Silver/Gold Core-Shell Nanoprism-Based Plasmonic Nanoprobes for Highly Sensitive and Selective Detection of Hydrogen Sulfide
A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core–shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers...
Saved in:
Published in | Chemistry : a European journal Vol. 21; no. 3; pp. 988 - 992 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
12.01.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core–shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag2S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real‐world samples and in in vivo applications.
Plasmonic nanoprobes: Plasmonic Ag/Au core–shell nanoprism nanoprobes are demonstrated for the detection of hydrogen sulfide based on the strong ability of hydrogen sulfide to etch the Ag/Au core–shell nanoprisms. In the presence of hydrogen sulfide, silver in the nanoprisms is converted to Ag2S at the defective lateral walls, accompanied by an obvious surface plasmon resonance (SPR) absorption depression and peak shift (see figure). |
---|---|
AbstractList | A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core-shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag2S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real-world samples and in in vivo applications. A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core–shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag 2 S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real‐world samples and in in vivo applications. A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core-shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag2S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real-world samples and in in vivo applications.A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core-shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag2S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real-world samples and in in vivo applications. A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core-shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag sub(2)S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real-world samples and in in vivo applications. Plasmonic nanoprobes: Plasmonic Ag/Au core-shell nanoprism nanoprobes are demonstrated for the detection of hydrogen sulfide based on the strong ability of hydrogen sulfide to etch the Ag/Au core-shell nanoprisms. In the presence of hydrogen sulfide, silver in the nanoprisms is converted to Ag sub(2)S at the defective lateral walls, accompanied by an obvious surface plasmon resonance (SPR) absorption depression and peak shift (see figure). A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core–shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag2S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real‐world samples and in in vivo applications. Plasmonic nanoprobes: Plasmonic Ag/Au core–shell nanoprism nanoprobes are demonstrated for the detection of hydrogen sulfide based on the strong ability of hydrogen sulfide to etch the Ag/Au core–shell nanoprisms. In the presence of hydrogen sulfide, silver in the nanoprisms is converted to Ag2S at the defective lateral walls, accompanied by an obvious surface plasmon resonance (SPR) absorption depression and peak shift (see figure). |
Author | Yang, Xinjian Gao, Zhiqiang Ren, Yuqian |
Author_xml | – sequence: 1 givenname: Xinjian surname: Yang fullname: Yang, Xinjian organization: Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore) – sequence: 2 givenname: Yuqian surname: Ren fullname: Ren, Yuqian organization: Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore) – sequence: 3 givenname: Zhiqiang surname: Gao fullname: Gao, Zhiqiang email: chmgaoz@nus.edu.sg organization: Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25428438$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPClSNaiQuXTf2x_tgjhJIglVIICImL5fXONi7eNdibQiR-PA5JK1QJ9WSP_Dwjz7xH6GAIAyD0lOApwZie2BX0U4pJhTkm9AGaEE5JyaTgB2iC60qWgrP6EB2ldIUxrgVjj9Ah5RVVFVMT9Hvp_DXEk3nwbTELEcrlCrwvzs0QvkeX-vKVSdAWF96kPgzO7l9CA6noQiwW7nLlN8UShuRGdw2FGdpcebB_q9cwbm9hKEJXLDZtDJcwFMu171wLj9HDzvgET_bnMfr85vTTbFGevZ-_nb08Ky2vJC2NEMrUxBCjOsq4pA0TIFklmkoxTFUjOyyEVdBV1hpqWpkLy1tiTd3wrmLH6MWub_73jzWkUfcu2TymGSCskyZSCcKFEvR-VFRcSpV3mtHnd9CrsI5DHmRLUc5rzlWmnu2pddNDq_NSexM3-iaCDFQ7wMaQUoROWzea7crGaJzXBOtt0nqbtL5NOmvTO9pN5_8K9U746Txs7qH1bHH67l-33LkujfDr1jXxmxaSSa6_nM_1x9nyq7j4wPSC_QEAWsol |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1021_acs_analchem_5b01302 crossref_primary_10_1002_VIW_20210008 crossref_primary_10_1007_s00604_016_1802_y crossref_primary_10_1021_acssuschemeng_0c03045 crossref_primary_10_1016_j_mattod_2022_05_023 crossref_primary_10_1016_j_snb_2016_01_049 crossref_primary_10_1016_j_bios_2016_09_103 crossref_primary_10_1039_C7AN01394A crossref_primary_10_1016_j_foodchem_2019_03_138 crossref_primary_10_3390_bios9020078 crossref_primary_10_1002_adfm_201800515 crossref_primary_10_1039_D0CS01236J crossref_primary_10_1021_acs_analchem_9b00255 crossref_primary_10_1016_j_microc_2023_109713 crossref_primary_10_1002_adfm_201704689 crossref_primary_10_1021_acs_analchem_1c00540 crossref_primary_10_1039_C7NR03171H crossref_primary_10_1016_j_nantod_2016_02_002 crossref_primary_10_1007_s00216_019_01697_2 crossref_primary_10_1016_j_mtcomm_2018_02_024 crossref_primary_10_1039_C7RA01034F crossref_primary_10_1088_1361_6528_aaba88 crossref_primary_10_1016_j_molliq_2023_122396 crossref_primary_10_1039_D0MA00644K crossref_primary_10_1016_j_microc_2021_107071 crossref_primary_10_1088_1757_899X_778_1_012002 crossref_primary_10_1039_D0NR05728B crossref_primary_10_1016_j_jare_2020_05_018 |
Cites_doi | 10.1016/S0006-291X(02)00422-9 10.1089/ars.2009.2915 10.1038/nrd2425 10.1126/science.1361684 10.1089/ars.2009.2938 10.1038/nmat2162 10.1016/j.freeradbiomed.2011.01.025 10.1002/1521-4109(200012)12:18<1453::AID-ELAN1453>3.0.CO;2-Z 10.1073/pnas.1012864107 10.1021/ja207851s 10.1152/ajpregu.90566.2008 10.1038/nmat3356 10.1038/nnano.2012.186 10.1038/nmeth.2211 10.1074/jbc.M109.010868 10.1073/pnas.92.5.1475 10.1042/CBI20090368 10.1039/a801702f 10.1021/nn5008786 10.1074/jbc.R110.128363 10.1364/JOSA.60.000224 10.1021/ja411067a 10.1002/adma.200701301 10.1002/ange.201104236 10.1074/jbc.M808026200 10.1021/cm401944b 10.1002/cber.188301602138 10.1002/ange.201108971 10.1002/smll.201300200 10.1126/science.1162667 10.1021/ja711093j 10.1021/nl2016448 10.1002/anie.201104236 10.1089/ars.2008.2253 10.1089/ars.2011.4451 10.1002/smll.201100095 10.1021/ar7002804 10.1038/ncomms1506 10.1038/nmat3337 10.1002/anie.201108971 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201405012 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 992 |
ExternalDocumentID | 3547308991 25428438 10_1002_chem_201405012 CHEM201405012 ark_67375_WNG_RCSZ6PQ3_H |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: ASTAR‐ANR |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c5472-a668a91a1a8f23572b36e7346b483028b7f066c8ef4cca2ad76c8c5d1ca9b5f43 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 12:44:07 EDT 2025 Fri Jul 11 00:06:44 EDT 2025 Sun Jul 13 05:16:33 EDT 2025 Thu Apr 03 06:52:14 EDT 2025 Tue Jul 01 02:46:59 EDT 2025 Thu Apr 24 23:00:27 EDT 2025 Wed Jan 22 16:27:34 EST 2025 Wed Oct 30 09:51:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | biosensors SPR hydrogen sulfide etching nanostructures |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5472-a668a91a1a8f23572b36e7346b483028b7f066c8ef4cca2ad76c8c5d1ca9b5f43 |
Notes | istex:E042B603E9626DF2B6631046DA53918A76DB36EA ark:/67375/WNG-RCSZ6PQ3-H ASTAR-ANR ArticleID:CHEM201405012 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25428438 |
PQID | 1642559558 |
PQPubID | 986340 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1786156862 proquest_miscellaneous_1645778539 proquest_journals_1642559558 pubmed_primary_25428438 crossref_citationtrail_10_1002_chem_201405012 crossref_primary_10_1002_chem_201405012 wiley_primary_10_1002_chem_201405012_CHEM201405012 istex_primary_ark_67375_WNG_RCSZ6PQ3_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 12, 2015 |
PublicationDateYYYYMMDD | 2015-01-12 |
PublicationDate_xml | – month: 01 year: 2015 text: January 12, 2015 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | X. J. Yang, Y. B. Yu, Z. Q. Gao, ACS Nano 2014, 27, 4902-4907. J. M. Bennett, J. L. Stanford, E. J. Ashley, J. Opt. Soc. Am. 1970, 60, 224-231. Q. H. Cao, L. Zhang, G. D. Yang, C. Q. Xu, R. Wang, Antioxid. Redox Signaling 2010, 12, 1101-1109. W. J. Cai, M. J. Wang, L. H. Ju, C. Wang, Y. C. Zhu, Cell Biol. Int. 2010, 34, 565-572 C. A. Burnyeat, R. S. Lepsenyi, I. O. Nwabuko, T. L. Kelly, Chem. Mater. 2013, 25, 4206-4214. C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, Y. Yin, Angew. Chem. Int. Ed. 2012, 51, 5629-5633 P. Wu, J. Y. Zhang, S. L. Wang, A. R. Zhu, X. D. Hou, Chem. Eur. J. 2013, 19, 952-956. G. D. Yang, L. Y. Wu, B. Jiang, W. Yang, J. S. Qi, K. Cao, Q. H. Meng, A. K. Mustafa, W. T. Mu, S. M. Zhang, S. H. Snyder, R. Wang, Science 2008, 322, 587 H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. Lefer, B. Wang, Angew. Chem. Int. Ed. 2011, 50, 9672-9675 L. Rodríguez-Lorenzo, R. de La Rica, R. A. Alvarez-Puebla, L. M. Liz-Marzán, M. M. Stevens, Nat. Mater. 2012, 11, 604-607 B. Liu, Z. F. Ma, Small 2011, 7, 1587-1592 S. Singh, D. Padovani, R. A. Leslie, T. Chiku, J. Biol. Chem. 2009, 284, 22457 N. Shibuya, M. Tanaka, M. Yoshida, Y. Ogasawara, T. Togawa, K. Ishii, H. Kimura, Antioxid. Redox Signaling 2009, 11, 703. E. Culotta, D. E. Koshland, Science 1992, 258, 1862-1865 T. Morita, M. A. Perrella, M. E. Lee, S. Kourembanas, Proc. Natl. Acad. Sci. USA 1995, 92, 1475. A. R. Lippert, E. J. New, C. J. Chang, J. Am. Chem. Soc. 2011, 133, 10078-10080 O. Kabil, R. Banerjee, J. Biol. Chem. 2010, 285, 21903 S. Chen, Z. J. Chen, W. Ren, H. W. Ai, J. Am. Chem. Soc. 2012, 134, 9589-9592 C. Szabó, Nat. Rev. Drug Discovery 2007, 6, 917 K. Eto, T. Asada, K. Arima, T. Makifuchi, H. Kimura, Biochem. Biophys. Res. Commun. 2002, 293, 1485 Angew. Chem. 2012, 124, 5727-5731 J. Liu, K. K. Yee, K. K. Lo, K. Y. Zhang, W. P. To, C. M. Che, Z. J. Xu, J. Am. Chem. Soc. 2014, 136, 2818-2824. Angew. Chem. 2011, 123, 9846-9849 B. Xiong, R. Zhou, J. Hao, Y. Jia, Y. He, E. S. Yeung, Nat. Commun. 2013, 4, 1708. M. M. F. Choi, Analyst 1998, 123, 1631-1634. R. Wang, Antioxid. Redox Signaling 2010, 12, 1061. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater. 2008, 7, 442-453 Y. Xiong, Y. Xia, Adv. Mater. 2007, 19, 3385-3391. J. Furne, A. Saeed, M. D. Levitt, Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1479. M. M. Shahjamali, M. Bosman, S. Cao, X. Huang, X. Cao, H. Zhang, S. S. Pramana, C. Xue, Small 2013, 9, 2880-2886. D. Seo, C. Yoo, J. Jung, H. Song, J. Am. Chem. Soc. 2008, 130, 2940-2941. B. Malile, J. I. Chen, J. Am. Chem. Soc. 2013, 135, 16042-16045. R. de la Rica, M. M. Stevens, Nat. Nanotechnol. 2012, 7, 821-824 Y. Qian, J. Karpus, O. Kabil, S. Y. Zhang, H. L. Zhu, R. Banerjee, J. Zhao, C. He, Nat. Commun. 2011, 2, 495 K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura, T. Nagano, J. Am. Chem. Soc. 2011, 133, 18003-18005 H. J. Wu, J. Henzie, W. C. Lin, C. Rhodes, Z. Li, E. Sartorel, J. Thorner, P. Yang, J. T. Groves, Nat. Methods 2012, 9, 1189-1191. J. Zeng, J. Tao, D. Su, Y. M. Zhu, D. Qin, Y. N. Xia, Nano Lett. 2011, 11, 3010-3015. G. C. van de Bittner, E. A. Dubikovskaya, C. R. Bertozzi, C. J. Chang, Proc. Natl. Acad. Sci. USA 2010, 107, 21316-213621. P. K. Jain, X. Huang, E. I. H. l-Sayed, M. A. El-Sayed, Acc. Chem. Res. 2008, 41, 1578-1586. N. S. Lawrence, J. Davis, L. Jiang, T. G. J. Jones, S. N. Davies, R. G. Compton, Electroanalysis 2000, 12, 1453-1460. E. Fischer, Ber. Dtsch. Chem. Ges. 1883, 16, 2234-2236 O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, Nat. Mater. 2012, 11, 573-584 X. G. Shen, C. B. Pattillo, S. Pardue, S. C. Bir, R. Wang, C. G. Kevil, Free Radical Biol. Med. 2011, 50, 1021-1031. T. Chiku, D. Padovani, W. Zhu, S. Singh, V. Vitvitsky, R. Banerjee, J. Biol. Chem. 2009, 284, 11601 C. Szabo, Antioxid. Redox Signaling 2012, 17, 68-80 2010; 12 2010; 34 2007; 19 1995; 92 2002; 293 2013; 25 2011; 2 2012 2010; 107 2011 2014; 27 2008; 7 2011; 11 2010; 285 2012; 17 2008; 322 2012; 11 2014; 136 2011; 133 2011; 7 2013; 9 2013; 19 2009; 11 1883; 16 2000; 12 2012 2012; 51 124 1992; 258 2011; 50 2007; 6 2009; 284 2008; 41 2013 1970; 60 2012; 7 1998; 123 2008; 295 2008; 130 2012; 9 Wu P. (e_1_2_4_51_2) 2013; 19 e_1_2_4_40_2 e_1_2_4_44_2 e_1_2_4_40_3 Malile B. (e_1_2_4_41_2) 2013 e_1_2_4_21_2 e_1_2_4_42_2 e_1_2_4_23_2 e_1_2_4_48_2 e_1_2_4_25_2 e_1_2_4_46_2 e_1_2_4_27_2 e_1_2_4_29_2 e_1_2_4_1_2 e_1_2_4_3_2 e_1_2_4_5_2 e_1_2_4_7_2 e_1_2_4_50_2 e_1_2_4_9_2 e_1_2_4_31_2 e_1_2_4_10_2 e_1_2_4_33_2 e_1_2_4_52_2 e_1_2_4_12_2 e_1_2_4_35_2 e_1_2_4_14_2 Chen S. (e_1_2_4_28_2) 2012 e_1_2_4_39_2 e_1_2_4_16_2 e_1_2_4_18_2 Lippert A. R. (e_1_2_4_24_2) 2011 e_1_2_4_20_2 e_1_2_4_43_2 e_1_2_4_22_2 e_1_2_4_47_2 e_1_2_4_26_2 e_1_2_4_45_2 e_1_2_4_26_3 e_1_2_4_49_2 e_1_2_4_2_2 e_1_2_4_4_2 e_1_2_4_6_2 e_1_2_4_8_2 e_1_2_4_30_2 e_1_2_4_11_2 e_1_2_4_32_2 e_1_2_4_13_2 e_1_2_4_34_2 e_1_2_4_15_2 e_1_2_4_36_2 Xiong B. (e_1_2_4_37_2) 2013 e_1_2_4_17_2 e_1_2_4_38_2 e_1_2_4_19_2 |
References_xml | – reference: T. Morita, M. A. Perrella, M. E. Lee, S. Kourembanas, Proc. Natl. Acad. Sci. USA 1995, 92, 1475. – reference: J. Furne, A. Saeed, M. D. Levitt, Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1479. – reference: Angew. Chem. 2012, 124, 5727-5731; – reference: C. Szabó, Nat. Rev. Drug Discovery 2007, 6, 917; – reference: H. J. Wu, J. Henzie, W. C. Lin, C. Rhodes, Z. Li, E. Sartorel, J. Thorner, P. Yang, J. T. Groves, Nat. Methods 2012, 9, 1189-1191. – reference: Angew. Chem. 2011, 123, 9846-9849; – reference: D. Seo, C. Yoo, J. Jung, H. Song, J. Am. Chem. Soc. 2008, 130, 2940-2941. – reference: M. M. Shahjamali, M. Bosman, S. Cao, X. Huang, X. Cao, H. Zhang, S. S. Pramana, C. Xue, Small 2013, 9, 2880-2886. – reference: B. Malile, J. I. Chen, J. Am. Chem. Soc. 2013, 135, 16042-16045. – reference: J. Zeng, J. Tao, D. Su, Y. M. Zhu, D. Qin, Y. N. Xia, Nano Lett. 2011, 11, 3010-3015. – reference: C. A. Burnyeat, R. S. Lepsenyi, I. O. Nwabuko, T. L. Kelly, Chem. Mater. 2013, 25, 4206-4214. – reference: Q. H. Cao, L. Zhang, G. D. Yang, C. Q. Xu, R. Wang, Antioxid. Redox Signaling 2010, 12, 1101-1109. – reference: N. S. Lawrence, J. Davis, L. Jiang, T. G. J. Jones, S. N. Davies, R. G. Compton, Electroanalysis 2000, 12, 1453-1460. – reference: S. Chen, Z. J. Chen, W. Ren, H. W. Ai, J. Am. Chem. Soc. 2012, 134, 9589-9592; – reference: P. Wu, J. Y. Zhang, S. L. Wang, A. R. Zhu, X. D. Hou, Chem. Eur. J. 2013, 19, 952-956. – reference: K. Eto, T. Asada, K. Arima, T. Makifuchi, H. Kimura, Biochem. Biophys. Res. Commun. 2002, 293, 1485; – reference: O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, Nat. Mater. 2012, 11, 573-584; – reference: J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater. 2008, 7, 442-453; – reference: R. de la Rica, M. M. Stevens, Nat. Nanotechnol. 2012, 7, 821-824; – reference: N. Shibuya, M. Tanaka, M. Yoshida, Y. Ogasawara, T. Togawa, K. Ishii, H. Kimura, Antioxid. Redox Signaling 2009, 11, 703. – reference: E. Culotta, D. E. Koshland, Science 1992, 258, 1862-1865; – reference: A. R. Lippert, E. J. New, C. J. Chang, J. Am. Chem. Soc. 2011, 133, 10078-10080; – reference: C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, Y. Yin, Angew. Chem. Int. Ed. 2012, 51, 5629-5633; – reference: Y. Xiong, Y. Xia, Adv. Mater. 2007, 19, 3385-3391. – reference: R. Wang, Antioxid. Redox Signaling 2010, 12, 1061. – reference: J. Liu, K. K. Yee, K. K. Lo, K. Y. Zhang, W. P. To, C. M. Che, Z. J. Xu, J. Am. Chem. Soc. 2014, 136, 2818-2824. – reference: E. Fischer, Ber. Dtsch. Chem. Ges. 1883, 16, 2234-2236; – reference: P. K. Jain, X. Huang, E. I. H. l-Sayed, M. A. El-Sayed, Acc. Chem. Res. 2008, 41, 1578-1586. – reference: K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura, T. Nagano, J. Am. Chem. Soc. 2011, 133, 18003-18005; – reference: J. M. Bennett, J. L. Stanford, E. J. Ashley, J. Opt. Soc. Am. 1970, 60, 224-231. – reference: Y. Qian, J. Karpus, O. Kabil, S. Y. Zhang, H. L. Zhu, R. Banerjee, J. Zhao, C. He, Nat. Commun. 2011, 2, 495; – reference: X. G. Shen, C. B. Pattillo, S. Pardue, S. C. Bir, R. Wang, C. G. Kevil, Free Radical Biol. Med. 2011, 50, 1021-1031. – reference: B. Liu, Z. F. Ma, Small 2011, 7, 1587-1592; – reference: T. Chiku, D. Padovani, W. Zhu, S. Singh, V. Vitvitsky, R. Banerjee, J. Biol. Chem. 2009, 284, 11601; – reference: W. J. Cai, M. J. Wang, L. H. Ju, C. Wang, Y. C. Zhu, Cell Biol. Int. 2010, 34, 565-572; – reference: L. Rodríguez-Lorenzo, R. de La Rica, R. A. Alvarez-Puebla, L. M. Liz-Marzán, M. M. Stevens, Nat. Mater. 2012, 11, 604-607; – reference: M. M. F. Choi, Analyst 1998, 123, 1631-1634. – reference: G. D. Yang, L. Y. Wu, B. Jiang, W. Yang, J. S. Qi, K. Cao, Q. H. Meng, A. K. Mustafa, W. T. Mu, S. M. Zhang, S. H. Snyder, R. Wang, Science 2008, 322, 587; – reference: C. Szabo, Antioxid. Redox Signaling 2012, 17, 68-80; – reference: X. J. Yang, Y. B. Yu, Z. Q. Gao, ACS Nano 2014, 27, 4902-4907. – reference: G. C. van de Bittner, E. A. Dubikovskaya, C. R. Bertozzi, C. J. Chang, Proc. Natl. Acad. Sci. USA 2010, 107, 21316-213621. – reference: O. Kabil, R. Banerjee, J. Biol. Chem. 2010, 285, 21903; – reference: B. Xiong, R. Zhou, J. Hao, Y. Jia, Y. He, E. S. Yeung, Nat. Commun. 2013, 4, 1708. – reference: S. Singh, D. Padovani, R. A. Leslie, T. Chiku, J. Biol. Chem. 2009, 284, 22457; – reference: H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. Lefer, B. Wang, Angew. Chem. Int. Ed. 2011, 50, 9672-9675; – volume: 133 start-page: 18003 year: 2011 end-page: 18005 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 442 year: 2008 end-page: 453 publication-title: Nat. Mater. – volume: 9 start-page: 2880 year: 2013 end-page: 2886 publication-title: Small – volume: 9 start-page: 1189 year: 2012 end-page: 1191 publication-title: Nat. Methods – volume: 12 start-page: 1101 year: 2010 end-page: 1109 publication-title: Antioxid. Redox Signaling – volume: 7 start-page: 821 year: 2012 end-page: 824 publication-title: Nat. Nanotechnol. – volume: 293 start-page: 1485 year: 2002 publication-title: Biochem. Biophys. Res. Commun. – start-page: 133 year: 2011 end-page: 10080 publication-title: J. Am. Chem. Soc. – start-page: 4 year: 2013 publication-title: Nat. Commun. – volume: 12 start-page: 1453 year: 2000 end-page: 1460 publication-title: Electroanalysis – volume: 123 start-page: 1631 year: 1998 end-page: 1634 publication-title: Analyst – volume: 7 start-page: 1587 year: 2011 end-page: 1592 publication-title: Small – volume: 11 start-page: 573 year: 2012 end-page: 584 publication-title: Nat. Mater. – volume: 284 start-page: 11601 year: 2009 publication-title: J. Biol. Chem. – volume: 41 start-page: 1578 year: 2008 end-page: 1586 publication-title: Acc. Chem. Res. – volume: 17 start-page: 68 year: 2012 end-page: 80 publication-title: Antioxid. Redox Signaling – volume: 50 start-page: 1021 year: 2011 end-page: 1031 publication-title: Free Radical Biol. Med. – volume: 50 start-page: 9672 year: 2011 end-page: 9675 publication-title: Angew. Chem. Int. Ed. Angew. Chem. 2011, 123, 9846–9849 – volume: 60 start-page: 224 year: 1970 end-page: 231 publication-title: J. Opt. Soc. Am. – volume: 34 start-page: 565 year: 2010 end-page: 572 publication-title: Cell Biol. Int. – volume: 19 start-page: 3385 year: 2007 end-page: 3391 publication-title: Adv. Mater. – volume: 6 start-page: 917 year: 2007 publication-title: Nat. Rev. Drug Discovery – volume: 322 start-page: 587 year: 2008 publication-title: Science – volume: 25 start-page: 4206 year: 2013 end-page: 4214 publication-title: Chem. Mater. – start-page: 134 year: 2012 end-page: 9592 publication-title: J. Am. Chem. Soc. – volume: 92 start-page: 1475 year: 1995 publication-title: Proc. Natl. Acad. Sci. USA – volume: 284 start-page: 22457 year: 2009 publication-title: J. Biol. Chem. – volume: 11 start-page: 604 year: 2012 end-page: 607 publication-title: Nat. Mater. – volume: 107 start-page: 21316 year: 2010 end-page: 213621 publication-title: Proc. Natl. Acad. Sci. USA – volume: 285 start-page: 21903 year: 2010 publication-title: J. Biol. Chem. – volume: 11 start-page: 3010 year: 2011 end-page: 3015 publication-title: Nano Lett. – volume: 136 start-page: 2818 year: 2014 end-page: 2824 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 2940 year: 2008 end-page: 2941 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1061 year: 2010 publication-title: Antioxid. Redox Signaling – volume: 16 start-page: 2234 year: 1883 end-page: 2236 publication-title: Ber. Dtsch. Chem. Ges. – volume: 19 start-page: 952 year: 2013 end-page: 956 publication-title: Chem. Eur. J. – volume: 11 start-page: 703 year: 2009 publication-title: Antioxid. Redox Signaling – volume: 2 start-page: 495 year: 2011 publication-title: Nat. Commun. – start-page: 135 year: 2013 end-page: 16045 publication-title: J. Am. Chem. Soc. – volume: 258 start-page: 1862 year: 1992 end-page: 1865 publication-title: Science – volume: 51 124 start-page: 5629 5727 year: 2012 2012 end-page: 5633 5731 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 4902 year: 2014 end-page: 4907 publication-title: ACS Nano – volume: 295 start-page: 1479 year: 2008 publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – start-page: 135 year: 2013 ident: e_1_2_4_41_2 publication-title: J. Am. Chem. Soc. – ident: e_1_2_4_30_2 – ident: e_1_2_4_15_2 doi: 10.1016/S0006-291X(02)00422-9 – ident: e_1_2_4_17_2 doi: 10.1089/ars.2009.2915 – ident: e_1_2_4_2_2 doi: 10.1038/nrd2425 – ident: e_1_2_4_4_2 doi: 10.1126/science.1361684 – ident: e_1_2_4_12_2 doi: 10.1089/ars.2009.2938 – ident: e_1_2_4_13_2 – ident: e_1_2_4_32_2 doi: 10.1038/nmat2162 – ident: e_1_2_4_19_2 – ident: e_1_2_4_52_2 doi: 10.1016/j.freeradbiomed.2011.01.025 – ident: e_1_2_4_18_2 doi: 10.1002/1521-4109(200012)12:18<1453::AID-ELAN1453>3.0.CO;2-Z – ident: e_1_2_4_50_2 doi: 10.1073/pnas.1012864107 – start-page: 134 year: 2012 ident: e_1_2_4_28_2 publication-title: J. Am. Chem. Soc. – ident: e_1_2_4_27_2 doi: 10.1021/ja207851s – volume: 19 start-page: 952 year: 2013 ident: e_1_2_4_51_2 publication-title: Chem. Eur. J. – ident: e_1_2_4_22_2 doi: 10.1152/ajpregu.90566.2008 – ident: e_1_2_4_31_2 doi: 10.1038/nmat3356 – ident: e_1_2_4_46_2 – ident: e_1_2_4_33_2 doi: 10.1038/nnano.2012.186 – ident: e_1_2_4_35_2 doi: 10.1038/nmeth.2211 – ident: e_1_2_4_7_2 doi: 10.1074/jbc.M109.010868 – start-page: 4 year: 2013 ident: e_1_2_4_37_2 publication-title: Nat. Commun. – ident: e_1_2_4_5_2 doi: 10.1073/pnas.92.5.1475 – ident: e_1_2_4_16_2 doi: 10.1042/CBI20090368 – ident: e_1_2_4_21_2 doi: 10.1039/a801702f – ident: e_1_2_4_38_2 doi: 10.1021/nn5008786 – ident: e_1_2_4_3_2 doi: 10.1074/jbc.R110.128363 – ident: e_1_2_4_45_2 doi: 10.1364/JOSA.60.000224 – ident: e_1_2_4_29_2 doi: 10.1021/ja411067a – ident: e_1_2_4_44_2 doi: 10.1002/adma.200701301 – ident: e_1_2_4_26_3 doi: 10.1002/ange.201104236 – ident: e_1_2_4_8_2 doi: 10.1074/jbc.M808026200 – ident: e_1_2_4_10_2 – ident: e_1_2_4_39_2 – ident: e_1_2_4_49_2 doi: 10.1021/cm401944b – ident: e_1_2_4_20_2 doi: 10.1002/cber.188301602138 – ident: e_1_2_4_40_3 doi: 10.1002/ange.201108971 – ident: e_1_2_4_43_2 doi: 10.1002/smll.201300200 – ident: e_1_2_4_11_2 doi: 10.1126/science.1162667 – ident: e_1_2_4_42_2 doi: 10.1021/ja711093j – ident: e_1_2_4_6_2 – ident: e_1_2_4_48_2 doi: 10.1021/nl2016448 – ident: e_1_2_4_26_2 doi: 10.1002/anie.201104236 – ident: e_1_2_4_9_2 doi: 10.1089/ars.2008.2253 – ident: e_1_2_4_1_2 – ident: e_1_2_4_14_2 doi: 10.1089/ars.2011.4451 – ident: e_1_2_4_47_2 doi: 10.1002/smll.201100095 – ident: e_1_2_4_23_2 – ident: e_1_2_4_36_2 doi: 10.1021/ar7002804 – start-page: 133 year: 2011 ident: e_1_2_4_24_2 publication-title: J. Am. Chem. Soc. – ident: e_1_2_4_25_2 doi: 10.1038/ncomms1506 – ident: e_1_2_4_34_2 doi: 10.1038/nmat3337 – ident: e_1_2_4_40_2 doi: 10.1002/anie.201108971 |
SSID | ssj0009633 |
Score | 2.3095012 |
Snippet | A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 988 |
SubjectTerms | biosensors Chemistry Etching Gold Hydrogen sulfide Nanostructure nanostructures Plasmonics Silver SPR Thin films Walls |
Title | Silver/Gold Core-Shell Nanoprism-Based Plasmonic Nanoprobes for Highly Sensitive and Selective Detection of Hydrogen Sulfide |
URI | https://api.istex.fr/ark:/67375/WNG-RCSZ6PQ3-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201405012 https://www.ncbi.nlm.nih.gov/pubmed/25428438 https://www.proquest.com/docview/1642559558 https://www.proquest.com/docview/1645778539 https://www.proquest.com/docview/1786156862 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzS0ICMhOKWb-BFnj7DQrpCoSkNFxcWyE0eqGhK0D6nltD8BiX_YX8KM8yiLeEhwWysTbWx_Hn-TjL8h5KmMrWOm4KHLpQhFGidY5oWHEvaORFqhIouHk9_uJ9Mj8eZYHv9wir_VhxheuOHK8P4aF7ix89GlaCj0CU-SQ4AgI19mGBO2kBUdXupHAbraWvJChajB2qs2Rmy0fvvarnQVB_jsV5RzncH6LWj3JjH9w7eZJ6c7y4Xdyb_8pOv4P727RW50_JS-aAF1m1xx9R1ybdKXhbtLVtkJJlOP9pqqoJNm5i5W3zLMJqXgqBuvqnix-voSNseCHgA1_4Tau921xro5BZZMMbukOqcZZs-jv6WmLqBVtd6XvnILnyFW06ak0_Ni1gDMabasypPC3SNHu6_fT6ZhV8YhhOlXLDRJkppxbGKTliiuwyxPnOIisQLFx1KrSuA9eepKAXAC4Cho5LKIczO2shT8Ptmom9ptEuo_6lqbM86tMBGzsYuUwZg1j5KcuYCE_TTqvNM4x1IblW7VmZnGcdXDuAbk-WD_uVX3-K3lM4-KwczMTjEnTkn9YX9PH06yj8nBO66nAdnuYaM7dzDXEJNi6CZlGpAnw2WYOPw6Y2rXLL2NVArY0_gPNioFBoqHegLyoIXk8EAQ6QPV4PAPzAPrLx3SKLkxtB7-y01b5Dr8xtzPMGbbZGMxW7pHQNEW9rFfht8BYEgzIw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKeygX3o9AASPxOKW7cew4e-AAu7Rb2q5KtxUVF2MnjlQ1JGgfguW0PwGJX8Jf4Sf0lzCTV7WIh4TUA0dvZhPbM-OZSWa-IeSR8IxlOvZdGwnu8tALsM2L7wqwHYEwXLYNFifvDoL-IX91JI6WyLe6FqbEh2heuKFmFOc1Kji-kG6doYbCorCUHCIEAadslVe5bWcfIWobP9vqAYsfM7bx8qDbd6vGAi5MSDJXB0GoO572dJgg3AszfmClzwPDEQ4rNDIBSxyFNuGwQFiKhEEkYi_SHSMS7sN9L5AVbCOOcP29_TPEKpDnsns9ly6ivtY4kW3WWpzvgh1cQZZ--pWTu-gzF0Zv4zL5Xm9Xmetysj6dmPXo809Ikv_Vfl4hlyoXnD4vdeYqWbLZNbLarTvfXSfz4THmi7c28zSm3XxkT-dfh5gwS8EW5QVw5On8ywuw_zHdg-jjPcILV9dyY8cUAgGKCTTpjA6xQABNCtVZDKO0NDC0ZydFElxG84T2Z_EoB02mw2maHMf2Bjk8lw24SZazPLO3CS2-WxsTMd83XLeZ8WxbagzLo3YQMesQt5YbFVUw7thNJFUlADVTyEfV8NEhTxv6DyWAyW8pnxRi2JDp0Qmm_Umh3gw21X53-DbYe-2rvkPWajlV1Yk3VhB2Y3QqROiQh81lYBx-gNKZzacFjZASHMTOH2hkCE421i055FapA82EmIBgmfvwBFZI8l8WpBBVpBnd-Zc_PSCr_YPdHbWzNdi-Sy7C75jq6npsjSxPRlN7DzzSiblfnAGUvDtvJfkBimWRAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVgIuvCmBAovE4-TGXu96nQMHSEhTClFoqKi4bHfttVQ12FUegnDKT0Dij_BX-Av9Jcz4VQXxkJB64Lj2ONndmdmZsWe-IeSh8IxlOvYdGwnu8NALsM2L7wiwHYEwXLoGi5Nf94PeHn-5L_ZXyLeqFqbAh6hfuKFm5Oc1KvhxnDRPQUNhTVhJDgGCgEO2TKvcsfOPELRNnm53gMOPGOu-eNvuOWVfAQfmI5mjgyDULU97OkwQ7YUZP7DS54HhiIYVGpmAIY5Cm3BYH6xEwiASsRfplhEJ9-F3z5E1HrgtbBbR2T0FrAJxLprXc-kg6GsFE-my5vJ8l8zgGnL006983GWXObd53cvke7VbRarL0eZsajajzz8BSf5P23mFXCodcPqs0JirZMWm18iFdtX37jpZDA8xW7y5lY1i2s7G9mTxdYjpshQsUZbDRp4svjwH6x_TAcQeHxBcuLyXGTuhEAZQTJ8ZzekQywPQoFCdxjAaFeaFduw0T4FLaZbQ3jweZ6DHdDgbJYexvUH2zmQDbpLVNEvtLULzr9bGRMz3DdcuM551pcagPHKDiNkGcSqxUVEJ4o69REaqgJ9mCvmoaj42yJOa_riAL_kt5eNcCmsyPT7CpD8p1Lv-ltptD98Hgze-6jXIRiWmqjzvJgqCboxNhQgb5EF9GxiHn590arNZTiOkBPew9QcaGYKLjVVLDbJeqEA9ISYgVOY-_APLBfkvC1KIKVKPbv_LQ_fJ-UGnq15t93fukItwGfNcHY9tkNXpeGbvgjs6NffyE4CSg7PWkR8v4Y-x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver%2FGold+Core%E2%80%93Shell+Nanoprism%E2%80%90Based+Plasmonic+Nanoprobes+for+Highly+Sensitive+and+Selective+Detection+of+Hydrogen+Sulfide&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Yang%2C+Xinjian&rft.au=Ren%2C+Yuqian&rft.au=Gao%2C+Zhiqiang&rft.date=2015-01-12&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=3&rft.spage=988&rft.epage=992&rft_id=info:doi/10.1002%2Fchem.201405012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201405012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |