The role of the circadian system in fractal neurophysiological control
ABSTRACT Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations – similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological condi...
Saved in:
Published in | Biological reviews of the Cambridge Philosophical Society Vol. 88; no. 4; pp. 873 - 894 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations – similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation. |
---|---|
AbstractList | Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation. ABSTRACT Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations – similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation. Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation.Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation. Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations -- similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation. [PUBLICATION ABSTRACT] |
Author | Hu, Kun Scheer, Frank A. J. L. Butler, Matthew P. Shea, Steven A. Pittman-Polletta, Benjamin R. |
AuthorAffiliation | 2 Medical Chronobiology Program, Division of Sleep Medicine, Brigham and Women’s Hospital, Boston, MA 02115, U.S.A 5 Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, 32054, Taiwan 3 Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, U.S.A 4 Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, U.S.A 1 Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women’s Hospital, Boston, MA 02115, U.S.A |
AuthorAffiliation_xml | – name: 3 Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, U.S.A – name: 1 Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women’s Hospital, Boston, MA 02115, U.S.A – name: 5 Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, 32054, Taiwan – name: 2 Medical Chronobiology Program, Division of Sleep Medicine, Brigham and Women’s Hospital, Boston, MA 02115, U.S.A – name: 4 Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, U.S.A |
Author_xml | – sequence: 1 givenname: Benjamin R. surname: Pittman-Polletta fullname: Pittman-Polletta, Benjamin R. email: Address for correspondence ( or )., bpolletta@partners.orgkhu1@partners.org organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, 02115, Boston, MA, U.S.A – sequence: 2 givenname: Frank A. J. L. surname: Scheer fullname: Scheer, Frank A. J. L. organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, 02115, Boston, MA, U.S.A – sequence: 3 givenname: Matthew P. surname: Butler fullname: Butler, Matthew P. organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, 02115, Boston, MA, U.S.A – sequence: 4 givenname: Steven A. surname: Shea fullname: Shea, Steven A. organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, 02115, Boston, MA, U.S.A – sequence: 5 givenname: Kun surname: Hu fullname: Hu, Kun email: Address for correspondence ( or )., bpolletta@partners.orgkhu1@partners.org organization: Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, 02115, Boston, MA, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23573942$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1PHCEUhomx8ate9A80k3jTXowChxlmbkzU1G2TTZsaP3pHGIZxsSysMGO7_76su2vUVG4gh-d9OZx3F2067zRCHwg-JGkdNeHhkFAMdAPtEFbWOamKX5uPZ5bzGsg22o3xDuNUKGELbVMoONSM7qDzy4nOgrc6813Wp7MyQcnWSJfFeez1NDMu64JUvbSZ00Pws8k8Gm_9rVGppLzrk_w9etdJG_X-at9DV-dfLs--5uMfo29nJ-NcFYzTvJM15ZJCiytgRDcVU7hogelata2SmPCuAdCKcuigYUlSM9YVNaiSVUAV7KHjpe9saKa6VTq9Lq2YBTOVYS68NOLljTMTcesfBPCyZDVNBp9WBsHfDzr2Ymqi0tZKp_0QBWEsdVZWvEzowSv0zg_Bpe8tKIIrwghP1MfnHT21sh5xAo6WgAo-xqA7oUwve7MYnDRWECwWIYoUongMMSk-v1KsTf_Hrtz_GKvnb4Pi9OJ6rciXCpPi_fukkOG3KDnwQtx8H4nr6uInHbGx4PAPGDa6Xg |
CODEN | BRCPAH |
CitedBy_id | crossref_primary_10_1080_10407413_2023_2287752 crossref_primary_10_1016_j_neuroscience_2018_06_025 crossref_primary_10_1038_srep27742 crossref_primary_10_1016_j_csfx_2024_100125 crossref_primary_10_1016_j_neurobiolaging_2019_08_023 crossref_primary_10_1007_s40675_023_00267_4 crossref_primary_10_1098_rsif_2014_0318 crossref_primary_10_1002_adbi_202200324 crossref_primary_10_1016_j_jns_2016_05_025 crossref_primary_10_1017_S0033291720000331 crossref_primary_10_1093_sleep_zsx092 crossref_primary_10_1038_srep02229 crossref_primary_10_1080_07420528_2017_1407779 crossref_primary_10_3233_JAD_230928 crossref_primary_10_1111_ejn_16551 crossref_primary_10_3389_fphys_2018_01567 crossref_primary_10_1016_j_bspc_2023_105916 crossref_primary_10_1038_s41598_017_00743_2 crossref_primary_10_3389_fneur_2017_00753 crossref_primary_10_1007_s11571_014_9313_1 crossref_primary_10_1073_pnas_1424706112 crossref_primary_10_1002_dad2_12211 crossref_primary_10_1016_j_applanim_2018_05_014 crossref_primary_10_1016_j_neubiorev_2016_05_023 crossref_primary_10_1038_npjmgrav_2015_18 crossref_primary_10_1371_journal_pone_0105092 crossref_primary_10_1016_j_jalz_2018_03_010 crossref_primary_10_1093_cercor_bhac363 crossref_primary_10_1177_0748730418797820 crossref_primary_10_1007_s00359_018_1303_z crossref_primary_10_1002_adbi_202200136 crossref_primary_10_1002_adbi_202200235 crossref_primary_10_1017_S0033291724002769 crossref_primary_10_1038_s41598_024_52905_8 crossref_primary_10_1002_alz_13747 crossref_primary_10_1111_psyp_13488 crossref_primary_10_1016_j_mvr_2021_104205 crossref_primary_10_1371_journal_pone_0062585 crossref_primary_10_1002_jcp_25037 crossref_primary_10_1155_2024_5514002 crossref_primary_10_3389_fphys_2016_00174 crossref_primary_10_1177_0748730415627035 crossref_primary_10_1126_scitranslmed_aax1977 crossref_primary_10_1016_j_ijpsycho_2015_07_007 |
Cites_doi | 10.1007/978-1-4614-7572-9 10.3389/fphys.2010.00128 10.1114/1.1481053 10.1088/0034-4885/62/10/201 10.1523/JNEUROSCI.3688-08.2009 10.1038/251599a0 10.1016/j.automatica.2011.01.074 10.1063/1.3143035 10.1109/IEMBS.2006.259760 10.1152/jappl.1996.80.5.1448 10.1152/japplphysiol.00657.2004 10.1038/nature00965 10.1103/PhysRevE.63.031912 10.1016/S0002-9149(00)01312-6 10.1103/PhysRevLett.84.2529 10.1016/S0092-8674(00)81199-X 10.1038/nn1395 10.1073/pnas.0808180106 10.1016/S0735-1097(01)01171-8 10.1016/0030-4220(92)90222-C 10.1016/j.tics.2007.05.003 10.1103/PhysRevE.60.1412 10.1002/clc.4960200710 10.1016/j.neuroimage.2007.11.032 10.1073/pnas.0810524105 10.1136/oem.2006.026716 10.1037/0096-3445.136.4.551 10.1016/j.physa.2003.12.049 10.1016/j.resp.2004.07.010 10.1103/PhysRevE.83.051130 10.1016/j.tics.2010.09.001 10.1038/nature04176 10.1038/ncomms1705 10.1103/PhysRevE.80.021110 10.1103/PhysRevLett.101.264103 10.1016/j.neulet.2008.10.058 10.1002/ajim.20099 10.1137/070710111 10.1016/S0378-4371(01)00460-5 10.1209/epl/i1999-00525-0 10.1103/PhysRevE.65.051908 10.1177/0748730406296319 10.1016/S0960-9822(02)01155-7 10.1177/0748730403253840 10.1177/0748730409352843 10.1016/j.neuron.2010.04.020 10.1103/PhysRevE.80.061914 10.1371/journal.pcbi.0030068 10.1016/S0079-6123(08)60403-3 10.3389/fphys.2012.00052 10.1016/j.cub.2004.04.034 10.1038/nphys289 10.1152/japplphysiol.00390.2010 10.1016/j.neuroscience.2004.12.012 10.1136/oem.58.11.747 10.1103/PhysRevLett.86.6026 10.1016/j.pbiomolbio.2010.09.007 10.1073/pnas.79.8.2554 10.1063/1.166141 10.1146/annurev.bioeng.6.040803.140100 10.1177/074873001129002240 10.1038/nature08932 10.1016/S0140-6736(86)91619-3 10.1152/jappl.1991.71.1.1 10.1016/j.humov.2009.01.001 10.1016/S0378-4371(02)01377-8 10.1006/meth.2001.1206 10.1142/1025 10.1016/S0002-9149(97)00516-X 10.1103/PhysRevLett.59.381 10.1006/jtbi.2001.2367 10.1111/j.1365-2826.2010.01955.x 10.1590/S0103-97332000000100004 10.1073/pnas.0806087106 10.1061/TACEAT.0006518 10.1001/jama.299.22.2642 10.1016/0896-6273(95)90214-7 10.1177/0748730409352054 10.1175/2009JCLI2669.1 10.1038/216588a0 10.1073/pnas.0709957104 10.1177/0748730408314572 10.1056/NEJMcibr1204644 10.1016/S0022-5193(03)00141-3 10.1038/356168a0 10.1016/S0378-4371(00)00195-3 10.1016/S0079-6123(06)53020-1 10.1073/pnas.012579499 10.1007/s00421-003-0915-2 10.1364/JOSAA.14.000529 10.1515/BC.2003.078 10.5194/npg-8-193-2001 10.1513/pats.200603-028MS 10.1016/j.neuroscience.2005.10.030 10.1038/378554a0 10.1046/j.1540-8167.2005.04358.x 10.1016/S0378-4371(02)01453-X 10.1093/imammb/21.1.63 10.1093/aje/kwj355 10.1177/074873098128999952 10.1177/0748730411409715 10.1073/pnas.0911531107 10.1016/S0959-437X(03)00055-8 10.1074/jbc.273.42.27039 10.1111/j.1460-9568.2011.07682.x 10.1016/S0022-0736(95)80017-4 10.1073/pnas.0404843101 10.1137/S003614450342480 10.1152/japplphysiol.00856.2006 10.1017/S1464793101005607 10.1161/01.CIR.100.20.2079 10.1103/PhysRevE.54.2154 10.1152/jappl.1997.82.1.262 10.1103/PhysRevE.84.036708 10.1016/S0165-0270(96)00080-5 10.1016/0002-9149(87)91027-7 10.1016/S0006-8993(01)02890-6 10.1164/rccm.200202-152PP 10.1046/j.1365-2281.1999.00146.x 10.1038/nn1361 10.1016/0006-8993(72)90054-6 10.1103/PhysRevE.49.1685 10.1016/0006-8993(92)90191-B 10.3389/fphys.2010.00012 10.1103/PhysRevLett.85.461 10.1097/00003246-200007000-00045 10.1152/physrev.1929.9.3.399 10.1209/epl/i1998-00366-3 10.3389/fphys.2010.00001 10.1186/2190-8567-2-5 10.1177/0748730409344800 10.1038/nphys1803 10.1016/S1386-5056(97)00029-4 10.1056/NEJM198511213132103 10.1038/416409a 10.1073/pnas.0408243101 10.1177/0748730406287357 10.1002/hbm.20016 10.1103/PhysRevE.66.062902 10.1371/journal.pone.0048927 10.1126/science.288.5466.682 10.1073/pnas.1110586109 10.1210/jcem-73-6-1276 10.1073/pnas.0308709101 10.1126/science.2305266 10.1186/1740-3391-7-8 10.1371/journal.pone.0028489 10.1101/gad.183500 10.1016/S1566-0702(01)00273-9 10.1161/01.CIR.100.4.393 10.1046/j.1365-2443.2001.00419.x 10.1161/CIRCULATIONAHA.104.523712 10.1016/S0306-4522(98)00472-2 10.1016/j.jneumeth.2011.08.014 10.1016/S0002-9149(01)01578-8 10.1006/jtbi.2000.2131 10.1161/01.CIR.92.11.3178 10.1152/ajpheart.2001.280.3.H1391 10.1103/PhysRevLett.86.1900 10.1161/01.CIR.101.1.47 10.1103/PhysRevLett.70.1343 10.1073/pnas.69.6.1583 10.1371/journal.pone.0000721 10.2165/00003495-200666180-00007 10.1523/JNEUROSCI.23-35-11167.2003 10.1016/j.neuroscience.2007.03.058 10.1212/01.WNL.0000125190.10967.D5 10.1063/1.3211189 10.1177/0748730407301238 10.1093/cvr/cvn150 10.1371/journal.pcbi.1002038 10.1016/0378-4371(92)90497-E 10.1007/978-3-540-89506-0_15 10.1113/jphysiol.2012.227892 10.1103/PhysRevLett.85.3736 10.1038/20924 10.1016/j.physa.2004.01.042 10.1103/PhysRevE.79.041920 10.1152/jn.00106.2010 |
ContentType | Journal Article |
Copyright | 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society. Copyright Blackwell Publishing Ltd. Nov 2013 |
Copyright_xml | – notice: 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society – notice: 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society. – notice: Copyright Blackwell Publishing Ltd. Nov 2013 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS C1K 7X8 5PM |
DOI | 10.1111/brv.12032 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Ecology Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1469-185X |
EndPage | 894 |
ExternalDocumentID | PMC3766492 3095358341 23573942 10_1111_brv_12032 BRV12032 ark_67375_WNG_V8RQ2G4L_7 |
Genre | article Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: xxx funderid: 5K99HL102241 – fundername: NIH funderid: T32 HL07901 – fundername: xxx funderid: P30HL101299 – fundername: xxx funderid: K24 HL076446 – fundername: NHLBI NIH HHS grantid: T32 HL007901 – fundername: NHLBI NIH HHS grantid: P30 HL101299 – fundername: NHLBI NIH HHS grantid: K24 HL076446 – fundername: NHLBI NIH HHS grantid: R01 HL094806 – fundername: NHLBI NIH HHS grantid: 5K99HL102241 – fundername: NHLBI NIH HHS grantid: R00 HL102241 – fundername: NHLBI NIH HHS grantid: T32 HL07901 – fundername: NHLBI NIH HHS grantid: P30HL101299 – fundername: NHLBI NIH HHS grantid: K99 HL102241 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: P30 HL101299 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: K99 HL102241 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: K24 HL076446 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: T32 HL007901 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R00 HL102241 || HL |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCQX ABCUV ABEML ABITZ ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACGOF ACMXC ACPOU ACPRK ACQPF ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKSM AFPWT AFRAH AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMXJE BROTX BRXPI BSCLL BY8 C45 CAG CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M K48 KBYEO L7B L98 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RCA RIG RIWAO RJQFR ROL RX1 RXW SAMSI SUPJJ SV3 TAE TEORI TN5 UB1 UPT W8V W99 WBKPD WH7 WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ X6Y XG1 XOL XSW YZZ ZXP ~02 ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ABVKB ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABGDZ AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS C1K 7X8 5PM |
ID | FETCH-LOGICAL-c5472-fa927a23d08341eb84c05d34e9cddca017fb33ec273f3b4472944f593c64832c3 |
IEDL.DBID | DR2 |
ISSN | 1464-7931 1469-185X |
IngestDate | Thu Aug 21 13:13:51 EDT 2025 Fri Jul 11 15:07:05 EDT 2025 Wed Aug 13 06:29:41 EDT 2025 Mon Jul 21 06:05:33 EDT 2025 Tue Jul 01 03:31:08 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Jan 22 17:06:57 EST 2025 Wed Oct 30 09:55:53 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | heart rate fractal fluctuations spontaneous motor activity physiological control fractal physiology suprachiasmatic nucleus nonlinear dynamics circadian biology scale-invariance |
Language | English |
License | 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5472-fa927a23d08341eb84c05d34e9cddca017fb33ec273f3b4472944f593c64832c3 |
Notes | istex:BA6C6A1BFC60869E10F7D52709A1D23F03EE4E7E xxx - No. 5K99HL102241 xxx - No. P30HL101299 ArticleID:BRV12032 NIH - No. T32 HL07901 ark:/67375/WNG-V8RQ2G4L-7 xxx - No. K24 HL076446 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://doi.org/10.1111/brv.12032 |
PMID | 23573942 |
PQID | 1441081417 |
PQPubID | 36769 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3766492 proquest_miscellaneous_1443416876 proquest_journals_1441081417 pubmed_primary_23573942 crossref_citationtrail_10_1111_brv_12032 crossref_primary_10_1111_brv_12032 wiley_primary_10_1111_brv_12032_BRV12032 istex_primary_ark_67375_WNG_V8RQ2G4L_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2013 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: November 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Cambridge |
PublicationTitle | Biological reviews of the Cambridge Philosophical Society |
PublicationTitleAlternate | Biol Rev |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Knutsson, A., Akerstedt, T., Jonsson, B. G. & Orth-Gomer, K. (1986). Increased risk of ischaemic heart disease in shift workers. Lancet 2, 89-92. Moore, R. Y. & Eichler, V. B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Research 42, 201-206. de la Iglesia, H. O., Cambras, T., Schwartz, W. J. & Diez-Noguera, A. (2004). Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Current Biology 14, 796-800. Foley, N. C., Tong, T. Y., Foley, D., Lesauter, J., Welsh, D. K. & Silver, R. (2011). Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. European Journal of Neuroscience 33, 1851-1865. Schwartz, J. R. & Roth, T. (2006). Shift work sleep disorder: burden of illness and approaches to management. Drugs 66, 2357-2370. Bak, P., Tang, C. & Wiesenfeld, K. (1987). Self-organized criticality: an explanation of the 1/f noise. Physical Review Letters 59, 381-384. Hara, R., Wan, K., Wakamatsu, H., Aida, R., Moriya, T., Akiyama, M. & Shibata, S. (2001). Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes to Cells 6, 269-278. Chialvo, D. R. (2010). Emergent complex neural dynamics. Nature Physics 6, 744-750. Makikallio, T. H., Huikuri, H. V., Makikallio, A., Sourander, L. B., Mitrani, R. D., Castellanos, A. & Myerburg, R. J. (2001b). Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. Journal of the American College of Cardiology 37, 1395-1402. Chiesa, J. J., Cambras, T., Carpentieri, A. R. & Diez-Noguera, A. (2010). Arrhythmic rats after SCN lesions and constant light differ in short time scale regulation of locomotor activity. Journal of Biological Rhythms 25, 37-46. Masters, B. R. (2004). Fractal analysis of the vascular tree in the human retina. Annual Review of Biomedical Engineering 6, 427-452. Pikovsky, A. & Rosenblum, M. (2011). Dynamics of heterogeneous oscillator ensembles in terms of collective variables. Physica D240, 872-881. Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697-706. Perkiomaki, J. S., Zareba, W., Daubert, J. P., Couderc, J. P., Corsello, A. & Kremer, K. (2001). Fractal correlation properties of heart rate dynamics and adverse events in patients with implantable cardioverter-defibrillators. American Journal of Cardiology 88, 17-22. Scafetta, N., Marchi, D. & West, B. J. (2009). Understanding the complexity of human gait dynamics. Chaos 19, 026108. Verveen, A. A., Derksen, H. E. & Schick, K. L. (1967). Voltage fluctuations of neural membrane. Nature 216, 588-589. Makikallio, T. H., Huikuri, H. V., Hintze, U., Videbaek, R. D., Mitrani, R. D., Castellanos, A., Mayerburg, R. J. & Moller, M. (2001a). Fractal analysis and time-and-frequency domain measures of heart rate variability as predictors of mortality in patients with heart failure. American Journal of Cardiology 87, 178-182. Willich, S. N., Levy, D., Rocco, M. B., Tofler, G. H., Stone, P. H. & Muller, J. E. (1987). Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study population. American Journal of Cardiology 60, 801-806. Ruttimann, U. E., Webber, R. L. & Hazelrig, J. B. (1992). Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 74, 98-110. Stanley, H. E., Amaral, L. A. N., Gopikrishnan, P., Ivanov, P. C., Keitt, T. H. & Plerou, V. (2000). Scaling invariance and universality: organizing principles in complex systems. Physica A 281, 60-68. Kawachi, I., Colditz, G. A., Stampfer, M. J., Willett, W. C., Manson, J. E., Speizer, F. E. & Hennekens, C. H. (1995). Prospective study of shift work and risk of coronary heart disease in women. Circulation 92, 3178-3182. Hu, K., Ivanov, P. C., Hilton, M. F., Chen, Z., Ayers, R. T., Stanley, H. E. & Shea, S. A. (2004b). Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior. Proceedings of the National Academy of Sciences of the United States of America 101, 18223-18227. Rennert, K. J. & Wallace, J. M. (2009). Cross-frequency coupling, skewness, and blocking in the Northern Hemisphere winter circulation. Journal of Climate 22, 5650-5666. Kello, C. T., Beltz, B. C., Holden, J. G. & Van Orden, G. C. (2007). The emergent coordination of cognitive function. Journal of Experimental Psychology: General 136, 551-568. Liebovitch, L. S., Scheurle, D., Rusek, M. & Zochowski, M. (2001). Fractal methods to analyze ion channel kinetics. Methods 24, 359-375. Shea, S. A. (2012). Obesity and pharmacologic control of the body clock. New England Journal of Medicine 367, 175-178. Kantelhardt, J. W., Ashkenazy, Y., Ivanov, P. C., Bunde, A., Havlin, S., Penzel, T., Peter, J. H. & Stanley, H. E. (2002). Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 65, 051908. Torre, K. & Wagenmakers, E. J. (2009). Theories and models for 1/f(beta) noise in human movement science. Human Movement Science 28, 297-318. Anteneodo, C. & Chialvo, D. R. (2009). Unraveling the fluctuations of animal motor activity. Chaos 19, 033123. Darvas, F., Miller, K. J., Rao, R. P. & Ojemann, J. G. (2009). Nonlinear phase-phase cross-frequency coupling mediates communication between distant sites in human neocortex. Journal of Neuroscience 29, 426-435. Huikuri, H. V. & Makikallio, T. H. (2001). Heart rate variability in ischemic heart disease. Autonomic Neuroscience 90, 95-101. Sakamoto, K., Nagase, T., Fukui, H., Horikawa, K., Okada, T., Tanaka, H., Sato, K., Miyake, Y., Ohara, O., Kako, K. & Ishida, N. (1998). Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. Journal of Biological Chemistry 273, 27039-27042. Laing, C. R., Zou, Y., Smith, B. & Kevrekidis, I. G. (2012). Managing heterogeneity in the study of neural oscillator dynamics. Journal of Mathematical Neuroscience 2, 5. Stam, C. J. & de Bruin, E. A. (2004). Scale-free dynamics of global functional connectivity in the human brain. Human Brain Mapping 22, 97-109. Amaral, L. A., Diaz-Guilera, A., Moreira, A. A., Goldberger, A. L. & Lipsitz, L. A. (2004). Emergence of complex dynamics in a simple model of signaling networks. Proceedings of the National Academy of Sciences of the United States of America 101, 15551-15555. Allegrini, P., Menicucci, D., Bedini, R., Fronzoni, L., Gemignani, A., Grigolini, P., West, B. J. & Paradisi, P. (2009). Spontaneous brain activity as a source of ideal 1/f noise. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 80, 061914. Antle, M. C., Foley, D. K., Foley, N. C. & Silver, R. (2003). Gates and oscillators: a network model of the brain clock. Journal of Biological Rhythms 18, 339-350. Abrahamson, E. E. & Moore, R. Y. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Research 916, 172-191. Gupta, V., Suryanarayanan, S. & Reddy, N. P. (1997). Fractal analysis of surface EMG signals from the biceps. International Journal of Medical Informatics 45, 185-192. Goldberger, A. L., Amaral, L., Hausdorff, J. M. & Ivanov, P. C. (2002). Fractal dynamics in physiology: alterations with disease and aging. Proceedings of the National Academy of Sciences of the United States of America A99, 2466-2472. Schick, K. L. & Verveen, A. A. (1974). 1/f noise with a low frequency white noise limit. Nature 251, 599-601. Kunz, H. & Achermann, P. (2003). Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators. Journal of Theoretical Biology 224, 63-78. Ivanov, P. C., Ma, Q. D., Bartsch, R. P., Hausdorff, J. M., Nunes Amaral, L. A., Schulte-Frohlinde, V., Stanley, H. E. & Yoneyama, M. (2009). Levels of complexity in scale-invariant neural signals. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 79, 041920. Tort, A. B., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M. & Kopell, N. J. (2008). Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proceedings of the National Academy of Sciences of the United States of America 105, 20517-20522. Brown, T. M., Coogan, A. N., Cutler, D. J., Hughes, A. T. & Piggins, H. D. (2008). Electrophysiological actions of orexins on rat suprachiasmatic neurons in vitro. Neuroscience Letters 448, 273-278. Frey, U., Brodbeck, T., Majumdar, A., Taylor, D. R., Town, G. I., Silverman, M. & Suki, B. (2005). Risk of severe asthma episodes predicted from fluctuation analysis of airway function. Nature 438, 667-670. Makikallio, A. M., Makikallio, T. H., Korpelainen, J. T., Sotaniemi, K. A., Huikuri, H. V. & Myllyla, V. V. (2004). Heart rate dynamics predict poststroke mortality. Neurology 62, 1822-1826. Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E. & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 49, 1685-1689. Hausdorff, J. M., Ashkenazy, Y., Peng, C. K., Ivanov, P. C., Stanley, H. E. & Goldberger, A. L. (2001). When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Physica A302, 138-147. Wehr, T. A. (1991). The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). The Journal of Clinical Endocrinology & Metabolism 73, 1276-1280. Ivanov, P. C., Nunes Amaral, L. A., Goldberger, A. L. & Stan 2004; 21 2007; 104 2004; 22 2007; 102 2010; 14 2010; 109 2010; 107 2009; 80 1995a; 28 2002; 12 2010; 104 2010; 464 2000; 85 1997; 45 2002; 316 2004; 6 1995; 378 2008; 105 1972; 42 1971 2008; 101 2012; 367 2004b; 101 1998; 273 2010; 22 1986; 2 1992; 191 2010; 1 2010; 25 2000; 14 1990 2006; 21 1992; 598 1992; 356 2008; 23 1999a; 399 1982 2007; 2 1998; 93 2007; 3 1996; 69 2009; 19 2001; 58 2010; 6 2003; 45 1998; 13 2004; A336 1990; 247 1997; 20 2005; 112 2001; 280 2007; 165 2011; 84 2011; 83 2004; 46 1991; 73 1994 2002; 418 2001a; 87 2002; 416 1999; 100 1972; 69 2007; 11 2001; 24 2011; 6 2011; 7 1987; 59 2012; 109 2012; 590 2009; 79 2011; D240 1987; 60 2005; 8 2002; 65 2002; 66 2000; 84 1991; 71 1985; 313 1996; 111 1996; 80 2000; 101 2003; 224 2008; 40 2005; 16 2007; 01 2010a; 1 2003; 23 2009; 106 1997; 80 2004; 62 1997; 82 2007; 149 2001; 90 2005; 132 1995b; 5 2003; 13 2003; 18 2004a; A337 2001; 88 2006; 137 1998; 43 2001; 86 2002; A99 2007; 136 2010; 66 2001; 212 2011; 201 2006; 63 2003; 90 2005; 145 1999; 19 1993; 70 2006; 66 1997; 14 2000; 206 2003; A318 2000; 281 2001b; 37 2001; 16 2011; 26 2000; 288 1974; 251 2007; 22 1999; 90 1996; 3 1951; 116 2004; 101 1982; 79 2009; 22 2009; 24 1995; 92 2000; 28 2012 2002; 30 1995; 14 2009 2005; 438 2008; 448 2011; 33 2010b; 1 2006; 153 1994; 49 2006; 1 1999; 62 2006; 2 1999; 60 1996; 54 1967; 216 2001; 63 2001; A302 2009; 29 1992; 74 2009; 28 1999b; 48 2011; 105 2004; 97 2012; 2 2012; 3 2001; 6 2004; 14 2000; 30 2002; 166 2001; 8 2009; 7 1929; 9 2001; 916 2011; 47 2008; 299 2012; 7 1989; 16 2008; 80 2003; 384 2001; 76 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 Diaz‐Guilera A. (e_1_2_9_41_1) 2007; 01 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 Vener K. J. (e_1_2_9_169_1) 1989; 16 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_172_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_72_1 McNamee J. E. (e_1_2_9_99_1) 1991; 71 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 Mandelbrot B. (e_1_2_9_95_1) 1982 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 Pikovsky A. (e_1_2_9_125_1) 2011; 240 e_1_2_9_171_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_185_1 e_1_2_9_181_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 Yan R. (e_1_2_9_183_1) 2012 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_85_1 Stanley H. E. (e_1_2_9_150_1) 1971 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 Hurst H. E. (e_1_2_9_66_1) 1951; 116 e_1_2_9_136_1 e_1_2_9_178_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_174_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 Nemati S. (e_1_2_9_108_1) 2012 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_173_1 e_1_2_9_48_1 e_1_2_9_29_1 2305266 - Science. 1990 Feb 23;247(4945):975-8 11760013 - J Biol Rhythms. 2001 Dec;16(6):552-63 21673863 - PLoS Comput Biol. 2011 Jun;7(6):e1002038 16876585 - Prog Brain Res. 2006;153:341-60 2873389 - Lancet. 1986 Jul 12;2(8498):89-92 11030994 - Phys Rev Lett. 2000 Oct 23;85(17):3736-9 1508517 - Oral Surg Oral Med Oral Pathol. 1992 Jul;74(1):98-110 18973790 - Neurosci Lett. 2008 Dec 31;448(3):273-8 18178105 - Neuroimage. 2008 Mar 1;40(1):308-17 7586301 - Circulation. 1995 Dec 1;92(11):3178-82 11969901 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Aug;60(2 Pt A):1412-27 15108297 - Hum Brain Mapp. 2004 Jun;22(2):97-109 11152835 - Am J Cardiol. 2001 Jan 15;87(2):178-82 16319891 - Nature. 2005 Dec 1;438(7068):667-70 18375863 - J Biol Rhythms. 2008 Apr;23(2):140-9 11466001 - Methods. 2001 Aug;24(4):359-75 15065739 - Math Med Biol. 2004 Mar;21(1):63-72 22355144 - Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):E680-9 12059594 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051908 20133762 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33 12119222 - Am J Respir Crit Care Med. 2002 Jul 15;166(2):133-7 21607201 - Automatica (Oxf). 2011 Jun 1;47(6):1236-1242 12513330 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 1):062902 11597605 - Brain Res. 2001 Oct 19;916(1-2):172-91 16338081 - Neuroscience. 2006;137(4):1285-97 22060530 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036708 17181377 - Drugs. 2006;66(18):2357-70 10562264 - Circulation. 1999 Nov 16;100(20):2079-84 15255776 - Annu Rev Biomed Eng. 2004;6:427-52 19792080 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021110 21775291 - J Biol Rhythms. 2011 Aug;26(4):324-34 9961383 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Feb;49(2):1685-9 17920204 - Neuroscience. 2007 Nov 9;149(3):508-17 4556464 - Proc Natl Acad Sci U S A. 1972 Jun;69(6):1583-6 21522484 - Front Physiol. 2010 Apr 23;1:1 16735480 - Occup Environ Med. 2006 Jul;63(7):451-5 19792003 - Chaos. 2009 Sep;19(3):033123 19566268 - Chaos. 2009 Jun;19(2):026108 18539630 - Cardiovasc Res. 2008 Oct 1;80(1):62-8 9554572 - J Biol Rhythms. 1998 Apr;13(2):100-12 11600731 - Occup Environ Med. 2001 Nov;58(11):747-52 22438845 - Front Physiol. 2012 Mar 16;3:52 10338284 - Neuroscience. 1999;90(4):1137-48 21423355 - Front Physiol. 2010 Oct 14;1:12 11260270 - Genes Cells. 2001 Mar;6(3):269-78 19437642 - Phys Rev Lett. 2008 Dec 31;101(26):264103 11537103 - Physica A. 1992 Dec 15;191(1-4):1-12 11542723 - Europhys Lett. 1998 Aug 15;43(4):363-8 5047187 - Brain Res. 1972 Jul 13;42(1):201-6 10365957 - Nature. 1999 Jun 3;399(6735):461-5 12787789 - Curr Opin Genet Dev. 2003 Jun;13(3):271-7 10068867 - Clin Physiol. 1999 Jan;19(1):56-67 8946315 - J Neurosci Methods. 1996 Nov;69(2):123-36 8656130 - J Electrocardiol. 1995;28 Suppl:59-65 23367424 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6526-9 11423052 - Am J Cardiol. 2001 Jul 1;88(1):17-22 2865677 - N Engl J Med. 1985 Nov 21;313(21):1315-22 1955509 - J Clin Endocrinol Metab. 1991 Dec;73(6):1276-80 9765215 - J Biol Chem. 1998 Oct 16;273(42):27039-42 12198538 - Nature. 2002 Aug 29;418(6901):935-41 19255424 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4453-8 11396846 - Biol Rev Camb Philos Soc. 2001 May;76(2):161-209 15505227 - Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15551-5 12361580 - Curr Biol. 2002 Oct 1;12(19):R644 5583506 - Nature. 1967 Nov 11;216(5115):588-9 12900204 - J Theor Biol. 2003 Sep 7;224(1):63-78 11114885 - Genes Dev. 2000 Dec 1;14(23):2950-61 22547633 - J Physiol. 2012 Jul 1;590(Pt 13):3035-45 17517911 - J Biol Rhythms. 2007 Jun;22(3):211-9 10035754 - Phys Rev Lett. 1987 Jul 27;59(4):381-384 14657176 - J Neurosci. 2003 Dec 3;23(35):11167-77 15746913 - Nat Neurosci. 2005 Mar;8(3):267-9 22658163 - J Math Neurosci. 2012 Mar 14;2(1):5 20070481 - J Neuroendocrinol. 2010 Mar;22(3):209-16 3661393 - Am J Cardiol. 1987 Oct 1;60(10):801-6 11542917 - Europhys Lett. 1999 Dec 1;48(5):594-600 1917729 - J Appl Physiol (1985). 1991 Jul;71(1):1-8 19518269 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 1):041920 9291030 - Int J Med Inform. 1997 Jul;45(3):185-92 15551368 - Am J Ind Med. 2004 Dec;46(6):586-98 9635423 - Cell. 1998 Jun 12;93(6):929-37 15611476 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18223-7 9220180 - Clin Cardiol. 1997 Jul;20(7):631-8 20365197 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 1):061914 10988020 - J Theor Biol. 2000 Oct 7;206(3):343-53 17229921 - J Biol Rhythms. 2007 Feb;22(1):14-25 15802197 - Neuroscience. 2005;132(2):465-77 17946835 - Conf Proc IEEE Eng Med Biol Soc. 2006;1:445-8 20393559 - Nature. 2010 Apr 15;464(7291):1025-8 10991308 - Phys Rev Lett. 2000 Jul 10;85(2):461-4 15759365 - Physica A. 2004 Jun;337(1-2):307-18 19403189 - Hum Mov Sci. 2009 Jun;28(3):297-318 22292564 - Comput Methods Biomech Biomed Engin. 2013;16(6):660-8 22426223 - Nat Commun. 2012;3:702 11531384 - J Theor Biol. 2001 Sep 21;212(2):183-90 20947715 - J Appl Physiol (1985). 2010 Dec;109(6):1786-91 6953413 - Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 8727526 - J Appl Physiol (1985). 1996 May;80(5):1448-57 19074268 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20517-22 19144842 - J Neurosci. 2009 Jan 14;29(2):426-35 20869387 - Prog Biophys Mol Biol. 2011 Mar;105(1-2):49-57 16921107 - Proc Am Thorac Soc. 2006 Aug;3(6):467-71 11538314 - Chaos. 1995;5(1):82-7 12817466 - Biol Chem. 2003 May;384(5):697-709 20471349 - Neuron. 2010 May 13;66(3):353-69 17548233 - Trends Cogn Sci. 2007 Jul;11(7):267-9 11018927 - Phys Rev Lett. 2000 Mar 13;84(11):2529-32 21728513 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051130 17347385 - J Appl Physiol (1985). 2007 Jun;102(6):2315-23 17071844 - Am J Epidemiol. 2007 Jan 15;165(2):175-83 8990910 - Prog Brain Res. 1996;111:103-19 11308683 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Mar;63(3 Pt 1):031912 20075297 - J Biol Rhythms. 2010 Feb;25(1):19-27 10784453 - Science. 2000 Apr 28;288(5466):682-5 17684566 - PLoS One. 2007;2(8):e721 19615064 - J Circadian Rhythms. 2009 Jul 17;7:8 12942331 - Eur J Appl Physiol. 2003 Oct;90(3-4):305-16 17432930 - PLoS Comput Biol. 2007 Apr 13;3(4):e68 10421600 - Circulation. 1999 Jul 27;100(4):393-9 15286051 - J Appl Physiol (1985). 2004 Dec;97(6):2056-64 14963227 - Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5339-46 11415420 - Phys Rev Lett. 2001 Jun 25;86(26 Pt 1):6026-9 15120072 - Curr Biol. 2004 May 4;14(9):796-800 2697524 - Chronobiologia. 1989 Oct-Dec;16(4):421-39 16009791 - Circulation. 2005 Jul 19;112(3):314-9 10618303 - Circulation. 2000 Jan 4-11;101(1):47-53 21488990 - Eur J Neurosci. 2011 May;33(10):1851-65 15673380 - J Cardiovasc Electrophysiol. 2005 Jan;16(1):13-20 9315590 - Am J Cardiol. 1997 Sep 15;80(6):779-83 9965304 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Aug;54(2):2154-2157 12108842 - Ann Biomed Eng. 2002 May;30(5):683-92 11300452 - J Am Coll Cardiol. 2001 Apr;37(5):1395-402 10054352 - Phys Rev Lett. 1993 Mar 1;70(9):1343-6 21423370 - Front Physiol. 2010 Sep 15;1:128 15580271 - Nat Neurosci. 2005 Jan;8(1):61-6 21871489 - J Neurosci Methods. 2011 Oct 15;201(2):438-43 20932795 - Trends Cogn Sci. 2010 Nov;14(11):506-15 20075299 - J Biol Rhythms. 2010 Feb;25(1):37-46 22163023 - PLoS One. 2011;6(12):e28489 11875196 - Proc Natl Acad Sci U S A. 2002 Feb 19;99 Suppl 1:2466-72 11179089 - Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H1391-9 17999570 - J Exp Psychol Gen. 2007 Nov;136(4):551-68 18544724 - JAMA. 2008 Jun 11;299(22):2642-55 7718233 - Neuron. 1995 Apr;14(4):697-706 10921579 - Crit Care Med. 2000 Jul;28(7):2457-64 15159485 - Neurology. 2004 May 25;62(10):1822-6 19755580 - J Biol Rhythms. 2009 Oct;24(5):340-52 11290277 - Phys Rev Lett. 2001 Feb 26;86(9):1900-3 1486487 - Brain Res. 1992 Dec 11;598(1-2):257-63 12932086 - J Biol Rhythms. 2003 Aug;18(4):339-50 11919626 - Nature. 2002 Mar 28;416(6879):409-13 9058948 - J Opt Soc Am A Opt Image Sci Vis. 1997 Mar;14(3):529-46 18093917 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20702-7 19202078 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2490-4 20463205 - J Neurophysiol. 2010 Aug;104(2):1195-210 15705537 - Respir Physiol Neurobiol. 2005 Feb 15;145(2-3):219-33 1301010 - Nature. 1992 Mar 12;356(6365):168-70 9029225 - J Appl Physiol (1985). 1997 Jan;82(1):262-9 11485298 - Auton Neurosci. 2001 Jul 20;90(1-2):95-101 12033228 - Physica A. 2001 Dec 15;302(1-4):138-47 16731662 - J Biol Rhythms. 2006 Jun;21(3):222-32 |
References_xml | – reference: Bonnefont, X. (2010). Circadian timekeeping and multiple timescale neuroendocrine rhythms. Journal of Neuroendocrinology 22, 209-216. – reference: Turcotte, D. L. (1999). Self-organized criticality. Reports on Progress in Physics 62, 1377-1429. – reference: Kawachi, I., Colditz, G. A., Stampfer, M. J., Willett, W. C., Manson, J. E., Speizer, F. E. & Hennekens, C. H. (1995). Prospective study of shift work and risk of coronary heart disease in women. Circulation 92, 3178-3182. – reference: Canolty, R. T. & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Science 14, 506-515. – reference: Riemersma-van der Lek, R. F., Swaab, D. F., Twisk, J., Hol, E. M., Hoogendijk, W. J. & Van Someren, E. J. (2008). Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. Journal of the American Medical Association 299, 2642-2655. – reference: Peng, C. K., Mietus, J. E., Liu, Y., Lee, C., Hausdorff, J. M., Stanley, H. E., Goldbeger, A. L. & Lipsitz, L. A. (2002). Quantifying fractal dynamics of human respiration: age and gender effects. Annals of Biomedical Engineering 30, 683-692. – reference: Hausdorff, J. M., Ashkenazy, Y., Peng, C. K., Ivanov, P. C., Stanley, H. E. & Goldberger, A. L. (2001). When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Physica A302, 138-147. – reference: Manor, B., Costa, M. D., Hu, K., Newton, E., Starobinets, O., Kang, H. G., Peng, C. K., Novak, V. & Lipsitz, L. A. (2010). Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. Journal of Applied Physiology 109, 1786-1791. – reference: Scheer, F. A. J. L., Ter Horst, G. J., Van der Vliet, J. & Buijs, R. M. (2001). Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats. American Journal of Physiology: Heart and Circulatory Physiology 280, H1391-H1399. – reference: Pikovsky, A. & Rosenblum, M. (2011). Dynamics of heterogeneous oscillator ensembles in terms of collective variables. Physica D240, 872-881. – reference: Schreiber, T. (2000). Measuring information transfer. Physical Review Letters 85, 461-464. – reference: Scheer, F. A., Kalsbeek, A. & Buijs, R. M. (2003). Cardiovascular control by the suprachiasmatic nucleus: neural and neuroendocrine mechanisms in human and rat. Biological Chemistry 384, 697-709. – reference: Carlson, J. M. & Doyle, J. (1999). Highly optimized tolerance: a mechanism for power laws in designed systems. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 60, 1412-1427. – reference: Tort, A. B., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M. & Kopell, N. J. (2008). Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proceedings of the National Academy of Sciences of the United States of America 105, 20517-20522. – reference: Pikovsky, A. & Rosenblum, M. (2008). Partially integrable dynamics of hierarchical populations of coupled oscillators. Physical Review Letters 101, 264103. – reference: Chialvo, D. R. (2010). Emergent complex neural dynamics. Nature Physics 6, 744-750. – reference: Diaz-Guilera, A., Moreira, A. A., Guzman, L. & Amaral, L. A. N. (2007). Complex fluctuations and robustness in stylized signalling networks. Journal of Statistical Mechanics 01, P01013. – reference: Goldberger, A. L., Amaral, L., Hausdorff, J. M. & Ivanov, P. C. (2002). Fractal dynamics in physiology: alterations with disease and aging. Proceedings of the National Academy of Sciences of the United States of America A99, 2466-2472. – reference: Nunes Amaral, L. A., Ivanov, P. C., Aoyagi, N., Hidaka, I., Tomono, S., Goldberger, A. L., Stanley, H. E. & Yamamoto, Y. (2001). Behavioral-independent features of complex heartbeat dynamics. Physical Review Letters 86, 6026-6029. – reference: Turcotte, D. L. (2001). Self-organized criticality: does it have anything to do with criticality and is it useful? Nonlinear Processes in Geophysics 8, 193-196. – reference: de la Iglesia, H. O., Cambras, T., Schwartz, W. J. & Diez-Noguera, A. (2004). Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Current Biology 14, 796-800. – reference: Indic, P., Schwartz, W. J., Herzog, E. D., Foley, N. C. & Antle, M. C. (2007). Modeling the behavior of coupled cellular circadian oscillators in the suprachiasmatic nucleus. Journal of Biological Rhythms 22, 211-219. – reference: Chiesa, J. J., Cambras, T., Carpentieri, A. R. & Diez-Noguera, A. (2010). Arrhythmic rats after SCN lesions and constant light differ in short time scale regulation of locomotor activity. Journal of Biological Rhythms 25, 37-46. – reference: Stanley, H. E., Buldyrev, S. V., Goldberger, A. L., Hausdorff, J. M., Havlin, S., Mietus, J., Peng, C.-K., Sciortino, F. & Simons, M. (1992). Fractal landscapes in biological systems: long-range correlations in DNA and interbeat heart intervals. Physica A 191, 1-12. – reference: Rajendran, K. & Kevrekidis, I. G. (2011). Coarse graining the dynamics of heterogeneous oscillators in networks with spectral gaps. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 84, 036708. – reference: Muller, J. E., Stone, P. H., Turi, Z. G., Rutherford, J. D., Czeisler, C. A., Parker, C., Poole, W. K., Passamani, E., Roberts, R. & Robertson, T. (1985). Circadian variation in the frequency of onset of acute myocardial infarction. New England Journal of Medicine 313, 1315-1322. – reference: Aquino, G., Bologna, M., West, B. J. & Grigolini, P. (2011). Transmission of information between complex systems: 1/f resonance. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 83, 051130. – reference: Ivanov, P. C., Ma, Q. D., Bartsch, R. P., Hausdorff, J. M., Nunes Amaral, L. A., Schulte-Frohlinde, V., Stanley, H. E. & Yoneyama, M. (2009). Levels of complexity in scale-invariant neural signals. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 79, 041920. – reference: Masters, B. R. (2004). Fractal analysis of the vascular tree in the human retina. Annual Review of Biomedical Engineering 6, 427-452. – reference: Stanley, H. E., Amaral, L. A. N., Gopikrishnan, P., Ivanov, P. C., Keitt, T. H. & Plerou, V. (2000). Scaling invariance and universality: organizing principles in complex systems. Physica A 281, 60-68. – reference: Damiola, F., Le, M. N., Preitner, N., Kornmann, B., Fleury-Olela, F. & Schibler, U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes and Development 14, 2950-2961. – reference: Tulppo, M. P., Kiviniemi, A. M., Hautala, A. J., Kallio, M., Seppanen, T., Makikallio, T. H. & Huikuri, H. V. (2005). Physiological background of the loss of fractal heart rate dynamics. Circulation 112, 314-319. – reference: Hausdorff, J. M., Mitchell, S. L., Firtion, R., Peng, C. K., Cudkowicz, M. E., Wei, J. Y. & Goldberger, A. L. (1997). Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease. Journal of Applied Physiology 82, 262-269. – reference: Stephan, F. K. & Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proceedings of the National Academy of Sciences of the United States of America 69, 1583-1586. – reference: Hausdorff, J. M., Purdon, P., Peng, C. K., Ladin, Z., Wei, J. Y. & Goldberger, A. L. (1996). Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. Journal of Applied Physiology 80, 1448-1457. – reference: Jennings, H. D., Ivanov, P. C., Martins, A. M., da Silva, P. C. & Viswanathan, G. M. (2004). Variance fluctuations in nonstationary time series: a comparative study of music genres. Physica A336, 585-594. – reference: Moore, R. Y. & Eichler, V. B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Research 42, 201-206. – reference: Scheer, F. A., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proceedings of the National Academy of Sciences of the United States of America 106, 4453-4458. – reference: Ashkenazy, Y., Hausdorff, J. M., Ivanov, P. C. & Stanley, H. E. (2002). A stochastic model of human gait dynamics. Physica A-Statistical Mechanics and Its Applications 316, 662-670. – reference: Caruso, C. C., Lusk, S. L. & Gillespie, B. W. (2004). Relationship of work schedules to gastrointestinal diagnoses, symptoms, and medication use in auto factory workers. American Journal of Industrial Medicine 46, 586-598. – reference: Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697-706. – reference: McNamee, J. E. (1991). Fractal perspectives in pulmonary physiology. Journal of Applied Physiology 71, 1-8. – reference: Vikman, S., Makikallio, T. H., Yli-Mayry, S., Pikkujamsa, S., Koivisto, A. M., Reinikainen, P., Airaksinen, K. E. & Huikuri, H. V. (1999). Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation. Circulation 100, 2079-2084. – reference: Dickman, R., Munoz, M. A., Vespignani, A. & Zapperi, S. (2000). Paths to self-organized criticality. Brazilian Journal of Physics 30, 27-41. – reference: Pikkujamsa, S. M., Makikallio, T. H., Sourander, L. B., Raiha, I. J., Puukka, P., Skytta, J., Peng, C. K., Goldberger, A. L. & Huikuri, H. V. (1999). Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory. Circulation 100, 393-399. – reference: Hara, R., Wan, K., Wakamatsu, H., Aida, R., Moriya, T., Akiyama, M. & Shibata, S. (2001). Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes to Cells 6, 269-278. – reference: Turalska, M., Geneston, E., West, B. J., Allegrini, P. & Grigolini, P. (2012). Cooperation-induced topological complexity: a promising road to fault tolerance and hebbian learning. Frontiers in Physiology 3, 52. – reference: Zamir, M. (2001). Fractal dimensions and multifractility in vascular branching. Journal of Theoretical Biology 212, 183-190. – reference: Jensen, O. & Colgin, L. L. (2007). Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Science 11, 267-269. – reference: Perkiomaki, J. S., Zareba, W., Daubert, J. P., Couderc, J. P., Corsello, A. & Kremer, K. (2001). Fractal correlation properties of heart rate dynamics and adverse events in patients with implantable cardioverter-defibrillators. American Journal of Cardiology 88, 17-22. – reference: Brown, T. M., Coogan, A. N., Cutler, D. J., Hughes, A. T. & Piggins, H. D. (2008). Electrophysiological actions of orexins on rat suprachiasmatic neurons in vitro. Neuroscience Letters 448, 273-278. – reference: Darvas, F., Miller, K. J., Rao, R. P. & Ojemann, J. G. (2009). Nonlinear phase-phase cross-frequency coupling mediates communication between distant sites in human neocortex. Journal of Neuroscience 29, 426-435. – reference: Knutsson, A., Akerstedt, T., Jonsson, B. G. & Orth-Gomer, K. (1986). Increased risk of ischaemic heart disease in shift workers. Lancet 2, 89-92. – reference: Brummitt, C. D., D'Souza, R. M. & Leicht, E. A. (2012). Suppressing cascades of load in interdependent networks. Proceedings of the National Academy of Sciences of the United States of America 109, E680-E689. – reference: Hu, K., Ivanov, P. C., Hilton, M. F., Chen, Z., Ayers, R. T., Stanley, H. E. & Shea, S. A. (2004b). Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior. Proceedings of the National Academy of Sciences of the United States of America 101, 18223-18227. – reference: Chialvo, D. R. & Bak, P. (1999). Learning from mistakes. Neuroscience 90, 1137-1148. – reference: Yum, M. K., Kim, N. S., Oh, J. W., Kim, C. R., Lee, J. W., Kim, S. K., Noh, C. I., Choi, J. Y. & Yun, Y. S. (1999). Non-linear cardiac dynamics and morning dip: an unsound circadian rhythm. Clinical Physiology 19, 56-67. – reference: Morin, L. P., Shivers, K. Y., Blanchard, J. H. & Muscat, L. (2006). Complex organization of mouse and rat suprachiasmatic nucleus. Neuroscience 137, 1285-1297. – reference: Rubinov, M., Sporns, O., Thivierge, J. P. & Breakspear, M. (2011). Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLOS Computational Biology 7, e1002038. – reference: Ashkenazy, Y., Ivanov, P. C., Havlin, S., Peng, C. K., Goldberger, A. L. & Stanley, H. E. (2001). Magnitude and sign correlations in heartbeat fluctuations. Physical Review Letters 86, 1900-1903. – reference: Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79, 2554-2558. – reference: Goldberger, A. L. (1996). Complex systems. Proceedings of the American Thoracic Society 3, 467-471. – reference: Huikuri, H. V., Makikallio, T. H., Peng, C. K., Goldberger, A. L., Hintze, U. & Moller, M. (2000). Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101, 47-53. – reference: Torre, K. & Wagenmakers, E. J. (2009). Theories and models for 1/f(beta) noise in human movement science. Human Movement Science 28, 297-318. – reference: Stanley, H. E. (1995). Phase-transitions - power laws and Universality. Nature 378, 554. – reference: Mandelbrot, B. (1982). The Fractal Geometry of Nature. W.H. Freeman and Company, New York. – reference: Varanda, W. A., Liebovitch, L. S., Figueiroa, J. N. & Nogueira, R. A. (2000). Hurst analysis applied to the study of single calcium-activated potassium channel kinetics. Journal of Theoretical Biology 206, 343-353. – reference: Bak, P. & Chialvo, D. R. (2001). Adaptive learning by extremal dynamics and negative feedback. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 63, 031912. – reference: Hausdorff, J. M. & Peng, C. (1996). Multiscaled randomness: a possible source of 1/f noise in biology. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 54, 2154-2157. – reference: Peng, C. K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M. & Stanley, H. E. (1992). Long-range correlations in nucleotide sequences. Nature 356, 168-170. – reference: Peng, C.-K., Havlin, S., Stanley, H. E. & Goldberger, A. L. (1995b). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82-87. – reference: Frey, U., Brodbeck, T., Majumdar, A., Taylor, D. R., Town, G. I., Silverman, M. & Suki, B. (2005). Risk of severe asthma episodes predicted from fluctuation analysis of airway function. Nature 438, 667-670. – reference: Shea, S. A. (2012). Obesity and pharmacologic control of the body clock. New England Journal of Medicine 367, 175-178. – reference: He, B. J., Zempel, J. M., Snyder, A. Z. & Raichle, M. E. (2010). The temporal structures and functional significance of scale-free brain activity. Neuron 66, 353-369. – reference: Peng, C.-K., Mietus, J., Hausdorff, J. M., Havlin, S., Stanley, H. E. & Goldberger, A. L. (1993). Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Physical Review Letters 70, 1343-1346. – reference: Rennert, K. J. & Wallace, J. M. (2009). Cross-frequency coupling, skewness, and blocking in the Northern Hemisphere winter circulation. Journal of Climate 22, 5650-5666. – reference: Schwartz, J. R. & Roth, T. (2006). Shift work sleep disorder: burden of illness and approaches to management. Drugs 66, 2357-2370. – reference: Schick, K. L. & Verveen, A. A. (1974). 1/f noise with a low frequency white noise limit. Nature 251, 599-601. – reference: Ohta, H., Yamazaki, S. & McMahon, D. G. (2005). Constant light desynchronizes mammalian clock neurons. Nature Neuroscience 8, 267-269. – reference: Laing, C. R., Zou, Y., Smith, B. & Kevrekidis, I. G. (2012). Managing heterogeneity in the study of neural oscillator dynamics. Journal of Mathematical Neuroscience 2, 5. – reference: Ivanov, P. C. (2006). Scale-invariant aspects of cardiac dynamics across sleep stages and circadian phases. Conference Proceedings of the IEEE Engineering in Medicine and Biology Society 1, 445-448. – reference: Karasik, R., Sapir, N., Ashkenazy, Y., Ivanov, P. C., Dvir, I., Lavie, P. & Havlin, S. (2002). Correlation differences in heartbeat fluctuations during rest and exercise. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 66, 062902. – reference: Kroenke, C. H., Spiegelman, D., Manson, J., Schernhammer, E. S., Colditz, G. A. & Kawachi, I. (2007). Work characteristics and incidence of type 2 diabetes in women. American Journal of Epidemiology 165, 175-183. – reference: St Hilaire, M. A., Gooley, J. J., Khalsa, S. B., Kronauer, R. E., Czeisler, C. A. & Lockley, S. W. (2012). Human phase response curve to a 1 h pulse of bright white light. Journal of Physiology 590, 3035-3045. – reference: Rohani, P., Miramontes, O. & Keeling, M. J. (2004). The colour of noise in short ecological time series data. Mathematical Medicine and Biology 21, 63-72. – reference: Abrahamson, E. E. & Moore, R. Y. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Research 916, 172-191. – reference: Vener, K. J., Szabo, S. & Moore, J. G. (1989). The effect of shift work on gastrointestinal (GI) function: a review. Chronobiologia 16, 421-439. – reference: Balsalobre, A., Damiola, F. & Schibler, U. (1998). A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929-937. – reference: Reppert, S. M. & Weaver, D. R. (2002). Coordination of circadian timing in mammals. Nature 418, 935-941. – reference: Tort, A. B., Komorowski, R., Eichenbaum, H. & Kopell, N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology 104, 1195-1210. – reference: Kello, C. T., Beltz, B. C., Holden, J. G. & Van Orden, G. C. (2007). The emergent coordination of cognitive function. Journal of Experimental Psychology: General 136, 551-568. – reference: Cannon, W. B. (1929). Organization for physiological homeostasis. Physiological Reviews 9, 399-431. – reference: Foley, N. C., Tong, T. Y., Foley, D., Lesauter, J., Welsh, D. K. & Silver, R. (2011). Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. European Journal of Neuroscience 33, 1851-1865. – reference: Amaral, L. A., Diaz-Guilera, A., Moreira, A. A., Goldberger, A. L. & Lipsitz, L. A. (2004). Emergence of complex dynamics in a simple model of signaling networks. Proceedings of the National Academy of Sciences of the United States of America 101, 15551-15555. – reference: Ivanov, P. C., Bunde, A., Amaral, L. A., Havlin, S., Fritsch-Yelle, J., Baevsky, R. M., Stanley, H. E. & Goldberger, A. L. (1999b). Sleep-wake differences in scaling behavior of the human heartbeat: analysis of terrestrial and long-term space flight data. Europhysics Letters 48, 594-600. – reference: Long, M. A., Jutras, M. J., Connors, B. W. & Burwell, R. D. (2005). Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nature Neuroscience 8, 61-66. – reference: Schwartz, W. J. (2002). Suprachiasmatic nucleus. Current Biology 12, R644. – reference: Liebovitch, L. S., Scheurle, D., Rusek, M. & Zochowski, M. (2001). Fractal methods to analyze ion channel kinetics. Methods 24, 359-375. – reference: Yan, R. & Guo, X. (2012). Nonlinear fractal dynamics of human colonic pressure activity based upon the box-counting method. Computer Methods in Biomechanics and Biomedical Engineering, 2229-2564. – reference: Bak, P., Tang, C. & Wiesenfeld, K. (1987). Self-organized criticality: an explanation of the 1/f noise. Physical Review Letters 59, 381-384. – reference: Onslow, A. C., Bogacz, R. & Jones, M. W. (2011). Quantifying phase-amplitude coupling in neuronal network oscillations. Progress in Biophysics and Molecular Biology 105, 49-57. – reference: West, B. J., Latka, M., Glaubic-Latka, M. & Latka, D. (2003). Multifractality of cerebral blood flow. Physica A318, 453-460. – reference: West, B. J. (2010b). The wisdom of the body; a contemporary view. Frontiers in Physiology 1, 1. – reference: Scheer, F. A., Wright, K. P. Jr., Kronauer, R. E. & Czeisler, C. A. (2007). Plasticity of the intrinsic period of the human circadian timing system. PLoS ONE 2, e721. – reference: Hu, K., Van Someren, E. J. W., Shea, S. A. & Scheer, F. A. J. L. (2009). Reduction of scale invariance of activity fluctuations with aging and Alzheimer's disease: involvement of the circadian pacemaker. Proceedings of the National Academy of Sciences of the United States of America 106, 2490-2494. – reference: Karlsson, B., Knutsson, A. & Lindahl, B. (2001). Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occupational and Environmental Medicine 58, 747-752. – reference: Ralph, M. R., Foster, R. G., Davis, F. C. & Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975-978. – reference: Weaver, D. R. (1998). The suprachiasmatic nucleus: a 25-year retrospective. Journal of Biological Rhythms 13, 100-112. – reference: Kinouchi, O. & Copelli, M. (2006). Optimal dynamical range of excitable networks at criticality. Nature Physics 2, 348-352. – reference: Makikallio, T. H., Huikuri, H. V., Makikallio, A., Sourander, L. B., Mitrani, R. D., Castellanos, A. & Myerburg, R. J. (2001b). Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. Journal of the American College of Cardiology 37, 1395-1402. – reference: Hurst, H. E. (1951). Long-term storage of reservoirs: an experimental study. Transactions of the American Society of Engineers 116, 770-799. – reference: Anteneodo, C. & Chialvo, D. R. (2009). Unraveling the fluctuations of animal motor activity. Chaos 19, 033123. – reference: Wang, Y. & Doyle, F. J. III (2011). On influences of global and local cues on the rate of synchronization of oscillator networks. Automatica (Oxford) 47, 1236-1242. – reference: Makikallio, T. H., Seppanen, T., Airaksinen, K. E., Koistinen, J., Tulppo, M. P., Peng, C. K., Goldberger, A. L. & Huikuri, H. V. (1997). Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. American Journal of Cardiology 80, 779-783. – reference: Meyer, M. & Stiedl, O. (2003). Self-affine fractal variability of human heartbeat interval dynamics in health and disease. European Journal of Applied Physiology 90, 305-316. – reference: Nemati, S., Lehman, L. H., Adams, R. P. & Malhotra, A. (2012). Discovering shared cardiovascular dynamics within a patient cohort. Conference Proceedings, IEEE Engineering in Medicine and Biology Society, 6526-6529. – reference: Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E. & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 49, 1685-1689. – reference: Ruttimann, U. E., Webber, R. L. & Hazelrig, J. B. (1992). Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 74, 98-110. – reference: Bernard, S., Gonze, D., Cajavec, B., Herzel, H. & Kramer, A. (2007). Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLOS Computational Biology 3, e68. – reference: Meijer, J. H., Rusak, B. & Ganshirt, G. (1992). The relation between light-induced discharge in the suprachiasmatic nucleus and phase shifts of hamster circadian rhythms. Brain Research 598, 257-263. – reference: Kamiya, A. & Takahashi, T. (2007). Quantitative assessments of morphological and functional properties of biological trees based on their fractal nature. Journal of Applied Physiology 102, 2315-2323. – reference: Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S. & Ivanov, P. C. (2012). Network physiology reveals relations between network topology and physiological function. Nature Communications 3, 702. – reference: Gupta, V., Suryanarayanan, S. & Reddy, N. P. (1997). Fractal analysis of surface EMG signals from the biceps. International Journal of Medical Informatics 45, 185-192. – reference: Scheffzuk, C., Kukushka, V. I., Vyssotski, A. L., Draguhn, A., Tort, A. B. & Brankack, J. (2011). Selective coupling between theta phase and neocortical fast gamma oscillations during REM-sleep in mice. PLoS ONE 6, e28489. – reference: Fadel, P. J., Barman, S. M., Phillips, S. W. & Gebber, G. L. (2004). Fractal fluctuations in human respiration. Journal of Applied Physiology 97, 2056-2064. – reference: Verveen, A. A., Derksen, H. E. & Schick, K. L. (1967). Voltage fluctuations of neural membrane. Nature 216, 588-589. – reference: Allegrini, P., Paradisi, P., Menicucci, D. & Gemignani, A. (2010). Fractal complexity in spontaneous EEG metastable-state transitions: new vistas on integrated neural dynamics. Frontiers in Physiology 1, 128. – reference: Hu, K., Scheer, F. A., Buijs, R. M. & Shea, S. A. (2008). The circadian pacemaker generates similar circadian rhythms in the fractal structure of heart rate in humans and rats. Cardiovascular Research 80, 62-68. – reference: Angeles-Castellanos, M., Amaya, J. M., Salgado-Delgado, R., Buijs, R. M. & Escobar, C. (2011). Scheduled food hastens re-entrainment more than melatonin does after a 6-h phase advance of the light-dark cycle in rats. Journal of Biological Rhythms 26, 324-334. – reference: Hu, K., Scheer, F. A., Ivanov, P. C., Buijs, R. M. & Shea, S. A. (2007). The suprachiasmatic nucleus functions beyond circadian rhythm generation. Neuroscience 149, 508-517. – reference: Bassingthwaighte, J. B., Liebovitch, L. S. & West, B. J. (1994). Fractal Physiology. Oxford University Press, New York. – reference: Scheer, F. A., Pirovano, C., Van Someren, E. J. & Buijs, R. M. (2005). Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature. Neuroscience 132, 465-477. – reference: Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., Block, G. D., Sakaki, Y., Menaker, M. & Tei, H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682-685. – reference: Buijs, R. M., Scheer, F. A., Kreier, F., Yi, C., Bos, N., Goncharuk, V. D. & Kalsbeek, A. (2006). Organization of circadian functions: interaction with the body. Progress in Brain Research 153, 341-360. – reference: Butler, M. P. & Silver, R. (2009). Basis of robustness and resilience in the suprachiasmatic nucleus: individual neurons form nodes in circuits that cycle daily. Journal of Biological Rhythms 24, 340-352. – reference: Gisiger, T. (2001). Scale invariance in biology: coincidence or footprint of a universal mechanism? Biological Reviews of the Cambridge Philosophical Society 76, 161-209. – reference: Antle, M. C., Foley, D. K., Foley, N. C. & Silver, R. (2003). Gates and oscillators: a network model of the brain clock. Journal of Biological Rhythms 18, 339-350. – reference: Huikuri, H. V. & Makikallio, T. H. (2001). Heart rate variability in ischemic heart disease. Autonomic Neuroscience 90, 95-101. – reference: Ivanov, P. C., Nunes Amaral, L. A., Goldberger, A. L. & Stanley, H. E. (1998). Stochastic feedback and the regulation of biological rhythms. Europhysics Letters 43, 363-368. – reference: Stam, C. J. & de Bruin, E. A. (2004). Scale-free dynamics of global functional connectivity in the human brain. Human Brain Mapping 22, 97-109. – reference: Canton, J. L., Smith, M. R., Choi, H. S. & Eastman, C. I. (2009). Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color. Journal of Circadian Rhythms 7, 8. – reference: West, B. J., Griffin, L. A., Frederick, H. J. & Moon, R. E. (2005). The independently fractal nature of respiration and heart rate during exercise under normobaric and hyperbaric conditions. Respiratory Physiology and Neurobiology 145, 219-233. – reference: West, B. J. (1990). Fractal Physiology and Chaos in Medicine. World Scientific, Singapore. – reference: Gorman, M. R., Yellon, S. M. & Lee, T. M. (2001). Temporal reorganization of the suprachiasmatic nuclei in hamsters with split circadian rhythms. Journal of Biological Rhythms 16, 552-563. – reference: Carlson, J. M. & Doyle, J. (2000). Highly optimized tolerance: robustness and design in complex systems. Physical Review Letters 84, 2529-2532. – reference: Albrecht, U. & Eichele, G. (2003). The mammalian circadian clock. Current Opinion in Genetics and Development 13, 271-277. – reference: Ozkurt, T. E. & Schnitzler, A. (2011). A critical note on the definition of phase-amplitude cross-frequency coupling. Journal of Neuroscience Methods 201, 438-443. – reference: Moore, R. Y. (1996). Entrainment pathways and the functional organization of the circadian system. Progress in Brain Research 111, 103-119. – reference: Ivanov, P. C., Hu, K., Hilton, M. F., Shea, S. A. & Stanley, H. E. (2007). Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics. Proceedings of the National Academy of Sciences of the United States of America 104, 20702-20707. – reference: Makikallio, A. M., Makikallio, T. H., Korpelainen, J. T., Sotaniemi, K. A., Huikuri, H. V. & Myllyla, V. V. (2004). Heart rate dynamics predict poststroke mortality. Neurology 62, 1822-1826. – reference: Buldryev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. (2010). Catastrophic cascades of failures in interdependent networks. Nature 464, 1025-1028. – reference: Scafetta, N., Marchi, D. & West, B. J. (2009). Understanding the complexity of human gait dynamics. Chaos 19, 026108. – reference: Tuchsen, F., Hannerz, H. & Burr, H. (2006). A 12 year prospective study of circulatory disease among Danish shift workers. Occupational and Environmental Medicine 63, 451-455. – reference: Ivanov, P. C., Amaral, L. A., Goldberger, A. L., Havlin, S., Rosenblum, M. G., Struzik, Z. R. & Stanley, H. E. (1999a). Multifractality in human heartbeat dynamics. Nature 399, 461-465. – reference: Antle, M. C., Foley, N. C., Foley, D. K. & Silver, R. (2007). Gates and oscillators II: zeitgebers and the network model of the brain clock. Journal of Biological Rhythms 22, 14-25. – reference: Hu, K., Ivanov, P. C., Chen, Z., Hilton, M. F., Stanley, H. E. & Shea, S. A. (2004a). Non-random fluctuations and multi-scale dynamics regulation of human activity. Physica A337, 307-318. – reference: Turalska, M., Lukovic, M., West, B. J. & Grigolini, P. (2009). Complexity and synchronization. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 80, 021110. – reference: Willich, S. N., Levy, D., Rocco, M. B., Tofler, G. H., Stone, P. H. & Muller, J. E. (1987). Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study population. American Journal of Cardiology 60, 801-806. – reference: Matsumoto, M., Saito, S. & Ohmine, I. (2002). Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416, 409-413. – reference: Naito, E., Watanabe, T., Tei, H., Yoshimura, T. & Ebihara, S. (2008). Reorganization of the suprachiasmatic nucleus coding for day length. Journal of Biological Rhythms 23, 140-149. – reference: Suki, B. (2002). Fluctuations and power laws in pulmonary physiology. American Journal of Respiratory and Critical Care Medicine 166, 133-137. – reference: West, B. J. (2010a). Fractal physiology and the fractional calculus: a perspective. Frontiers in Physiology 1, 12. – reference: Yoo, S. H., Yamazaki, S., Lowrey, P. L., Shimomura, K., Ko, C. H., Buhr, E. D., Siepka, S. M., Hong, H. K., Oh, W. J., Yoo, O. J., Menaker, M. & Takahashi, J. S. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proceedings of the National Academy of Sciences of the United States of America 101, 5339-5346. – reference: Mutch, W. A. C., Harm, S., Lefevre, G. R., Graham, M. R., Girling, L. G. & Kowalski, S. E. (2000). Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome. Critical Care Medicine 28, 2457-2464. – reference: Sauseng, P., Klimesch, W., Gruber, W. R. & Birbaumer, N. (2008). Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. Neuroimage 40, 308-317. – reference: Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review 45, 167-256. – reference: Kunz, H. & Achermann, P. (2003). Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators. Journal of Theoretical Biology 224, 63-78. – reference: Wehr, T. A. (1991). The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). The Journal of Clinical Endocrinology & Metabolism 73, 1276-1280. – reference: Hu, K., Meijer, J. H., Shea, S. A., Vanderleest, H. T., Pittman-Polletta, B., Houben, T., van Oosterhout, F., Deboer, T. & Scheer, F. A. (2012). Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions. PLoS ONE 7, e48927. – reference: Teich, M. C., Heneghan, C., Lowen, S. B., Ozaki, T. & Kaplan, E. (1997). Fractal character of the neural spike train in the visual system of the cat. Journal of the Optical Society of America A: Optics, Image Science, and Vision 14, 529-546. – reference: Beggs, J. M. & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience 23, 11167-11177. – reference: Indic, P., Gurdziel, K., Kronauer, R. E. & Klerman, E. B. (2006). Development of a two-dimension manifold to represent high dimension mathematical models of the intracellular Mammalian circadian clock. Journal of Biological Rhythms 21, 222-232. – reference: Sakamoto, K., Nagase, T., Fukui, H., Horikawa, K., Okada, T., Tanaka, H., Sato, K., Miyake, Y., Ohara, O., Kako, K. & Ishida, N. (1998). Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. Journal of Biological Chemistry 273, 27039-27042. – reference: Stein, P. K., Domitrovich, P. P., Huikuri, H. V. & Kleiger, R. E. (2005). Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. Journal of Cardiovascular Electrophysiology 16, 13-20. – reference: Otsuka, K., Cornelissen, G. & Halberg, F. (1997). Circadian rhythmic fractal scaling of heart rate variability in health and coronary artery disease. Clinical Cardiology 20, 631-638. – reference: Smith, T. G. Jr., Lange, G. D. & Marks, W. B. (1996). Fractal methods and results in cellular morphology--dimensions, lacunarity and multifractals. Journal of Neuroscience Methods 69, 123-136. – reference: Allegrini, P., Menicucci, D., Bedini, R., Fronzoni, L., Gemignani, A., Grigolini, P., West, B. J. & Paradisi, P. (2009). Spontaneous brain activity as a source of ideal 1/f noise. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 80, 061914. – reference: Stanley, H. E. (1971). Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, London. – reference: Kantelhardt, J. W., Ashkenazy, Y., Ivanov, P. C., Bunde, A., Havlin, S., Penzel, T., Peter, J. H. & Stanley, H. E. (2002). Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 65, 051908. – reference: Yan, L., Silver, R. & Gorman, M. (2010). Reorganization of suprachiasmatic nucleus networks under 24-h LDLD conditions. Journal of Biological Rhythms 25, 19-27. – reference: Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E. & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences of the United States of America 107, 3228-3233. – reference: Peng, C. K., Havlin, S., Hausdorff, J. M., Mietus, J. E., Stanley, H. E. & Goldberger, A. L. (1995a). Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. Journal of Electrocardiology 28(Suppl), 59-65. – reference: Bunde, A., Havlin, S., Kantelhardt, J. W., Penzel, T., Peter, J. H. & Voigt, K. (2000). Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Physical Review Letters 85, 3736-3739. – reference: Makikallio, T. H., Huikuri, H. V., Hintze, U., Videbaek, R. D., Mitrani, R. D., Castellanos, A., Mayerburg, R. J. & Moller, M. (2001a). Fractal analysis and time-and-frequency domain measures of heart rate variability as predictors of mortality in patients with heart failure. American Journal of Cardiology 87, 178-182. – volume: 22 start-page: 209 year: 2010 end-page: 216 article-title: Circadian timekeeping and multiple timescale neuroendocrine rhythms publication-title: Journal of Neuroendocrinology – volume: 88 start-page: 17 year: 2001 end-page: 22 article-title: Fractal correlation properties of heart rate dynamics and adverse events in patients with implantable cardioverter‐defibrillators publication-title: American Journal of Cardiology – volume: 24 start-page: 340 year: 2009 end-page: 352 article-title: Basis of robustness and resilience in the suprachiasmatic nucleus: individual neurons form nodes in circuits that cycle daily publication-title: Journal of Biological Rhythms – volume: 65 start-page: 051908 year: 2002 article-title: Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics – volume: 313 start-page: 1315 year: 1985 end-page: 1322 article-title: Circadian variation in the frequency of onset of acute myocardial infarction publication-title: New England Journal of Medicine – volume: 30 start-page: 683 year: 2002 end-page: 692 article-title: Quantifying fractal dynamics of human respiration: age and gender effects publication-title: Annals of Biomedical Engineering – volume: 165 start-page: 175 year: 2007 end-page: 183 article-title: Work characteristics and incidence of type 2 diabetes in women publication-title: American Journal of Epidemiology – volume: 598 start-page: 257 year: 1992 end-page: 263 article-title: The relation between light‐induced discharge in the suprachiasmatic nucleus and phase shifts of hamster circadian rhythms publication-title: Brain Research – volume: 59 start-page: 381 year: 1987 end-page: 384 article-title: Self‐organized criticality: an explanation of the 1/f noise publication-title: Physical Review Letters – volume: 23 start-page: 140 year: 2008 end-page: 149 article-title: Reorganization of the suprachiasmatic nucleus coding for day length publication-title: Journal of Biological Rhythms – volume: 14 start-page: 697 year: 1995 end-page: 706 article-title: Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms publication-title: Neuron – volume: 107 start-page: 3228 year: 2010 end-page: 3233 article-title: Cross‐frequency coupling supports multi‐item working memory in the human hippocampus publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 12 start-page: R644 year: 2002 article-title: Suprachiasmatic nucleus publication-title: Current Biology – volume: 66 start-page: 2357 year: 2006 end-page: 2370 article-title: Shift work sleep disorder: burden of illness and approaches to management publication-title: Drugs – volume: 63 start-page: 451 year: 2006 end-page: 455 article-title: A 12 year prospective study of circulatory disease among Danish shift workers publication-title: Occupational and Environmental Medicine – volume: 92 start-page: 3178 year: 1995 end-page: 3182 article-title: Prospective study of shift work and risk of coronary heart disease in women publication-title: Circulation – volume: 378 start-page: 554 year: 1995 article-title: Phase‐transitions ‐ power laws and Universality publication-title: Nature – volume: A318 start-page: 453 year: 2003 end-page: 460 article-title: Multifractality of cerebral blood flow publication-title: Physica – volume: 136 start-page: 551 year: 2007 end-page: 568 article-title: The emergent coordination of cognitive function publication-title: Journal of Experimental Psychology: General – volume: 22 start-page: 97 year: 2004 end-page: 109 article-title: Scale‐free dynamics of global functional connectivity in the human brain publication-title: Human Brain Mapping – volume: 100 start-page: 393 year: 1999 end-page: 399 article-title: Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory publication-title: Circulation – volume: 464 start-page: 1025 year: 2010 end-page: 1028 article-title: Catastrophic cascades of failures in interdependent networks publication-title: Nature – year: 1990 – volume: 63 start-page: 031912 year: 2001 article-title: Adaptive learning by extremal dynamics and negative feedback publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics – volume: 109 start-page: E680 year: 2012 end-page: E689 article-title: Suppressing cascades of load in interdependent networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 62 start-page: 1822 year: 2004 end-page: 1826 article-title: Heart rate dynamics predict poststroke mortality publication-title: Neurology – volume: 97 start-page: 2056 year: 2004 end-page: 2064 article-title: Fractal fluctuations in human respiration publication-title: Journal of Applied Physiology – volume: 28 start-page: 59 issue: Suppl year: 1995a end-page: 65 article-title: Fractal mechanisms and heart rate dynamics. Long‐range correlations and their breakdown with disease publication-title: Journal of Electrocardiology – volume: 251 start-page: 599 year: 1974 end-page: 601 article-title: 1/f noise with a low frequency white noise limit publication-title: Nature – volume: 280 start-page: H1391 year: 2001 end-page: H1399 article-title: Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats publication-title: American Journal of Physiology: Heart and Circulatory Physiology – volume: 60 start-page: 801 year: 1987 end-page: 806 article-title: Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study population publication-title: American Journal of Cardiology – volume: 28 start-page: 297 year: 2009 end-page: 318 article-title: Theories and models for 1/f(beta) noise in human movement science publication-title: Human Movement Science – volume: 14 start-page: 2950 year: 2000 end-page: 2961 article-title: Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus publication-title: Genes and Development – volume: 3 start-page: 52 year: 2012 article-title: Cooperation‐induced topological complexity: a promising road to fault tolerance and hebbian learning publication-title: Frontiers in Physiology – volume: 28 start-page: 2457 year: 2000 end-page: 2464 article-title: Biologically variable ventilation increases arterial oxygenation over that seen with positive end‐expiratory pressure alone in a porcine model of acute respiratory distress syndrome publication-title: Critical Care Medicine – volume: 316 start-page: 662 year: 2002 end-page: 670 article-title: A stochastic model of human gait dynamics publication-title: Physica A‐Statistical Mechanics and Its Applications – volume: 384 start-page: 697 year: 2003 end-page: 709 article-title: Cardiovascular control by the suprachiasmatic nucleus: neural and neuroendocrine mechanisms in human and rat publication-title: Biological Chemistry – volume: 43 start-page: 363 year: 1998 end-page: 368 article-title: Stochastic feedback and the regulation of biological rhythms publication-title: Europhysics Letters – volume: 104 start-page: 1195 year: 2010 end-page: 1210 article-title: Measuring phase‐amplitude coupling between neuronal oscillations of different frequencies publication-title: Journal of Neurophysiology – volume: 216 start-page: 588 year: 1967 end-page: 589 article-title: Voltage fluctuations of neural membrane publication-title: Nature – volume: 85 start-page: 3736 year: 2000 end-page: 3739 article-title: Correlated and uncorrelated regions in heart‐rate fluctuations during sleep publication-title: Physical Review Letters – volume: 2 start-page: 5 year: 2012 article-title: Managing heterogeneity in the study of neural oscillator dynamics publication-title: Journal of Mathematical Neuroscience – volume: 49 start-page: 1685 year: 1994 end-page: 1689 article-title: Mosaic organization of DNA nucleotides publication-title: Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics – volume: 112 start-page: 314 year: 2005 end-page: 319 article-title: Physiological background of the loss of fractal heart rate dynamics publication-title: Circulation – volume: 80 start-page: 1448 year: 1996 end-page: 1457 article-title: Fractal dynamics of human gait: stability of long‐range correlations in stride interval fluctuations publication-title: Journal of Applied Physiology – volume: 111 start-page: 103 year: 1996 end-page: 119 article-title: Entrainment pathways and the functional organization of the circadian system publication-title: Progress in Brain Research – volume: 367 start-page: 175 year: 2012 end-page: 178 article-title: Obesity and pharmacologic control of the body clock publication-title: New England Journal of Medicine – volume: 916 start-page: 172 year: 2001 end-page: 191 article-title: Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections publication-title: Brain Research – volume: 37 start-page: 1395 year: 2001b end-page: 1402 article-title: Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects publication-title: Journal of the American College of Cardiology – volume: D240 start-page: 872 year: 2011 end-page: 881 article-title: Dynamics of heterogeneous oscillator ensembles in terms of collective variables publication-title: Physica – volume: 247 start-page: 975 year: 1990 end-page: 978 article-title: Transplanted suprachiasmatic nucleus determines circadian period publication-title: Science – volume: 80 start-page: 021110 year: 2009 article-title: Complexity and synchronization publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics – volume: 21 start-page: 63 year: 2004 end-page: 72 article-title: The colour of noise in short ecological time series data publication-title: Mathematical Medicine and Biology – volume: 16 start-page: 421 year: 1989 end-page: 439 article-title: The effect of shift work on gastrointestinal (GI) function: a review publication-title: Chronobiologia – volume: 2 start-page: 89 year: 1986 end-page: 92 article-title: Increased risk of ischaemic heart disease in shift workers publication-title: Lancet – volume: 11 start-page: 267 year: 2007 end-page: 269 article-title: Cross‐frequency coupling between neuronal oscillations publication-title: Trends in Cognitive Science – volume: 46 start-page: 586 year: 2004 end-page: 598 article-title: Relationship of work schedules to gastrointestinal diagnoses, symptoms, and medication use in auto factory workers publication-title: American Journal of Industrial Medicine – volume: 1 start-page: 445 year: 2006 end-page: 448 article-title: Scale‐invariant aspects of cardiac dynamics across sleep stages and circadian phases publication-title: Conference Proceedings of the IEEE Engineering in Medicine and Biology Society – volume: 3 start-page: e68 year: 2007 article-title: Synchronization‐induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus publication-title: PLOS Computational Biology – start-page: 2229 year: 2012 end-page: 2564 article-title: Nonlinear fractal dynamics of human colonic pressure activity based upon the box‐counting method publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 48 start-page: 594 year: 1999b end-page: 600 article-title: Sleep‐wake differences in scaling behavior of the human heartbeat: analysis of terrestrial and long‐term space flight data publication-title: Europhysics Letters – volume: 79 start-page: 041920 year: 2009 article-title: Levels of complexity in scale‐invariant neural signals publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics – volume: 69 start-page: 123 year: 1996 end-page: 136 article-title: Fractal methods and results in cellular morphology‐‐dimensions, lacunarity and multifractals publication-title: Journal of Neuroscience Methods – volume: 19 start-page: 56 year: 1999 end-page: 67 article-title: Non‐linear cardiac dynamics and morning dip: an unsound circadian rhythm publication-title: Clinical Physiology – volume: 82 start-page: 262 year: 1997 end-page: 269 article-title: Altered fractal dynamics of gait: reduced stride‐interval correlations with aging and Huntington's disease publication-title: Journal of Applied Physiology – volume: 153 start-page: 341 year: 2006 end-page: 360 article-title: Organization of circadian functions: interaction with the body publication-title: Progress in Brain Research – volume: 14 start-page: 796 year: 2004 end-page: 800 article-title: Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus publication-title: Current Biology – volume: 448 start-page: 273 year: 2008 end-page: 278 article-title: Electrophysiological actions of orexins on rat suprachiasmatic neurons in vitro publication-title: Neuroscience Letters – volume: 29 start-page: 426 year: 2009 end-page: 435 article-title: Nonlinear phase‐phase cross‐frequency coupling mediates communication between distant sites in human neocortex publication-title: Journal of Neuroscience – volume: 16 start-page: 552 year: 2001 end-page: 563 article-title: Temporal reorganization of the suprachiasmatic nuclei in hamsters with split circadian rhythms publication-title: Journal of Biological Rhythms – volume: 84 start-page: 2529 year: 2000 end-page: 2532 article-title: Highly optimized tolerance: robustness and design in complex systems publication-title: Physical Review Letters – volume: 73 start-page: 1276 year: 1991 end-page: 1280 article-title: The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod) publication-title: The Journal of Clinical Endocrinology & Metabolism – volume: 356 start-page: 168 year: 1992 end-page: 170 article-title: Long‐range correlations in nucleotide sequences publication-title: Nature – volume: 22 start-page: 5650 year: 2009 end-page: 5666 article-title: Cross‐frequency coupling, skewness, and blocking in the Northern Hemisphere winter circulation publication-title: Journal of Climate – volume: 45 start-page: 185 year: 1997 end-page: 192 article-title: Fractal analysis of surface EMG signals from the biceps publication-title: International Journal of Medical Informatics – volume: 105 start-page: 49 year: 2011 end-page: 57 article-title: Quantifying phase‐amplitude coupling in neuronal network oscillations publication-title: Progress in Biophysics and Molecular Biology – volume: 101 start-page: 15551 year: 2004 end-page: 15555 article-title: Emergence of complex dynamics in a simple model of signaling networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 19 start-page: 033123 year: 2009 article-title: Unraveling the fluctuations of animal motor activity publication-title: Chaos – volume: 13 start-page: 100 year: 1998 end-page: 112 article-title: The suprachiasmatic nucleus: a 25‐year retrospective publication-title: Journal of Biological Rhythms – volume: A302 start-page: 138 year: 2001 end-page: 147 article-title: When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations publication-title: Physica – volume: 74 start-page: 98 year: 1992 end-page: 110 article-title: Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis publication-title: Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology – volume: 23 start-page: 11167 year: 2003 end-page: 11177 article-title: Neuronal avalanches in neocortical circuits publication-title: Journal of Neuroscience – volume: 76 start-page: 161 year: 2001 end-page: 209 article-title: Scale invariance in biology: coincidence or footprint of a universal mechanism? publication-title: Biological Reviews of the Cambridge Philosophical Society – volume: 79 start-page: 2554 year: 1982 end-page: 2558 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 40 start-page: 308 year: 2008 end-page: 317 article-title: Cross‐frequency phase synchronization: a brain mechanism of memory matching and attention publication-title: Neuroimage – volume: 80 start-page: 62 year: 2008 end-page: 68 article-title: The circadian pacemaker generates similar circadian rhythms in the fractal structure of heart rate in humans and rats publication-title: Cardiovascular Research – volume: 42 start-page: 201 year: 1972 end-page: 206 article-title: Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat publication-title: Brain Research – volume: 212 start-page: 183 year: 2001 end-page: 190 article-title: Fractal dimensions and multifractility in vascular branching publication-title: Journal of Theoretical Biology – volume: 166 start-page: 133 year: 2002 end-page: 137 article-title: Fluctuations and power laws in pulmonary physiology publication-title: American Journal of Respiratory and Critical Care Medicine – volume: 80 start-page: 061914 year: 2009 article-title: Spontaneous brain activity as a source of ideal 1/f noise publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics – volume: 20 start-page: 631 year: 1997 end-page: 638 article-title: Circadian rhythmic fractal scaling of heart rate variability in health and coronary artery disease publication-title: Clinical Cardiology – volume: 2 start-page: e721 year: 2007 article-title: Plasticity of the intrinsic period of the human circadian timing system publication-title: PLoS ONE – volume: 18 start-page: 339 year: 2003 end-page: 350 article-title: Gates and oscillators: a network model of the brain clock publication-title: Journal of Biological Rhythms – volume: 416 start-page: 409 year: 2002 end-page: 413 article-title: Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing publication-title: Nature – volume: 109 start-page: 1786 year: 2010 end-page: 1791 article-title: Physiological complexity and system adaptability: evidence from postural control dynamics of older adults publication-title: Journal of Applied Physiology – volume: 21 start-page: 222 year: 2006 end-page: 232 article-title: Development of a two‐dimension manifold to represent high dimension mathematical models of the intracellular Mammalian circadian clock publication-title: Journal of Biological Rhythms – volume: 84 start-page: 036708 year: 2011 article-title: Coarse graining the dynamics of heterogeneous oscillators in networks with spectral gaps publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics – volume: 106 start-page: 4453 year: 2009 end-page: 4458 article-title: Adverse metabolic and cardiovascular consequences of circadian misalignment publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 25 start-page: 19 year: 2010 end-page: 27 article-title: Reorganization of suprachiasmatic nucleus networks under 24‐h LDLD conditions publication-title: Journal of Biological Rhythms – volume: 60 start-page: 1412 year: 1999 end-page: 1427 article-title: Highly optimized tolerance: a mechanism for power laws in designed systems publication-title: Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics – year: 2009 – volume: A336 start-page: 585 year: 2004 end-page: 594 article-title: Variance fluctuations in nonstationary time series: a comparative study of music genres publication-title: Physica – volume: 83 start-page: 051130 year: 2011 article-title: Transmission of information between complex systems: 1/f resonance publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics – volume: 30 start-page: 27 year: 2000 end-page: 41 article-title: Paths to self‐organized criticality publication-title: Brazilian Journal of Physics – volume: 3 start-page: 467 year: 1996 end-page: 471 article-title: Complex systems publication-title: Proceedings of the American Thoracic Society – volume: 101 start-page: 18223 year: 2004b end-page: 18227 article-title: Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 288 start-page: 682 year: 2000 end-page: 685 article-title: Resetting central and peripheral circadian oscillators in transgenic rats publication-title: Science – volume: 33 start-page: 1851 year: 2011 end-page: 1865 article-title: Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus publication-title: European Journal of Neuroscience – volume: 101 start-page: 264103 year: 2008 article-title: Partially integrable dynamics of hierarchical populations of coupled oscillators publication-title: Physical Review Letters – volume: 149 start-page: 508 year: 2007 end-page: 517 article-title: The suprachiasmatic nucleus functions beyond circadian rhythm generation publication-title: Neuroscience – volume: 22 start-page: 211 year: 2007 end-page: 219 article-title: Modeling the behavior of coupled cellular circadian oscillators in the suprachiasmatic nucleus publication-title: Journal of Biological Rhythms – volume: 47 start-page: 1236 year: 2011 end-page: 1242 article-title: On influences of global and local cues on the rate of synchronization of oscillator networks publication-title: Automatica (Oxford) – volume: 137 start-page: 1285 year: 2006 end-page: 1297 article-title: Complex organization of mouse and rat suprachiasmatic nucleus publication-title: Neuroscience – volume: 102 start-page: 2315 year: 2007 end-page: 2323 article-title: Quantitative assessments of morphological and functional properties of biological trees based on their fractal nature publication-title: Journal of Applied Physiology – volume: 273 start-page: 27039 year: 1998 end-page: 27042 article-title: Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain publication-title: Journal of Biological Chemistry – volume: 1 start-page: 12 year: 2010a article-title: Fractal physiology and the fractional calculus: a perspective publication-title: Frontiers in Physiology – volume: 58 start-page: 747 year: 2001 end-page: 752 article-title: Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people publication-title: Occupational and Environmental Medicine – year: 1971 – volume: 85 start-page: 461 year: 2000 end-page: 464 article-title: Measuring information transfer publication-title: Physical Review Letters – volume: 24 start-page: 359 year: 2001 end-page: 375 article-title: Fractal methods to analyze ion channel kinetics publication-title: Methods – volume: 145 start-page: 219 year: 2005 end-page: 233 article-title: The independently fractal nature of respiration and heart rate during exercise under normobaric and hyperbaric conditions publication-title: Respiratory Physiology and Neurobiology – year: 1994 – volume: 3 start-page: 702 year: 2012 article-title: Network physiology reveals relations between network topology and physiological function publication-title: Nature Communications – volume: 7 start-page: e1002038 year: 2011 article-title: Neurobiologically realistic determinants of self‐organized criticality in networks of spiking neurons publication-title: PLOS Computational Biology – volume: 6 start-page: 427 year: 2004 end-page: 452 article-title: Fractal analysis of the vascular tree in the human retina publication-title: Annual Review of Biomedical Engineering – volume: 01 start-page: P01013 year: 2007 article-title: Complex fluctuations and robustness in stylized signalling networks publication-title: Journal of Statistical Mechanics – volume: 8 start-page: 193 year: 2001 end-page: 196 article-title: Self‐organized criticality: does it have anything to do with criticality and is it useful? publication-title: Nonlinear Processes in Geophysics – year: 1982 – volume: 206 start-page: 343 year: 2000 end-page: 353 article-title: Hurst analysis applied to the study of single calcium‐activated potassium channel kinetics publication-title: Journal of Theoretical Biology – volume: A337 start-page: 307 year: 2004a end-page: 318 article-title: Non‐random fluctuations and multi‐scale dynamics regulation of human activity publication-title: Physica – volume: 399 start-page: 461 year: 1999a end-page: 465 article-title: Multifractality in human heartbeat dynamics publication-title: Nature – volume: 8 start-page: 267 year: 2005 end-page: 269 article-title: Constant light desynchronizes mammalian clock neurons publication-title: Nature Neuroscience – volume: 7 start-page: 8 year: 2009 article-title: Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color publication-title: Journal of Circadian Rhythms – volume: 7 start-page: e48927 year: 2012 article-title: Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions publication-title: PLoS ONE – volume: 191 start-page: 1 year: 1992 end-page: 12 article-title: Fractal landscapes in biological systems: long‐range correlations in DNA and interbeat heart intervals publication-title: Physica A – volume: 70 start-page: 1343 year: 1993 end-page: 1346 article-title: Long‐range anticorrelations and non‐Gaussian behavior of the heartbeat publication-title: Physical Review Letters – start-page: 307 year: 2009 end-page: 333 – volume: 19 start-page: 026108 year: 2009 article-title: Understanding the complexity of human gait dynamics publication-title: Chaos – volume: 54 start-page: 2154 year: 1996 end-page: 2157 article-title: Multiscaled randomness: a possible source of 1/f noise in biology publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics – volume: 9 start-page: 399 year: 1929 end-page: 431 article-title: Organization for physiological homeostasis publication-title: Physiological Reviews – volume: 14 start-page: 529 year: 1997 end-page: 546 article-title: Fractal character of the neural spike train in the visual system of the cat publication-title: Journal of the Optical Society of America A: Optics, Image Science, and Vision – volume: 438 start-page: 667 year: 2005 end-page: 670 article-title: Risk of severe asthma episodes predicted from fluctuation analysis of airway function publication-title: Nature – volume: 71 start-page: 1 year: 1991 end-page: 8 article-title: Fractal perspectives in pulmonary physiology publication-title: Journal of Applied Physiology – volume: 6 start-page: e28489 year: 2011 article-title: Selective coupling between theta phase and neocortical fast gamma oscillations during REM‐sleep in mice publication-title: PLoS ONE – volume: 69 start-page: 1583 year: 1972 end-page: 1586 article-title: Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 418 start-page: 935 year: 2002 end-page: 941 article-title: Coordination of circadian timing in mammals publication-title: Nature – volume: 1 start-page: 128 year: 2010 article-title: Fractal complexity in spontaneous EEG metastable‐state transitions: new vistas on integrated neural dynamics publication-title: Frontiers in Physiology – volume: 25 start-page: 37 year: 2010 end-page: 46 article-title: Arrhythmic rats after SCN lesions and constant light differ in short time scale regulation of locomotor activity publication-title: Journal of Biological Rhythms – volume: 66 start-page: 353 year: 2010 end-page: 369 article-title: The temporal structures and functional significance of scale‐free brain activity publication-title: Neuron – volume: 105 start-page: 20517 year: 2008 end-page: 20522 article-title: Dynamic cross‐frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T‐maze task publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 116 start-page: 770 year: 1951 end-page: 799 article-title: Long‐term storage of reservoirs: an experimental study publication-title: Transactions of the American Society of Engineers – volume: 80 start-page: 779 year: 1997 end-page: 783 article-title: Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction publication-title: American Journal of Cardiology – volume: 1 start-page: 1 year: 2010b article-title: The wisdom of the body; a contemporary view publication-title: Frontiers in Physiology – volume: 101 start-page: 47 year: 2000 end-page: 53 article-title: Fractal correlation properties of R‐R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction publication-title: Circulation – volume: 45 start-page: 167 year: 2003 end-page: 256 article-title: The structure and function of complex networks publication-title: SIAM Review – volume: 132 start-page: 465 year: 2005 end-page: 477 article-title: Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature publication-title: Neuroscience – volume: 100 start-page: 2079 year: 1999 end-page: 2084 article-title: Altered complexity and correlation properties of R‐R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation publication-title: Circulation – volume: 13 start-page: 271 year: 2003 end-page: 277 article-title: The mammalian circadian clock publication-title: Current Opinion in Genetics and Development – start-page: 6526 year: 2012 end-page: 6529 article-title: Discovering shared cardiovascular dynamics within a patient cohort publication-title: Conference Proceedings, IEEE Engineering in Medicine and Biology Society – volume: 106 start-page: 2490 year: 2009 end-page: 2494 article-title: Reduction of scale invariance of activity fluctuations with aging and Alzheimer's disease: involvement of the circadian pacemaker publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 104 start-page: 20702 year: 2007 end-page: 20707 article-title: Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 6 start-page: 269 year: 2001 end-page: 278 article-title: Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus publication-title: Genes to Cells – volume: 87 start-page: 178 year: 2001a end-page: 182 article-title: Fractal analysis and time‐and‐frequency domain measures of heart rate variability as predictors of mortality in patients with heart failure publication-title: American Journal of Cardiology – volume: 101 start-page: 5339 year: 2004 end-page: 5346 article-title: PERIOD2::LUCIFERASE real‐time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 224 start-page: 63 year: 2003 end-page: 78 article-title: Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self‐sustained oscillators publication-title: Journal of Theoretical Biology – volume: 299 start-page: 2642 year: 2008 end-page: 2655 article-title: Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial publication-title: Journal of the American Medical Association – volume: 86 start-page: 6026 year: 2001 end-page: 6029 article-title: Behavioral‐independent features of complex heartbeat dynamics publication-title: Physical Review Letters – volume: 281 start-page: 60 year: 2000 end-page: 68 article-title: Scaling invariance and universality: organizing principles in complex systems publication-title: Physica A – volume: 22 start-page: 14 year: 2007 end-page: 25 article-title: Gates and oscillators II: zeitgebers and the network model of the brain clock publication-title: Journal of Biological Rhythms – volume: 6 start-page: 744 year: 2010 end-page: 750 article-title: Emergent complex neural dynamics publication-title: Nature Physics – volume: 90 start-page: 305 year: 2003 end-page: 316 article-title: Self‐affine fractal variability of human heartbeat interval dynamics in health and disease publication-title: European Journal of Applied Physiology – volume: 90 start-page: 95 year: 2001 end-page: 101 article-title: Heart rate variability in ischemic heart disease publication-title: Autonomic Neuroscience – volume: 5 start-page: 82 year: 1995b end-page: 87 article-title: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series publication-title: Chaos – volume: 590 start-page: 3035 year: 2012 end-page: 3045 article-title: Human phase response curve to a 1 h pulse of bright white light publication-title: Journal of Physiology – volume: 201 start-page: 438 year: 2011 end-page: 443 article-title: A critical note on the definition of phase‐amplitude cross‐frequency coupling publication-title: Journal of Neuroscience Methods – volume: 16 start-page: 13 year: 2005 end-page: 20 article-title: Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction publication-title: Journal of Cardiovascular Electrophysiology – volume: A99 start-page: 2466 year: 2002 end-page: 2472 article-title: Fractal dynamics in physiology: alterations with disease and aging publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 2 start-page: 348 year: 2006 end-page: 352 article-title: Optimal dynamical range of excitable networks at criticality publication-title: Nature Physics – volume: 8 start-page: 61 year: 2005 end-page: 66 article-title: Electrical synapses coordinate activity in the suprachiasmatic nucleus publication-title: Nature Neuroscience – volume: 66 start-page: 062902 year: 2002 article-title: Correlation differences in heartbeat fluctuations during rest and exercise publication-title: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics – volume: 14 start-page: 506 year: 2010 end-page: 515 article-title: The functional role of cross‐frequency coupling publication-title: Trends in Cognitive Science – volume: 62 start-page: 1377 year: 1999 end-page: 1429 article-title: Self‐organized criticality publication-title: Reports on Progress in Physics – volume: 26 start-page: 324 year: 2011 end-page: 334 article-title: Scheduled food hastens re‐entrainment more than melatonin does after a 6‐h phase advance of the light‐dark cycle in rats publication-title: Journal of Biological Rhythms – volume: 93 start-page: 929 year: 1998 end-page: 937 article-title: A serum shock induces circadian gene expression in mammalian tissue culture cells publication-title: Cell – volume: 86 start-page: 1900 year: 2001 end-page: 1903 article-title: Magnitude and sign correlations in heartbeat fluctuations publication-title: Physical Review Letters – volume: 90 start-page: 1137 year: 1999 end-page: 1148 article-title: Learning from mistakes publication-title: Neuroscience – ident: e_1_2_9_19_1 doi: 10.1007/978-1-4614-7572-9 – ident: e_1_2_9_5_1 doi: 10.3389/fphys.2010.00128 – ident: e_1_2_9_121_1 doi: 10.1114/1.1481053 – ident: e_1_2_9_166_1 doi: 10.1088/0034-4885/62/10/201 – ident: e_1_2_9_40_1 doi: 10.1523/JNEUROSCI.3688-08.2009 – ident: e_1_2_9_143_1 doi: 10.1038/251599a0 – ident: e_1_2_9_172_1 doi: 10.1016/j.automatica.2011.01.074 – ident: e_1_2_9_136_1 doi: 10.1063/1.3143035 – ident: e_1_2_9_70_1 doi: 10.1109/IEMBS.2006.259760 – ident: e_1_2_9_55_1 doi: 10.1152/jappl.1996.80.5.1448 – ident: e_1_2_9_43_1 doi: 10.1152/japplphysiol.00657.2004 – ident: e_1_2_9_129_1 doi: 10.1038/nature00965 – ident: e_1_2_9_15_1 doi: 10.1103/PhysRevE.63.031912 – ident: e_1_2_9_91_1 doi: 10.1016/S0002-9149(00)01312-6 – ident: e_1_2_9_33_1 doi: 10.1103/PhysRevLett.84.2529 – ident: e_1_2_9_17_1 doi: 10.1016/S0092-8674(00)81199-X – ident: e_1_2_9_111_1 doi: 10.1038/nn1395 – ident: e_1_2_9_137_1 doi: 10.1073/pnas.0808180106 – ident: e_1_2_9_92_1 doi: 10.1016/S0735-1097(01)01171-8 – ident: e_1_2_9_133_1 doi: 10.1016/0030-4220(92)90222-C – ident: e_1_2_9_77_1 doi: 10.1016/j.tics.2007.05.003 – ident: e_1_2_9_32_1 doi: 10.1103/PhysRevE.60.1412 – ident: e_1_2_9_113_1 doi: 10.1002/clc.4960200710 – ident: e_1_2_9_135_1 doi: 10.1016/j.neuroimage.2007.11.032 – ident: e_1_2_9_161_1 doi: 10.1073/pnas.0810524105 – ident: e_1_2_9_162_1 doi: 10.1136/oem.2006.026716 – ident: e_1_2_9_83_1 doi: 10.1037/0096-3445.136.4.551 – ident: e_1_2_9_76_1 doi: 10.1016/j.physa.2003.12.049 – ident: e_1_2_9_179_1 doi: 10.1016/j.resp.2004.07.010 – ident: e_1_2_9_11_1 doi: 10.1103/PhysRevE.83.051130 – ident: e_1_2_9_30_1 doi: 10.1016/j.tics.2010.09.001 – ident: e_1_2_9_45_1 doi: 10.1038/nature04176 – ident: e_1_2_9_18_1 doi: 10.1038/ncomms1705 – start-page: 6526 year: 2012 ident: e_1_2_9_108_1 article-title: Discovering shared cardiovascular dynamics within a patient cohort publication-title: Conference Proceedings, IEEE Engineering in Medicine and Biology Society – ident: e_1_2_9_165_1 doi: 10.1103/PhysRevE.80.021110 – ident: e_1_2_9_124_1 doi: 10.1103/PhysRevLett.101.264103 – ident: e_1_2_9_23_1 doi: 10.1016/j.neulet.2008.10.058 – ident: e_1_2_9_34_1 doi: 10.1002/ajim.20099 – ident: e_1_2_9_38_1 doi: 10.1137/070710111 – ident: e_1_2_9_52_1 doi: 10.1016/S0378-4371(01)00460-5 – ident: e_1_2_9_72_1 doi: 10.1209/epl/i1999-00525-0 – ident: e_1_2_9_79_1 doi: 10.1103/PhysRevE.65.051908 – ident: e_1_2_9_10_1 doi: 10.1177/0748730406296319 – ident: e_1_2_9_145_1 doi: 10.1016/S0960-9822(02)01155-7 – ident: e_1_2_9_9_1 doi: 10.1177/0748730403253840 – ident: e_1_2_9_37_1 doi: 10.1177/0748730409352843 – ident: e_1_2_9_56_1 doi: 10.1016/j.neuron.2010.04.020 – ident: e_1_2_9_4_1 doi: 10.1103/PhysRevE.80.061914 – volume-title: The Fractal Geometry of Nature year: 1982 ident: e_1_2_9_95_1 – ident: e_1_2_9_21_1 doi: 10.1371/journal.pcbi.0030068 – ident: e_1_2_9_102_1 doi: 10.1016/S0079-6123(08)60403-3 – ident: e_1_2_9_164_1 doi: 10.3389/fphys.2012.00052 – ident: e_1_2_9_67_1 doi: 10.1016/j.cub.2004.04.034 – ident: e_1_2_9_84_1 doi: 10.1038/nphys289 – ident: e_1_2_9_96_1 doi: 10.1152/japplphysiol.00390.2010 – ident: e_1_2_9_139_1 doi: 10.1016/j.neuroscience.2004.12.012 – ident: e_1_2_9_81_1 doi: 10.1136/oem.58.11.747 – ident: e_1_2_9_110_1 doi: 10.1103/PhysRevLett.86.6026 – ident: e_1_2_9_112_1 doi: 10.1016/j.pbiomolbio.2010.09.007 – ident: e_1_2_9_57_1 doi: 10.1073/pnas.79.8.2554 – ident: e_1_2_9_119_1 doi: 10.1063/1.166141 – ident: e_1_2_9_97_1 doi: 10.1146/annurev.bioeng.6.040803.140100 – ident: e_1_2_9_49_1 doi: 10.1177/074873001129002240 – ident: e_1_2_9_26_1 doi: 10.1038/nature08932 – ident: e_1_2_9_85_1 doi: 10.1016/S0140-6736(86)91619-3 – volume: 71 start-page: 1 year: 1991 ident: e_1_2_9_99_1 article-title: Fractal perspectives in pulmonary physiology publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1991.71.1.1 – ident: e_1_2_9_159_1 doi: 10.1016/j.humov.2009.01.001 – ident: e_1_2_9_180_1 doi: 10.1016/S0378-4371(02)01377-8 – ident: e_1_2_9_89_1 doi: 10.1006/meth.2001.1206 – ident: e_1_2_9_176_1 doi: 10.1142/1025 – ident: e_1_2_9_94_1 doi: 10.1016/S0002-9149(97)00516-X – ident: e_1_2_9_16_1 doi: 10.1103/PhysRevLett.59.381 – ident: e_1_2_9_187_1 doi: 10.1006/jtbi.2001.2367 – ident: e_1_2_9_22_1 doi: 10.1111/j.1365-2826.2010.01955.x – ident: e_1_2_9_42_1 doi: 10.1590/S0103-97332000000100004 – ident: e_1_2_9_63_1 doi: 10.1073/pnas.0806087106 – volume: 116 start-page: 770 year: 1951 ident: e_1_2_9_66_1 article-title: Long‐term storage of reservoirs: an experimental study publication-title: Transactions of the American Society of Engineers doi: 10.1061/TACEAT.0006518 – ident: e_1_2_9_130_1 doi: 10.1001/jama.299.22.2642 – ident: e_1_2_9_175_1 doi: 10.1016/0896-6273(95)90214-7 – ident: e_1_2_9_184_1 doi: 10.1177/0748730409352054 – ident: e_1_2_9_128_1 doi: 10.1175/2009JCLI2669.1 – ident: e_1_2_9_170_1 doi: 10.1038/216588a0 – ident: e_1_2_9_73_1 doi: 10.1073/pnas.0709957104 – ident: e_1_2_9_107_1 doi: 10.1177/0748730408314572 – ident: e_1_2_9_147_1 doi: 10.1056/NEJMcibr1204644 – ident: e_1_2_9_87_1 doi: 10.1016/S0022-5193(03)00141-3 – ident: e_1_2_9_116_1 doi: 10.1038/356168a0 – ident: e_1_2_9_152_1 doi: 10.1016/S0378-4371(00)00195-3 – ident: e_1_2_9_25_1 doi: 10.1016/S0079-6123(06)53020-1 – ident: e_1_2_9_48_1 doi: 10.1073/pnas.012579499 – ident: e_1_2_9_101_1 doi: 10.1007/s00421-003-0915-2 – ident: e_1_2_9_158_1 doi: 10.1364/JOSAA.14.000529 – ident: e_1_2_9_138_1 doi: 10.1515/BC.2003.078 – ident: e_1_2_9_167_1 doi: 10.5194/npg-8-193-2001 – ident: e_1_2_9_47_1 doi: 10.1513/pats.200603-028MS – ident: e_1_2_9_104_1 doi: 10.1016/j.neuroscience.2005.10.030 – ident: e_1_2_9_151_1 doi: 10.1038/378554a0 – ident: e_1_2_9_154_1 doi: 10.1046/j.1540-8167.2005.04358.x – ident: e_1_2_9_12_1 doi: 10.1016/S0378-4371(02)01453-X – ident: e_1_2_9_131_1 doi: 10.1093/imammb/21.1.63 – ident: e_1_2_9_86_1 doi: 10.1093/aje/kwj355 – ident: e_1_2_9_173_1 doi: 10.1177/074873098128999952 – ident: e_1_2_9_7_1 doi: 10.1177/0748730411409715 – ident: e_1_2_9_14_1 doi: 10.1073/pnas.0911531107 – ident: e_1_2_9_3_1 doi: 10.1016/S0959-437X(03)00055-8 – ident: e_1_2_9_134_1 doi: 10.1074/jbc.273.42.27039 – ident: e_1_2_9_44_1 doi: 10.1111/j.1460-9568.2011.07682.x – ident: e_1_2_9_118_1 doi: 10.1016/S0022-0736(95)80017-4 – ident: e_1_2_9_6_1 doi: 10.1073/pnas.0404843101 – ident: e_1_2_9_109_1 doi: 10.1137/S003614450342480 – ident: e_1_2_9_78_1 doi: 10.1152/japplphysiol.00856.2006 – ident: e_1_2_9_46_1 doi: 10.1017/S1464793101005607 – ident: e_1_2_9_171_1 doi: 10.1161/01.CIR.100.20.2079 – ident: e_1_2_9_54_1 doi: 10.1103/PhysRevE.54.2154 – ident: e_1_2_9_53_1 doi: 10.1152/jappl.1997.82.1.262 – ident: e_1_2_9_126_1 doi: 10.1103/PhysRevE.84.036708 – ident: e_1_2_9_148_1 doi: 10.1016/S0165-0270(96)00080-5 – ident: e_1_2_9_181_1 doi: 10.1016/0002-9149(87)91027-7 – ident: e_1_2_9_2_1 doi: 10.1016/S0006-8993(01)02890-6 – ident: e_1_2_9_157_1 doi: 10.1164/rccm.200202-152PP – ident: e_1_2_9_186_1 doi: 10.1046/j.1365-2281.1999.00146.x – ident: e_1_2_9_90_1 doi: 10.1038/nn1361 – ident: e_1_2_9_103_1 doi: 10.1016/0006-8993(72)90054-6 – ident: e_1_2_9_117_1 doi: 10.1103/PhysRevE.49.1685 – ident: e_1_2_9_100_1 doi: 10.1016/0006-8993(92)90191-B – ident: e_1_2_9_177_1 doi: 10.3389/fphys.2010.00012 – ident: e_1_2_9_144_1 doi: 10.1103/PhysRevLett.85.461 – ident: e_1_2_9_106_1 doi: 10.1097/00003246-200007000-00045 – ident: e_1_2_9_29_1 doi: 10.1152/physrev.1929.9.3.399 – ident: e_1_2_9_75_1 doi: 10.1209/epl/i1998-00366-3 – ident: e_1_2_9_178_1 doi: 10.3389/fphys.2010.00001 – ident: e_1_2_9_88_1 doi: 10.1186/2190-8567-2-5 – ident: e_1_2_9_28_1 doi: 10.1177/0748730409344800 – ident: e_1_2_9_35_1 doi: 10.1038/nphys1803 – ident: e_1_2_9_50_1 doi: 10.1016/S1386-5056(97)00029-4 – ident: e_1_2_9_105_1 doi: 10.1056/NEJM198511213132103 – ident: e_1_2_9_98_1 doi: 10.1038/416409a – ident: e_1_2_9_59_1 doi: 10.1073/pnas.0408243101 – ident: e_1_2_9_68_1 doi: 10.1177/0748730406287357 – ident: e_1_2_9_149_1 doi: 10.1002/hbm.20016 – ident: e_1_2_9_80_1 doi: 10.1103/PhysRevE.66.062902 – ident: e_1_2_9_60_1 doi: 10.1371/journal.pone.0048927 – ident: e_1_2_9_182_1 doi: 10.1126/science.288.5466.682 – ident: e_1_2_9_24_1 doi: 10.1073/pnas.1110586109 – ident: e_1_2_9_174_1 doi: 10.1210/jcem-73-6-1276 – ident: e_1_2_9_185_1 doi: 10.1073/pnas.0308709101 – ident: e_1_2_9_127_1 doi: 10.1126/science.2305266 – ident: e_1_2_9_31_1 doi: 10.1186/1740-3391-7-8 – ident: e_1_2_9_142_1 doi: 10.1371/journal.pone.0028489 – ident: e_1_2_9_39_1 doi: 10.1101/gad.183500 – ident: e_1_2_9_64_1 doi: 10.1016/S1566-0702(01)00273-9 – ident: e_1_2_9_123_1 doi: 10.1161/01.CIR.100.4.393 – ident: e_1_2_9_51_1 doi: 10.1046/j.1365-2443.2001.00419.x – ident: e_1_2_9_163_1 doi: 10.1161/CIRCULATIONAHA.104.523712 – ident: e_1_2_9_36_1 doi: 10.1016/S0306-4522(98)00472-2 – ident: e_1_2_9_114_1 doi: 10.1016/j.jneumeth.2011.08.014 – volume: 240 start-page: 872 year: 2011 ident: e_1_2_9_125_1 article-title: Dynamics of heterogeneous oscillator ensembles in terms of collective variables publication-title: Physica – ident: e_1_2_9_122_1 doi: 10.1016/S0002-9149(01)01578-8 – ident: e_1_2_9_168_1 doi: 10.1006/jtbi.2000.2131 – ident: e_1_2_9_82_1 doi: 10.1161/01.CIR.92.11.3178 – ident: e_1_2_9_140_1 doi: 10.1152/ajpheart.2001.280.3.H1391 – volume: 16 start-page: 421 year: 1989 ident: e_1_2_9_169_1 article-title: The effect of shift work on gastrointestinal (GI) function: a review publication-title: Chronobiologia – ident: e_1_2_9_13_1 doi: 10.1103/PhysRevLett.86.1900 – ident: e_1_2_9_65_1 doi: 10.1161/01.CIR.101.1.47 – ident: e_1_2_9_120_1 doi: 10.1103/PhysRevLett.70.1343 – ident: e_1_2_9_155_1 doi: 10.1073/pnas.69.6.1583 – ident: e_1_2_9_141_1 doi: 10.1371/journal.pone.0000721 – ident: e_1_2_9_146_1 doi: 10.2165/00003495-200666180-00007 – ident: e_1_2_9_20_1 doi: 10.1523/JNEUROSCI.23-35-11167.2003 – ident: e_1_2_9_62_1 doi: 10.1016/j.neuroscience.2007.03.058 – ident: e_1_2_9_93_1 doi: 10.1212/01.WNL.0000125190.10967.D5 – ident: e_1_2_9_8_1 doi: 10.1063/1.3211189 – ident: e_1_2_9_69_1 doi: 10.1177/0748730407301238 – ident: e_1_2_9_61_1 doi: 10.1093/cvr/cvn150 – start-page: 2229 year: 2012 ident: e_1_2_9_183_1 article-title: Nonlinear fractal dynamics of human colonic pressure activity based upon the box‐counting method publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 01 start-page: P01013 year: 2007 ident: e_1_2_9_41_1 article-title: Complex fluctuations and robustness in stylized signalling networks publication-title: Journal of Statistical Mechanics – ident: e_1_2_9_132_1 doi: 10.1371/journal.pcbi.1002038 – ident: e_1_2_9_153_1 doi: 10.1016/0378-4371(92)90497-E – ident: e_1_2_9_115_1 doi: 10.1007/978-3-540-89506-0_15 – ident: e_1_2_9_156_1 doi: 10.1113/jphysiol.2012.227892 – ident: e_1_2_9_27_1 doi: 10.1103/PhysRevLett.85.3736 – ident: e_1_2_9_71_1 doi: 10.1038/20924 – volume-title: Introduction to Phase Transitions and Critical Phenomena year: 1971 ident: e_1_2_9_150_1 – ident: e_1_2_9_58_1 doi: 10.1016/j.physa.2004.01.042 – ident: e_1_2_9_74_1 doi: 10.1103/PhysRevE.79.041920 – ident: e_1_2_9_160_1 doi: 10.1152/jn.00106.2010 – reference: 17946835 - Conf Proc IEEE Eng Med Biol Soc. 2006;1:445-8 – reference: 16876585 - Prog Brain Res. 2006;153:341-60 – reference: 1486487 - Brain Res. 1992 Dec 11;598(1-2):257-63 – reference: 16319891 - Nature. 2005 Dec 1;438(7068):667-70 – reference: 17999570 - J Exp Psychol Gen. 2007 Nov;136(4):551-68 – reference: 11875196 - Proc Natl Acad Sci U S A. 2002 Feb 19;99 Suppl 1:2466-72 – reference: 7718233 - Neuron. 1995 Apr;14(4):697-706 – reference: 22355144 - Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):E680-9 – reference: 9965304 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Aug;54(2):2154-2157 – reference: 20070481 - J Neuroendocrinol. 2010 Mar;22(3):209-16 – reference: 22658163 - J Math Neurosci. 2012 Mar 14;2(1):5 – reference: 18973790 - Neurosci Lett. 2008 Dec 31;448(3):273-8 – reference: 19144842 - J Neurosci. 2009 Jan 14;29(2):426-35 – reference: 7586301 - Circulation. 1995 Dec 1;92(11):3178-82 – reference: 14657176 - J Neurosci. 2003 Dec 3;23(35):11167-77 – reference: 11537103 - Physica A. 1992 Dec 15;191(1-4):1-12 – reference: 15065739 - Math Med Biol. 2004 Mar;21(1):63-72 – reference: 20932795 - Trends Cogn Sci. 2010 Nov;14(11):506-15 – reference: 22547633 - J Physiol. 2012 Jul 1;590(Pt 13):3035-45 – reference: 11466001 - Methods. 2001 Aug;24(4):359-75 – reference: 20947715 - J Appl Physiol (1985). 2010 Dec;109(6):1786-91 – reference: 2865677 - N Engl J Med. 1985 Nov 21;313(21):1315-22 – reference: 15505227 - Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15551-5 – reference: 10618303 - Circulation. 2000 Jan 4-11;101(1):47-53 – reference: 15705537 - Respir Physiol Neurobiol. 2005 Feb 15;145(2-3):219-33 – reference: 12817466 - Biol Chem. 2003 May;384(5):697-709 – reference: 15759365 - Physica A. 2004 Jun;337(1-2):307-18 – reference: 12513330 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 1):062902 – reference: 19202078 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2490-4 – reference: 10035754 - Phys Rev Lett. 1987 Jul 27;59(4):381-384 – reference: 15611476 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18223-7 – reference: 20133762 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33 – reference: 10988020 - J Theor Biol. 2000 Oct 7;206(3):343-53 – reference: 10365957 - Nature. 1999 Jun 3;399(6735):461-5 – reference: 10784453 - Science. 2000 Apr 28;288(5466):682-5 – reference: 10991308 - Phys Rev Lett. 2000 Jul 10;85(2):461-4 – reference: 2873389 - Lancet. 1986 Jul 12;2(8498):89-92 – reference: 15108297 - Hum Brain Mapp. 2004 Jun;22(2):97-109 – reference: 18093917 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20702-7 – reference: 11300452 - J Am Coll Cardiol. 2001 Apr;37(5):1395-402 – reference: 19566268 - Chaos. 2009 Jun;19(2):026108 – reference: 21775291 - J Biol Rhythms. 2011 Aug;26(4):324-34 – reference: 6953413 - Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 – reference: 19437642 - Phys Rev Lett. 2008 Dec 31;101(26):264103 – reference: 19518269 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 1):041920 – reference: 10921579 - Crit Care Med. 2000 Jul;28(7):2457-64 – reference: 16921107 - Proc Am Thorac Soc. 2006 Aug;3(6):467-71 – reference: 21673863 - PLoS Comput Biol. 2011 Jun;7(6):e1002038 – reference: 8990910 - Prog Brain Res. 1996;111:103-19 – reference: 2697524 - Chronobiologia. 1989 Oct-Dec;16(4):421-39 – reference: 17684566 - PLoS One. 2007;2(8):e721 – reference: 8946315 - J Neurosci Methods. 1996 Nov;69(2):123-36 – reference: 5047187 - Brain Res. 1972 Jul 13;42(1):201-6 – reference: 15551368 - Am J Ind Med. 2004 Dec;46(6):586-98 – reference: 8656130 - J Electrocardiol. 1995;28 Suppl:59-65 – reference: 17229921 - J Biol Rhythms. 2007 Feb;22(1):14-25 – reference: 1508517 - Oral Surg Oral Med Oral Pathol. 1992 Jul;74(1):98-110 – reference: 17432930 - PLoS Comput Biol. 2007 Apr 13;3(4):e68 – reference: 1917729 - J Appl Physiol (1985). 1991 Jul;71(1):1-8 – reference: 15159485 - Neurology. 2004 May 25;62(10):1822-6 – reference: 12033228 - Physica A. 2001 Dec 15;302(1-4):138-47 – reference: 9220180 - Clin Cardiol. 1997 Jul;20(7):631-8 – reference: 19615064 - J Circadian Rhythms. 2009 Jul 17;7:8 – reference: 16731662 - J Biol Rhythms. 2006 Jun;21(3):222-32 – reference: 15580271 - Nat Neurosci. 2005 Jan;8(1):61-6 – reference: 11290277 - Phys Rev Lett. 2001 Feb 26;86(9):1900-3 – reference: 11538314 - Chaos. 1995;5(1):82-7 – reference: 11308683 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Mar;63(3 Pt 1):031912 – reference: 10562264 - Circulation. 1999 Nov 16;100(20):2079-84 – reference: 20463205 - J Neurophysiol. 2010 Aug;104(2):1195-210 – reference: 10054352 - Phys Rev Lett. 1993 Mar 1;70(9):1343-6 – reference: 9961383 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Feb;49(2):1685-9 – reference: 11531384 - J Theor Biol. 2001 Sep 21;212(2):183-90 – reference: 22163023 - PLoS One. 2011;6(12):e28489 – reference: 22292564 - Comput Methods Biomech Biomed Engin. 2013;16(6):660-8 – reference: 20869387 - Prog Biophys Mol Biol. 2011 Mar;105(1-2):49-57 – reference: 9635423 - Cell. 1998 Jun 12;93(6):929-37 – reference: 9058948 - J Opt Soc Am A Opt Image Sci Vis. 1997 Mar;14(3):529-46 – reference: 19074268 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20517-22 – reference: 12361580 - Curr Biol. 2002 Oct 1;12(19):R644 – reference: 21488990 - Eur J Neurosci. 2011 May;33(10):1851-65 – reference: 18178105 - Neuroimage. 2008 Mar 1;40(1):308-17 – reference: 11919626 - Nature. 2002 Mar 28;416(6879):409-13 – reference: 22060530 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036708 – reference: 17920204 - Neuroscience. 2007 Nov 9;149(3):508-17 – reference: 20471349 - Neuron. 2010 May 13;66(3):353-69 – reference: 12900204 - J Theor Biol. 2003 Sep 7;224(1):63-78 – reference: 1301010 - Nature. 1992 Mar 12;356(6365):168-70 – reference: 21728513 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051130 – reference: 3661393 - Am J Cardiol. 1987 Oct 1;60(10):801-6 – reference: 11114885 - Genes Dev. 2000 Dec 1;14(23):2950-61 – reference: 16009791 - Circulation. 2005 Jul 19;112(3):314-9 – reference: 18375863 - J Biol Rhythms. 2008 Apr;23(2):140-9 – reference: 11760013 - J Biol Rhythms. 2001 Dec;16(6):552-63 – reference: 11396846 - Biol Rev Camb Philos Soc. 2001 May;76(2):161-209 – reference: 20075297 - J Biol Rhythms. 2010 Feb;25(1):19-27 – reference: 11423052 - Am J Cardiol. 2001 Jul 1;88(1):17-22 – reference: 15673380 - J Cardiovasc Electrophysiol. 2005 Jan;16(1):13-20 – reference: 12059594 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051908 – reference: 21423355 - Front Physiol. 2010 Oct 14;1:12 – reference: 10338284 - Neuroscience. 1999;90(4):1137-48 – reference: 18544724 - JAMA. 2008 Jun 11;299(22):2642-55 – reference: 9029225 - J Appl Physiol (1985). 1997 Jan;82(1):262-9 – reference: 22426223 - Nat Commun. 2012;3:702 – reference: 12787789 - Curr Opin Genet Dev. 2003 Jun;13(3):271-7 – reference: 11542723 - Europhys Lett. 1998 Aug 15;43(4):363-8 – reference: 10421600 - Circulation. 1999 Jul 27;100(4):393-9 – reference: 11542917 - Europhys Lett. 1999 Dec 1;48(5):594-600 – reference: 12119222 - Am J Respir Crit Care Med. 2002 Jul 15;166(2):133-7 – reference: 11415420 - Phys Rev Lett. 2001 Jun 25;86(26 Pt 1):6026-9 – reference: 17181377 - Drugs. 2006;66(18):2357-70 – reference: 17548233 - Trends Cogn Sci. 2007 Jul;11(7):267-9 – reference: 9765215 - J Biol Chem. 1998 Oct 16;273(42):27039-42 – reference: 11179089 - Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H1391-9 – reference: 11260270 - Genes Cells. 2001 Mar;6(3):269-78 – reference: 12198538 - Nature. 2002 Aug 29;418(6901):935-41 – reference: 17517911 - J Biol Rhythms. 2007 Jun;22(3):211-9 – reference: 15802197 - Neuroscience. 2005;132(2):465-77 – reference: 11600731 - Occup Environ Med. 2001 Nov;58(11):747-52 – reference: 19403189 - Hum Mov Sci. 2009 Jun;28(3):297-318 – reference: 18539630 - Cardiovasc Res. 2008 Oct 1;80(1):62-8 – reference: 11030994 - Phys Rev Lett. 2000 Oct 23;85(17):3736-9 – reference: 19755580 - J Biol Rhythms. 2009 Oct;24(5):340-52 – reference: 14963227 - Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5339-46 – reference: 12942331 - Eur J Appl Physiol. 2003 Oct;90(3-4):305-16 – reference: 11018927 - Phys Rev Lett. 2000 Mar 13;84(11):2529-32 – reference: 2305266 - Science. 1990 Feb 23;247(4945):975-8 – reference: 20075299 - J Biol Rhythms. 2010 Feb;25(1):37-46 – reference: 11969901 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Aug;60(2 Pt A):1412-27 – reference: 17071844 - Am J Epidemiol. 2007 Jan 15;165(2):175-83 – reference: 12932086 - J Biol Rhythms. 2003 Aug;18(4):339-50 – reference: 16338081 - Neuroscience. 2006;137(4):1285-97 – reference: 20365197 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 1):061914 – reference: 12108842 - Ann Biomed Eng. 2002 May;30(5):683-92 – reference: 21423370 - Front Physiol. 2010 Sep 15;1:128 – reference: 21607201 - Automatica (Oxf). 2011 Jun 1;47(6):1236-1242 – reference: 16735480 - Occup Environ Med. 2006 Jul;63(7):451-5 – reference: 5583506 - Nature. 1967 Nov 11;216(5115):588-9 – reference: 11597605 - Brain Res. 2001 Oct 19;916(1-2):172-91 – reference: 11485298 - Auton Neurosci. 2001 Jul 20;90(1-2):95-101 – reference: 4556464 - Proc Natl Acad Sci U S A. 1972 Jun;69(6):1583-6 – reference: 15120072 - Curr Biol. 2004 May 4;14(9):796-800 – reference: 9554572 - J Biol Rhythms. 1998 Apr;13(2):100-12 – reference: 1955509 - J Clin Endocrinol Metab. 1991 Dec;73(6):1276-80 – reference: 11152835 - Am J Cardiol. 2001 Jan 15;87(2):178-82 – reference: 9315590 - Am J Cardiol. 1997 Sep 15;80(6):779-83 – reference: 19792003 - Chaos. 2009 Sep;19(3):033123 – reference: 23367424 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6526-9 – reference: 19792080 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021110 – reference: 15286051 - J Appl Physiol (1985). 2004 Dec;97(6):2056-64 – reference: 17347385 - J Appl Physiol (1985). 2007 Jun;102(6):2315-23 – reference: 8727526 - J Appl Physiol (1985). 1996 May;80(5):1448-57 – reference: 21871489 - J Neurosci Methods. 2011 Oct 15;201(2):438-43 – reference: 19255424 - Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4453-8 – reference: 15746913 - Nat Neurosci. 2005 Mar;8(3):267-9 – reference: 10068867 - Clin Physiol. 1999 Jan;19(1):56-67 – reference: 22438845 - Front Physiol. 2012 Mar 16;3:52 – reference: 21522484 - Front Physiol. 2010 Apr 23;1:1 – reference: 20393559 - Nature. 2010 Apr 15;464(7291):1025-8 – reference: 9291030 - Int J Med Inform. 1997 Jul;45(3):185-92 – reference: 15255776 - Annu Rev Biomed Eng. 2004;6:427-52 |
SSID | ssj0014663 |
Score | 2.3108742 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations –... Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations – similar... Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar... Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations -- similar... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 873 |
SubjectTerms | Adaptability Animals Biological Clocks - physiology Biology Central Nervous System - physiology circadian biology Circadian rhythm Circadian rhythms Fluctuations fractal fluctuations fractal physiology Fractals Heart rate Neurophysiology nonlinear dynamics Pathology physiological control Physiology scale-invariance spontaneous motor activity suprachiasmatic nucleus |
Title | The role of the circadian system in fractal neurophysiological control |
URI | https://api.istex.fr/ark:/67375/WNG-V8RQ2G4L-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbrv.12032 https://www.ncbi.nlm.nih.gov/pubmed/23573942 https://www.proquest.com/docview/1441081417 https://www.proquest.com/docview/1443416876 https://pubmed.ncbi.nlm.nih.gov/PMC3766492 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KRfDF74-rVaKI9GWPy2ayH_ik4rWIFjxs7YMQNtkEj8peud6J-tc7k_2gpxXEp13IZHeTzEx-yU5-A_CsyKyVk7pMJPpJgoUOZHOFTGTutXW11Hnc0H9_mB0c4dsTfbIFL_qzMC0_xLDhxpYR_TUbeGXPLxi5XX4bS87_Tf6XY7UYEM0G6ihyADGLGl0xIR2UHasQR_EMNTfmoivcrd8vA5p_xktexLFxIpregM99E9r4k9PxemXH7udv7I7_2cabcL0DqOJlq1G3YMs3t-Fqm7Lyxx2Ykl4JDkkUiyAIPAo3X7rIbyBaUmgxb0Tgo1f0kEiWGfdOehcrutD4u3A0ffPx9UHS5WJInMY8TUJVpnmVqpogG0pvC3QTXSv0patrV5FdB6uUd4SGgrJIVUrEoEvlMiSn4dQ92G4WjX8AIvBD0FZZKAOtXkOhnM9cHkLqtMUqG8FePyrGdUTlnC_jq-kXLNQtJnbLCJ4OomctO8dlQs_j0A4S1fKUw9lybT4d7pvjYvYh3cd3Jh_Bbj_2prPkc8MLToJNKKn4yVBMNsg_VqrGL9ZRhjolo4llBPdbVRlexnRCqkT6inxDiQYB5vfeLGnmXyLPN_n-DEuquRd15O8tNK9mx_Fm599FH8K1lDN7xGOVu7C9Wq79I8JXK_s4GtIvUcAgsw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTQi-8IYVBhiE0L6kquNzHhJfeHUFukpUe31BVuzYWjWUotIi4K_n7Dy0wpAQnxLJ5yQ-353Pl_PvAJ5lidZ8UOYRRzuIMJOOdC7jEU-t1KbkMg0B_f1JMjrE9yfyZANetGdhanyILuDmNSPYa6_gPiB9Tsv14luf-wLgl2DLV_T2yPlvph14FJmAUEeNrhiRFPIGV8jn8XRd11ajLc_Y7xe5mn9mTJ73ZMNSNLwOn9pB1BkoZ_3VUvfNz9_wHf93lDfgWuOjspe1UN2EDVvdgst11coft2FIosV8ViKbO0b-IzOzhQkQB6zGhWazijl_-ooeEvAyQ_iktbKsyY6_A4fDtwevR1FTjiEyEtM4ckUep0UsSvLakFudoRnIUqDNTVmaglTbaSGsIYfICY3UJUd0MhcmQbIbRtyFzWpe2W1gzj8EdZG43NEG1mXC2MSkzsVGaiySHuy206JMg1XuS2Z8Vu2ehdiiAlt68LQj_VIDdFxE9DzMbUdRLM58Rlsq1fFkTx1l04_xHo5V2oOddvJVo8xfld9zkueEnJqfdM2khv7fSlHZ-SrQEFMSWlt6cK-Wle5lHlFI5Ehfka5JUUfgIb7XW6rZaYD6JvOfYE49d4OQ_H2E6tX0KNzc_3fSx3BldLA_VuN3kw8P4GrsC32EU5Y7sLlcrOxDcreW-lHQql9CKyTP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTSBexue2wgCDENpLqjq5OLF4AkY3YFRQsbEHJCt2bFFtSqeuRcBfz9n50ApDQjwlks9JbN-df3bOvwN4mgut-aCUEUc7iDBPHdlcziOe2VSbkqdZ2NB_PxL7h_j2OD1egeftWZiaH6LbcPOWEfy1N_Cz0l0wcj371uc-__cVWEMxkD5vw-64444iDxDSqNEVI1JC3tAK-TCerurSZLTm-_X7ZUjzz4DJi0A2zETDG_ClbUMdgHLSX8x13_z8jd7xPxt5E9YbhMpe1Cp1C1ZsdRuu1jkrf9yBISkW8zGJbOoYoUdmJjMTCA5YzQrNJhVz_uwVPSSwZYbNk9bHsiY2_i4cDl9_erUfNckYIpNiFkeukHFWxElJmA251TmaQVomaKUpS1OQYTudJNYQHHKJRqoiEV0qEyOQvIZJNmC1mlZ2C5jzD0FdCCcdLV9dnhgrTOZcbFKNhejBTjsqyjRM5T5hxqlqVyzULSp0Sw-edKJnNT3HZULPwtB2EsXsxMezZan6PNpTR_n4Y7yHByrrwXY79qox5XPlV5yEm5BT8eOumIzQ_1kpKjtdBBnqFEEzSw82a1XpXub5hBKJ9BXZkhJ1Ap7ge7mkmnwNRN_k_AVKqrkTdOTvLVQvx0fh5t6_iz6Cax92h-rgzejdfbge-ywf4YjlNqzOZwv7gLDWXD8MNvULvdYjfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+the+circadian+system+in+fractal+neurophysiological+control&rft.jtitle=Biological+reviews+of+the+Cambridge+Philosophical+Society&rft.au=Pittman-Polletta%2C+Benjamin+R&rft.au=Scheer%2C+Frank+A+J+L&rft.au=Butler%2C+Matthew+P&rft.au=Shea%2C+Steven+A&rft.date=2013-11-01&rft.eissn=1469-185X&rft.volume=88&rft.issue=4&rft.spage=873&rft_id=info:doi/10.1111%2Fbrv.12032&rft_id=info%3Apmid%2F23573942&rft.externalDocID=23573942 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7931&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7931&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7931&client=summon |