e_1_2_9_172_1
  doi: 10.1016/j.automatica.2011.01.074
– ident: e_1_2_9_136_1
  doi: 10.1063/1.3143035
– ident: e_1_2_9_70_1
  doi: 10.1109/IEMBS.2006.259760
– ident: e_1_2_9_55_1
  doi: 10.1152/jappl.1996.80.5.1448
– ident: e_1_2_9_43_1
  doi: 10.1152/japplphysiol.00657.2004
– ident: e_1_2_9_129_1
  doi: 10.1038/nature00965
– ident: e_1_2_9_15_1
  doi: 10.1103/PhysRevE.63.031912
– ident: e_1_2_9_91_1
  doi: 10.1016/S0002-9149(00)01312-6
– ident: e_1_2_9_33_1
  doi: 10.1103/PhysRevLett.84.2529
– ident: e_1_2_9_17_1
  doi: 10.1016/S0092-8674(00)81199-X
– ident: e_1_2_9_111_1
  doi: 10.1038/nn1395
– ident: e_1_2_9_137_1
  doi: 10.1073/pnas.0808180106
– ident: e_1_2_9_92_1
  doi: 10.1016/S0735-1097(01)01171-8
– ident: e_1_2_9_133_1
  doi: 10.1016/0030-4220(92)90222-C
– ident: e_1_2_9_77_1
  doi: 10.1016/j.tics.2007.05.003
– ident: e_1_2_9_32_1
  doi: 10.1103/PhysRevE.60.1412
– ident: e_1_2_9_113_1
  doi: 10.1002/clc.4960200710
– ident: e_1_2_9_135_1
  doi: 10.1016/j.neuroimage.2007.11.032
– ident: e_1_2_9_161_1
  doi: 10.1073/pnas.0810524105
– ident: e_1_2_9_162_1
  doi: 10.1136/oem.2006.026716
– ident: e_1_2_9_83_1
  doi: 10.1037/0096-3445.136.4.551
– ident: e_1_2_9_76_1
  doi: 10.1016/j.physa.2003.12.049
– ident: e_1_2_9_179_1
  doi: 10.1016/j.resp.2004.07.010
– ident: e_1_2_9_11_1
  doi: 10.1103/PhysRevE.83.051130
– ident: e_1_2_9_30_1
  doi: 10.1016/j.tics.2010.09.001
– ident: e_1_2_9_45_1
  doi: 10.1038/nature04176
– ident: e_1_2_9_18_1
  doi: 10.1038/ncomms1705
– start-page: 6526
  year: 2012
  ident: e_1_2_9_108_1
  article-title: Discovering shared cardiovascular dynamics within a patient cohort
  publication-title: Conference Proceedings, IEEE Engineering in Medicine and Biology Society
– ident: e_1_2_9_165_1
  doi: 10.1103/PhysRevE.80.021110
– ident: e_1_2_9_124_1
  doi: 10.1103/PhysRevLett.101.264103
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neulet.2008.10.058
– ident: e_1_2_9_34_1
  doi: 10.1002/ajim.20099
– ident: e_1_2_9_38_1
  doi: 10.1137/070710111
– ident: e_1_2_9_52_1
  doi: 10.1016/S0378-4371(01)00460-5
– ident: e_1_2_9_72_1
  doi: 10.1209/epl/i1999-00525-0
– ident: e_1_2_9_79_1
  doi: 10.1103/PhysRevE.65.051908
– ident: e_1_2_9_10_1
  doi: 10.1177/0748730406296319
– ident: e_1_2_9_145_1
  doi: 10.1016/S0960-9822(02)01155-7
– ident: e_1_2_9_9_1
  doi: 10.1177/0748730403253840
– ident: e_1_2_9_37_1
  doi: 10.1177/0748730409352843
– ident: e_1_2_9_56_1
  doi: 10.1016/j.neuron.2010.04.020
– ident: e_1_2_9_4_1
  doi: 10.1103/PhysRevE.80.061914
– volume-title: The Fractal Geometry of Nature
  year: 1982
  ident: e_1_2_9_95_1
– ident: e_1_2_9_21_1
  doi: 10.1371/journal.pcbi.0030068
– ident: e_1_2_9_102_1
  doi: 10.1016/S0079-6123(08)60403-3
– ident: e_1_2_9_164_1
  doi: 10.3389/fphys.2012.00052
– ident: e_1_2_9_67_1
  doi: 10.1016/j.cub.2004.04.034
– ident: e_1_2_9_84_1
  doi: 10.1038/nphys289
– ident: e_1_2_9_96_1
  doi: 10.1152/japplphysiol.00390.2010
– ident: e_1_2_9_139_1
  doi: 10.1016/j.neuroscience.2004.12.012
– ident: e_1_2_9_81_1
  doi: 10.1136/oem.58.11.747
– ident: e_1_2_9_110_1
  doi: 10.1103/PhysRevLett.86.6026
– ident: e_1_2_9_112_1
  doi: 10.1016/j.pbiomolbio.2010.09.007
– ident: e_1_2_9_57_1
  doi: 10.1073/pnas.79.8.2554
– ident: e_1_2_9_119_1
  doi: 10.1063/1.166141
– ident: e_1_2_9_97_1
  doi: 10.1146/annurev.bioeng.6.040803.140100
– ident: e_1_2_9_49_1
  doi: 10.1177/074873001129002240
– ident: e_1_2_9_26_1
  doi: 10.1038/nature08932
– ident: e_1_2_9_85_1
  doi: 10.1016/S0140-6736(86)91619-3
– volume: 71
  start-page: 1
  year: 1991
  ident: e_1_2_9_99_1
  article-title: Fractal perspectives in pulmonary physiology
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.1991.71.1.1
– ident: e_1_2_9_159_1
  doi: 10.1016/j.humov.2009.01.001
– ident: e_1_2_9_180_1
  doi: 10.1016/S0378-4371(02)01377-8
– ident: e_1_2_9_89_1
  doi: 10.1006/meth.2001.1206
– ident: e_1_2_9_176_1
  doi: 10.1142/1025
– ident: e_1_2_9_94_1
  doi: 10.1016/S0002-9149(97)00516-X
– ident: e_1_2_9_16_1
  doi: 10.1103/PhysRevLett.59.381
– ident: e_1_2_9_187_1
  doi: 10.1006/jtbi.2001.2367
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1365-2826.2010.01955.x
– ident: e_1_2_9_42_1
  doi: 10.1590/S0103-97332000000100004
– ident: e_1_2_9_63_1
  doi: 10.1073/pnas.0806087106
– volume: 116
  start-page: 770
  year: 1951
  ident: e_1_2_9_66_1
  article-title: Long‐term storage of reservoirs: an experimental study
  publication-title: Transactions of the American Society of Engineers
  doi: 10.1061/TACEAT.0006518
– ident: e_1_2_9_130_1
  doi: 10.1001/jama.299.22.2642
– ident: e_1_2_9_175_1
  doi: 10.1016/0896-6273(95)90214-7
– ident: e_1_2_9_184_1
  doi: 10.1177/0748730409352054
– ident: e_1_2_9_128_1
  doi: 10.1175/2009JCLI2669.1
– ident: e_1_2_9_170_1
  doi: 10.1038/216588a0
– ident: e_1_2_9_73_1
  doi: 10.1073/pnas.0709957104
– ident: e_1_2_9_107_1
  doi: 10.1177/0748730408314572
– ident: e_1_2_9_147_1
  doi: 10.1056/NEJMcibr1204644
– ident: e_1_2_9_87_1
  doi: 10.1016/S0022-5193(03)00141-3
– ident: e_1_2_9_116_1
  doi: 10.1038/356168a0
– ident: e_1_2_9_152_1
  doi: 10.1016/S0378-4371(00)00195-3
– ident: e_1_2_9_25_1
  doi: 10.1016/S0079-6123(06)53020-1
– ident: e_1_2_9_48_1
  doi: 10.1073/pnas.012579499
– ident: e_1_2_9_101_1
  doi: 10.1007/s00421-003-0915-2
– ident: e_1_2_9_158_1
  doi: 10.1364/JOSAA.14.000529
– ident: e_1_2_9_138_1
  doi: 10.1515/BC.2003.078
– ident: e_1_2_9_167_1
  doi: 10.5194/npg-8-193-2001
– ident: e_1_2_9_47_1
  doi: 10.1513/pats.200603-028MS
– ident: e_1_2_9_104_1
  doi: 10.1016/j.neuroscience.2005.10.030
– ident: e_1_2_9_151_1
  doi: 10.1038/378554a0
– ident: e_1_2_9_154_1
  doi: 10.1046/j.1540-8167.2005.04358.x
– ident: e_1_2_9_12_1
  doi: 10.1016/S0378-4371(02)01453-X
– ident: e_1_2_9_131_1
  doi: 10.1093/imammb/21.1.63
– ident: e_1_2_9_86_1
  doi: 10.1093/aje/kwj355
– ident: e_1_2_9_173_1
  doi: 10.1177/074873098128999952
– ident: e_1_2_9_7_1
  doi: 10.1177/0748730411409715
– ident: e_1_2_9_14_1
  doi: 10.1073/pnas.0911531107
– ident: e_1_2_9_3_1
  doi: 10.1016/S0959-437X(03)00055-8
– ident: e_1_2_9_134_1
  doi: 10.1074/jbc.273.42.27039
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1460-9568.2011.07682.x
– ident: e_1_2_9_118_1
  doi: 10.1016/S0022-0736(95)80017-4
– ident: e_1_2_9_6_1
  doi: 10.1073/pnas.0404843101
– ident: e_1_2_9_109_1
  doi: 10.1137/S003614450342480
– ident: e_1_2_9_78_1
  doi: 10.1152/japplphysiol.00856.2006
– ident: e_1_2_9_46_1
  doi: 10.1017/S1464793101005607
– ident: e_1_2_9_171_1
  doi: 10.1161/01.CIR.100.20.2079
– ident: e_1_2_9_54_1
  doi: 10.1103/PhysRevE.54.2154
– ident: e_1_2_9_53_1
  doi: 10.1152/jappl.1997.82.1.262
– ident: e_1_2_9_126_1
  doi: 10.1103/PhysRevE.84.036708
– ident: e_1_2_9_148_1
  doi: 10.1016/S0165-0270(96)00080-5
– ident: e_1_2_9_181_1
  doi: 10.1016/0002-9149(87)91027-7
– ident: e_1_2_9_2_1
  doi: 10.1016/S0006-8993(01)02890-6
– ident: e_1_2_9_157_1
  doi: 10.1164/rccm.200202-152PP
– ident: e_1_2_9_186_1
  doi: 10.1046/j.1365-2281.1999.00146.x
– ident: e_1_2_9_90_1
  doi: 10.1038/nn1361
– ident: e_1_2_9_103_1
  doi: 10.1016/0006-8993(72)90054-6
– ident: e_1_2_9_117_1
  doi: 10.1103/PhysRevE.49.1685
– ident: e_1_2_9_100_1
  doi: 10.1016/0006-8993(92)90191-B
– ident: e_1_2_9_177_1
  doi: 10.3389/fphys.2010.00012
– ident: e_1_2_9_144_1
  doi: 10.1103/PhysRevLett.85.461
– ident: e_1_2_9_106_1
  doi: 10.1097/00003246-200007000-00045
– ident: e_1_2_9_29_1
  doi: 10.1152/physrev.1929.9.3.399
– ident: e_1_2_9_75_1
  doi: 10.1209/epl/i1998-00366-3
– ident: e_1_2_9_178_1
  doi: 10.3389/fphys.2010.00001
– ident: e_1_2_9_88_1
  doi: 10.1186/2190-8567-2-5
– ident: e_1_2_9_28_1
  doi: 10.1177/0748730409344800
– ident: e_1_2_9_35_1
  doi: 10.1038/nphys1803
– ident: e_1_2_9_50_1
  doi: 10.1016/S1386-5056(97)00029-4
– ident: e_1_2_9_105_1
  doi: 10.1056/NEJM198511213132103
– ident: e_1_2_9_98_1
  doi: 10.1038/416409a
– ident: e_1_2_9_59_1
  doi: 10.1073/pnas.0408243101
– ident: e_1_2_9_68_1
  doi: 10.1177/0748730406287357
– ident: e_1_2_9_149_1
  doi: 10.1002/hbm.20016
– ident: e_1_2_9_80_1
  doi: 10.1103/PhysRevE.66.062902
– ident: e_1_2_9_60_1
  doi: 10.1371/journal.pone.0048927
– ident: e_1_2_9_182_1
  doi: 10.1126/science.288.5466.682
– ident: e_1_2_9_24_1
  doi: 10.1073/pnas.1110586109
– ident: e_1_2_9_174_1
  doi: 10.1210/jcem-73-6-1276
– ident: e_1_2_9_185_1
  doi: 10.1073/pnas.0308709101
– ident: e_1_2_9_127_1
  doi: 10.1126/science.2305266
– ident: e_1_2_9_31_1
  doi: 10.1186/1740-3391-7-8
– ident: e_1_2_9_142_1
  doi: 10.1371/journal.pone.0028489
– ident: e_1_2_9_39_1
  doi: 10.1101/gad.183500
– ident: e_1_2_9_64_1
  doi: 10.1016/S1566-0702(01)00273-9
– ident: e_1_2_9_123_1
  doi: 10.1161/01.CIR.100.4.393
– ident: e_1_2_9_51_1
  doi: 10.1046/j.1365-2443.2001.00419.x
– ident: e_1_2_9_163_1
  doi: 10.1161/CIRCULATIONAHA.104.523712
– ident: e_1_2_9_36_1
  doi: 10.1016/S0306-4522(98)00472-2
– ident: e_1_2_9_114_1
  doi: 10.1016/j.jneumeth.2011.08.014
– volume: 240
  start-page: 872
  year: 2011
  ident: e_1_2_9_125_1
  article-title: Dynamics of heterogeneous oscillator ensembles in terms of collective variables
  publication-title: Physica
– ident: e_1_2_9_122_1
  doi: 10.1016/S0002-9149(01)01578-8
– ident: e_1_2_9_168_1
  doi: 10.1006/jtbi.2000.2131
– ident: e_1_2_9_82_1
  doi: 10.1161/01.CIR.92.11.3178
– ident: e_1_2_9_140_1
  doi: 10.1152/ajpheart.2001.280.3.H1391
– volume: 16
  start-page: 421
  year: 1989
  ident: e_1_2_9_169_1
  article-title: The effect of shift work on gastrointestinal (GI) function: a review
  publication-title: Chronobiologia
– ident: e_1_2_9_13_1
  doi: 10.1103/PhysRevLett.86.1900
– ident: e_1_2_9_65_1
  doi: 10.1161/01.CIR.101.1.47
– ident: e_1_2_9_120_1
  doi: 10.1103/PhysRevLett.70.1343
– ident: e_1_2_9_155_1
  doi: 10.1073/pnas.69.6.1583
– ident: e_1_2_9_141_1
  doi: 10.1371/journal.pone.0000721
– ident: e_1_2_9_146_1
  doi: 10.2165/00003495-200666180-00007
– ident: e_1_2_9_20_1
  doi: 10.1523/JNEUROSCI.23-35-11167.2003
– ident: e_1_2_9_62_1
  doi: 10.1016/j.neuroscience.2007.03.058
– ident: e_1_2_9_93_1
  doi: 10.1212/01.WNL.0000125190.10967.D5
– ident: e_1_2_9_8_1
  doi: 10.1063/1.3211189
– ident: e_1_2_9_69_1
  doi: 10.1177/0748730407301238
– ident: e_1_2_9_61_1
  doi: 10.1093/cvr/cvn150
– start-page: 2229
  year: 2012
  ident: e_1_2_9_183_1
  article-title: Nonlinear fractal dynamics of human colonic pressure activity based upon the box‐counting method
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 01
  start-page: P01013
  year: 2007
  ident: e_1_2_9_41_1
  article-title: Complex fluctuations and robustness in stylized signalling networks
  publication-title: Journal of Statistical Mechanics
– ident: e_1_2_9_132_1
  doi: 10.1371/journal.pcbi.1002038
– ident: e_1_2_9_153_1
  doi: 10.1016/0378-4371(92)90497-E
– ident: e_1_2_9_115_1
  doi: 10.1007/978-3-540-89506-0_15
– ident: e_1_2_9_156_1
  doi: 10.1113/jphysiol.2012.227892
– ident: e_1_2_9_27_1
  doi: 10.1103/PhysRevLett.85.3736
– ident: e_1_2_9_71_1
  doi: 10.1038/20924
– volume-title: Introduction to Phase Transitions and Critical Phenomena
  year: 1971
  ident: e_1_2_9_150_1
– ident: e_1_2_9_58_1
  doi: 10.1016/j.physa.2004.01.042
– ident: e_1_2_9_74_1
  doi: 10.1103/PhysRevE.79.041920
– ident: e_1_2_9_160_1
  doi: 10.1152/jn.00106.2010
– reference: 17946835 - Conf Proc IEEE Eng Med Biol Soc. 2006;1:445-8
– reference: 16876585 - Prog Brain Res. 2006;153:341-60
– reference: 1486487 - Brain Res. 1992 Dec 11;598(1-2):257-63
– reference: 16319891 - Nature. 2005 Dec 1;438(7068):667-70
– reference: 17999570 - J Exp Psychol Gen. 2007 Nov;136(4):551-68
– reference: 11875196 - Proc Natl Acad Sci U S A. 2002 Feb 19;99 Suppl 1:2466-72
– reference: 7718233 - Neuron. 1995 Apr;14(4):697-706
– reference: 22355144 - Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):E680-9
– reference: 9965304 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Aug;54(2):2154-2157
– reference: 20070481 - J Neuroendocrinol. 2010 Mar;22(3):209-16
– reference: 22658163 - J Math Neurosci. 2012 Mar 14;2(1):5
– reference: 18973790 - Neurosci Lett. 2008 Dec 31;448(3):273-8
– reference: 19144842 - J Neurosci. 2009 Jan 14;29(2):426-35
– reference: 7586301 - Circulation. 1995 Dec 1;92(11):3178-82
– reference: 14657176 - J Neurosci. 2003 Dec 3;23(35):11167-77
– reference: 11537103 - Physica A. 1992 Dec 15;191(1-4):1-12
– reference: 15065739 - Math Med Biol. 2004 Mar;21(1):63-72
– reference: 20932795 - Trends Cogn Sci. 2010 Nov;14(11):506-15
– reference: 22547633 - J Physiol. 2012 Jul 1;590(Pt 13):3035-45
– reference: 11466001 - Methods. 2001 Aug;24(4):359-75
– reference: 20947715 - J Appl Physiol (1985). 2010 Dec;109(6):1786-91
– reference: 2865677 - N Engl J Med. 1985 Nov 21;313(21):1315-22
– reference: 15505227 - Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15551-5
– reference: 10618303 - Circulation. 2000 Jan 4-11;101(1):47-53
– reference: 15705537 - Respir Physiol Neurobiol. 2005 Feb 15;145(2-3):219-33
– reference: 12817466 - Biol Chem. 2003 May;384(5):697-709
– reference: 15759365 - Physica A. 2004 Jun;337(1-2):307-18
– reference: 12513330 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 1):062902
– reference: 19202078 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2490-4
– reference: 10035754 - Phys Rev Lett. 1987 Jul 27;59(4):381-384
– reference: 15611476 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18223-7
– reference: 20133762 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33
– reference: 10988020 - J Theor Biol. 2000 Oct 7;206(3):343-53
– reference: 10365957 - Nature. 1999 Jun 3;399(6735):461-5
– reference: 10784453 - Science. 2000 Apr 28;288(5466):682-5
– reference: 10991308 - Phys Rev Lett. 2000 Jul 10;85(2):461-4
– reference: 2873389 - Lancet. 1986 Jul 12;2(8498):89-92
– reference: 15108297 - Hum Brain Mapp. 2004 Jun;22(2):97-109
– reference: 18093917 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20702-7
– reference: 11300452 - J Am Coll Cardiol. 2001 Apr;37(5):1395-402
– reference: 19566268 - Chaos. 2009 Jun;19(2):026108
– reference: 21775291 - J Biol Rhythms. 2011 Aug;26(4):324-34
– reference: 6953413 - Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8
– reference: 19437642 - Phys Rev Lett. 2008 Dec 31;101(26):264103
– reference: 19518269 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 1):041920
– reference: 10921579 - Crit Care Med. 2000 Jul;28(7):2457-64
– reference: 16921107 - Proc Am Thorac Soc. 2006 Aug;3(6):467-71
– reference: 21673863 - PLoS Comput Biol. 2011 Jun;7(6):e1002038
– reference: 8990910 - Prog Brain Res. 1996;111:103-19
– reference: 2697524 - Chronobiologia. 1989 Oct-Dec;16(4):421-39
– reference: 17684566 - PLoS One. 2007;2(8):e721
– reference: 8946315 - J Neurosci Methods. 1996 Nov;69(2):123-36
– reference: 5047187 - Brain Res. 1972 Jul 13;42(1):201-6
– reference: 15551368 - Am J Ind Med. 2004 Dec;46(6):586-98
– reference: 8656130 - J Electrocardiol. 1995;28 Suppl:59-65
– reference: 17229921 - J Biol Rhythms. 2007 Feb;22(1):14-25
– reference: 1508517 - Oral Surg Oral Med Oral Pathol. 1992 Jul;74(1):98-110
– reference: 17432930 - PLoS Comput Biol. 2007 Apr 13;3(4):e68
– reference: 1917729 - J Appl Physiol (1985). 1991 Jul;71(1):1-8
– reference: 15159485 - Neurology. 2004 May 25;62(10):1822-6
– reference: 12033228 - Physica A. 2001 Dec 15;302(1-4):138-47
– reference: 9220180 - Clin Cardiol. 1997 Jul;20(7):631-8
– reference: 19615064 - J Circadian Rhythms. 2009 Jul 17;7:8
– reference: 16731662 - J Biol Rhythms. 2006 Jun;21(3):222-32
– reference: 15580271 - Nat Neurosci. 2005 Jan;8(1):61-6
– reference: 11290277 - Phys Rev Lett. 2001 Feb 26;86(9):1900-3
– reference: 11538314 - Chaos. 1995;5(1):82-7
– reference: 11308683 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Mar;63(3 Pt 1):031912
– reference: 10562264 - Circulation. 1999 Nov 16;100(20):2079-84
– reference: 20463205 - J Neurophysiol. 2010 Aug;104(2):1195-210
– reference: 10054352 - Phys Rev Lett. 1993 Mar 1;70(9):1343-6
– reference: 9961383 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Feb;49(2):1685-9
– reference: 11531384 - J Theor Biol. 2001 Sep 21;212(2):183-90
– reference: 22163023 - PLoS One. 2011;6(12):e28489
– reference: 22292564 - Comput Methods Biomech Biomed Engin. 2013;16(6):660-8
– reference: 20869387 - Prog Biophys Mol Biol. 2011 Mar;105(1-2):49-57
– reference: 9635423 - Cell. 1998 Jun 12;93(6):929-37
– reference: 9058948 - J Opt Soc Am A Opt Image Sci Vis. 1997 Mar;14(3):529-46
– reference: 19074268 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20517-22
– reference: 12361580 - Curr Biol. 2002 Oct 1;12(19):R644
– reference: 21488990 - Eur J Neurosci. 2011 May;33(10):1851-65
– reference: 18178105 - Neuroimage. 2008 Mar 1;40(1):308-17
– reference: 11919626 - Nature. 2002 Mar 28;416(6879):409-13
– reference: 22060530 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036708
– reference: 17920204 - Neuroscience. 2007 Nov 9;149(3):508-17
– reference: 20471349 - Neuron. 2010 May 13;66(3):353-69
– reference: 12900204 - J Theor Biol. 2003 Sep 7;224(1):63-78
– reference: 1301010 - Nature. 1992 Mar 12;356(6365):168-70
– reference: 21728513 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051130
– reference: 3661393 - Am J Cardiol. 1987 Oct 1;60(10):801-6
– reference: 11114885 - Genes Dev. 2000 Dec 1;14(23):2950-61
– reference: 16009791 - Circulation. 2005 Jul 19;112(3):314-9
– reference: 18375863 - J Biol Rhythms. 2008 Apr;23(2):140-9
– reference: 11760013 - J Biol Rhythms. 2001 Dec;16(6):552-63
– reference: 11396846 - Biol Rev Camb Philos Soc. 2001 May;76(2):161-209
– reference: 20075297 - J Biol Rhythms. 2010 Feb;25(1):19-27
– reference: 11423052 - Am J Cardiol. 2001 Jul 1;88(1):17-22
– reference: 15673380 - J Cardiovasc Electrophysiol. 2005 Jan;16(1):13-20
– reference: 12059594 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051908
– reference: 21423355 - Front Physiol. 2010 Oct 14;1:12
– reference: 10338284 - Neuroscience. 1999;90(4):1137-48
– reference: 18544724 - JAMA. 2008 Jun 11;299(22):2642-55
– reference: 9029225 - J Appl Physiol (1985). 1997 Jan;82(1):262-9
– reference: 22426223 - Nat Commun. 2012;3:702
– reference: 12787789 - Curr Opin Genet Dev. 2003 Jun;13(3):271-7
– reference: 11542723 - Europhys Lett. 1998 Aug 15;43(4):363-8
– reference: 10421600 - Circulation. 1999 Jul 27;100(4):393-9
– reference: 11542917 - Europhys Lett. 1999 Dec 1;48(5):594-600
– reference: 12119222 - Am J Respir Crit Care Med. 2002 Jul 15;166(2):133-7
– reference: 11415420 - Phys Rev Lett. 2001 Jun 25;86(26 Pt 1):6026-9
– reference: 17181377 - Drugs. 2006;66(18):2357-70
– reference: 17548233 - Trends Cogn Sci. 2007 Jul;11(7):267-9
– reference: 9765215 - J Biol Chem. 1998 Oct 16;273(42):27039-42
– reference: 11179089 - Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H1391-9
– reference: 11260270 - Genes Cells. 2001 Mar;6(3):269-78
– reference: 12198538 - Nature. 2002 Aug 29;418(6901):935-41
– reference: 17517911 - J Biol Rhythms. 2007 Jun;22(3):211-9
– reference: 15802197 - Neuroscience. 2005;132(2):465-77
– reference: 11600731 - Occup Environ Med. 2001 Nov;58(11):747-52
– reference: 19403189 - Hum Mov Sci. 2009 Jun;28(3):297-318
– reference: 18539630 - Cardiovasc Res. 2008 Oct 1;80(1):62-8
– reference: 11030994 - Phys Rev Lett. 2000 Oct 23;85(17):3736-9
– reference: 19755580 - J Biol Rhythms. 2009 Oct;24(5):340-52
– reference: 14963227 - Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5339-46
– reference: 12942331 - Eur J Appl Physiol. 2003 Oct;90(3-4):305-16
– reference: 11018927 - Phys Rev Lett. 2000 Mar 13;84(11):2529-32
– reference: 2305266 - Science. 1990 Feb 23;247(4945):975-8
– reference: 20075299 - J Biol Rhythms. 2010 Feb;25(1):37-46
– reference: 11969901 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Aug;60(2 Pt A):1412-27
– reference: 17071844 - Am J Epidemiol. 2007 Jan 15;165(2):175-83
– reference: 12932086 - J Biol Rhythms. 2003 Aug;18(4):339-50
– reference: 16338081 - Neuroscience. 2006;137(4):1285-97
– reference: 20365197 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 1):061914
– reference: 12108842 - Ann Biomed Eng. 2002 May;30(5):683-92
– reference: 21423370 - Front Physiol. 2010 Sep 15;1:128
– reference: 21607201 - Automatica (Oxf). 2011 Jun 1;47(6):1236-1242
– reference: 16735480 - Occup Environ Med. 2006 Jul;63(7):451-5
– reference: 5583506 - Nature. 1967 Nov 11;216(5115):588-9
– reference: 11597605 - Brain Res. 2001 Oct 19;916(1-2):172-91
– reference: 11485298 - Auton Neurosci. 2001 Jul 20;90(1-2):95-101
– reference: 4556464 - Proc Natl Acad Sci U S A. 1972 Jun;69(6):1583-6
– reference: 15120072 - Curr Biol. 2004 May 4;14(9):796-800
– reference: 9554572 - J Biol Rhythms. 1998 Apr;13(2):100-12
– reference: 1955509 - J Clin Endocrinol Metab. 1991 Dec;73(6):1276-80
– reference: 11152835 - Am J Cardiol. 2001 Jan 15;87(2):178-82
– reference: 9315590 - Am J Cardiol. 1997 Sep 15;80(6):779-83
– reference: 19792003 - Chaos. 2009 Sep;19(3):033123
– reference: 23367424 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6526-9
– reference: 19792080 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021110
– reference: 15286051 - J Appl Physiol (1985). 2004 Dec;97(6):2056-64
– reference: 17347385 - J Appl Physiol (1985). 2007 Jun;102(6):2315-23
– reference: 8727526 - J Appl Physiol (1985). 1996 May;80(5):1448-57
– reference: 21871489 - J Neurosci Methods. 2011 Oct 15;201(2):438-43
– reference: 19255424 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4453-8
– reference: 15746913 - Nat Neurosci. 2005 Mar;8(3):267-9
– reference: 10068867 - Clin Physiol. 1999 Jan;19(1):56-67
– reference: 22438845 - Front Physiol. 2012 Mar 16;3:52
– reference: 21522484 - Front Physiol. 2010 Apr 23;1:1
– reference: 20393559 - Nature. 2010 Apr 15;464(7291):1025-8
– reference: 9291030 - Int J Med Inform. 1997 Jul;45(3):185-92
– reference: 15255776 - Annu Rev Biomed Eng. 2004;6:427-52
SSID ssj0014663
Score 2.3108742
SecondaryResourceType review_article
Snippet ABSTRACT Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations –...
Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations – similar...
Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar...
Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations -- similar...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 873
SubjectTerms Adaptability
Animals
Biological Clocks - physiology
Biology
Central Nervous System - physiology
circadian biology
Circadian rhythm
Circadian rhythms
Fluctuations
fractal fluctuations
fractal physiology
Fractals
Heart rate
Neurophysiology
nonlinear dynamics
Pathology
physiological control
Physiology
scale-invariance
spontaneous motor activity
suprachiasmatic nucleus
Title The role of the circadian system in fractal neurophysiological control
URI https://api.istex.fr/ark:/67375/WNG-V8RQ2G4L-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbrv.12032
https://www.ncbi.nlm.nih.gov/pubmed/23573942
https://www.proquest.com/docview/1441081417
https://www.proquest.com/docview/1443416876
https://pubmed.ncbi.nlm.nih.gov/PMC3766492
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KRfDF74-rVaKI9GWPy2ayH_ik4rWIFjxs7YMQNtkEj8peud6J-tc7k_2gpxXEp13IZHeTzEx-yU5-A_CsyKyVk7pMJPpJgoUOZHOFTGTutXW11Hnc0H9_mB0c4dsTfbIFL_qzMC0_xLDhxpYR_TUbeGXPLxi5XX4bS87_Tf6XY7UYEM0G6ihyADGLGl0xIR2UHasQR_EMNTfmoivcrd8vA5p_xktexLFxIpregM99E9r4k9PxemXH7udv7I7_2cabcL0DqOJlq1G3YMs3t-Fqm7Lyxx2Ykl4JDkkUiyAIPAo3X7rIbyBaUmgxb0Tgo1f0kEiWGfdOehcrutD4u3A0ffPx9UHS5WJInMY8TUJVpnmVqpogG0pvC3QTXSv0patrV5FdB6uUd4SGgrJIVUrEoEvlMiSn4dQ92G4WjX8AIvBD0FZZKAOtXkOhnM9cHkLqtMUqG8FePyrGdUTlnC_jq-kXLNQtJnbLCJ4OomctO8dlQs_j0A4S1fKUw9lybT4d7pvjYvYh3cd3Jh_Bbj_2prPkc8MLToJNKKn4yVBMNsg_VqrGL9ZRhjolo4llBPdbVRlexnRCqkT6inxDiQYB5vfeLGnmXyLPN_n-DEuquRd15O8tNK9mx_Fm599FH8K1lDN7xGOVu7C9Wq79I8JXK_s4GtIvUcAgsw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTQi-8IYVBhiE0L6kquNzHhJfeHUFukpUe31BVuzYWjWUotIi4K_n7Dy0wpAQnxLJ5yQ-353Pl_PvAJ5lidZ8UOYRRzuIMJOOdC7jEU-t1KbkMg0B_f1JMjrE9yfyZANetGdhanyILuDmNSPYa6_gPiB9Tsv14luf-wLgl2DLV_T2yPlvph14FJmAUEeNrhiRFPIGV8jn8XRd11ajLc_Y7xe5mn9mTJ73ZMNSNLwOn9pB1BkoZ_3VUvfNz9_wHf93lDfgWuOjspe1UN2EDVvdgst11coft2FIosV8ViKbO0b-IzOzhQkQB6zGhWazijl_-ooeEvAyQ_iktbKsyY6_A4fDtwevR1FTjiEyEtM4ckUep0UsSvLakFudoRnIUqDNTVmaglTbaSGsIYfICY3UJUd0MhcmQbIbRtyFzWpe2W1gzj8EdZG43NEG1mXC2MSkzsVGaiySHuy206JMg1XuS2Z8Vu2ehdiiAlt68LQj_VIDdFxE9DzMbUdRLM58Rlsq1fFkTx1l04_xHo5V2oOddvJVo8xfld9zkueEnJqfdM2khv7fSlHZ-SrQEFMSWlt6cK-Wle5lHlFI5Ehfka5JUUfgIb7XW6rZaYD6JvOfYE49d4OQ_H2E6tX0KNzc_3fSx3BldLA_VuN3kw8P4GrsC32EU5Y7sLlcrOxDcreW-lHQql9CKyTP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTSBexue2wgCDENpLqjq5OLF4AkY3YFRQsbEHJCt2bFFtSqeuRcBfz9n50ApDQjwlks9JbN-df3bOvwN4mgut-aCUEUc7iDBPHdlcziOe2VSbkqdZ2NB_PxL7h_j2OD1egeftWZiaH6LbcPOWEfy1N_Cz0l0wcj371uc-__cVWEMxkD5vw-64444iDxDSqNEVI1JC3tAK-TCerurSZLTm-_X7ZUjzz4DJi0A2zETDG_ClbUMdgHLSX8x13_z8jd7xPxt5E9YbhMpe1Cp1C1ZsdRuu1jkrf9yBISkW8zGJbOoYoUdmJjMTCA5YzQrNJhVz_uwVPSSwZYbNk9bHsiY2_i4cDl9_erUfNckYIpNiFkeukHFWxElJmA251TmaQVomaKUpS1OQYTudJNYQHHKJRqoiEV0qEyOQvIZJNmC1mlZ2C5jzD0FdCCcdLV9dnhgrTOZcbFKNhejBTjsqyjRM5T5hxqlqVyzULSp0Sw-edKJnNT3HZULPwtB2EsXsxMezZan6PNpTR_n4Y7yHByrrwXY79qox5XPlV5yEm5BT8eOumIzQ_1kpKjtdBBnqFEEzSw82a1XpXub5hBKJ9BXZkhJ1Ap7ge7mkmnwNRN_k_AVKqrkTdOTvLVQvx0fh5t6_iz6Cax92h-rgzejdfbge-ywf4YjlNqzOZwv7gLDWXD8MNvULvdYjfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+the+circadian+system+in+fractal+neurophysiological+control&rft.jtitle=Biological+reviews+of+the+Cambridge+Philosophical+Society&rft.au=Pittman-Polletta%2C+Benjamin+R&rft.au=Scheer%2C+Frank+A+J+L&rft.au=Butler%2C+Matthew+P&rft.au=Shea%2C+Steven+A&rft.date=2013-11-01&rft.eissn=1469-185X&rft.volume=88&rft.issue=4&rft.spage=873&rft_id=info:doi/10.1111%2Fbrv.12032&rft_id=info%3Apmid%2F23573942&rft.externalDocID=23573942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7931&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7931&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7931&client=summon