Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway
Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also signifi...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 39; no. 3; pp. 381 - 392 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.08.2004
Blackwell Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90-166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90-166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90-166 naturally produces SA under iron-limited conditions. Col-0 and NahG plants treated with the SA-deficient mutant, 90-166-1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col-0 plants. Another PGPR mutant, 90-166-2882, caused reduced disease severity in Col-0 and NahG plants. In a time course study, strain 90-166 reduced virus accumulation at 7 but not at 14 and 21 days post-inoculation (dpi) on the non-inoculated leaves of Col-0 plants. NahG and npr1-1 plants treated with strain 90-166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90-166-treated fad3-2 fad7-2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90-166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid. |
---|---|
AbstractList | Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90-166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90-166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90-166 naturally produces SA under iron-limited conditions. Col-0 and NahG plants treated with the SA-deficient mutant, 90-166-1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col-0 plants. Another PGPR mutant, 90-166-2882, caused reduced disease severity in Col-0 and NahG plants. In a time course study, strain 90-166 reduced virus accumulation at 7 but not at 14 and 21 days post-inoculation (dpi) on the non-inoculated leaves of Col-0 plants. NahG and npr1-1 plants treated with strain 90-166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90-166-treated fad3-2 fad7-2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90-166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid. Arabidopsis thaliana ecotype Columbia plants (Col‐0) treated with plant growth‐promoting rhizobacteria (PGPR) Serattia marcescens strain 90‐166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90‐166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90‐166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90‐166 naturally produces SA under iron‐limited conditions. Col‐0 and NahG plants treated with the SA‐deficient mutant, 90‐166‐1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col‐0 plants. Another PGPR mutant, 90‐166‐2882, caused reduced disease severity in Col‐0 and NahG plants. In a time course study, strain 90‐166 reduced virus accumulation at 7 but not at 14 and 21 days post‐inoculation (dpi) on the non‐inoculated leaves of Col‐0 plants. NahG and npr1‐1 plants treated with strain 90‐166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90‐166‐treated fad3‐2 fad7‐2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90‐166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid. Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90-166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90-166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90-166 naturally produces SA under iron-limited conditions. Col-0 and NahG plants treated with the SA-deficient mutant, 90-166-1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col-0 plants. Another PGPR mutant, 90-166-2882, caused reduced disease severity in Col-0 and NahG plants. In a time course study, strain 90-166 reduced virus accumulation at 7 but not at 14 and 21 days post-inoculation (dpi) on the non-inoculated leaves of Col-0 plants. NahG and npr1-1 plants treated with strain 90-166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90-166-treated fad3-2 fad7-2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90-166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid.Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90-166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90-166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90-166 naturally produces SA under iron-limited conditions. Col-0 and NahG plants treated with the SA-deficient mutant, 90-166-1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col-0 plants. Another PGPR mutant, 90-166-2882, caused reduced disease severity in Col-0 and NahG plants. In a time course study, strain 90-166 reduced virus accumulation at 7 but not at 14 and 21 days post-inoculation (dpi) on the non-inoculated leaves of Col-0 plants. NahG and npr1-1 plants treated with strain 90-166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90-166-treated fad3-2 fad7-2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90-166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid. Summary Arabidopsis thaliana ecotype Columbia plants (Col‐0) treated with plant growth‐promoting rhizobacteria (PGPR) Serattia marcescens strain 90‐166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90‐166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90‐166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90‐166 naturally produces SA under iron‐limited conditions. Col‐0 and NahG plants treated with the SA‐deficient mutant, 90‐166‐1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col‐0 plants. Another PGPR mutant, 90‐166‐2882, caused reduced disease severity in Col‐0 and NahG plants. In a time course study, strain 90‐166 reduced virus accumulation at 7 but not at 14 and 21 days post‐inoculation (dpi) on the non‐inoculated leaves of Col‐0 plants. NahG and npr1‐1 plants treated with strain 90‐166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90‐166‐treated fad3‐2 fad7‐2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90‐166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid. |
Author | Murphy, J.F Ryu, C.M Mysore, K.S Kloepper, J.W |
Author_xml | – sequence: 1 fullname: Ryu, C.M – sequence: 2 fullname: Murphy, J.F – sequence: 3 fullname: Mysore, K.S – sequence: 4 fullname: Kloepper, J.W |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15949474$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15255867$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt-OEyEYxSdmjdtdfQXlRu-mAsMwMxeabBr_ZqON7ibekW-AtjQzUIHajq_ni8nYrhpvKgkMgd85Ax_nIjuzzuosQwRPSWrP11NS8DIvSLGfUozZFFPC6HR_L5vcbXw5yya44TivGKHn2UUIa4xJVXD2IDsnJS3LmleT7Me8AxvR0rtdXOUb73oXjV0ivzLfXQsyam8AhSFE3RsJXTegBEUtI7ry0BrlNsEEFFfQGbCAYAnGhohmW7ntW-1R7wIYib4Zvw2oHVAyS6gcUkcgjUJgFfow_0RyY5Xe6DSk84yLawi9s0cs_7MXzNImi3TIDcTVDoaH2f0FdEE_On4vs9vXr25mb_Prj2_eza6uc1myiuakrrCqJKO0YVhh4ERSXNeKU6y4bltMK6pYy1soK9Vy3LR8oZmihJSgS1UXl9mzg2-qwNetDlH0JkjdpQpqtw2C84pQTMhJkDWkbig9DZIa06YiOIGPj-C27bUSG2968IO4e8gEPD0CENIzLTxYacJfXMMaVrHEvTxw0rsQvF4IaSJE42z0YDpBsBgTJtZiDJIYgyTGhIlfCRP7ZFD_Y_D7H6elLw7Snen08N86cTN_P86S_slBvwAnYOnT_W4_p4IXGDeswDUrfgJB4vWE |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2024_109046 crossref_primary_10_1007_s00284_005_0427_x crossref_primary_10_1007_s11274_009_0014_6 crossref_primary_10_1094_MPMI_10_17_0242_R crossref_primary_10_3390_microorganisms10071318 crossref_primary_10_3390_insects11050271 crossref_primary_10_1080_02772248_2015_1066176 crossref_primary_10_1016_j_plantsci_2015_01_011 crossref_primary_10_1111_mpp_12204 crossref_primary_10_1371_journal_pone_0122378 crossref_primary_10_3390_horticulturae7060133 crossref_primary_10_3390_jof8060632 crossref_primary_10_1007_s11274_016_2186_1 crossref_primary_10_1016_j_biocontrol_2017_04_009 crossref_primary_10_1094_MPMI_19_0924 crossref_primary_10_3389_fmicb_2020_587005 crossref_primary_10_1111_jam_12720 crossref_primary_10_1098_rspb_2024_2857 crossref_primary_10_1016_j_resmic_2015_11_001 crossref_primary_10_1007_s10886_013_0317_9 crossref_primary_10_1007_s11103_009_9455_4 crossref_primary_10_1007_s11120_005_1001_x crossref_primary_10_1371_journal_pone_0003699 crossref_primary_10_1128_microbiolspec_TBS_0017_2013 crossref_primary_10_1093_aob_mct049 crossref_primary_10_1111_pce_13904 crossref_primary_10_1038_nprot_2017_023 crossref_primary_10_1099_vir_0_015990_0 crossref_primary_10_1016_j_pbi_2008_05_005 crossref_primary_10_1186_s12985_018_1044_1 crossref_primary_10_1016_j_biocontrol_2015_10_013 crossref_primary_10_1007_s10658_010_9687_9 crossref_primary_10_1016_j_ejsobi_2010_11_008 crossref_primary_10_1080_15592324_2016_1212798 crossref_primary_10_1111_tpj_13543 crossref_primary_10_1007_s00248_006_9181_2 crossref_primary_10_1007_s00425_007_0480_8 crossref_primary_10_1007_s10658_007_9168_y crossref_primary_10_1111_jph_12577 crossref_primary_10_1016_j_aoas_2012_08_001 crossref_primary_10_1038_nrmicro2960 crossref_primary_10_1371_journal_pone_0149980 crossref_primary_10_1146_annurev_phyto_082712_102340 crossref_primary_10_1080_09583157_2012_694413 crossref_primary_10_1111_mpp_13111 crossref_primary_10_4161_psb_3_12_7093 crossref_primary_10_1016_j_pmpp_2015_08_007 crossref_primary_10_1111_j_1439_037X_2008_00338_x crossref_primary_10_1007_s11104_023_06406_8 crossref_primary_10_1016_j_crmicr_2021_100054 crossref_primary_10_1080_07352680903241204 crossref_primary_10_1007_s40011_013_0279_2 crossref_primary_10_3390_plants11243449 crossref_primary_10_1016_j_febslet_2014_02_062 crossref_primary_10_3390_agriculture9080166 crossref_primary_10_1007_s10327_008_0093_5 crossref_primary_10_1094_MPMI_19_1406 crossref_primary_10_1016_j_phytochem_2009_06_009 crossref_primary_10_1080_03650340_2020_1759797 crossref_primary_10_1007_s00425_010_1259_x crossref_primary_10_3390_plants9050592 crossref_primary_10_1016_j_pmpp_2020_101569 crossref_primary_10_1371_journal_pone_0113280 crossref_primary_10_1016_j_biocontrol_2009_06_002 crossref_primary_10_1080_01904167_2014_911319 crossref_primary_10_1021_acs_jafc_9b00799 crossref_primary_10_7124_bc_000160 crossref_primary_10_1371_journal_pone_0171902 crossref_primary_10_1007_s00425_008_0694_4 crossref_primary_10_1016_j_sajb_2017_07_007 crossref_primary_10_1080_09583157_2014_994198 crossref_primary_10_1007_s10059_010_0032_0 crossref_primary_10_1094_MPMI_19_1138 crossref_primary_10_3390_v10020061 crossref_primary_10_1111_mpp_12769 crossref_primary_10_1016_j_tplants_2016_01_013 crossref_primary_10_1016_j_pedsph_2022_10_003 crossref_primary_10_1146_annurev_phyto_080508_081820 crossref_primary_10_3390_biology10111202 crossref_primary_10_1007_s00709_020_01591_0 crossref_primary_10_1016_j_coviro_2017_08_001 crossref_primary_10_1007_s00344_004_0031_5 crossref_primary_10_1264_jsme2_ME12162 crossref_primary_10_1088_1755_1315_468_1_012051 crossref_primary_10_1093_bbb_zbae073 crossref_primary_10_1007_BF02637262 crossref_primary_10_1007_s12374_016_0035_2 crossref_primary_10_1007_s10658_020_01975_1 crossref_primary_10_1099_mic_0_053355_0 crossref_primary_10_1002_ecy_2449 crossref_primary_10_1007_s11104_013_1864_0 crossref_primary_10_3389_fmicb_2021_687971 crossref_primary_10_3390_plants8120575 crossref_primary_10_1080_03235408_2012_736280 crossref_primary_10_1186_s12866_020_01725_7 crossref_primary_10_1002_ps_1800 crossref_primary_10_1007_s11104_014_2102_0 crossref_primary_10_1111_1751_7915_13964 crossref_primary_10_1111_j_1365_313X_2008_03772_x crossref_primary_10_1093_pcp_pcm144 crossref_primary_10_1088_1755_1315_790_1_012058 crossref_primary_10_1016_j_jbiotec_2019_10_003 crossref_primary_10_1111_j_1365_3059_2011_02573_x crossref_primary_10_1134_S0003683820060101 crossref_primary_10_3390_plants5010008 crossref_primary_10_1186_1471_2164_15_851 crossref_primary_10_1128_AEM_71_9_4951_4959_2005 crossref_primary_10_4161_psb_24619 crossref_primary_10_1071_CP19219 crossref_primary_10_1371_journal_pone_0158621 crossref_primary_10_1111_1462_2920_15197 crossref_primary_10_1007_s00344_015_9548_z crossref_primary_10_1080_15592324_2019_1704517 crossref_primary_10_1038_srep39432 crossref_primary_10_5423_PPJ_2009_25_4_369 crossref_primary_10_5423_PPJ_SI_07_2012_0117 crossref_primary_10_1094_PHYTO_98_4_0451 crossref_primary_10_1104_pp_113_225649 crossref_primary_10_1186_s13068_015_0404_y crossref_primary_10_1016_j_indcrop_2021_114322 crossref_primary_10_2478_fhort_2018_0001 crossref_primary_10_1002_ps_7001 crossref_primary_10_1080_17429145_2017_1325523 crossref_primary_10_3390_molecules25102341 crossref_primary_10_1007_s11104_012_1255_y crossref_primary_10_1371_journal_pone_0048744 crossref_primary_10_1094_MPMI_18_0428 crossref_primary_10_5423_PPJ_OA_10_2015_0218 crossref_primary_10_1038_s41598_018_28677_3 crossref_primary_10_1007_s11103_015_0344_8 crossref_primary_10_1371_journal_pone_0173203 crossref_primary_10_1016_j_pmpp_2021_101677 crossref_primary_10_1016_j_micres_2013_09_011 crossref_primary_10_1094_MPMI_21_12_1643 crossref_primary_10_1016_j_apsoil_2007_12_006 crossref_primary_10_3390_biom12020288 crossref_primary_10_5423_PPJ_2005_21_1_007 crossref_primary_10_3390_genes14051041 |
Cites_doi | 10.1104/pp.113.1.5 10.1094/PD-80-0891 10.1094/PDIS.2000.84.7.779 10.1094/MPMI.1997.10.6.761 10.1023/A:1008741015912 10.1105/tpc.10.9.1571 10.2307/3869945 10.1016/S1360-1385(99)01390-4 10.1111/j.1744-7348.2001.tb00144.x 10.1094/Phyto-86-221 10.1094/PHYTO.2003.93.10.1301 10.1094/MPMI.2002.15.1.75 10.1023/A:1009923702103 10.1104/pp.104.4.1109 10.1105/tpc.10.12.2103 10.1094/Phyto-86-149 10.1094/PHYTO.1998.88.7.678 10.1104/pp.102.017814 10.1073/pnas.92.14.6602 10.1023/A:1008638109140 10.1094/Phyto-85-1021 10.1094/MPMI.1998.11.9.860 10.1073/pnas.95.12.7209 10.2307/1312874 10.1094/PHYTO.2001.91.6.593 10.2307/3870231 10.1094/MPMI.2002.15.1.27 10.1046/j.1469-8137.2003.00883.x 10.1006/anbo.1998.0726 10.1073/pnas.95.11.6531 |
ContentType | Journal Article |
Copyright | 2004 INIST-CNRS |
Copyright_xml | – notice: 2004 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7T7 7U9 8FD C1K FR3 H94 P64 7S9 L.6 7X8 |
DOI | 10.1111/j.1365-313x.2004.02142.x |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef AGRICOLA Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 392 |
ExternalDocumentID | 15255867 15949474 10_1111_j_1365_313X_2004_02142_x TPJ2142 US201300943084 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA H.T H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAHBH AAHQN AAMNL AAYCA AFWVQ AHBTC AITYG ALVPJ HGLYW OIG AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7T7 7U9 8FD C1K FR3 H94 P64 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5472-1870d7c422940d0a61c2088d620d6ebb0272d4b6ba57db609b6fe4d2115ae5d83 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 |
IngestDate | Thu Jul 10 22:47:18 EDT 2025 Thu Jul 10 23:02:30 EDT 2025 Fri Jul 11 03:41:46 EDT 2025 Wed Feb 19 01:53:59 EST 2025 Mon Jul 21 09:12:44 EDT 2025 Tue Jul 01 03:56:48 EDT 2025 Thu Apr 24 23:05:20 EDT 2025 Wed Jan 22 16:23:57 EST 2025 Wed Dec 27 19:07:51 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Terpenoid Salicylic acid Plant pathogen jasmonate Bacillaceae Induced resistance Host virus relation plant growth-promoting rhizobacteria Virus Arabidopsis thaliana Signal transduction Regulation(control) Bacillales Cruciferae Dicotyledones Cucumber mosaic virus Angiospermae Bromoviridae Bacillus pumilus Bacteria Plant growth substance Cucumovirus Spermatophyta Plant growth promoting rhizobacteria |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5472-1870d7c422940d0a61c2088d620d6ebb0272d4b6ba57db609b6fe4d2115ae5d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15255867 |
PQID | 18029710 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_66712011 proquest_miscellaneous_49189221 proquest_miscellaneous_18029710 pubmed_primary_15255867 pascalfrancis_primary_15949474 crossref_citationtrail_10_1111_j_1365_313X_2004_02142_x crossref_primary_10_1111_j_1365_313X_2004_02142_x wiley_primary_10_1111_j_1365_313X_2004_02142_x_TPJ2142 fao_agris_US201300943084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2004 |
PublicationDateYYYYMMDD | 2004-08-01 |
PublicationDate_xml | – month: 08 year: 2004 text: August 2004 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2004 |
Publisher | Blackwell Science Ltd Blackwell Science |
Publisher_xml | – name: Blackwell Science Ltd – name: Blackwell Science |
References | 1997; 113 2001; 91 2002; 15 1995; 92 2000; 45 1999; 4 1998; 82 2003; 93 1999; 105 2003; 132 1998; 88 1999 1995; 85 1997; 103 1994; 104 1997; 10 2000; 84 2003; 160 1996; 80 1998; 95 1996; 46 1998; 10 1998; 12 1996; 8 1996; 86 1998; 11 2001; 139 1994; 6 e_1_2_20_17_1 e_1_2_20_18_1 e_1_2_20_13_1 e_1_2_20_14_1 e_1_2_20_15_1 Penninckx I.A. (e_1_2_20_19_1) 1998; 12 e_1_2_20_16_1 e_1_2_20_7_1 e_1_2_20_6_1 e_1_2_20_9_1 e_1_2_20_8_1 e_1_2_20_3_1 e_1_2_20_2_1 e_1_2_20_5_1 e_1_2_20_4_1 e_1_2_20_20_1 e_1_2_20_21_1 e_1_2_20_22_1 e_1_2_20_23_1 e_1_2_20_28_1 e_1_2_20_29_1 e_1_2_20_24_1 e_1_2_20_25_1 e_1_2_20_26_1 e_1_2_20_27_1 Zehnder G.W. (e_1_2_20_31_1) 1999 e_1_2_20_32_1 e_1_2_20_10_1 e_1_2_20_11_1 e_1_2_20_12_1 e_1_2_20_30_1 |
References_xml | – volume: 84 start-page: 779 year: 2000 end-page: 784 article-title: Plant growth‐promoting rhizobacterial mediated protection in tomato against publication-title: Plant Dis. – volume: 86 start-page: 221 year: 1996 end-page: 224 article-title: Induced systemic resistance to cucumber diseases and increased plant growth by plant growth‐promoting rhizobacteria under field conditions publication-title: Phytopathology – volume: 113 start-page: 5 year: 1997 end-page: 12 article-title: Genetic dissection of acquired resistance to disease publication-title: Plant Physiol. – volume: 91 start-page: 593 year: 2001 end-page: 598 article-title: Role of iron in rhizobacteria‐mediated induced systemic resistance of cucumber publication-title: Phytopathology – volume: 11 start-page: 860 year: 1998 end-page: 868 article-title: Salicylic acid can induce resistance to plant virus movement publication-title: Mol. Plant Microbe Interact. – volume: 160 start-page: 413 year: 2003 end-page: 420 article-title: Different signaling pathways of induced resistance by rhizobacteria in against two pathovars of publication-title: New Phytologist – volume: 105 start-page: 513 year: 1999 end-page: 517 article-title: 7NSK2‐induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression publication-title: Eur. J. Plant Pathol. – volume: 104 start-page: 1109 year: 1994 end-page: 1112 article-title: Systemic acquired resistance publication-title: Plant Physiol. – start-page: 335 year: 1999 end-page: 355 – volume: 82 start-page: 535 year: 1998 end-page: 540 article-title: Salicylic acid and systemic acquired resistance to pathogen attack publication-title: Ann. Bot. – volume: 95 start-page: 7209 year: 1998 end-page: 7214 article-title: A role for jasmonate in pathogen defense of publication-title: Proc. Natl Acad. Sci. USA – volume: 46 start-page: 14 year: 1996 end-page: 18 article-title: Host specificity in microbe–microbe interactions publication-title: Bioscience – volume: 86 start-page: 149 year: 1996 end-page: 155 article-title: Iron availability affects induction of systemic resistance to fusarium wilt of raddish by publication-title: Phytopathology – volume: 10 start-page: 761 year: 1997 end-page: 768 article-title: Salicylic acid produced by 90‐166 is not the primary determinant of induced systemic resistance in cucumber or tobacco publication-title: Mol. Plant Microbe Interact. – volume: 80 start-page: 91 year: 1996 end-page: 894 article-title: Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth‐promoting rhizobacteria (PGPR) publication-title: Plant Dis. – volume: 8 start-page: 1809 year: 1996 end-page: 1819 article-title: Systemic acquired resistance publication-title: Plant Cell – volume: 88 start-page: 678 year: 1998 end-page: 684 article-title: Salicylic acid biosynthetic genes expressed in strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus publication-title: Phytopathology – volume: 12 start-page: 2103 year: 1998 end-page: 2113 article-title: Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in publication-title: Plant Cell – volume: 85 start-page: 1021 year: 1995 end-page: 1027 article-title: Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of publication-title: Phytopathology – volume: 10 start-page: 1571 year: 1998 end-page: 1580 article-title: A novel signaling pathway controlling induced systemic resistance in publication-title: Plant Cell – volume: 45 start-page: 127 year: 2000 end-page: 137 article-title: Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth‐promoting rhizobacteria publication-title: Biocontrol – volume: 15 start-page: 75 year: 2002 end-page: 81 article-title: Chemically induced virus resistance in is independent of pathogenesis‐related protein expression and the NPR1 gene publication-title: Mol. Plant Microbe Interact. – volume: 93 start-page: 1301 year: 2003 end-page: 1307 article-title: Rhizobacteria‐mediated growth promotion of tomato leads to protection against publication-title: Phytopathology – volume: 6 start-page: 1583 year: 1994 end-page: 1592 article-title: Characterization of an mutant that is nonresponsive to inducers of systemic acquired resistance publication-title: Plant Cell – volume: 92 start-page: 6602 year: 1995 end-page: 6606 article-title: signal transduction mutant defective in chemically and biologically induced disease resistance publication-title: Proc. Natl Acad. Sci. USA – volume: 103 start-page: 753 year: 1997 end-page: 765 article-title: Induced resistance and the role of pathogenesis‐related proteins publication-title: Eur. J. Plant Pathol. – volume: 132 start-page: 1020 year: 2003 end-page: 1032 article-title: A role for the GCC‐box in jasmonate‐mediated activation of the gene of publication-title: Plant Physiol. – volume: 15 start-page: 27 year: 2002 end-page: 34 article-title: Differential effectiveness of salicylate‐dependent and jasmonate/ethylene‐dependent induced resistance in publication-title: Mol. Plant Microbe Interact. – volume: 95 start-page: 6531 year: 1998 end-page: 6536 article-title: Generation of broad‐spectrum disease resistance by over expression of an essential regulatory gene in systemic acquired resistance publication-title: Proc. Natl Acad. Sci. USA – volume: 139 start-page: 307 year: 2001 end-page: 317 article-title: Age‐related resistance in bell pepper to publication-title: Ann. Appl. Biol. – volume: 4 start-page: 155 year: 1999 end-page: 160 article-title: Salicylic acid‐induced resistance to viruses and other pathogens: a parting of the ways publication-title: Trends Plant Sci. – ident: e_1_2_20_5_1 doi: 10.1104/pp.113.1.5 – ident: e_1_2_20_23_1 doi: 10.1094/PD-80-0891 – ident: e_1_2_20_16_1 doi: 10.1094/PDIS.2000.84.7.779 – ident: e_1_2_20_21_1 doi: 10.1094/MPMI.1997.10.6.761 – ident: e_1_2_20_7_1 doi: 10.1023/A:1008741015912 – ident: e_1_2_20_20_1 doi: 10.1105/tpc.10.9.1571 – ident: e_1_2_20_3_1 doi: 10.2307/3869945 – ident: e_1_2_20_15_1 doi: 10.1016/S1360-1385(99)01390-4 – ident: e_1_2_20_8_1 doi: 10.1111/j.1744-7348.2001.tb00144.x – ident: e_1_2_20_29_1 doi: 10.1094/Phyto-86-221 – ident: e_1_2_20_17_1 doi: 10.1094/PHYTO.2003.93.10.1301 – ident: e_1_2_20_30_1 doi: 10.1094/MPMI.2002.15.1.75 – start-page: 335 volume-title: Induced Plant Defenses against Pathogens and Herbivores: Biochemistry, Ecology, and Agriculture year: 1999 ident: e_1_2_20_31_1 – ident: e_1_2_20_32_1 doi: 10.1023/A:1009923702103 – ident: e_1_2_20_24_1 doi: 10.1104/pp.104.4.1109 – volume: 12 start-page: 2103 year: 1998 ident: e_1_2_20_19_1 article-title: Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.10.12.2103 – ident: e_1_2_20_11_1 doi: 10.1094/Phyto-86-149 – ident: e_1_2_20_14_1 doi: 10.1094/PHYTO.1998.88.7.678 – ident: e_1_2_20_2_1 doi: 10.1104/pp.102.017814 – ident: e_1_2_20_6_1 doi: 10.1073/pnas.92.14.6602 – ident: e_1_2_20_12_1 doi: 10.1023/A:1008638109140 – ident: e_1_2_20_10_1 doi: 10.1094/Phyto-85-1021 – ident: e_1_2_20_18_1 doi: 10.1094/MPMI.1998.11.9.860 – ident: e_1_2_20_28_1 doi: 10.1073/pnas.95.12.7209 – ident: e_1_2_20_9_1 doi: 10.2307/1312874 – ident: e_1_2_20_22_1 doi: 10.1094/PHYTO.2001.91.6.593 – ident: e_1_2_20_25_1 doi: 10.2307/3870231 – ident: e_1_2_20_27_1 doi: 10.1094/MPMI.2002.15.1.27 – ident: e_1_2_20_26_1 doi: 10.1046/j.1469-8137.2003.00883.x – ident: e_1_2_20_13_1 doi: 10.1006/anbo.1998.0726 – ident: e_1_2_20_4_1 doi: 10.1073/pnas.95.11.6531 |
SSID | ssj0017364 |
Score | 2.246751 |
Snippet | Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus... Summary Arabidopsis thaliana ecotype Columbia plants (Col‐0) treated with plant growth‐promoting rhizobacteria (PGPR) Serattia marcescens strain 90‐166 and... Arabidopsis thaliana ecotype Columbia plants (Col‐0) treated with plant growth‐promoting rhizobacteria (PGPR) Serattia marcescens strain 90‐166 and Bacillus... |
SourceID | proquest pubmed pascalfrancis crossref wiley fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 381 |
SubjectTerms | Arabidopsis Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis - microbiology Arabidopsis - virology Arabidopsis Proteins Arabidopsis Proteins - metabolism Arabidopsis thaliana Bacillus Bacillus - physiology Bacillus pumilus Base Sequence Biological and medical sciences Cucumber mosaic virus Cucumovirus Cucumovirus - pathogenicity Cyclopentanes Cyclopentanes - metabolism Fundamental and applied biological sciences. Psychology genetics growth & development induced resistance jasmonate jasmonic acid metabolism microbiology mutants Oxylipins pathogenicity Pathology. Damages, economic importance physiology Phytopathology. Animal pests. Plant and forest protection Plant Diseases Plant Diseases - virology plant growth-promoting rhizobacteria plant proteins plant viruses Plant viruses and viroids Plants, Genetically Modified resistance mechanisms RNA, Plant RNA, Plant - genetics salicylic acid Salicylic Acid - metabolism Serattia Serattia marcescens Serratia marcescens Serratia marcescens - physiology Signal Transduction Symbiosis systemic acquired resistance transgenic plants virology |
Title | Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2004.02142.x https://www.ncbi.nlm.nih.gov/pubmed/15255867 https://www.proquest.com/docview/18029710 https://www.proquest.com/docview/49189221 https://www.proquest.com/docview/66712011 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbtswECXaoItu-kk_cT8JF93KkGSKlJZt0CAI0CBIY8A7YUhKjppEMiy5rbvqEXqtXqMn6QxpO3GQAEHRhQHDpCjQHM68kR7fMPbOJpkRKpOBxmgdCJPoAFRYBOgIMZibBEE0nXf-dCj3h-JglIwW_Cc6C-P1IVYP3GhnOH9NGxx0u77JiaE1iAYjl-b1nXpYn_AkNRA-Ol4pSUVq4JWkELAHGESvkXpuHGgtUt0voSHeJLT415W-5sVNoHQd47ogtfeYnS2n57kpZ_1Zp_vmxzXlx_8z_yfs0QLL8vfe-J6ye0W9yR58aBBvzp-x31QPqeNjzPO70z8_f0088a8e8ynx_LSXiQbutaTJVs7nfCEbgWOCrmwzaauWd6fuWQxwGEOFaJbvzoyrY8IvmhYqw79W01nL9ZzjYEAyx_jhYCrLobb88Og4wttXq3q_nfv5C7QXJAvsOmL7ZStRWoBO6XMq1_wN5s_ZcO_jye5-sCgcEZhEqDiI0AlZZUQcZyK0IcjIxOhNrYxDKwutMRWPrdBSQ6KslmGmZVkIi7lwAkVi08ELtlE3dbHFOCaEqTXCFdoUEiSUCFkjbYq4VGkSlz2mlkaSm4WqOhX3OM-vZFe4TjmtE9X8FLlbp_x7j0WrKydeWeQO12yhHeYwxgCQDz_H9NqZqKFhKnpse804L8dMMpEJhR12ltaaowuh90JQF82szUkEMEOkeXsPkUVpFsfR7T2kVBFhyR576TfClftj1ppK1WPSmfOdJ5ufHB3Qt1f_euFr9tDzrIiu-YZtdNNZ8RYhZKe3nXP4C9INZl4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB21BQk2vKHh0c4Clo7iyXhsL1hAS5W-oqokUnZmHnZqaO0odkjDik_gf_gC_oEVX8K94yRtqlaqkLpgESmKZ8bO-J65946PzyXktfFCzf1QOAq8tcO1pxzpN2IHFkJw5tqDIBrfd95vi1aX7_S83hL5OXsXptKHmG-4ITLseo0Axw3pRZQjRavpNns2z6tb-bD66ZRhuRtPxpC_FW-3N-Fmv2Fs60Nno-VMSww42uM-c1wwV-NrzljIG6YhhasZ4M4I1jAiVgqSNma4Ekp6vlGiESqRxNxA1uTJ2DNBE8ZdJrewoDgK928ezrWrXL9ZaVdBiuCA275AI7r0yhd843Iic2RqygJuVlJV2bgsDF6Mqq1b3LpPfs8mtGLDfKmPSlXX3y5oTf6nM_6A3JuG6_Rdha-HZCnOHpHb73MIqSePyS8s-VTS_jAfl0d_vv8YVNzGrE-HSGVUlRK2pJVcNsLheEKnyhgwplSpyQdFWtDyyG43SSr7MoWAnW6MtC3VQk_yQqaafk2Ho4KqCYXBJCo5w4dKnRoqM0PbB4cunD6dlzQu7c-fZXGCyse2IRw_O4qsHYlCBBQrUo_l5Anp3sg0PiUrWZ7Fq4RCzhsYzW0tUS6kkAlE5a7SMUv8wGNJjfgzq4z0VDge65ccR-cSSLCLCO0Cy5ryyNpFdFoj7rznoBJPuUafVTD8SPbBx0XdjwyfrCP7tRHwGllbQMPZmF7IQ-5Dg_UZPCJYJfHRl8zifFREqHMYQjB9dQseukHImHt1CyF8F8PlGnlWIe_c-SExD4RfI8Li59p_Nuoc7OC35__acZ3caXX296K97fbuC3K3opUhO_UlWSmHo_gVRMylWrMrEyWfbhqYfwHVcsLJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB21BSE2vKHh0c4Clo7iyXhsL1hAQ9QHRFFppOzMPOzU0NpR7JCGFZ_A9_AHfAM7voR7x0naVK1UIXXBIlKUedgZ3zP3Xvv4XEJeGi_U3A-Fo8BbO1x7ypF-I3ZgIwRnrj0IovF95w8dsd3ju32vv0J-zt-FqfQhFjfcEBl2v0aAD02yDHJkaDXdZt-meXWrHlY_mREs9-LpBNK34vVOC671K8ba7w62tp1ZhQFHe9xnjgvWanzNGQt5wzSkcDUD2BnBGkbESkHOxgxXQknPN0o0QiWSmBtImjwZeyZowryr5AaHFiwb0dpfSFe5frOSroIMwQGvfY5FdOGZL7nG1UTmSNSUBVyrpCqycVEUvBxUW6_Yvkt-z9ezIsN8qY9LVdffzklN_p8Lfo_cmQXr9E2FrvtkJc4ekJtvcwiopw_JLyz4VNLBKJ-Uh3--_xhWzMZsQEdIZFSVDraklVg2guFoSme6GDCnVKnJh0Va0PLQ3mySVA5kCuE63RprW6iFHueFTDX9mo7GBVVTCpNJ1HGGD5U6NVRmhna6-y4cPl0UNC7tz59lcYy6x7YjtJ-2ImdHogwBxXrUEzl9RHrXsoyPyVqWZ_E6oZDxBkZzW0mUCylkAjG5q3TMEj_wWFIj_twoIz2TjcfqJUfRmfQR7CJCu8CipjyydhGd1Ii7GDmspFOuMGYd7D6SA_BwUe8jw-fqyH1tBLxGNpbAcDqnF_KQ-9Bhc46OCPZIfPAlszgfFxGqHIYQSl_eg4duEDLmXt5DCN_FYLlGnlTAO3N8SMsD4deIsPC58p-NDrq7-O3pvw7cJLe6rXb0fqez94zcrjhlSE19TtbK0Th-AeFyqTbsvkTJp-vG5V-4PsF4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+growth-promoting+rhizobacteria+systemically+protect+Arabidopsis+thaliana+against+Cucumber+mosaic+virus+by+a+salicylic+acid+and+NPR1-independent+and+jasmonic+acid-dependent+signaling+pathway&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Ryu%2C+C+M&rft.au=Murphy%2C+J+F&rft.au=Mysore%2C+K+S&rft.au=Kloepper%2C+J+W&rft.date=2004-08-01&rft.issn=0960-7412&rft.volume=39&rft.issue=3+p.381-392&rft.spage=381&rft.epage=392&rft_id=info:doi/10.1111%2Fj.1365-313x.2004.02142.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |