Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway

Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also signifi...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 39; no. 3; pp. 381 - 392
Main Authors Ryu, C.M, Murphy, J.F, Mysore, K.S, Kloepper, J.W
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.08.2004
Blackwell Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90-166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90-166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90-166 naturally produces SA under iron-limited conditions. Col-0 and NahG plants treated with the SA-deficient mutant, 90-166-1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col-0 plants. Another PGPR mutant, 90-166-2882, caused reduced disease severity in Col-0 and NahG plants. In a time course study, strain 90-166 reduced virus accumulation at 7 but not at 14 and 21 days post-inoculation (dpi) on the non-inoculated leaves of Col-0 plants. NahG and npr1-1 plants treated with strain 90-166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90-166-treated fad3-2 fad7-2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90-166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid.
AbstractList Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90-166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90-166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90-166 naturally produces SA under iron-limited conditions. Col-0 and NahG plants treated with the SA-deficient mutant, 90-166-1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col-0 plants. Another PGPR mutant, 90-166-2882, caused reduced disease severity in Col-0 and NahG plants. In a time course study, strain 90-166 reduced virus accumulation at 7 but not at 14 and 21 days post-inoculation (dpi) on the non-inoculated leaves of Col-0 plants. NahG and npr1-1 plants treated with strain 90-166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90-166-treated fad3-2 fad7-2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90-166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid.
Arabidopsis thaliana ecotype Columbia plants (Col‐0) treated with plant growth‐promoting rhizobacteria (PGPR) Serattia marcescens strain 90‐166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90‐166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90‐166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90‐166 naturally produces SA under iron‐limited conditions. Col‐0 and NahG plants treated with the SA‐deficient mutant, 90‐166‐1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col‐0 plants. Another PGPR mutant, 90‐166‐2882, caused reduced disease severity in Col‐0 and NahG plants. In a time course study, strain 90‐166 reduced virus accumulation at 7 but not at 14 and 21 days post‐inoculation (dpi) on the non‐inoculated leaves of Col‐0 plants. NahG and npr1‐1 plants treated with strain 90‐166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90‐166‐treated fad3‐2 fad7‐2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90‐166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid.
Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90-166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90-166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90-166 naturally produces SA under iron-limited conditions. Col-0 and NahG plants treated with the SA-deficient mutant, 90-166-1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col-0 plants. Another PGPR mutant, 90-166-2882, caused reduced disease severity in Col-0 and NahG plants. In a time course study, strain 90-166 reduced virus accumulation at 7 but not at 14 and 21 days post-inoculation (dpi) on the non-inoculated leaves of Col-0 plants. NahG and npr1-1 plants treated with strain 90-166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90-166-treated fad3-2 fad7-2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90-166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid.Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90-166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90-166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90-166 naturally produces SA under iron-limited conditions. Col-0 and NahG plants treated with the SA-deficient mutant, 90-166-1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col-0 plants. Another PGPR mutant, 90-166-2882, caused reduced disease severity in Col-0 and NahG plants. In a time course study, strain 90-166 reduced virus accumulation at 7 but not at 14 and 21 days post-inoculation (dpi) on the non-inoculated leaves of Col-0 plants. NahG and npr1-1 plants treated with strain 90-166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90-166-treated fad3-2 fad7-2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90-166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid.
Summary Arabidopsis thaliana ecotype Columbia plants (Col‐0) treated with plant growth‐promoting rhizobacteria (PGPR) Serattia marcescens strain 90‐166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also significantly reduced in systemically infected leaves. The signal transduction pathway(s) associated with induced resistance against CMV by strain 90‐166 was determined using mutant strains and transgenic and mutant Arabidopsis lines. NahG plants treated with strains 90‐166 and SE34 had reduced symptom severity indicating that the resistance did not require salicylic acid (SA). Strain 90‐166 naturally produces SA under iron‐limited conditions. Col‐0 and NahG plants treated with the SA‐deficient mutant, 90‐166‐1441, had significantly reduced CMV symptom severity with reduced virus accumulation in Col‐0 plants. Another PGPR mutant, 90‐166‐2882, caused reduced disease severity in Col‐0 and NahG plants. In a time course study, strain 90‐166 reduced virus accumulation at 7 but not at 14 and 21 days post‐inoculation (dpi) on the non‐inoculated leaves of Col‐0 plants. NahG and npr1‐1 plants treated with strain 90‐166 had reduced amounts of virus at 7 and 14 dpi but not at 21 dpi. In contrast, no decrease in CMV accumulation occurred in strain 90‐166‐treated fad3‐2 fad7‐2 fad8 plants. These data indicate that the protection of Arabidopsis against CMV by strain 90‐166 follows a signaling pathway for virus protection that is independent of SA and NPR1, but dependent on jasmonic acid.
Author Murphy, J.F
Ryu, C.M
Mysore, K.S
Kloepper, J.W
Author_xml – sequence: 1
  fullname: Ryu, C.M
– sequence: 2
  fullname: Murphy, J.F
– sequence: 3
  fullname: Mysore, K.S
– sequence: 4
  fullname: Kloepper, J.W
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15949474$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15255867$$D View this record in MEDLINE/PubMed
BookMark eNqNkt-OEyEYxSdmjdtdfQXlRu-mAsMwMxeabBr_ZqON7ibekW-AtjQzUIHajq_ni8nYrhpvKgkMgd85Ax_nIjuzzuosQwRPSWrP11NS8DIvSLGfUozZFFPC6HR_L5vcbXw5yya44TivGKHn2UUIa4xJVXD2IDsnJS3LmleT7Me8AxvR0rtdXOUb73oXjV0ivzLfXQsyam8AhSFE3RsJXTegBEUtI7ry0BrlNsEEFFfQGbCAYAnGhohmW7ntW-1R7wIYib4Zvw2oHVAyS6gcUkcgjUJgFfow_0RyY5Xe6DSk84yLawi9s0cs_7MXzNImi3TIDcTVDoaH2f0FdEE_On4vs9vXr25mb_Prj2_eza6uc1myiuakrrCqJKO0YVhh4ERSXNeKU6y4bltMK6pYy1soK9Vy3LR8oZmihJSgS1UXl9mzg2-qwNetDlH0JkjdpQpqtw2C84pQTMhJkDWkbig9DZIa06YiOIGPj-C27bUSG2968IO4e8gEPD0CENIzLTxYacJfXMMaVrHEvTxw0rsQvF4IaSJE42z0YDpBsBgTJtZiDJIYgyTGhIlfCRP7ZFD_Y_D7H6elLw7Snen08N86cTN_P86S_slBvwAnYOnT_W4_p4IXGDeswDUrfgJB4vWE
CitedBy_id crossref_primary_10_1016_j_plaphy_2024_109046
crossref_primary_10_1007_s00284_005_0427_x
crossref_primary_10_1007_s11274_009_0014_6
crossref_primary_10_1094_MPMI_10_17_0242_R
crossref_primary_10_3390_microorganisms10071318
crossref_primary_10_3390_insects11050271
crossref_primary_10_1080_02772248_2015_1066176
crossref_primary_10_1016_j_plantsci_2015_01_011
crossref_primary_10_1111_mpp_12204
crossref_primary_10_1371_journal_pone_0122378
crossref_primary_10_3390_horticulturae7060133
crossref_primary_10_3390_jof8060632
crossref_primary_10_1007_s11274_016_2186_1
crossref_primary_10_1016_j_biocontrol_2017_04_009
crossref_primary_10_1094_MPMI_19_0924
crossref_primary_10_3389_fmicb_2020_587005
crossref_primary_10_1111_jam_12720
crossref_primary_10_1098_rspb_2024_2857
crossref_primary_10_1016_j_resmic_2015_11_001
crossref_primary_10_1007_s10886_013_0317_9
crossref_primary_10_1007_s11103_009_9455_4
crossref_primary_10_1007_s11120_005_1001_x
crossref_primary_10_1371_journal_pone_0003699
crossref_primary_10_1128_microbiolspec_TBS_0017_2013
crossref_primary_10_1093_aob_mct049
crossref_primary_10_1111_pce_13904
crossref_primary_10_1038_nprot_2017_023
crossref_primary_10_1099_vir_0_015990_0
crossref_primary_10_1016_j_pbi_2008_05_005
crossref_primary_10_1186_s12985_018_1044_1
crossref_primary_10_1016_j_biocontrol_2015_10_013
crossref_primary_10_1007_s10658_010_9687_9
crossref_primary_10_1016_j_ejsobi_2010_11_008
crossref_primary_10_1080_15592324_2016_1212798
crossref_primary_10_1111_tpj_13543
crossref_primary_10_1007_s00248_006_9181_2
crossref_primary_10_1007_s00425_007_0480_8
crossref_primary_10_1007_s10658_007_9168_y
crossref_primary_10_1111_jph_12577
crossref_primary_10_1016_j_aoas_2012_08_001
crossref_primary_10_1038_nrmicro2960
crossref_primary_10_1371_journal_pone_0149980
crossref_primary_10_1146_annurev_phyto_082712_102340
crossref_primary_10_1080_09583157_2012_694413
crossref_primary_10_1111_mpp_13111
crossref_primary_10_4161_psb_3_12_7093
crossref_primary_10_1016_j_pmpp_2015_08_007
crossref_primary_10_1111_j_1439_037X_2008_00338_x
crossref_primary_10_1007_s11104_023_06406_8
crossref_primary_10_1016_j_crmicr_2021_100054
crossref_primary_10_1080_07352680903241204
crossref_primary_10_1007_s40011_013_0279_2
crossref_primary_10_3390_plants11243449
crossref_primary_10_1016_j_febslet_2014_02_062
crossref_primary_10_3390_agriculture9080166
crossref_primary_10_1007_s10327_008_0093_5
crossref_primary_10_1094_MPMI_19_1406
crossref_primary_10_1016_j_phytochem_2009_06_009
crossref_primary_10_1080_03650340_2020_1759797
crossref_primary_10_1007_s00425_010_1259_x
crossref_primary_10_3390_plants9050592
crossref_primary_10_1016_j_pmpp_2020_101569
crossref_primary_10_1371_journal_pone_0113280
crossref_primary_10_1016_j_biocontrol_2009_06_002
crossref_primary_10_1080_01904167_2014_911319
crossref_primary_10_1021_acs_jafc_9b00799
crossref_primary_10_7124_bc_000160
crossref_primary_10_1371_journal_pone_0171902
crossref_primary_10_1007_s00425_008_0694_4
crossref_primary_10_1016_j_sajb_2017_07_007
crossref_primary_10_1080_09583157_2014_994198
crossref_primary_10_1007_s10059_010_0032_0
crossref_primary_10_1094_MPMI_19_1138
crossref_primary_10_3390_v10020061
crossref_primary_10_1111_mpp_12769
crossref_primary_10_1016_j_tplants_2016_01_013
crossref_primary_10_1016_j_pedsph_2022_10_003
crossref_primary_10_1146_annurev_phyto_080508_081820
crossref_primary_10_3390_biology10111202
crossref_primary_10_1007_s00709_020_01591_0
crossref_primary_10_1016_j_coviro_2017_08_001
crossref_primary_10_1007_s00344_004_0031_5
crossref_primary_10_1264_jsme2_ME12162
crossref_primary_10_1088_1755_1315_468_1_012051
crossref_primary_10_1093_bbb_zbae073
crossref_primary_10_1007_BF02637262
crossref_primary_10_1007_s12374_016_0035_2
crossref_primary_10_1007_s10658_020_01975_1
crossref_primary_10_1099_mic_0_053355_0
crossref_primary_10_1002_ecy_2449
crossref_primary_10_1007_s11104_013_1864_0
crossref_primary_10_3389_fmicb_2021_687971
crossref_primary_10_3390_plants8120575
crossref_primary_10_1080_03235408_2012_736280
crossref_primary_10_1186_s12866_020_01725_7
crossref_primary_10_1002_ps_1800
crossref_primary_10_1007_s11104_014_2102_0
crossref_primary_10_1111_1751_7915_13964
crossref_primary_10_1111_j_1365_313X_2008_03772_x
crossref_primary_10_1093_pcp_pcm144
crossref_primary_10_1088_1755_1315_790_1_012058
crossref_primary_10_1016_j_jbiotec_2019_10_003
crossref_primary_10_1111_j_1365_3059_2011_02573_x
crossref_primary_10_1134_S0003683820060101
crossref_primary_10_3390_plants5010008
crossref_primary_10_1186_1471_2164_15_851
crossref_primary_10_1128_AEM_71_9_4951_4959_2005
crossref_primary_10_4161_psb_24619
crossref_primary_10_1071_CP19219
crossref_primary_10_1371_journal_pone_0158621
crossref_primary_10_1111_1462_2920_15197
crossref_primary_10_1007_s00344_015_9548_z
crossref_primary_10_1080_15592324_2019_1704517
crossref_primary_10_1038_srep39432
crossref_primary_10_5423_PPJ_2009_25_4_369
crossref_primary_10_5423_PPJ_SI_07_2012_0117
crossref_primary_10_1094_PHYTO_98_4_0451
crossref_primary_10_1104_pp_113_225649
crossref_primary_10_1186_s13068_015_0404_y
crossref_primary_10_1016_j_indcrop_2021_114322
crossref_primary_10_2478_fhort_2018_0001
crossref_primary_10_1002_ps_7001
crossref_primary_10_1080_17429145_2017_1325523
crossref_primary_10_3390_molecules25102341
crossref_primary_10_1007_s11104_012_1255_y
crossref_primary_10_1371_journal_pone_0048744
crossref_primary_10_1094_MPMI_18_0428
crossref_primary_10_5423_PPJ_OA_10_2015_0218
crossref_primary_10_1038_s41598_018_28677_3
crossref_primary_10_1007_s11103_015_0344_8
crossref_primary_10_1371_journal_pone_0173203
crossref_primary_10_1016_j_pmpp_2021_101677
crossref_primary_10_1016_j_micres_2013_09_011
crossref_primary_10_1094_MPMI_21_12_1643
crossref_primary_10_1016_j_apsoil_2007_12_006
crossref_primary_10_3390_biom12020288
crossref_primary_10_5423_PPJ_2005_21_1_007
crossref_primary_10_3390_genes14051041
Cites_doi 10.1104/pp.113.1.5
10.1094/PD-80-0891
10.1094/PDIS.2000.84.7.779
10.1094/MPMI.1997.10.6.761
10.1023/A:1008741015912
10.1105/tpc.10.9.1571
10.2307/3869945
10.1016/S1360-1385(99)01390-4
10.1111/j.1744-7348.2001.tb00144.x
10.1094/Phyto-86-221
10.1094/PHYTO.2003.93.10.1301
10.1094/MPMI.2002.15.1.75
10.1023/A:1009923702103
10.1104/pp.104.4.1109
10.1105/tpc.10.12.2103
10.1094/Phyto-86-149
10.1094/PHYTO.1998.88.7.678
10.1104/pp.102.017814
10.1073/pnas.92.14.6602
10.1023/A:1008638109140
10.1094/Phyto-85-1021
10.1094/MPMI.1998.11.9.860
10.1073/pnas.95.12.7209
10.2307/1312874
10.1094/PHYTO.2001.91.6.593
10.2307/3870231
10.1094/MPMI.2002.15.1.27
10.1046/j.1469-8137.2003.00883.x
10.1006/anbo.1998.0726
10.1073/pnas.95.11.6531
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright_xml – notice: 2004 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T7
7U9
8FD
C1K
FR3
H94
P64
7S9
L.6
7X8
DOI 10.1111/j.1365-313x.2004.02142.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
AGRICOLA
Virology and AIDS Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 392
ExternalDocumentID 15255867
15949474
10_1111_j_1365_313X_2004_02142_x
TPJ2142
US201300943084
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAHBH
AAHQN
AAMNL
AAYCA
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T7
7U9
8FD
C1K
FR3
H94
P64
7S9
L.6
7X8
ID FETCH-LOGICAL-c5472-1870d7c422940d0a61c2088d620d6ebb0272d4b6ba57db609b6fe4d2115ae5d83
IEDL.DBID DR2
ISSN 0960-7412
IngestDate Thu Jul 10 22:47:18 EDT 2025
Thu Jul 10 23:02:30 EDT 2025
Fri Jul 11 03:41:46 EDT 2025
Wed Feb 19 01:53:59 EST 2025
Mon Jul 21 09:12:44 EDT 2025
Tue Jul 01 03:56:48 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
Wed Jan 22 16:23:57 EST 2025
Wed Dec 27 19:07:51 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Terpenoid
Salicylic acid
Plant pathogen
jasmonate
Bacillaceae
Induced resistance
Host virus relation
plant growth-promoting rhizobacteria
Virus
Arabidopsis thaliana
Signal transduction
Regulation(control)
Bacillales
Cruciferae
Dicotyledones
Cucumber mosaic virus
Angiospermae
Bromoviridae
Bacillus pumilus
Bacteria
Plant growth substance
Cucumovirus
Spermatophyta
Plant growth promoting rhizobacteria
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5472-1870d7c422940d0a61c2088d620d6ebb0272d4b6ba57db609b6fe4d2115ae5d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15255867
PQID 18029710
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_66712011
proquest_miscellaneous_49189221
proquest_miscellaneous_18029710
pubmed_primary_15255867
pascalfrancis_primary_15949474
crossref_citationtrail_10_1111_j_1365_313X_2004_02142_x
crossref_primary_10_1111_j_1365_313X_2004_02142_x
wiley_primary_10_1111_j_1365_313X_2004_02142_x_TPJ2142
fao_agris_US201300943084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2004
PublicationDateYYYYMMDD 2004-08-01
PublicationDate_xml – month: 08
  year: 2004
  text: August 2004
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2004
Publisher Blackwell Science Ltd
Blackwell Science
Publisher_xml – name: Blackwell Science Ltd
– name: Blackwell Science
References 1997; 113
2001; 91
2002; 15
1995; 92
2000; 45
1999; 4
1998; 82
2003; 93
1999; 105
2003; 132
1998; 88
1999
1995; 85
1997; 103
1994; 104
1997; 10
2000; 84
2003; 160
1996; 80
1998; 95
1996; 46
1998; 10
1998; 12
1996; 8
1996; 86
1998; 11
2001; 139
1994; 6
e_1_2_20_17_1
e_1_2_20_18_1
e_1_2_20_13_1
e_1_2_20_14_1
e_1_2_20_15_1
Penninckx I.A. (e_1_2_20_19_1) 1998; 12
e_1_2_20_16_1
e_1_2_20_7_1
e_1_2_20_6_1
e_1_2_20_9_1
e_1_2_20_8_1
e_1_2_20_3_1
e_1_2_20_2_1
e_1_2_20_5_1
e_1_2_20_4_1
e_1_2_20_20_1
e_1_2_20_21_1
e_1_2_20_22_1
e_1_2_20_23_1
e_1_2_20_28_1
e_1_2_20_29_1
e_1_2_20_24_1
e_1_2_20_25_1
e_1_2_20_26_1
e_1_2_20_27_1
Zehnder G.W. (e_1_2_20_31_1) 1999
e_1_2_20_32_1
e_1_2_20_10_1
e_1_2_20_11_1
e_1_2_20_12_1
e_1_2_20_30_1
References_xml – volume: 84
  start-page: 779
  year: 2000
  end-page: 784
  article-title: Plant growth‐promoting rhizobacterial mediated protection in tomato against
  publication-title: Plant Dis.
– volume: 86
  start-page: 221
  year: 1996
  end-page: 224
  article-title: Induced systemic resistance to cucumber diseases and increased plant growth by plant growth‐promoting rhizobacteria under field conditions
  publication-title: Phytopathology
– volume: 113
  start-page: 5
  year: 1997
  end-page: 12
  article-title: Genetic dissection of acquired resistance to disease
  publication-title: Plant Physiol.
– volume: 91
  start-page: 593
  year: 2001
  end-page: 598
  article-title: Role of iron in rhizobacteria‐mediated induced systemic resistance of cucumber
  publication-title: Phytopathology
– volume: 11
  start-page: 860
  year: 1998
  end-page: 868
  article-title: Salicylic acid can induce resistance to plant virus movement
  publication-title: Mol. Plant Microbe Interact.
– volume: 160
  start-page: 413
  year: 2003
  end-page: 420
  article-title: Different signaling pathways of induced resistance by rhizobacteria in against two pathovars of
  publication-title: New Phytologist
– volume: 105
  start-page: 513
  year: 1999
  end-page: 517
  article-title: 7NSK2‐induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression
  publication-title: Eur. J. Plant Pathol.
– volume: 104
  start-page: 1109
  year: 1994
  end-page: 1112
  article-title: Systemic acquired resistance
  publication-title: Plant Physiol.
– start-page: 335
  year: 1999
  end-page: 355
– volume: 82
  start-page: 535
  year: 1998
  end-page: 540
  article-title: Salicylic acid and systemic acquired resistance to pathogen attack
  publication-title: Ann. Bot.
– volume: 95
  start-page: 7209
  year: 1998
  end-page: 7214
  article-title: A role for jasmonate in pathogen defense of
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 46
  start-page: 14
  year: 1996
  end-page: 18
  article-title: Host specificity in microbe–microbe interactions
  publication-title: Bioscience
– volume: 86
  start-page: 149
  year: 1996
  end-page: 155
  article-title: Iron availability affects induction of systemic resistance to fusarium wilt of raddish by
  publication-title: Phytopathology
– volume: 10
  start-page: 761
  year: 1997
  end-page: 768
  article-title: Salicylic acid produced by 90‐166 is not the primary determinant of induced systemic resistance in cucumber or tobacco
  publication-title: Mol. Plant Microbe Interact.
– volume: 80
  start-page: 91
  year: 1996
  end-page: 894
  article-title: Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth‐promoting rhizobacteria (PGPR)
  publication-title: Plant Dis.
– volume: 8
  start-page: 1809
  year: 1996
  end-page: 1819
  article-title: Systemic acquired resistance
  publication-title: Plant Cell
– volume: 88
  start-page: 678
  year: 1998
  end-page: 684
  article-title: Salicylic acid biosynthetic genes expressed in strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus
  publication-title: Phytopathology
– volume: 12
  start-page: 2103
  year: 1998
  end-page: 2113
  article-title: Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in
  publication-title: Plant Cell
– volume: 85
  start-page: 1021
  year: 1995
  end-page: 1027
  article-title: Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of
  publication-title: Phytopathology
– volume: 10
  start-page: 1571
  year: 1998
  end-page: 1580
  article-title: A novel signaling pathway controlling induced systemic resistance in
  publication-title: Plant Cell
– volume: 45
  start-page: 127
  year: 2000
  end-page: 137
  article-title: Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth‐promoting rhizobacteria
  publication-title: Biocontrol
– volume: 15
  start-page: 75
  year: 2002
  end-page: 81
  article-title: Chemically induced virus resistance in is independent of pathogenesis‐related protein expression and the NPR1 gene
  publication-title: Mol. Plant Microbe Interact.
– volume: 93
  start-page: 1301
  year: 2003
  end-page: 1307
  article-title: Rhizobacteria‐mediated growth promotion of tomato leads to protection against
  publication-title: Phytopathology
– volume: 6
  start-page: 1583
  year: 1994
  end-page: 1592
  article-title: Characterization of an mutant that is nonresponsive to inducers of systemic acquired resistance
  publication-title: Plant Cell
– volume: 92
  start-page: 6602
  year: 1995
  end-page: 6606
  article-title: signal transduction mutant defective in chemically and biologically induced disease resistance
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 103
  start-page: 753
  year: 1997
  end-page: 765
  article-title: Induced resistance and the role of pathogenesis‐related proteins
  publication-title: Eur. J. Plant Pathol.
– volume: 132
  start-page: 1020
  year: 2003
  end-page: 1032
  article-title: A role for the GCC‐box in jasmonate‐mediated activation of the gene of
  publication-title: Plant Physiol.
– volume: 15
  start-page: 27
  year: 2002
  end-page: 34
  article-title: Differential effectiveness of salicylate‐dependent and jasmonate/ethylene‐dependent induced resistance in
  publication-title: Mol. Plant Microbe Interact.
– volume: 95
  start-page: 6531
  year: 1998
  end-page: 6536
  article-title: Generation of broad‐spectrum disease resistance by over expression of an essential regulatory gene in systemic acquired resistance
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 139
  start-page: 307
  year: 2001
  end-page: 317
  article-title: Age‐related resistance in bell pepper to
  publication-title: Ann. Appl. Biol.
– volume: 4
  start-page: 155
  year: 1999
  end-page: 160
  article-title: Salicylic acid‐induced resistance to viruses and other pathogens: a parting of the ways
  publication-title: Trends Plant Sci.
– ident: e_1_2_20_5_1
  doi: 10.1104/pp.113.1.5
– ident: e_1_2_20_23_1
  doi: 10.1094/PD-80-0891
– ident: e_1_2_20_16_1
  doi: 10.1094/PDIS.2000.84.7.779
– ident: e_1_2_20_21_1
  doi: 10.1094/MPMI.1997.10.6.761
– ident: e_1_2_20_7_1
  doi: 10.1023/A:1008741015912
– ident: e_1_2_20_20_1
  doi: 10.1105/tpc.10.9.1571
– ident: e_1_2_20_3_1
  doi: 10.2307/3869945
– ident: e_1_2_20_15_1
  doi: 10.1016/S1360-1385(99)01390-4
– ident: e_1_2_20_8_1
  doi: 10.1111/j.1744-7348.2001.tb00144.x
– ident: e_1_2_20_29_1
  doi: 10.1094/Phyto-86-221
– ident: e_1_2_20_17_1
  doi: 10.1094/PHYTO.2003.93.10.1301
– ident: e_1_2_20_30_1
  doi: 10.1094/MPMI.2002.15.1.75
– start-page: 335
  volume-title: Induced Plant Defenses against Pathogens and Herbivores: Biochemistry, Ecology, and Agriculture
  year: 1999
  ident: e_1_2_20_31_1
– ident: e_1_2_20_32_1
  doi: 10.1023/A:1009923702103
– ident: e_1_2_20_24_1
  doi: 10.1104/pp.104.4.1109
– volume: 12
  start-page: 2103
  year: 1998
  ident: e_1_2_20_19_1
  article-title: Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.12.2103
– ident: e_1_2_20_11_1
  doi: 10.1094/Phyto-86-149
– ident: e_1_2_20_14_1
  doi: 10.1094/PHYTO.1998.88.7.678
– ident: e_1_2_20_2_1
  doi: 10.1104/pp.102.017814
– ident: e_1_2_20_6_1
  doi: 10.1073/pnas.92.14.6602
– ident: e_1_2_20_12_1
  doi: 10.1023/A:1008638109140
– ident: e_1_2_20_10_1
  doi: 10.1094/Phyto-85-1021
– ident: e_1_2_20_18_1
  doi: 10.1094/MPMI.1998.11.9.860
– ident: e_1_2_20_28_1
  doi: 10.1073/pnas.95.12.7209
– ident: e_1_2_20_9_1
  doi: 10.2307/1312874
– ident: e_1_2_20_22_1
  doi: 10.1094/PHYTO.2001.91.6.593
– ident: e_1_2_20_25_1
  doi: 10.2307/3870231
– ident: e_1_2_20_27_1
  doi: 10.1094/MPMI.2002.15.1.27
– ident: e_1_2_20_26_1
  doi: 10.1046/j.1469-8137.2003.00883.x
– ident: e_1_2_20_13_1
  doi: 10.1006/anbo.1998.0726
– ident: e_1_2_20_4_1
  doi: 10.1073/pnas.95.11.6531
SSID ssj0017364
Score 2.246751
Snippet Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus...
Summary Arabidopsis thaliana ecotype Columbia plants (Col‐0) treated with plant growth‐promoting rhizobacteria (PGPR) Serattia marcescens strain 90‐166 and...
Arabidopsis thaliana ecotype Columbia plants (Col‐0) treated with plant growth‐promoting rhizobacteria (PGPR) Serattia marcescens strain 90‐166 and Bacillus...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 381
SubjectTerms Arabidopsis
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis - microbiology
Arabidopsis - virology
Arabidopsis Proteins
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Bacillus
Bacillus - physiology
Bacillus pumilus
Base Sequence
Biological and medical sciences
Cucumber mosaic virus
Cucumovirus
Cucumovirus - pathogenicity
Cyclopentanes
Cyclopentanes - metabolism
Fundamental and applied biological sciences. Psychology
genetics
growth & development
induced resistance
jasmonate
jasmonic acid
metabolism
microbiology
mutants
Oxylipins
pathogenicity
Pathology. Damages, economic importance
physiology
Phytopathology. Animal pests. Plant and forest protection
Plant Diseases
Plant Diseases - virology
plant growth-promoting rhizobacteria
plant proteins
plant viruses
Plant viruses and viroids
Plants, Genetically Modified
resistance mechanisms
RNA, Plant
RNA, Plant - genetics
salicylic acid
Salicylic Acid - metabolism
Serattia
Serattia marcescens
Serratia marcescens
Serratia marcescens - physiology
Signal Transduction
Symbiosis
systemic acquired resistance
transgenic plants
virology
Title Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2004.02142.x
https://www.ncbi.nlm.nih.gov/pubmed/15255867
https://www.proquest.com/docview/18029710
https://www.proquest.com/docview/49189221
https://www.proquest.com/docview/66712011
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbtswECXaoItu-kk_cT8JF93KkGSKlJZt0CAI0CBIY8A7YUhKjppEMiy5rbvqEXqtXqMn6QxpO3GQAEHRhQHDpCjQHM68kR7fMPbOJpkRKpOBxmgdCJPoAFRYBOgIMZibBEE0nXf-dCj3h-JglIwW_Cc6C-P1IVYP3GhnOH9NGxx0u77JiaE1iAYjl-b1nXpYn_AkNRA-Ol4pSUVq4JWkELAHGESvkXpuHGgtUt0voSHeJLT415W-5sVNoHQd47ogtfeYnS2n57kpZ_1Zp_vmxzXlx_8z_yfs0QLL8vfe-J6ye0W9yR58aBBvzp-x31QPqeNjzPO70z8_f0088a8e8ynx_LSXiQbutaTJVs7nfCEbgWOCrmwzaauWd6fuWQxwGEOFaJbvzoyrY8IvmhYqw79W01nL9ZzjYEAyx_jhYCrLobb88Og4wttXq3q_nfv5C7QXJAvsOmL7ZStRWoBO6XMq1_wN5s_ZcO_jye5-sCgcEZhEqDiI0AlZZUQcZyK0IcjIxOhNrYxDKwutMRWPrdBSQ6KslmGmZVkIi7lwAkVi08ELtlE3dbHFOCaEqTXCFdoUEiSUCFkjbYq4VGkSlz2mlkaSm4WqOhX3OM-vZFe4TjmtE9X8FLlbp_x7j0WrKydeWeQO12yhHeYwxgCQDz_H9NqZqKFhKnpse804L8dMMpEJhR12ltaaowuh90JQF82szUkEMEOkeXsPkUVpFsfR7T2kVBFhyR576TfClftj1ppK1WPSmfOdJ5ufHB3Qt1f_euFr9tDzrIiu-YZtdNNZ8RYhZKe3nXP4C9INZl4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB21BQk2vKHh0c4Clo7iyXhsL1hAS5W-oqokUnZmHnZqaO0odkjDik_gf_gC_oEVX8K94yRtqlaqkLpgESmKZ8bO-J65946PzyXktfFCzf1QOAq8tcO1pxzpN2IHFkJw5tqDIBrfd95vi1aX7_S83hL5OXsXptKHmG-4ITLseo0Axw3pRZQjRavpNns2z6tb-bD66ZRhuRtPxpC_FW-3N-Fmv2Fs60Nno-VMSww42uM-c1wwV-NrzljIG6YhhasZ4M4I1jAiVgqSNma4Ekp6vlGiESqRxNxA1uTJ2DNBE8ZdJrewoDgK928ezrWrXL9ZaVdBiuCA275AI7r0yhd843Iic2RqygJuVlJV2bgsDF6Mqq1b3LpPfs8mtGLDfKmPSlXX3y5oTf6nM_6A3JuG6_Rdha-HZCnOHpHb73MIqSePyS8s-VTS_jAfl0d_vv8YVNzGrE-HSGVUlRK2pJVcNsLheEKnyhgwplSpyQdFWtDyyG43SSr7MoWAnW6MtC3VQk_yQqaafk2Ho4KqCYXBJCo5w4dKnRoqM0PbB4cunD6dlzQu7c-fZXGCyse2IRw_O4qsHYlCBBQrUo_l5Anp3sg0PiUrWZ7Fq4RCzhsYzW0tUS6kkAlE5a7SMUv8wGNJjfgzq4z0VDge65ccR-cSSLCLCO0Cy5ryyNpFdFoj7rznoBJPuUafVTD8SPbBx0XdjwyfrCP7tRHwGllbQMPZmF7IQ-5Dg_UZPCJYJfHRl8zifFREqHMYQjB9dQseukHImHt1CyF8F8PlGnlWIe_c-SExD4RfI8Li59p_Nuoc7OC35__acZ3caXX296K97fbuC3K3opUhO_UlWSmHo_gVRMylWrMrEyWfbhqYfwHVcsLJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB21BSE2vKHh0c4Clo7iyXhsL1hAQ9QHRFFppOzMPOzU0NpR7JCGFZ_A9_AHfAM7voR7x0naVK1UIXXBIlKUedgZ3zP3Xvv4XEJeGi_U3A-Fo8BbO1x7ypF-I3ZgIwRnrj0IovF95w8dsd3ju32vv0J-zt-FqfQhFjfcEBl2v0aAD02yDHJkaDXdZt-meXWrHlY_mREs9-LpBNK34vVOC671K8ba7w62tp1ZhQFHe9xnjgvWanzNGQt5wzSkcDUD2BnBGkbESkHOxgxXQknPN0o0QiWSmBtImjwZeyZowryr5AaHFiwb0dpfSFe5frOSroIMwQGvfY5FdOGZL7nG1UTmSNSUBVyrpCqycVEUvBxUW6_Yvkt-z9ezIsN8qY9LVdffzklN_p8Lfo_cmQXr9E2FrvtkJc4ekJtvcwiopw_JLyz4VNLBKJ-Uh3--_xhWzMZsQEdIZFSVDraklVg2guFoSme6GDCnVKnJh0Va0PLQ3mySVA5kCuE63RprW6iFHueFTDX9mo7GBVVTCpNJ1HGGD5U6NVRmhna6-y4cPl0UNC7tz59lcYy6x7YjtJ-2ImdHogwBxXrUEzl9RHrXsoyPyVqWZ_E6oZDxBkZzW0mUCylkAjG5q3TMEj_wWFIj_twoIz2TjcfqJUfRmfQR7CJCu8CipjyydhGd1Ii7GDmspFOuMGYd7D6SA_BwUe8jw-fqyH1tBLxGNpbAcDqnF_KQ-9Bhc46OCPZIfPAlszgfFxGqHIYQSl_eg4duEDLmXt5DCN_FYLlGnlTAO3N8SMsD4deIsPC58p-NDrq7-O3pvw7cJLe6rXb0fqez94zcrjhlSE19TtbK0Th-AeFyqTbsvkTJp-vG5V-4PsF4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+growth-promoting+rhizobacteria+systemically+protect+Arabidopsis+thaliana+against+Cucumber+mosaic+virus+by+a+salicylic+acid+and+NPR1-independent+and+jasmonic+acid-dependent+signaling+pathway&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Ryu%2C+C+M&rft.au=Murphy%2C+J+F&rft.au=Mysore%2C+K+S&rft.au=Kloepper%2C+J+W&rft.date=2004-08-01&rft.issn=0960-7412&rft.volume=39&rft.issue=3+p.381-392&rft.spage=381&rft.epage=392&rft_id=info:doi/10.1111%2Fj.1365-313x.2004.02142.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon