Silver/Gold Core-Shell Nanoprism-Based Plasmonic Nanoprobes for Highly Sensitive and Selective Detection of Hydrogen Sulfide

A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core–shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 21; no. 3; pp. 988 - 992
Main Authors Yang, Xinjian, Ren, Yuqian, Gao, Zhiqiang
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 12.01.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core–shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag2S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real‐world samples and in in vivo applications. Plasmonic nanoprobes: Plasmonic Ag/Au core–shell nanoprism nanoprobes are demonstrated for the detection of hydrogen sulfide based on the strong ability of hydrogen sulfide to etch the Ag/Au core–shell nanoprisms. In the presence of hydrogen sulfide, silver in the nanoprisms is converted to Ag2S at the defective lateral walls, accompanied by an obvious surface plasmon resonance (SPR) absorption depression and peak shift (see figure).
AbstractList A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core-shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag2S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real-world samples and in in vivo applications.
A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core–shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag 2 S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real‐world samples and in in vivo applications.
A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core-shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag2S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real-world samples and in in vivo applications.A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core-shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag2S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real-world samples and in in vivo applications.
A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core-shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag sub(2)S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real-world samples and in in vivo applications. Plasmonic nanoprobes: Plasmonic Ag/Au core-shell nanoprism nanoprobes are demonstrated for the detection of hydrogen sulfide based on the strong ability of hydrogen sulfide to etch the Ag/Au core-shell nanoprisms. In the presence of hydrogen sulfide, silver in the nanoprisms is converted to Ag sub(2)S at the defective lateral walls, accompanied by an obvious surface plasmon resonance (SPR) absorption depression and peak shift (see figure).
A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of silver in the Ag/Au core–shell nanoprisms, accompanied by surface plasmon resonance (SPR) signal depression and shift. Briefly, thin layers of gold are first coated onto silver nanoprisms. The thin gold layer not only guarantees the high stability of the plasmonic nanoprobes but also ensures the high selectivity toward hydrogen sulfide. Once hydrogen sulfide is introduced, the silver core is converted to Ag2S mainly from its lateral walls. Moreover, the SPR peak is located in the NIR region that makes these plasmonic nanoprobes more appealing for the detection of hydrogen sulfide in real‐world samples and in in vivo applications. Plasmonic nanoprobes: Plasmonic Ag/Au core–shell nanoprism nanoprobes are demonstrated for the detection of hydrogen sulfide based on the strong ability of hydrogen sulfide to etch the Ag/Au core–shell nanoprisms. In the presence of hydrogen sulfide, silver in the nanoprisms is converted to Ag2S at the defective lateral walls, accompanied by an obvious surface plasmon resonance (SPR) absorption depression and peak shift (see figure).
Author Yang, Xinjian
Gao, Zhiqiang
Ren, Yuqian
Author_xml – sequence: 1
  givenname: Xinjian
  surname: Yang
  fullname: Yang, Xinjian
  organization: Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore)
– sequence: 2
  givenname: Yuqian
  surname: Ren
  fullname: Ren, Yuqian
  organization: Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore)
– sequence: 3
  givenname: Zhiqiang
  surname: Gao
  fullname: Gao, Zhiqiang
  email: chmgaoz@nus.edu.sg
  organization: Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25428438$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPClSNaiQuXTf2x_tgjhJIglVIICImL5fXONi7eNdibQiR-PA5JK1QJ9WSP_Dwjz7xH6GAIAyD0lOApwZie2BX0U4pJhTkm9AGaEE5JyaTgB2iC60qWgrP6EB2ldIUxrgVjj9Ah5RVVFVMT9Hvp_DXEk3nwbTELEcrlCrwvzs0QvkeX-vKVSdAWF96kPgzO7l9CA6noQiwW7nLlN8UShuRGdw2FGdpcebB_q9cwbm9hKEJXLDZtDJcwFMu171wLj9HDzvgET_bnMfr85vTTbFGevZ-_nb08Ky2vJC2NEMrUxBCjOsq4pA0TIFklmkoxTFUjOyyEVdBV1hpqWpkLy1tiTd3wrmLH6MWub_73jzWkUfcu2TymGSCskyZSCcKFEvR-VFRcSpV3mtHnd9CrsI5DHmRLUc5rzlWmnu2pddNDq_NSexM3-iaCDFQ7wMaQUoROWzea7crGaJzXBOtt0nqbtL5NOmvTO9pN5_8K9U746Txs7qH1bHH67l-33LkujfDr1jXxmxaSSa6_nM_1x9nyq7j4wPSC_QEAWsol
CODEN CEUJED
CitedBy_id crossref_primary_10_1021_acs_analchem_5b01302
crossref_primary_10_1002_VIW_20210008
crossref_primary_10_1007_s00604_016_1802_y
crossref_primary_10_1021_acssuschemeng_0c03045
crossref_primary_10_1016_j_mattod_2022_05_023
crossref_primary_10_1016_j_snb_2016_01_049
crossref_primary_10_1016_j_bios_2016_09_103
crossref_primary_10_1039_C7AN01394A
crossref_primary_10_1016_j_foodchem_2019_03_138
crossref_primary_10_3390_bios9020078
crossref_primary_10_1002_adfm_201800515
crossref_primary_10_1039_D0CS01236J
crossref_primary_10_1021_acs_analchem_9b00255
crossref_primary_10_1016_j_microc_2023_109713
crossref_primary_10_1002_adfm_201704689
crossref_primary_10_1021_acs_analchem_1c00540
crossref_primary_10_1039_C7NR03171H
crossref_primary_10_1016_j_nantod_2016_02_002
crossref_primary_10_1007_s00216_019_01697_2
crossref_primary_10_1016_j_mtcomm_2018_02_024
crossref_primary_10_1039_C7RA01034F
crossref_primary_10_1088_1361_6528_aaba88
crossref_primary_10_1016_j_molliq_2023_122396
crossref_primary_10_1039_D0MA00644K
crossref_primary_10_1016_j_microc_2021_107071
crossref_primary_10_1088_1757_899X_778_1_012002
crossref_primary_10_1039_D0NR05728B
crossref_primary_10_1016_j_jare_2020_05_018
Cites_doi 10.1016/S0006-291X(02)00422-9
10.1089/ars.2009.2915
10.1038/nrd2425
10.1126/science.1361684
10.1089/ars.2009.2938
10.1038/nmat2162
10.1016/j.freeradbiomed.2011.01.025
10.1002/1521-4109(200012)12:18<1453::AID-ELAN1453>3.0.CO;2-Z
10.1073/pnas.1012864107
10.1021/ja207851s
10.1152/ajpregu.90566.2008
10.1038/nmat3356
10.1038/nnano.2012.186
10.1038/nmeth.2211
10.1074/jbc.M109.010868
10.1073/pnas.92.5.1475
10.1042/CBI20090368
10.1039/a801702f
10.1021/nn5008786
10.1074/jbc.R110.128363
10.1364/JOSA.60.000224
10.1021/ja411067a
10.1002/adma.200701301
10.1002/ange.201104236
10.1074/jbc.M808026200
10.1021/cm401944b
10.1002/cber.188301602138
10.1002/ange.201108971
10.1002/smll.201300200
10.1126/science.1162667
10.1021/ja711093j
10.1021/nl2016448
10.1002/anie.201104236
10.1089/ars.2008.2253
10.1089/ars.2011.4451
10.1002/smll.201100095
10.1021/ar7002804
10.1038/ncomms1506
10.1038/nmat3337
10.1002/anie.201108971
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201405012
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 992
ExternalDocumentID 3547308991
25428438
10_1002_chem_201405012
CHEM201405012
ark_67375_WNG_RCSZ6PQ3_H
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: ASTAR‐ANR
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c5472-a668a91a1a8f23572b36e7346b483028b7f066c8ef4cca2ad76c8c5d1ca9b5f43
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 12:44:07 EDT 2025
Fri Jul 11 00:06:44 EDT 2025
Sun Jul 13 05:16:33 EDT 2025
Thu Apr 03 06:52:14 EDT 2025
Tue Jul 01 02:46:59 EDT 2025
Thu Apr 24 23:00:27 EDT 2025
Wed Jan 22 16:27:34 EST 2025
Wed Oct 30 09:51:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords biosensors
SPR
hydrogen sulfide
etching
nanostructures
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5472-a668a91a1a8f23572b36e7346b483028b7f066c8ef4cca2ad76c8c5d1ca9b5f43
Notes istex:E042B603E9626DF2B6631046DA53918A76DB36EA
ark:/67375/WNG-RCSZ6PQ3-H
ASTAR-ANR
ArticleID:CHEM201405012
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25428438
PQID 1642559558
PQPubID 986340
PageCount 5
ParticipantIDs proquest_miscellaneous_1786156862
proquest_miscellaneous_1645778539
proquest_journals_1642559558
pubmed_primary_25428438
crossref_citationtrail_10_1002_chem_201405012
crossref_primary_10_1002_chem_201405012
wiley_primary_10_1002_chem_201405012_CHEM201405012
istex_primary_ark_67375_WNG_RCSZ6PQ3_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 12, 2015
PublicationDateYYYYMMDD 2015-01-12
PublicationDate_xml – month: 01
  year: 2015
  text: January 12, 2015
  day: 12
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References X. J. Yang, Y. B. Yu, Z. Q. Gao, ACS Nano 2014, 27, 4902-4907.
J. M. Bennett, J. L. Stanford, E. J. Ashley, J. Opt. Soc. Am. 1970, 60, 224-231.
Q. H. Cao, L. Zhang, G. D. Yang, C. Q. Xu, R. Wang, Antioxid. Redox Signaling 2010, 12, 1101-1109.
W. J. Cai, M. J. Wang, L. H. Ju, C. Wang, Y. C. Zhu, Cell Biol. Int. 2010, 34, 565-572
C. A. Burnyeat, R. S. Lepsenyi, I. O. Nwabuko, T. L. Kelly, Chem. Mater. 2013, 25, 4206-4214.
C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, Y. Yin, Angew. Chem. Int. Ed. 2012, 51, 5629-5633
P. Wu, J. Y. Zhang, S. L. Wang, A. R. Zhu, X. D. Hou, Chem. Eur. J. 2013, 19, 952-956.
G. D. Yang, L. Y. Wu, B. Jiang, W. Yang, J. S. Qi, K. Cao, Q. H. Meng, A. K. Mustafa, W. T. Mu, S. M. Zhang, S. H. Snyder, R. Wang, Science 2008, 322, 587
H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. Lefer, B. Wang, Angew. Chem. Int. Ed. 2011, 50, 9672-9675
L. Rodríguez-Lorenzo, R. de La Rica, R. A. Alvarez-Puebla, L. M. Liz-Marzán, M. M. Stevens, Nat. Mater. 2012, 11, 604-607
B. Liu, Z. F. Ma, Small 2011, 7, 1587-1592
S. Singh, D. Padovani, R. A. Leslie, T. Chiku, J. Biol. Chem. 2009, 284, 22457
N. Shibuya, M. Tanaka, M. Yoshida, Y. Ogasawara, T. Togawa, K. Ishii, H. Kimura, Antioxid. Redox Signaling 2009, 11, 703.
E. Culotta, D. E. Koshland, Science 1992, 258, 1862-1865
T. Morita, M. A. Perrella, M. E. Lee, S. Kourembanas, Proc. Natl. Acad. Sci. USA 1995, 92, 1475.
A. R. Lippert, E. J. New, C. J. Chang, J. Am. Chem. Soc. 2011, 133, 10078-10080
O. Kabil, R. Banerjee, J. Biol. Chem. 2010, 285, 21903
S. Chen, Z. J. Chen, W. Ren, H. W. Ai, J. Am. Chem. Soc. 2012, 134, 9589-9592
C. Szabó, Nat. Rev. Drug Discovery 2007, 6, 917
K. Eto, T. Asada, K. Arima, T. Makifuchi, H. Kimura, Biochem. Biophys. Res. Commun. 2002, 293, 1485
Angew. Chem. 2012, 124, 5727-5731
J. Liu, K. K. Yee, K. K. Lo, K. Y. Zhang, W. P. To, C. M. Che, Z. J. Xu, J. Am. Chem. Soc. 2014, 136, 2818-2824.
Angew. Chem. 2011, 123, 9846-9849
B. Xiong, R. Zhou, J. Hao, Y. Jia, Y. He, E. S. Yeung, Nat. Commun. 2013, 4, 1708.
M. M. F. Choi, Analyst 1998, 123, 1631-1634.
R. Wang, Antioxid. Redox Signaling 2010, 12, 1061.
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater. 2008, 7, 442-453
Y. Xiong, Y. Xia, Adv. Mater. 2007, 19, 3385-3391.
J. Furne, A. Saeed, M. D. Levitt, Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1479.
M. M. Shahjamali, M. Bosman, S. Cao, X. Huang, X. Cao, H. Zhang, S. S. Pramana, C. Xue, Small 2013, 9, 2880-2886.
D. Seo, C. Yoo, J. Jung, H. Song, J. Am. Chem. Soc. 2008, 130, 2940-2941.
B. Malile, J. I. Chen, J. Am. Chem. Soc. 2013, 135, 16042-16045.
R. de la Rica, M. M. Stevens, Nat. Nanotechnol. 2012, 7, 821-824
Y. Qian, J. Karpus, O. Kabil, S. Y. Zhang, H. L. Zhu, R. Banerjee, J. Zhao, C. He, Nat. Commun. 2011, 2, 495
K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura, T. Nagano, J. Am. Chem. Soc. 2011, 133, 18003-18005
H. J. Wu, J. Henzie, W. C. Lin, C. Rhodes, Z. Li, E. Sartorel, J. Thorner, P. Yang, J. T. Groves, Nat. Methods 2012, 9, 1189-1191.
J. Zeng, J. Tao, D. Su, Y. M. Zhu, D. Qin, Y. N. Xia, Nano Lett. 2011, 11, 3010-3015.
G. C. van de Bittner, E. A. Dubikovskaya, C. R. Bertozzi, C. J. Chang, Proc. Natl. Acad. Sci. USA 2010, 107, 21316-213621.
P. K. Jain, X. Huang, E. I. H. l-Sayed, M. A. El-Sayed, Acc. Chem. Res. 2008, 41, 1578-1586.
N. S. Lawrence, J. Davis, L. Jiang, T. G. J. Jones, S. N. Davies, R. G. Compton, Electroanalysis 2000, 12, 1453-1460.
E. Fischer, Ber. Dtsch. Chem. Ges. 1883, 16, 2234-2236
O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, Nat. Mater. 2012, 11, 573-584
X. G. Shen, C. B. Pattillo, S. Pardue, S. C. Bir, R. Wang, C. G. Kevil, Free Radical Biol. Med. 2011, 50, 1021-1031.
T. Chiku, D. Padovani, W. Zhu, S. Singh, V. Vitvitsky, R. Banerjee, J. Biol. Chem. 2009, 284, 11601
C. Szabo, Antioxid. Redox Signaling 2012, 17, 68-80
2010; 12
2010; 34
2007; 19
1995; 92
2002; 293
2013; 25
2011; 2
2012
2010; 107
2011
2014; 27
2008; 7
2011; 11
2010; 285
2012; 17
2008; 322
2012; 11
2014; 136
2011; 133
2011; 7
2013; 9
2013; 19
2009; 11
1883; 16
2000; 12
2012 2012; 51 124
1992; 258
2011; 50
2007; 6
2009; 284
2008; 41
2013
1970; 60
2012; 7
1998; 123
2008; 295
2008; 130
2012; 9
Wu P. (e_1_2_4_51_2) 2013; 19
e_1_2_4_40_2
e_1_2_4_44_2
e_1_2_4_40_3
Malile B. (e_1_2_4_41_2) 2013
e_1_2_4_21_2
e_1_2_4_42_2
e_1_2_4_23_2
e_1_2_4_48_2
e_1_2_4_25_2
e_1_2_4_46_2
e_1_2_4_27_2
e_1_2_4_29_2
e_1_2_4_1_2
e_1_2_4_3_2
e_1_2_4_5_2
e_1_2_4_7_2
e_1_2_4_50_2
e_1_2_4_9_2
e_1_2_4_31_2
e_1_2_4_10_2
e_1_2_4_33_2
e_1_2_4_52_2
e_1_2_4_12_2
e_1_2_4_35_2
e_1_2_4_14_2
Chen S. (e_1_2_4_28_2) 2012
e_1_2_4_39_2
e_1_2_4_16_2
e_1_2_4_18_2
Lippert A. R. (e_1_2_4_24_2) 2011
e_1_2_4_20_2
e_1_2_4_43_2
e_1_2_4_22_2
e_1_2_4_47_2
e_1_2_4_26_2
e_1_2_4_45_2
e_1_2_4_26_3
e_1_2_4_49_2
e_1_2_4_2_2
e_1_2_4_4_2
e_1_2_4_6_2
e_1_2_4_8_2
e_1_2_4_30_2
e_1_2_4_11_2
e_1_2_4_32_2
e_1_2_4_13_2
e_1_2_4_34_2
e_1_2_4_15_2
e_1_2_4_36_2
Xiong B. (e_1_2_4_37_2) 2013
e_1_2_4_17_2
e_1_2_4_38_2
e_1_2_4_19_2
References_xml – reference: T. Morita, M. A. Perrella, M. E. Lee, S. Kourembanas, Proc. Natl. Acad. Sci. USA 1995, 92, 1475.
– reference: J. Furne, A. Saeed, M. D. Levitt, Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1479.
– reference: Angew. Chem. 2012, 124, 5727-5731;
– reference: C. Szabó, Nat. Rev. Drug Discovery 2007, 6, 917;
– reference: H. J. Wu, J. Henzie, W. C. Lin, C. Rhodes, Z. Li, E. Sartorel, J. Thorner, P. Yang, J. T. Groves, Nat. Methods 2012, 9, 1189-1191.
– reference: Angew. Chem. 2011, 123, 9846-9849;
– reference: D. Seo, C. Yoo, J. Jung, H. Song, J. Am. Chem. Soc. 2008, 130, 2940-2941.
– reference: M. M. Shahjamali, M. Bosman, S. Cao, X. Huang, X. Cao, H. Zhang, S. S. Pramana, C. Xue, Small 2013, 9, 2880-2886.
– reference: B. Malile, J. I. Chen, J. Am. Chem. Soc. 2013, 135, 16042-16045.
– reference: J. Zeng, J. Tao, D. Su, Y. M. Zhu, D. Qin, Y. N. Xia, Nano Lett. 2011, 11, 3010-3015.
– reference: C. A. Burnyeat, R. S. Lepsenyi, I. O. Nwabuko, T. L. Kelly, Chem. Mater. 2013, 25, 4206-4214.
– reference: Q. H. Cao, L. Zhang, G. D. Yang, C. Q. Xu, R. Wang, Antioxid. Redox Signaling 2010, 12, 1101-1109.
– reference: N. S. Lawrence, J. Davis, L. Jiang, T. G. J. Jones, S. N. Davies, R. G. Compton, Electroanalysis 2000, 12, 1453-1460.
– reference: S. Chen, Z. J. Chen, W. Ren, H. W. Ai, J. Am. Chem. Soc. 2012, 134, 9589-9592;
– reference: P. Wu, J. Y. Zhang, S. L. Wang, A. R. Zhu, X. D. Hou, Chem. Eur. J. 2013, 19, 952-956.
– reference: K. Eto, T. Asada, K. Arima, T. Makifuchi, H. Kimura, Biochem. Biophys. Res. Commun. 2002, 293, 1485;
– reference: O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, Nat. Mater. 2012, 11, 573-584;
– reference: J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater. 2008, 7, 442-453;
– reference: R. de la Rica, M. M. Stevens, Nat. Nanotechnol. 2012, 7, 821-824;
– reference: N. Shibuya, M. Tanaka, M. Yoshida, Y. Ogasawara, T. Togawa, K. Ishii, H. Kimura, Antioxid. Redox Signaling 2009, 11, 703.
– reference: E. Culotta, D. E. Koshland, Science 1992, 258, 1862-1865;
– reference: A. R. Lippert, E. J. New, C. J. Chang, J. Am. Chem. Soc. 2011, 133, 10078-10080;
– reference: C. Gao, Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, Y. Yin, Angew. Chem. Int. Ed. 2012, 51, 5629-5633;
– reference: Y. Xiong, Y. Xia, Adv. Mater. 2007, 19, 3385-3391.
– reference: R. Wang, Antioxid. Redox Signaling 2010, 12, 1061.
– reference: J. Liu, K. K. Yee, K. K. Lo, K. Y. Zhang, W. P. To, C. M. Che, Z. J. Xu, J. Am. Chem. Soc. 2014, 136, 2818-2824.
– reference: E. Fischer, Ber. Dtsch. Chem. Ges. 1883, 16, 2234-2236;
– reference: P. K. Jain, X. Huang, E. I. H. l-Sayed, M. A. El-Sayed, Acc. Chem. Res. 2008, 41, 1578-1586.
– reference: K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura, T. Nagano, J. Am. Chem. Soc. 2011, 133, 18003-18005;
– reference: J. M. Bennett, J. L. Stanford, E. J. Ashley, J. Opt. Soc. Am. 1970, 60, 224-231.
– reference: Y. Qian, J. Karpus, O. Kabil, S. Y. Zhang, H. L. Zhu, R. Banerjee, J. Zhao, C. He, Nat. Commun. 2011, 2, 495;
– reference: X. G. Shen, C. B. Pattillo, S. Pardue, S. C. Bir, R. Wang, C. G. Kevil, Free Radical Biol. Med. 2011, 50, 1021-1031.
– reference: B. Liu, Z. F. Ma, Small 2011, 7, 1587-1592;
– reference: T. Chiku, D. Padovani, W. Zhu, S. Singh, V. Vitvitsky, R. Banerjee, J. Biol. Chem. 2009, 284, 11601;
– reference: W. J. Cai, M. J. Wang, L. H. Ju, C. Wang, Y. C. Zhu, Cell Biol. Int. 2010, 34, 565-572;
– reference: L. Rodríguez-Lorenzo, R. de La Rica, R. A. Alvarez-Puebla, L. M. Liz-Marzán, M. M. Stevens, Nat. Mater. 2012, 11, 604-607;
– reference: M. M. F. Choi, Analyst 1998, 123, 1631-1634.
– reference: G. D. Yang, L. Y. Wu, B. Jiang, W. Yang, J. S. Qi, K. Cao, Q. H. Meng, A. K. Mustafa, W. T. Mu, S. M. Zhang, S. H. Snyder, R. Wang, Science 2008, 322, 587;
– reference: C. Szabo, Antioxid. Redox Signaling 2012, 17, 68-80;
– reference: X. J. Yang, Y. B. Yu, Z. Q. Gao, ACS Nano 2014, 27, 4902-4907.
– reference: G. C. van de Bittner, E. A. Dubikovskaya, C. R. Bertozzi, C. J. Chang, Proc. Natl. Acad. Sci. USA 2010, 107, 21316-213621.
– reference: O. Kabil, R. Banerjee, J. Biol. Chem. 2010, 285, 21903;
– reference: B. Xiong, R. Zhou, J. Hao, Y. Jia, Y. He, E. S. Yeung, Nat. Commun. 2013, 4, 1708.
– reference: S. Singh, D. Padovani, R. A. Leslie, T. Chiku, J. Biol. Chem. 2009, 284, 22457;
– reference: H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. Lefer, B. Wang, Angew. Chem. Int. Ed. 2011, 50, 9672-9675;
– volume: 133
  start-page: 18003
  year: 2011
  end-page: 18005
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 442
  year: 2008
  end-page: 453
  publication-title: Nat. Mater.
– volume: 9
  start-page: 2880
  year: 2013
  end-page: 2886
  publication-title: Small
– volume: 9
  start-page: 1189
  year: 2012
  end-page: 1191
  publication-title: Nat. Methods
– volume: 12
  start-page: 1101
  year: 2010
  end-page: 1109
  publication-title: Antioxid. Redox Signaling
– volume: 7
  start-page: 821
  year: 2012
  end-page: 824
  publication-title: Nat. Nanotechnol.
– volume: 293
  start-page: 1485
  year: 2002
  publication-title: Biochem. Biophys. Res. Commun.
– start-page: 133
  year: 2011
  end-page: 10080
  publication-title: J. Am. Chem. Soc.
– start-page: 4
  year: 2013
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1453
  year: 2000
  end-page: 1460
  publication-title: Electroanalysis
– volume: 123
  start-page: 1631
  year: 1998
  end-page: 1634
  publication-title: Analyst
– volume: 7
  start-page: 1587
  year: 2011
  end-page: 1592
  publication-title: Small
– volume: 11
  start-page: 573
  year: 2012
  end-page: 584
  publication-title: Nat. Mater.
– volume: 284
  start-page: 11601
  year: 2009
  publication-title: J. Biol. Chem.
– volume: 41
  start-page: 1578
  year: 2008
  end-page: 1586
  publication-title: Acc. Chem. Res.
– volume: 17
  start-page: 68
  year: 2012
  end-page: 80
  publication-title: Antioxid. Redox Signaling
– volume: 50
  start-page: 1021
  year: 2011
  end-page: 1031
  publication-title: Free Radical Biol. Med.
– volume: 50
  start-page: 9672
  year: 2011
  end-page: 9675
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. 2011, 123, 9846–9849
– volume: 60
  start-page: 224
  year: 1970
  end-page: 231
  publication-title: J. Opt. Soc. Am.
– volume: 34
  start-page: 565
  year: 2010
  end-page: 572
  publication-title: Cell Biol. Int.
– volume: 19
  start-page: 3385
  year: 2007
  end-page: 3391
  publication-title: Adv. Mater.
– volume: 6
  start-page: 917
  year: 2007
  publication-title: Nat. Rev. Drug Discovery
– volume: 322
  start-page: 587
  year: 2008
  publication-title: Science
– volume: 25
  start-page: 4206
  year: 2013
  end-page: 4214
  publication-title: Chem. Mater.
– start-page: 134
  year: 2012
  end-page: 9592
  publication-title: J. Am. Chem. Soc.
– volume: 92
  start-page: 1475
  year: 1995
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 284
  start-page: 22457
  year: 2009
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 604
  year: 2012
  end-page: 607
  publication-title: Nat. Mater.
– volume: 107
  start-page: 21316
  year: 2010
  end-page: 213621
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 285
  start-page: 21903
  year: 2010
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 3010
  year: 2011
  end-page: 3015
  publication-title: Nano Lett.
– volume: 136
  start-page: 2818
  year: 2014
  end-page: 2824
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 2940
  year: 2008
  end-page: 2941
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1061
  year: 2010
  publication-title: Antioxid. Redox Signaling
– volume: 16
  start-page: 2234
  year: 1883
  end-page: 2236
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 19
  start-page: 952
  year: 2013
  end-page: 956
  publication-title: Chem. Eur. J.
– volume: 11
  start-page: 703
  year: 2009
  publication-title: Antioxid. Redox Signaling
– volume: 2
  start-page: 495
  year: 2011
  publication-title: Nat. Commun.
– start-page: 135
  year: 2013
  end-page: 16045
  publication-title: J. Am. Chem. Soc.
– volume: 258
  start-page: 1862
  year: 1992
  end-page: 1865
  publication-title: Science
– volume: 51 124
  start-page: 5629 5727
  year: 2012 2012
  end-page: 5633 5731
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 4902
  year: 2014
  end-page: 4907
  publication-title: ACS Nano
– volume: 295
  start-page: 1479
  year: 2008
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– start-page: 135
  year: 2013
  ident: e_1_2_4_41_2
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_4_30_2
– ident: e_1_2_4_15_2
  doi: 10.1016/S0006-291X(02)00422-9
– ident: e_1_2_4_17_2
  doi: 10.1089/ars.2009.2915
– ident: e_1_2_4_2_2
  doi: 10.1038/nrd2425
– ident: e_1_2_4_4_2
  doi: 10.1126/science.1361684
– ident: e_1_2_4_12_2
  doi: 10.1089/ars.2009.2938
– ident: e_1_2_4_13_2
– ident: e_1_2_4_32_2
  doi: 10.1038/nmat2162
– ident: e_1_2_4_19_2
– ident: e_1_2_4_52_2
  doi: 10.1016/j.freeradbiomed.2011.01.025
– ident: e_1_2_4_18_2
  doi: 10.1002/1521-4109(200012)12:18<1453::AID-ELAN1453>3.0.CO;2-Z
– ident: e_1_2_4_50_2
  doi: 10.1073/pnas.1012864107
– start-page: 134
  year: 2012
  ident: e_1_2_4_28_2
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_4_27_2
  doi: 10.1021/ja207851s
– volume: 19
  start-page: 952
  year: 2013
  ident: e_1_2_4_51_2
  publication-title: Chem. Eur. J.
– ident: e_1_2_4_22_2
  doi: 10.1152/ajpregu.90566.2008
– ident: e_1_2_4_31_2
  doi: 10.1038/nmat3356
– ident: e_1_2_4_46_2
– ident: e_1_2_4_33_2
  doi: 10.1038/nnano.2012.186
– ident: e_1_2_4_35_2
  doi: 10.1038/nmeth.2211
– ident: e_1_2_4_7_2
  doi: 10.1074/jbc.M109.010868
– start-page: 4
  year: 2013
  ident: e_1_2_4_37_2
  publication-title: Nat. Commun.
– ident: e_1_2_4_5_2
  doi: 10.1073/pnas.92.5.1475
– ident: e_1_2_4_16_2
  doi: 10.1042/CBI20090368
– ident: e_1_2_4_21_2
  doi: 10.1039/a801702f
– ident: e_1_2_4_38_2
  doi: 10.1021/nn5008786
– ident: e_1_2_4_3_2
  doi: 10.1074/jbc.R110.128363
– ident: e_1_2_4_45_2
  doi: 10.1364/JOSA.60.000224
– ident: e_1_2_4_29_2
  doi: 10.1021/ja411067a
– ident: e_1_2_4_44_2
  doi: 10.1002/adma.200701301
– ident: e_1_2_4_26_3
  doi: 10.1002/ange.201104236
– ident: e_1_2_4_8_2
  doi: 10.1074/jbc.M808026200
– ident: e_1_2_4_10_2
– ident: e_1_2_4_39_2
– ident: e_1_2_4_49_2
  doi: 10.1021/cm401944b
– ident: e_1_2_4_20_2
  doi: 10.1002/cber.188301602138
– ident: e_1_2_4_40_3
  doi: 10.1002/ange.201108971
– ident: e_1_2_4_43_2
  doi: 10.1002/smll.201300200
– ident: e_1_2_4_11_2
  doi: 10.1126/science.1162667
– ident: e_1_2_4_42_2
  doi: 10.1021/ja711093j
– ident: e_1_2_4_6_2
– ident: e_1_2_4_48_2
  doi: 10.1021/nl2016448
– ident: e_1_2_4_26_2
  doi: 10.1002/anie.201104236
– ident: e_1_2_4_9_2
  doi: 10.1089/ars.2008.2253
– ident: e_1_2_4_1_2
– ident: e_1_2_4_14_2
  doi: 10.1089/ars.2011.4451
– ident: e_1_2_4_47_2
  doi: 10.1002/smll.201100095
– ident: e_1_2_4_23_2
– ident: e_1_2_4_36_2
  doi: 10.1021/ar7002804
– start-page: 133
  year: 2011
  ident: e_1_2_4_24_2
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_4_25_2
  doi: 10.1038/ncomms1506
– ident: e_1_2_4_34_2
  doi: 10.1038/nmat3337
– ident: e_1_2_4_40_2
  doi: 10.1002/anie.201108971
SSID ssj0009633
Score 2.3095012
Snippet A simple and highly sensitive and selective hydrogen sulfide assay utilizing plasmonic nanoprobes is presented in this report. The assay employs the etching of...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 988
SubjectTerms biosensors
Chemistry
Etching
Gold
Hydrogen sulfide
Nanostructure
nanostructures
Plasmonics
Silver
SPR
Thin films
Walls
Title Silver/Gold Core-Shell Nanoprism-Based Plasmonic Nanoprobes for Highly Sensitive and Selective Detection of Hydrogen Sulfide
URI https://api.istex.fr/ark:/67375/WNG-RCSZ6PQ3-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201405012
https://www.ncbi.nlm.nih.gov/pubmed/25428438
https://www.proquest.com/docview/1642559558
https://www.proquest.com/docview/1645778539
https://www.proquest.com/docview/1786156862
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzS0ICMhOKWb-BFnj7DQrpCoSkNFxcWyE0eqGhK0D6nltD8BiX_YX8KM8yiLeEhwWysTbWx_Hn-TjL8h5KmMrWOm4KHLpQhFGidY5oWHEvaORFqhIouHk9_uJ9Mj8eZYHv9wir_VhxheuOHK8P4aF7ix89GlaCj0CU-SQ4AgI19mGBO2kBUdXupHAbraWvJChajB2qs2Rmy0fvvarnQVB_jsV5RzncH6LWj3JjH9w7eZJ6c7y4Xdyb_8pOv4P727RW50_JS-aAF1m1xx9R1ybdKXhbtLVtkJJlOP9pqqoJNm5i5W3zLMJqXgqBuvqnix-voSNseCHgA1_4Tau921xro5BZZMMbukOqcZZs-jv6WmLqBVtd6XvnILnyFW06ak0_Ni1gDMabasypPC3SNHu6_fT6ZhV8YhhOlXLDRJkppxbGKTliiuwyxPnOIisQLFx1KrSuA9eepKAXAC4Cho5LKIczO2shT8Ptmom9ptEuo_6lqbM86tMBGzsYuUwZg1j5KcuYCE_TTqvNM4x1IblW7VmZnGcdXDuAbk-WD_uVX3-K3lM4-KwczMTjEnTkn9YX9PH06yj8nBO66nAdnuYaM7dzDXEJNi6CZlGpAnw2WYOPw6Y2rXLL2NVArY0_gPNioFBoqHegLyoIXk8EAQ6QPV4PAPzAPrLx3SKLkxtB7-y01b5Dr8xtzPMGbbZGMxW7pHQNEW9rFfht8BYEgzIw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKeygX3o9AASPxOKW7cew4e-AAu7Rb2q5KtxUVF2MnjlQ1JGgfguW0PwGJX8Jf4Sf0lzCTV7WIh4TUA0dvZhPbM-OZSWa-IeSR8IxlOvZdGwnu8tALsM2L7wqwHYEwXLYNFifvDoL-IX91JI6WyLe6FqbEh2heuKFmFOc1Kji-kG6doYbCorCUHCIEAadslVe5bWcfIWobP9vqAYsfM7bx8qDbd6vGAi5MSDJXB0GoO572dJgg3AszfmClzwPDEQ4rNDIBSxyFNuGwQFiKhEEkYi_SHSMS7sN9L5AVbCOOcP29_TPEKpDnsns9ly6ivtY4kW3WWpzvgh1cQZZ--pWTu-gzF0Zv4zL5Xm9Xmetysj6dmPXo809Ikv_Vfl4hlyoXnD4vdeYqWbLZNbLarTvfXSfz4THmi7c28zSm3XxkT-dfh5gwS8EW5QVw5On8ywuw_zHdg-jjPcILV9dyY8cUAgGKCTTpjA6xQABNCtVZDKO0NDC0ZydFElxG84T2Z_EoB02mw2maHMf2Bjk8lw24SZazPLO3CS2-WxsTMd83XLeZ8WxbagzLo3YQMesQt5YbFVUw7thNJFUlADVTyEfV8NEhTxv6DyWAyW8pnxRi2JDp0Qmm_Umh3gw21X53-DbYe-2rvkPWajlV1Yk3VhB2Y3QqROiQh81lYBx-gNKZzacFjZASHMTOH2hkCE421i055FapA82EmIBgmfvwBFZI8l8WpBBVpBnd-Zc_PSCr_YPdHbWzNdi-Sy7C75jq6npsjSxPRlN7DzzSiblfnAGUvDtvJfkBimWRAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVgIuvCmBAovE4-TGXu96nQMHSEhTClFoqKi4bHfttVQ12FUegnDKT0Dij_BX-Av9Jcz4VQXxkJB64Lj2ONndmdmZsWe-IeSh8IxlOvYdGwnu8NALsM2L7wiwHYEwXLoGi5Nf94PeHn-5L_ZXyLeqFqbAh6hfuKFm5Oc1KvhxnDRPQUNhTVhJDgGCgEO2TKvcsfOPELRNnm53gMOPGOu-eNvuOWVfAQfmI5mjgyDULU97OkwQ7YUZP7DS54HhiIYVGpmAIY5Cm3BYH6xEwiASsRfplhEJ9-F3z5E1HrgtbBbR2T0FrAJxLprXc-kg6GsFE-my5vJ8l8zgGnL006983GWXObd53cvke7VbRarL0eZsajajzz8BSf5P23mFXCodcPqs0JirZMWm18iFdtX37jpZDA8xW7y5lY1i2s7G9mTxdYjpshQsUZbDRp4svjwH6x_TAcQeHxBcuLyXGTuhEAZQTJ8ZzekQywPQoFCdxjAaFeaFduw0T4FLaZbQ3jweZ6DHdDgbJYexvUH2zmQDbpLVNEvtLULzr9bGRMz3DdcuM551pcagPHKDiNkGcSqxUVEJ4o69REaqgJ9mCvmoaj42yJOa_riAL_kt5eNcCmsyPT7CpD8p1Lv-ltptD98Hgze-6jXIRiWmqjzvJgqCboxNhQgb5EF9GxiHn590arNZTiOkBPew9QcaGYKLjVVLDbJeqEA9ISYgVOY-_APLBfkvC1KIKVKPbv_LQ_fJ-UGnq15t93fukItwGfNcHY9tkNXpeGbvgjs6NffyE4CSg7PWkR8v4Y-x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver%2FGold+Core%E2%80%93Shell+Nanoprism%E2%80%90Based+Plasmonic+Nanoprobes+for+Highly+Sensitive+and+Selective+Detection+of+Hydrogen+Sulfide&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Yang%2C+Xinjian&rft.au=Ren%2C+Yuqian&rft.au=Gao%2C+Zhiqiang&rft.date=2015-01-12&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=3&rft.spage=988&rft.epage=992&rft_id=info:doi/10.1002%2Fchem.201405012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201405012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon