Self‐organization of apical membrane protein sorting in epithelial cells
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for ap...
Saved in:
Published in | The FEBS journal Vol. 289; no. 3; pp. 659 - 670 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self‐organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein‐based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH‐dependent glycan interactions.
Despite extensive investigation, the mechanisms targeting membrane proteins to the apical surface are not well understood. In this Viewpoint, we survey historical findings and recent advances in membrane protein sorting. We argue that apical sorting, through diverse mechanisms, is organized by biophysical phenomena of cargo segregation driven by oligomerization and phase separation. Evidence suggests that the molecular interactions underlying apical segregation of O‐glycosylated membrane proteins are regulated by luminal acidification. |
---|---|
AbstractList | Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions. Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self‐organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein‐based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH‐dependent glycan interactions. Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date are consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions. Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self‐organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein‐based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH‐dependent glycan interactions. Despite extensive investigation, the mechanisms targeting membrane proteins to the apical surface are not well understood. In this Viewpoint, we survey historical findings and recent advances in membrane protein sorting. We argue that apical sorting, through diverse mechanisms, is organized by biophysical phenomena of cargo segregation driven by oligomerization and phase separation. Evidence suggests that the molecular interactions underlying apical segregation of O‐glycosylated membrane proteins are regulated by luminal acidification. |
Author | Levic, Daniel S. Bagnat, Michel |
AuthorAffiliation | 1 Department of Cell Biology, Duke University, Durham, NC 27710, USA |
AuthorAffiliation_xml | – name: 1 Department of Cell Biology, Duke University, Durham, NC 27710, USA |
Author_xml | – sequence: 1 givenname: Daniel S. orcidid: 0000-0003-0240-5178 surname: Levic fullname: Levic, Daniel S. email: daniel.levic@duke.edu organization: Duke University – sequence: 2 givenname: Michel orcidid: 0000-0002-3829-0168 surname: Bagnat fullname: Bagnat, Michel email: michel.bagnat@duke.edu organization: Duke University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33864720$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd9qFDEUxoNU7B-98QFkwBsRtp2Tf5O5EbS0VSl4UQXvQjZzZpuSScZkVqlXPoLP6JM0u1uXWkTMTQ7kd75zvnz7ZCfEgIQ8hfoQyjnqcZ4PQShFH5A9aDidcSnUzrbmn3fJfs5Xdc0Eb9tHZJcxJXlD6z3y_gJ9_-vHz5gWJrjvZnIxVLGvzOis8dWAwzyZgNWY4oQuVDmmyYVFVUoc3XSJ3hXMovf5MXnYG5_xye19QD6dnnw8fjs7_3D27vj1-cyKMnMmOw6MyZbNBeugEwbarrXSUAG0B2uFEig6xpCWgjLaC9ZwWxtpOyiGgB2QVxvdcTkfsLMYpmS8HpMbTLrW0Tj950twl3oRv2olKIWmKQIvbgVS_LLEPOnB5ZWFYjQus6aSKyWZpP-BCuCy5u16ref30Ku4TKH8RBGkHARTsBJ8dnf57da_EynAyw1gU8w5Yb9FoNaruPUqbr2Ou8D1Pdi6aZ1hMe7831tg0_LNebz-h7g-PXlzsem5AZbWvPE |
CitedBy_id | crossref_primary_10_1038_s41556_024_01500_0 crossref_primary_10_7554_eLife_80135 crossref_primary_10_1007_s10456_022_09838_5 crossref_primary_10_1016_j_jlr_2024_100570 crossref_primary_10_1615_JEnvironPatholToxicolOncol_2024050167 crossref_primary_10_3389_fcell_2024_1442192 crossref_primary_10_1248_bpb_b22_00205 crossref_primary_10_3389_fnetp_2024_1483401 crossref_primary_10_1016_j_semcdb_2022_03_016 crossref_primary_10_1038_s42003_024_07348_2 |
Cites_doi | 10.1042/BJ20130933 10.1038/sj.emboj.7601813 10.1074/jbc.273.46.30263 10.1016/j.febslet.2004.11.106 10.1053/j.gastro.2013.05.013 10.1242/dev.076711 10.1073/pnas.151111298 10.1021/jp405063h 10.1089/ars.2017.7389 10.1242/jcs.036038 10.1101/cshperspect.a004697 10.1126/science.2945253 10.1073/pnas.1012424107 10.1091/mbc.e09-03-0193 10.1016/j.chemphyslip.2015.07.022 10.1038/s41589-020-0529-6 10.1016/j.molcel.2020.09.029 10.1074/jbc.274.6.3910 10.1073/pnas.1304168111 10.1083/jcb.200901145 10.1038/nrm3775 10.1016/S0092-8674(88)80026-6 10.1073/pnas.0509107102 10.1083/jcb.142.1.51 10.1038/35055042 10.1126/science.aaw9544 10.1016/j.devcel.2013.10.006 10.1083/jcb.200309005 10.1091/mbc.E16-02-0096 10.1091/mbc.E18-12-0811 10.1152/ajpcell.00514.2002 10.1073/pnas.1016184107 10.1083/jcb.146.2.313 10.1515/BC.2002.169 10.1016/j.ejcb.2010.07.001 10.1111/tra.12086 10.1016/j.tibs.2015.08.005 10.1091/mbc.E05-09-0873 10.1093/emboj/16.18.5501 10.1038/ncb2541 10.1038/378096a0 10.1074/jbc.M112.415596 10.1038/s41467-017-01328-3 10.1016/S0092-8674(00)81650-5 10.1016/j.bbamcr.2008.10.016 10.1073/pnas.97.7.3254 10.1016/S0074-7696(03)01005-2 10.1172/JCI7453 10.1016/0092-8674(91)90139-P 10.1242/jcs.032615 10.1083/jcb.201908225 10.1681/ASN.2013080883 10.1242/dev.077347 10.1083/jcb.142.6.1413 10.1083/jcb.200603132 10.1016/j.neulet.2004.04.002 10.1083/jcb.200212004 10.1016/S0021-9258(18)43616-2 10.1016/0092-8674(92)90189-J 10.1016/j.cub.2005.12.046 10.1096/fj.201601386R 10.1038/ncb1109 10.1091/mbc.E12-04-0329 10.1101/cshperspect.a027847 10.1146/annurev.iy.12.040194.000431 10.1111/j.1600-0854.2007.00539.x 10.1091/mbc.E08-05-0478 10.1039/C9SM00579J 10.1016/j.devcel.2012.02.004 10.1016/j.abb.2004.02.032 10.1016/S0021-9258(17)42002-3 10.1172/JCI35541 10.1091/mbc.e13-02-0078 10.1016/0092-8674(95)90380-1 10.1083/jcb.103.6.2565 10.1016/j.bpj.2015.07.036 10.1083/jcb.109.5.2145 10.1111/j.1600-0854.2009.00941.x 10.1016/S0021-9258(18)66848-6 10.1016/S0021-9258(19)50263-0 10.1006/excr.1994.1222 10.1016/j.cell.2020.09.021 10.1083/jcb.139.4.929 10.1021/bi992132e 10.1038/ncb2106 10.1073/pnas.74.5.2026 10.1073/pnas.1718921115 10.1083/jcb.116.3.577 10.1083/jcb.200911083 10.1083/jcb.148.3.495 10.1083/jcb.98.4.1304 10.1083/jcb.200407094 10.1006/excr.2001.5442 10.1242/jcs.020800 10.1038/cr.2012.64 10.1083/jcb.200407072 10.1016/j.febslet.2009.10.053 10.1091/mbc.E11-04-0320 10.1242/jcs.158550 10.1038/s42003-021-01693-2 10.1083/jcb.200407073 10.1172/JCI0216390 10.1091/mbc.E06-07-0629 10.1016/j.tcb.2020.01.009 10.1073/pnas.1821076116 10.1242/jcs.213199 10.1111/tra.12548 10.1091/mbc.12.12.4129 10.1038/35054500 10.1016/0092-8674(92)90551-M 10.1002/j.1460-2075.1985.tb03629.x 10.1016/0092-8674(91)90437-4 10.1038/ncb2328 10.1083/jcb.121.5.1031 10.1038/ncb1773 10.1016/0092-8674(84)90315-5 10.1126/science.2110383 10.1242/jcs.01386 10.1111/j.1600-0854.2008.00826.x 10.1073/pnas.0610700104 10.1128/jvi.70.9.6508-6515.1996 |
ContentType | Journal Article |
Copyright | 2021 Federation of European Biochemical Societies 2021 Federation of European Biochemical Societies. Copyright © 2022 Federation of European Biochemical Societies |
Copyright_xml | – notice: 2021 Federation of European Biochemical Societies – notice: 2021 Federation of European Biochemical Societies. – notice: Copyright © 2022 Federation of European Biochemical Societies |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/febs.15882 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts AGRICOLA CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1742-4658 |
EndPage | 670 |
ExternalDocumentID | PMC8522177 33864720 10_1111_febs_15882 FEBS15882 |
Genre | commentary Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Diabetes and Digestive and Kidney Diseases funderid: 1R01‐DK113123; T32DK007568 – fundername: Howard Hughes Medical Institute – fundername: NIDDK NIH HHS grantid: T32 DK007568 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HH5 HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OK1 OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBFHL WBKPD WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 Y6R ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5472-6d4133693b53d1d5a19d9c6a2512f1cc585e5d33e285e232f5374c0a6cd117413 |
IEDL.DBID | DR2 |
ISSN | 1742-464X 1742-4658 |
IngestDate | Thu Aug 21 18:38:20 EDT 2025 Fri Jul 11 18:30:27 EDT 2025 Fri Jul 11 00:21:00 EDT 2025 Fri Jul 25 19:31:37 EDT 2025 Thu Apr 03 07:00:57 EDT 2025 Tue Jul 01 03:06:54 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Wed Jan 22 16:27:50 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | V-ATPase zebrafish oligomerization epithelial cell apical sorting |
Language | English |
License | 2021 Federation of European Biochemical Societies. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5472-6d4133693b53d1d5a19d9c6a2512f1cc585e5d33e285e232f5374c0a6cd117413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 D.S.L and M.B. jointly wrote the manuscript. Author contributions |
ORCID | 0000-0003-0240-5178 0000-0002-3829-0168 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.15882 |
PMID | 33864720 |
PQID | 2624153817 |
PQPubID | 28478 |
PageCount | 670 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8522177 proquest_miscellaneous_2648863627 proquest_miscellaneous_2514604941 proquest_journals_2624153817 pubmed_primary_33864720 crossref_primary_10_1111_febs_15882 crossref_citationtrail_10_1111_febs_15882 wiley_primary_10_1111_febs_15882_FEBS15882 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The FEBS journal |
PublicationTitleAlternate | FEBS J |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 12 2004; 167 2007; 104 2004; 165 2010; 107 2002; 273 2010; 189 2019; 15 2005; 579 2006; 173 2020; 16 2004; 6 2014; 25 1995; 378 1996; 70 2012; 14 2009; 119 1993; 121 1980; 255 1998; 273 1989; 109 2014; 127 1986; 103 2009; 10 1994; 269 2005; 102 2002; 383 2000; 97 2013; 117 2007; 8 1992; 116 2003; 162 2014; 15 2009; 122 2012; 23 2012; 22 2012; 139 2009; 1793 2020; 219 2003; 284 2007; 18 1990; 248 1986; 234 2019; 30 2011; 3 1999; 104 2008; 121 2004; 426 2018; 19 2015; 192 2003; 226 1984; 37 2020; 30 1991; 66 2018; 115 1994; 12 2009; 583 2009; 185 2016; 27 1998; 142 2014; 457 2004; 363 2017; 8 1994; 213 2013; 27 2002; 110 2013; 24 2008; 9 2013; 288 2011; 13 2015; 109 2020; 367 2017; 9 2018; 131 2017; 31 2013; 14 2015; 40 1984; 98 1986; 261 2019; 116 1999; 99 2011; 22 1977; 74 1997; 16 2001; 12 2007; 26 2001; 98 1997; 139 2021; 4 2009; 21 1985; 4 2006; 16 2008; 19 2020; 80 2020; 183 2013; 145 1999; 146 2008; 10 2001; 409 1988; 52 1993; 268 2014; 111 1992; 71 2010; 89 1995; 81 2000; 39 2000; 148 2005; 168 2005; 169 1999; 274 2001; 3 1992; 68 2004; 117 e_1_2_12_6_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_115_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_100_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_114_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_122_1 e_1_2_12_29_1 e_1_2_12_103_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_19_1 e_1_2_12_38_1 e_1_2_12_113_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_49_1 e_1_2_12_121_1 e_1_2_12_102_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_39_1 e_1_2_12_116_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
References_xml | – volume: 169 start-page: 491 year: 2005 end-page: 501 article-title: Galectin‐4 and sulfatides in apical membrane trafficking in enterocyte‐like cells publication-title: J Cell Biol – volume: 255 start-page: 6633 year: 1980 end-page: 6639 article-title: Biosynthetic intermediates of beta‐glucuronidase contain high mannose oligosaccharides with blocked phosphate residues publication-title: J Biol Chem – volume: 145 start-page: 625 year: 2013 end-page: 635 article-title: AP‐1B‐mediated protein sorting regulates polarity and proliferation of intestinal epithelial cells in mice publication-title: Gastroenterology – volume: 3 year: 2011 article-title: Membrane organization and lipid rafts publication-title: Cold Spring Harb Perspect Biol – volume: 363 start-page: 168 year: 2004 end-page: 172 article-title: Identification of V‐ATPase as a major component in the raft fraction prepared from the synaptic plasma membrane and the synaptic vesicle of rat brain publication-title: Neurosci Lett – volume: 14 start-page: 838 year: 2012 end-page: 849 article-title: Synaptotagmin‐like proteins control the formation of a single apical membrane domain in epithelial cells publication-title: Nat Cell Biol – volume: 115 start-page: E4396 year: 2018 end-page: E4405 article-title: Molecular mechanism to recruit galectin‐3 into multivesicular bodies for polarized exosomal secretion publication-title: Proc Natl Acad Sci USA – volume: 30 start-page: 341 year: 2020 end-page: 353 article-title: Lipid rafts: controversies resolved, mysteries remain publication-title: Trends Cell Biol – volume: 107 start-page: 17633 year: 2010 end-page: 17638 article-title: Galectin‐9 trafficking regulates apical‐basal polarity in Madin‐Darby canine kidney epithelial cells publication-title: Proc Natl Acad Sci USA – volume: 383 start-page: 1475 year: 2002 end-page: 1480 article-title: Lipid rafts in protein sorting and cell polarity in budding yeast publication-title: Biol Chem – volume: 74 year: 1977 article-title: Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts publication-title: Proc Natl Acad Sci USA – volume: 110 start-page: 597 year: 2002 end-page: 603 article-title: Cholesterol, lipid rafts, and disease publication-title: J Clin Invest – volume: 288 start-page: 1340 year: 2013 end-page: 1352 article-title: Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (Rafts) in the multitransmembrane strand protein perfringolysin O publication-title: J Biol Chem – volume: 8 start-page: 1219 year: 2017 article-title: Structural determinants and functional consequences of protein affinity for membrane rafts publication-title: Nat Commun – volume: 26 start-page: 3737 year: 2007 end-page: 3748 article-title: Differential involvement of endocytic compartments in the biosynthetic traffic of apical proteins publication-title: EMBO J – volume: 579 start-page: 483 year: 2005 end-page: 487 article-title: PDZ‐binding motifs are unable to ensure correct polarized protein distribution in the absence of additional localization signals publication-title: FEBS Lett – volume: 9 year: 2017 article-title: Directional fluid transport across organ‐blood barriers: physiology and cell biology publication-title: Cold Spring Harb Perspect Biol – volume: 70 start-page: 6508 year: 1996 end-page: 6515 article-title: Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells publication-title: J Virol – volume: 4 start-page: 1 year: 2021 end-page: 15 article-title: Glycolipid‐dependent and lectin‐driven transcytosis in mouse enterocytes publication-title: Commun Biol – volume: 583 start-page: 3863 year: 2009 end-page: 3871 article-title: The KDEL receptor: new functions for an old protein publication-title: FEBS Lett – volume: 121 start-page: 458 year: 2008 end-page: 465 article-title: Loss of galectin‐3 impairs membrane polarisation of mouse enterocytes publication-title: J Cell Sci – volume: 142 start-page: 1413 year: 1998 end-page: 1427 article-title: Annexin XIIIb associates with lipid microdomains to function in apical delivery publication-title: J Cell Biol – volume: 97 start-page: 3254 year: 2000 end-page: 3259 article-title: Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast publication-title: Proc Natl Acad Sci USA – volume: 15 start-page: 4525 year: 2019 end-page: 4540 article-title: Complex‐type N‐glycans on VSV‐G pseudotyped HIV exhibit ‘tough’ sialic and ‘brittle’ mannose self‐adhesions publication-title: Soft Matter – volume: 248 start-page: 742 year: 1990 end-page: 745 article-title: Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis publication-title: Science – volume: 273 start-page: 30263 year: 1998 end-page: 30270 article-title: Putative O‐glycosylation sites and a membrane anchor are necessary for apical delivery of the human neurotrophin receptor in Caco‐2 cells publication-title: J Biol Chem – volume: 274 start-page: 3910 year: 1999 end-page: 3917 article-title: Role of lipid modifications in targeting proteins to detergent‐resistant membrane rafts many raft proteins are acylated, while few are prenylated publication-title: J Biol Chem – volume: 98 start-page: 1304 year: 1984 end-page: 1319 article-title: Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin‐Darby canine kidney cells publication-title: J Cell Biol – volume: 367 start-page: 301 year: 2020 end-page: 305 article-title: Lipid‐gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance publication-title: Science – volume: 107 start-page: 22050 year: 2010 end-page: 22054 article-title: Palmitoylation regulates raft affinity for the majority of integral raft proteins publication-title: Proc Natl Acad Sci USA – volume: 226 start-page: 259 year: 2003 end-page: 319 article-title: Acidification and protein traffic publication-title: Int Rev Cytol – volume: 1793 start-page: 605 year: 2009 end-page: 614 article-title: Sorting of lysosomal proteins publication-title: Biochim Biophys Acta BBA Mol Cell Res – volume: 16 start-page: 5501 year: 1997 end-page: 5508 article-title: Interaction of influenza virus haemagglutinin with sphingolipid‐cholesterol membrane domains via its transmembrane domain publication-title: EMBO J – volume: 139 start-page: 2061 year: 2012 end-page: 2070 article-title: AP‐1 is required for the maintenance of apico‐basal polarity in the intestine publication-title: Development – volume: 40 start-page: 611 year: 2015 end-page: 622 article-title: Recent insights into the structure, regulation, and function of the V‐ATPases publication-title: Trends Biochem Sci – volume: 284 start-page: C1105 year: 2003 end-page: C1113 article-title: Identification of an apical sorting determinant in the cytoplasmic tail of megalin publication-title: Am J Physiol Cell Physiol – volume: 52 start-page: 329 year: 1988 end-page: 341 article-title: The mannose 6‐phosphate receptor and the biogenesis of lysosomes publication-title: Cell – volume: 189 start-page: 1171 year: 2010 end-page: 1186 article-title: A cation counterflux supports lysosomal acidification publication-title: J Cell Biol – volume: 183 start-page: 717 year: 2020 end-page: 729 article-title: Assembly mechanism of mucin and von Willebrand factor polymers publication-title: Cell – volume: 80 start-page: 501 year: 2020 end-page: 511 article-title: Structures of a complete human V‐ATPase reveal mechanisms of its assembly publication-title: Mol Cell – volume: 12 start-page: 63 year: 1994 end-page: 84 article-title: Transepithelial transport of immunoglobulins publication-title: Annu Rev Immunol – volume: 261 start-page: 15172 year: 1986 end-page: 15178 article-title: Ammonium chloride slows transport of the influenza virus hemagglutinin but does not cause mis‐sorting in a polarized epithelial cell line publication-title: J Biol Chem – volume: 39 start-page: 1083 year: 2000 end-page: 1090 article-title: The amino‐terminal nine amino acid sequence of poliovirus capsid VP4 protein is sufficient to confer N‐myristoylation and targeting to detergent‐insoluble membranes publication-title: Biochemistry – volume: 273 start-page: 178 year: 2002 end-page: 186 article-title: Role of the membrane‐proximal O‐glycosylation site in sorting of the human receptor for neurotrophins to the apical membrane of MDCK cells publication-title: Exp Cell Res – volume: 117 start-page: 5079 year: 2004 end-page: 5086 article-title: N‐glycans, not the GPI anchor, mediate the apical targeting of a naturally glycosylated, GPI‐anchored protein in polarised epithelial cells publication-title: J Cell Sci – volume: 98 start-page: 9419 year: 2001 end-page: 9424 article-title: Carbohydrate self‐recognition mediates marine sponge cellular adhesion publication-title: Proc Natl Acad Sci USA – volume: 102 start-page: 17981 year: 2005 end-page: 17986 article-title: A genome‐wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast publication-title: Proc Natl Acad Sci USA – volume: 89 start-page: 788 year: 2010 end-page: 798 article-title: Trafficking of galectin‐3 through endosomal organelles of polarized and non‐polarized cells publication-title: Eur J Cell Biol – volume: 4 start-page: 297 year: 1985 end-page: 307 article-title: An enzymatic assay reveals that proteins destined for the apical or basolateral domains of an epithelial cell line share the same late Golgi compartments publication-title: EMBO J – volume: 148 start-page: 495 year: 2000 end-page: 504 article-title: Influenza M2 proton channel activity selectively inhibits trans‐golgi network release of apical membrane and secreted proteins in polarized Madin‐Darby canine kidney cells publication-title: J Cell Biol – volume: 457 start-page: 107 year: 2014 end-page: 115 article-title: Ligand binding and complex formation of galectin‐3 is modulated by pH variations publication-title: Biochem J – volume: 16 start-page: 644 year: 2020 end-page: 652 article-title: Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape publication-title: Nat Chem Biol – volume: 185 start-page: 601 year: 2009 end-page: 612 article-title: Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans‐Golgi network publication-title: J Cell Biol – volume: 213 start-page: 449 year: 1994 end-page: 457 article-title: N‐glycosylation of erythropoietin is critical for apical secretion by Madin‐Darby canine kidney cells publication-title: Exp Cell Res – volume: 8 start-page: 379 year: 2007 end-page: 388 article-title: Apical sorting by galectin‐3‐dependent glycoprotein clustering publication-title: Traffic – volume: 121 start-page: 1031 year: 1993 end-page: 1039 article-title: Glycosylphosphatidylinositol‐anchored proteins are preferentially targeted to the basolateral surface in Fischer rat thyroid epithelial cells publication-title: J Cell Biol – volume: 109 start-page: 2145 year: 1989 end-page: 2156 article-title: A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells publication-title: J Cell Biol – volume: 18 start-page: 1710 year: 2007 end-page: 1722 article-title: A bipartite signal regulates the faithful delivery of apical domain marker podocalyxin/Gp135 publication-title: Mol Biol Cell – volume: 37 start-page: 195 year: 1984 end-page: 204 article-title: Intracellular receptor sorting during endocytosis: Comparative immunoelectron microscopy of multiple receptors in rat liver publication-title: Cell – volume: 378 start-page: 96 year: 1995 article-title: N ‐glycans as apical sorting signals in epithelial cells publication-title: Nature – volume: 103 start-page: 2565 year: 1986 end-page: 2568 article-title: The sorting of proteins to the plasma membrane in epithelial cells publication-title: J Cell Biol – volume: 13 start-page: 1189 year: 2011 end-page: 1201 article-title: Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis publication-title: Nat Cell Biol – volume: 146 start-page: 313 year: 1999 end-page: 320 article-title: N‐glycans mediate the apical sorting of a Gpi‐anchored, raft‐associated protein in Madin‐Darby canine kidney cells publication-title: J Cell Biol – volume: 122 start-page: 4253 year: 2009 end-page: 4266 article-title: Apical trafficking in epithelial cells: signals, clusters and motors publication-title: J Cell Sci – volume: 23 start-page: 3636 year: 2012 end-page: 3646 article-title: Sialylation of N‐linked glycans mediates apical delivery of endolyn in MDCK cells via a galectin‐9‐dependent mechanism publication-title: Mol Biol Cell – volume: 167 start-page: 699 year: 2004 end-page: 709 article-title: Protein oligomerization modulates raft partitioning and apical sorting of GPI‐anchored proteins publication-title: J Cell Biol – volume: 10 start-page: 1128 year: 2009 end-page: 1142 article-title: Identification of a cytoplasmic signal for apical transcytosis publication-title: Traffic Cph Den – volume: 22 start-page: 793 year: 2012 end-page: 805 article-title: Polarized sorting and trafficking in epithelial cells publication-title: Cell Res – volume: 426 start-page: 173 year: 2004 end-page: 181 article-title: Carbohydrate‐to‐carbohydrate interaction in basic cell biology: a brief overview publication-title: Arch Biochem Biophys – volume: 12 start-page: 4129 year: 2001 end-page: 4138 article-title: Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast publication-title: Mol Biol Cell – volume: 173 start-page: 937 year: 2006 end-page: 948 article-title: Apical targeting of syntaxin 3 is essential for epithelial cell polarity publication-title: J Cell Biol – volume: 14 start-page: 1014 year: 2013 end-page: 1027 article-title: pH‐dependent recycling of galectin‐3 at the apical membrane of epithelial cells publication-title: Traffic – volume: 6 start-page: 297 year: 2004 end-page: 307 article-title: Delivery of raft‐associated, GPI‐anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway publication-title: Nat Cell Biol – volume: 27 start-page: 353 year: 2013 end-page: 366 article-title: The adaptor protein‐1 μ1B subunit expands the repertoire of basolateral sorting signal recognition in epithelial cells publication-title: Dev Cell – volume: 66 start-page: 907 year: 1991 end-page: 920 article-title: Basolateral sorting in MDCK cells requires a distinct cytoplasmic domain determinant publication-title: Cell – volume: 117 start-page: 9252 year: 2013 end-page: 9258 article-title: Electrostatically defying cation‐cation clusters: can likes attract in a low‐polarity environment? publication-title: J Phys Chem A – volume: 25 start-page: 1375 year: 2014 end-page: 1386 article-title: Trafficking to the apical and basolateral membranes in polarized epithelial cells publication-title: J Am Soc Nephrol – volume: 111 start-page: 4127 year: 2014 end-page: 4132 article-title: Four‐dimensional live imaging of apical biosynthetic trafficking reveals a post‐Golgi sorting role of apical endosomal intermediates publication-title: Proc Natl Acad Sci USA – volume: 116 start-page: 11796 year: 2019 end-page: 11805 article-title: Quantitative proteomics of MDCK cells identify unrecognized roles of clathrin adaptor AP‐1 in polarized distribution of surface proteins publication-title: Proc Natl Acad Sci USA – volume: 116 start-page: 577 year: 1992 end-page: 583 article-title: Plasma membrane protein sorting in polarized epithelial cells publication-title: J Cell Biol – volume: 104 start-page: 1564 year: 2007 end-page: 1569 article-title: AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells publication-title: Proc Natl Acad Sci USA – volume: 269 start-page: 2712 year: 1994 end-page: 2721 article-title: Transport, function, and sorting of lactase‐phlorizin hydrolase in Madin‐Darby canine kidney cells publication-title: J Biol Chem – volume: 121 start-page: 4001 year: 2008 end-page: 4007 article-title: Different GPI‐attachment signals affect the oligomerisation of GPI‐anchored proteins and their apical sorting publication-title: J Cell Sci – volume: 109 start-page: 948 year: 2015 end-page: 955 article-title: Hexagonal substructure and hydrogen bonding in liquid‐ordered phases containing palmitoyl sphingomyelin publication-title: Biophys J – volume: 15 start-page: 225 year: 2014 end-page: 242 article-title: Organization and execution of the epithelial polarity programme publication-title: Nat Rev Mol Cell Biol – volume: 22 start-page: 4621 year: 2011 end-page: 4634 article-title: N‐Glycosylation instead of cholesterol mediates oligomerization and apical sorting of GPI‐APs in FRT cells publication-title: Mol Biol Cell – volume: 30 start-page: 1716 year: 2019 end-page: 1728 article-title: Clathrin and clathrin adaptor AP‐1 control apical trafficking of megalin in the biosynthetic and recycling routes publication-title: Mol Biol Cell – volume: 234 start-page: 438 year: 1986 end-page: 443 article-title: The trans Golgi network: sorting at the exit site of the Golgi complex publication-title: Science – volume: 71 start-page: 741 year: 1992 end-page: 753 article-title: Basolateral sorting of LDL receptor in MDCK cells: the cytoplasmic domain contains two tyrosine‐dependent targeting determinants publication-title: Cell – volume: 21 start-page: 219 year: 2009 end-page: 231 article-title: Galectin‐3, a novel centrosome‐associated protein, required for epithelial morphogenesis publication-title: Mol Biol Cell – volume: 142 start-page: 51 year: 1998 end-page: 57 article-title: Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells publication-title: J Cell Biol – volume: 131 year: 2018 article-title: Galectin‐3 modulates the polarized surface delivery of β1‐integrin in epithelial cells publication-title: J Cell Sci – volume: 22 start-page: 811 year: 2012 end-page: 823 article-title: The clathrin adaptor AP‐1A mediates basolateral polarity publication-title: Dev Cell – volume: 24 start-page: 1996 year: 2013 end-page: 2007 article-title: Multiple motifs regulate apical sorting of p75 via a mechanism that involves dimerization and higher‐order oligomerization publication-title: Mol Biol Cell – volume: 165 start-page: 529 year: 2004 end-page: 537 article-title: Carbohydrate–carbohydrate interaction provides adhesion force and specificity for cellular recognition publication-title: J Cell Biol – volume: 99 start-page: 189 year: 1999 end-page: 198 article-title: A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells publication-title: Cell – volume: 168 start-page: 303 year: 2005 end-page: 313 article-title: Gp135/podocalyxin and NHERF‐2 participate in the formation of a preapical domain during polarization of MDCK cells publication-title: J Cell Biol – volume: 10 start-page: 1135 year: 2008 end-page: 1145 article-title: GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus publication-title: Nat Cell Biol – volume: 30 start-page: 5 year: 2019 end-page: 21 article-title: Abnormal Golgi pH homeostasis in cancer cells impairs apical targeting of carcinoembryonic antigen by inhibiting its glycosyl‐phosphatidylinositol anchor‐mediated association with lipid rafts publication-title: Antioxid Redox Signal – volume: 268 start-page: 11750 year: 1993 end-page: 11757 article-title: Apical secretion of a cytosolic protein by Madin‐Darby canine kidney cells. Evidence for polarized release of an endogenous lectin by a nonclassical secretory pathway publication-title: J Biol Chem – volume: 16 start-page: 408 year: 2006 end-page: 414 article-title: Requirement for galectin‐3 in apical protein sorting publication-title: Curr Biol – volume: 192 start-page: 23 year: 2015 end-page: 32 article-title: Structural determinants of protein partitioning into ordered membrane domains and lipid rafts publication-title: Chem Phys Lipids – volume: 31 start-page: 4917 year: 2017 end-page: 4927 article-title: Galectin‐8 regulates targeting of Gp135/podocalyxin and lumen formation at the apical surface of renal epithelial cells publication-title: FASEB J – volume: 27 start-page: 2259 year: 2016 end-page: 2271 article-title: Iterative sorting of apical and basolateral cargo in Madin‐Darby canine kidney cells publication-title: Mol Biol Cell – volume: 19 start-page: 4341 year: 2008 end-page: 4351 article-title: Exon loss accounts for differential sorting of Na‐K‐Cl cotransporters in polarized epithelial cells publication-title: Mol Biol Cell – volume: 9 start-page: 2141 year: 2008 end-page: 2150 article-title: N‐ and O‐glycans are not directly involved in the oligomerization and apical sorting of GPI proteins publication-title: Traffic Cph Den – volume: 127 start-page: 4987 year: 2014 end-page: 4993 article-title: The vacuolar‐type H+‐ATPase at a glance – more than a proton pump publication-title: J Cell Sci – volume: 3 start-page: 140 year: 2001 article-title: Multicolour imaging of post‐Golgi sorting and trafficking in live cells publication-title: Nat Cell Biol – volume: 68 start-page: 533 year: 1992 end-page: 544 article-title: Sorting of GPI‐anchored proteins to glycolipid‐enriched membrane subdomains during transport to the apical cell surface publication-title: Cell – volume: 18 start-page: 2687 year: 2007 article-title: Recycling endosomes of polarized epithelial cells actively sort apical and basolateral cargos into separate subdomains publication-title: Mol Biol Cell – volume: 66 start-page: 65 year: 1991 end-page: 75 article-title: An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor publication-title: Cell – volume: 104 start-page: 1353 year: 1999 end-page: 1361 article-title: A PDZ‐interacting domain in CFTR is an apical membrane polarization signal publication-title: J Clin Invest – volume: 81 start-page: 309 year: 1995 end-page: 312 article-title: The role of N‐glycans in the secretory pathway publication-title: Cell – volume: 162 start-page: 211 year: 2003 end-page: 222 article-title: Vacuole membrane fusion : V0 functions after trans‐SNARE pairing and is coupled to the Ca2+‐releasing channel publication-title: J Cell Biol – volume: 119 start-page: 540 year: 2009 end-page: 550 article-title: Differential roles of NHERF1, NHERF2, and PDZK1 in regulating CFTR‐mediated intestinal anion secretion in mice publication-title: J Clin Invest – volume: 219 year: 2020 article-title: Distinct roles for luminal acidification in apical protein sorting and trafficking in zebrafish publication-title: J Cell Biol – volume: 409 start-page: 581 year: 2001 end-page: 588 article-title: Trans‐complex formation by proteolipid channels in the terminal phase of membrane fusion publication-title: Nature – volume: 19 start-page: 215 year: 2018 end-page: 228 article-title: Clathrin and AP1 are required for apical sorting of glycosyl phosphatidyl inositol‐anchored proteins in biosynthetic and recycling routes in Madin‐Darby canine kidney cells publication-title: Traffic – volume: 139 start-page: 2071 year: 2012 end-page: 2083 article-title: Clathrin and AP‐1 regulate apical polarity and lumen formation during tubulogenesis publication-title: Development – volume: 12 start-page: 1035 year: 2010 end-page: 1045 article-title: A molecular network for generation of the apical surface and lumen publication-title: Nat Cell Biol – volume: 139 start-page: 929 year: 1997 end-page: 940 article-title: The O‐glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells publication-title: J Cell Biol – ident: e_1_2_12_74_1 doi: 10.1042/BJ20130933 – ident: e_1_2_12_22_1 doi: 10.1038/sj.emboj.7601813 – ident: e_1_2_12_98_1 doi: 10.1074/jbc.273.46.30263 – ident: e_1_2_12_47_1 doi: 10.1016/j.febslet.2004.11.106 – ident: e_1_2_12_52_1 doi: 10.1053/j.gastro.2013.05.013 – ident: e_1_2_12_51_1 doi: 10.1242/dev.076711 – ident: e_1_2_12_114_1 doi: 10.1073/pnas.151111298 – ident: e_1_2_12_117_1 doi: 10.1021/jp405063h – ident: e_1_2_12_72_1 doi: 10.1089/ars.2017.7389 – ident: e_1_2_12_78_1 doi: 10.1242/jcs.036038 – ident: e_1_2_12_82_1 doi: 10.1101/cshperspect.a004697 – ident: e_1_2_12_12_1 doi: 10.1126/science.2945253 – ident: e_1_2_12_62_1 doi: 10.1073/pnas.1012424107 – ident: e_1_2_12_64_1 doi: 10.1091/mbc.e09-03-0193 – ident: e_1_2_12_84_1 doi: 10.1016/j.chemphyslip.2015.07.022 – ident: e_1_2_12_101_1 doi: 10.1038/s41589-020-0529-6 – ident: e_1_2_12_121_1 doi: 10.1016/j.molcel.2020.09.029 – ident: e_1_2_12_89_1 doi: 10.1074/jbc.274.6.3910 – ident: e_1_2_12_23_1 doi: 10.1073/pnas.1304168111 – ident: e_1_2_12_83_1 doi: 10.1083/jcb.200901145 – ident: e_1_2_12_2_1 doi: 10.1038/nrm3775 – ident: e_1_2_12_41_1 doi: 10.1016/S0092-8674(88)80026-6 – ident: e_1_2_12_94_1 doi: 10.1073/pnas.0509107102 – ident: e_1_2_12_34_1 doi: 10.1083/jcb.142.1.51 – ident: e_1_2_12_13_1 doi: 10.1038/35055042 – ident: e_1_2_12_120_1 doi: 10.1126/science.aaw9544 – ident: e_1_2_12_4_1 doi: 10.1016/j.devcel.2013.10.006 – ident: e_1_2_12_112_1 doi: 10.1083/jcb.200309005 – ident: e_1_2_12_24_1 doi: 10.1091/mbc.E16-02-0096 – ident: e_1_2_12_57_1 doi: 10.1091/mbc.E18-12-0811 – ident: e_1_2_12_36_1 doi: 10.1152/ajpcell.00514.2002 – ident: e_1_2_12_90_1 doi: 10.1073/pnas.1016184107 – ident: e_1_2_12_26_1 doi: 10.1083/jcb.146.2.313 – ident: e_1_2_12_97_1 doi: 10.1515/BC.2002.169 – ident: e_1_2_12_67_1 doi: 10.1016/j.ejcb.2010.07.001 – ident: e_1_2_12_68_1 doi: 10.1111/tra.12086 – ident: e_1_2_12_107_1 doi: 10.1016/j.tibs.2015.08.005 – ident: e_1_2_12_21_1 doi: 10.1091/mbc.E05-09-0873 – ident: e_1_2_12_79_1 doi: 10.1093/emboj/16.18.5501 – ident: e_1_2_12_55_1 doi: 10.1038/ncb2541 – ident: e_1_2_12_30_1 doi: 10.1038/378096a0 – ident: e_1_2_12_100_1 doi: 10.1074/jbc.M112.415596 – ident: e_1_2_12_87_1 doi: 10.1038/s41467-017-01328-3 – ident: e_1_2_12_5_1 doi: 10.1016/S0092-8674(00)81650-5 – ident: e_1_2_12_42_1 doi: 10.1016/j.bbamcr.2008.10.016 – ident: e_1_2_12_95_1 doi: 10.1073/pnas.97.7.3254 – ident: e_1_2_12_104_1 doi: 10.1016/S0074-7696(03)01005-2 – ident: e_1_2_12_35_1 doi: 10.1172/JCI7453 – ident: e_1_2_12_44_1 doi: 10.1016/0092-8674(91)90139-P – ident: e_1_2_12_8_1 doi: 10.1242/jcs.032615 – ident: e_1_2_12_105_1 doi: 10.1083/jcb.201908225 – ident: e_1_2_12_80_1 doi: 10.1681/ASN.2013080883 – ident: e_1_2_12_50_1 doi: 10.1242/dev.077347 – ident: e_1_2_12_37_1 doi: 10.1083/jcb.142.6.1413 – ident: e_1_2_12_54_1 doi: 10.1083/jcb.200603132 – ident: e_1_2_12_122_1 doi: 10.1016/j.neulet.2004.04.002 – ident: e_1_2_12_119_1 doi: 10.1083/jcb.200212004 – ident: e_1_2_12_40_1 doi: 10.1016/S0021-9258(18)43616-2 – ident: e_1_2_12_86_1 doi: 10.1016/0092-8674(92)90189-J – ident: e_1_2_12_60_1 doi: 10.1016/j.cub.2005.12.046 – ident: e_1_2_12_69_1 doi: 10.1096/fj.201601386R – ident: e_1_2_12_20_1 doi: 10.1038/ncb1109 – ident: e_1_2_12_63_1 doi: 10.1091/mbc.E12-04-0329 – ident: e_1_2_12_3_1 doi: 10.1101/cshperspect.a027847 – ident: e_1_2_12_16_1 doi: 10.1146/annurev.iy.12.040194.000431 – ident: e_1_2_12_73_1 doi: 10.1111/j.1600-0854.2007.00539.x – ident: e_1_2_12_111_1 doi: 10.1091/mbc.E08-05-0478 – ident: e_1_2_12_115_1 doi: 10.1039/C9SM00579J – ident: e_1_2_12_6_1 doi: 10.1016/j.devcel.2012.02.004 – ident: e_1_2_12_113_1 doi: 10.1016/j.abb.2004.02.032 – ident: e_1_2_12_71_1 doi: 10.1016/S0021-9258(17)42002-3 – ident: e_1_2_12_48_1 doi: 10.1172/JCI35541 – ident: e_1_2_12_70_1 doi: 10.1091/mbc.e13-02-0078 – ident: e_1_2_12_58_1 doi: 10.1016/0092-8674(95)90380-1 – ident: e_1_2_12_7_1 doi: 10.1083/jcb.103.6.2565 – ident: e_1_2_12_92_1 doi: 10.1016/j.bpj.2015.07.036 – ident: e_1_2_12_25_1 doi: 10.1083/jcb.109.5.2145 – ident: e_1_2_12_17_1 doi: 10.1111/j.1600-0854.2009.00941.x – ident: e_1_2_12_102_1 doi: 10.1016/S0021-9258(18)66848-6 – ident: e_1_2_12_65_1 doi: 10.1016/S0021-9258(19)50263-0 – ident: e_1_2_12_29_1 doi: 10.1006/excr.1994.1222 – ident: e_1_2_12_116_1 doi: 10.1016/j.cell.2020.09.021 – ident: e_1_2_12_31_1 doi: 10.1083/jcb.139.4.929 – ident: e_1_2_12_91_1 doi: 10.1021/bi992132e – ident: e_1_2_12_19_1 doi: 10.1038/ncb2106 – ident: e_1_2_12_39_1 doi: 10.1073/pnas.74.5.2026 – ident: e_1_2_12_66_1 doi: 10.1073/pnas.1718921115 – ident: e_1_2_12_81_1 doi: 10.1083/jcb.116.3.577 – ident: e_1_2_12_109_1 doi: 10.1083/jcb.200911083 – ident: e_1_2_12_103_1 doi: 10.1083/jcb.148.3.495 – ident: e_1_2_12_10_1 doi: 10.1083/jcb.98.4.1304 – ident: e_1_2_12_77_1 doi: 10.1083/jcb.200407094 – ident: e_1_2_12_32_1 doi: 10.1006/excr.2001.5442 – ident: e_1_2_12_61_1 doi: 10.1242/jcs.020800 – ident: e_1_2_12_9_1 doi: 10.1038/cr.2012.64 – ident: e_1_2_12_18_1 doi: 10.1083/jcb.200407072 – ident: e_1_2_12_38_1 doi: 10.1016/j.febslet.2009.10.053 – ident: e_1_2_12_28_1 doi: 10.1091/mbc.E11-04-0320 – ident: e_1_2_12_106_1 doi: 10.1242/jcs.158550 – ident: e_1_2_12_76_1 doi: 10.1038/s42003-021-01693-2 – ident: e_1_2_12_59_1 doi: 10.1083/jcb.200407073 – ident: e_1_2_12_99_1 doi: 10.1172/JCI0216390 – ident: e_1_2_12_49_1 doi: 10.1091/mbc.E06-07-0629 – ident: e_1_2_12_85_1 doi: 10.1016/j.tcb.2020.01.009 – ident: e_1_2_12_56_1 doi: 10.1073/pnas.1821076116 – ident: e_1_2_12_75_1 doi: 10.1242/jcs.213199 – ident: e_1_2_12_53_1 doi: 10.1111/tra.12548 – ident: e_1_2_12_96_1 doi: 10.1091/mbc.12.12.4129 – ident: e_1_2_12_118_1 doi: 10.1038/35054500 – ident: e_1_2_12_45_1 doi: 10.1016/0092-8674(92)90551-M – ident: e_1_2_12_11_1 doi: 10.1002/j.1460-2075.1985.tb03629.x – ident: e_1_2_12_43_1 doi: 10.1016/0092-8674(91)90437-4 – ident: e_1_2_12_93_1 doi: 10.1038/ncb2328 – ident: e_1_2_12_110_1 doi: 10.1083/jcb.121.5.1031 – ident: e_1_2_12_108_1 doi: 10.1038/ncb1773 – ident: e_1_2_12_14_1 doi: 10.1016/0092-8674(84)90315-5 – ident: e_1_2_12_15_1 doi: 10.1126/science.2110383 – ident: e_1_2_12_27_1 doi: 10.1242/jcs.01386 – ident: e_1_2_12_88_1 doi: 10.1111/j.1600-0854.2008.00826.x – ident: e_1_2_12_46_1 doi: 10.1073/pnas.0610700104 – ident: e_1_2_12_33_1 doi: 10.1128/jvi.70.9.6508-6515.1996 |
SSID | ssj0035499 |
Score | 2.429469 |
Snippet | Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 659 |
SubjectTerms | Animals apical sorting asymmetry Cell Line Cell Membrane - genetics cell physiology Cell Polarity - genetics epithelial cell Epithelial cells Epithelial Cells - cytology Epithelial Cells - metabolism Epithelium Glycan Glycosylation Golgi Apparatus - genetics Homeostasis Hydrogen-Ion Concentration Ions Lipids Membrane proteins Membrane Proteins - genetics Membranes Oligomerization Phase separation plasma membrane Polysaccharides - genetics Protein transport Protein Transport - genetics Proteins separation Skewed distributions Vacuolar Proton-Translocating ATPases - genetics V‐ATPase zebrafish Zebrafish - genetics Zebrafish - growth & development Zebrafish Proteins - genetics |
Title | Self‐organization of apical membrane protein sorting in epithelial cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15882 https://www.ncbi.nlm.nih.gov/pubmed/33864720 https://www.proquest.com/docview/2624153817 https://www.proquest.com/docview/2514604941 https://www.proquest.com/docview/2648863627 https://pubmed.ncbi.nlm.nih.gov/PMC8522177 |
Volume | 289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAXHi2PhVIZgZBAymrjVxKJy27pqqoEB0qlvaAocWyo2E1WZPcAJ34Cv5FfwozzYJeiSnCzlInljGfsb5yZzwDPEp1rp5wO1ChTGKAoEyQuT4Jc6VjKQjrui8LevNUn5_J0pmY78KqrhWn4IfoDN_IMv16Tg2d5veHkzub1MFSIEHEBpmQtQkTveu4oQYFPUw3JA6nlrOUmpTSe369u70aXIOblTMlNBOu3oOkt-NANvsk8-Txcr_Kh-fYHr-P_ft1tuNliUzZujOkO7NhyD_bHJcbli6_sOfPZov4Yfg-uH3U3xe3D6Zmdu5_ff1QbdZ2scixbkgWwhV3gSErLPCfERcnqiqgLPjJs2iXVhMzRCRj9Qqjvwvn0-P3RSdDe0RAYJSMe6AJ3QaETkStRhIXKwqRIjM4INrnQGIxGrCqEsBwbiN6cEpE0o0ybIsSpCcU92C2r0j4AlnDtNC9GsYudxE5iE0nFC51lecZDHQ3gRTdXqWkJzOkejXnaBTKktNQrbQBPe9llQ9vxV6mDbsrT1nXrlGsCNURcOIAn_WPUKKkBlVWtUQZhpiZmnfAKGY1ro0Z8gP3cb6yoH4oQMdH2jwYQbdlXL0Ck39tPyotPnvw7RsAcRtjnS28-V3xdOj2enPnWw38RfgQ3OJV4-Mz0A9hdfVnbxwi8VvkhXBtPXk-mh97RfgHtmCxZ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5BOZRLgRZooMAiEBJIjrK_to-lahRK2wNtpdwse3-gIrEjnBzgxCPwjDwJM2vHJBRVgttKHq_s2RnvN-uZbwh5mepCe-V1pAa5ggBFmSj1RRoVSidSWul5KAo7OdWjC3k0VuM2NwdrYRp-iO7ADT0jfK_RwfFAesXLvSvqPlMAEW-SW9jSO0RUHzr2KIGhT1MPySOp5bhlJ8VEnt_3ru9HV0Dm1VzJVQwbNqHhnabTah24CzH35HN_MS_65tsfzI7__X53yVYLT-l-Y0_3yA1XbpOd_RJC8-lX-oqGhNFwEr9NNg-WzeJ2yNGZm_if339UK6WdtPI0n6ER0KmbwqOUjgZaiMuS1hWyF3ykMHQzLAuZgB9Q_ItQ3ycXw8Pzg1HUtmmIjJIxj7SFjVDoVBRKWGZVzlKbGp0jcvLMGAhInLJCOA4DAHBeiViaQa6NZbA2TDwgG2VVul1CU6695naQ-MRLmCQxsVTc6jwvcs503COvl4uVmZbDHFtpTLJlLINKy4LSeuRFJztrmDv-KrW3XPOs9d464xpxDXIX9sjz7jJoFNUAyqoWIANIUyO5DrtGRsPnUQNEgHkeNmbUPYoQCTL3D3okXjOwTgB5v9evlJefAv93ApiZxTDnm2A_17xdNjx8exZGj_5F-BnZHJ2fHGfH707fPya3OVZ8hET1PbIx_7JwTwCHzYunwdt-ARf_LwI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgGXFloeCwWMQEggZZX4lUTiUtquSoEKUSrtpYoSP6BiN1l1dw9w6k_gN_JLGDsPdimqBDdLmVj2eMb-Jpn5DPAslYW0wspAhLnAAEWoILVFGhRCJpxrbqkvCnt_KPeP-cFQDFfgVVsLU_NDdB_cnGf4_do5-ETbBSe3ppj2I4EI8Qpc5TJMnE3vfuzIo5iLfOpySBpwyYcNOanL4_n97vJxdAFjXkyVXISw_gwarMNJO_o69eRrfz4r-ur7H8SO_zu9m7DWgFOyXVvTLVgx5QZsbpcYmI-_kefEp4v67_AbcH2nvSpuEw6OzMj-PP9RLRR2ksqSfOJMgIzNGEdSGuJJIU5LMq0cd8Fngk0zcUUhI_QC4v4hTG_D8WDv085-0FzSECjBYxpIjccgkykrBNORFnmU6lTJ3OEmGymF4YgRmjFDsYHwzQoWcxXmUukIlyZid2C1rEpzD0hKpZVUh4lNLMdOEhVzQbXM8yKnkYx78KJdq0w1DObuIo1R1kYyTmmZV1oPnnayk5q3469SW-2SZ43vTjMqHapxzIU9eNI9Ro06NaCyqjnKIM6UjlonukRG4uYoESBgP3drK-qGwljiePvDHsRL9tUJONbv5Sfl6RfP_p0gYo5i7POlN59LZpcN9l4f-db9fxF-DNc-7A6yd28O3z6AG9SVe_gs9S1YnZ3NzUMEYbPikfe1X452Lbo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90organization+of+apical+membrane+protein+sorting+in+epithelial+cells&rft.jtitle=The+FEBS+journal&rft.au=Levic%2C+Daniel+S&rft.au=Bagnat%2C+Michel&rft.date=2022-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=289&rft.issue=3&rft.spage=659&rft.epage=670&rft_id=info:doi/10.1111%2Ffebs.15882&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon |