Cellular senescence: all roads lead to mitochondria

Senescence is a multi‐functional cell fate, characterized by an irreversible cell‐cycle arrest and a pro‐inflammatory phenotype, commonly known as the senescence‐associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 290; no. 5; pp. 1186 - 1202
Main Authors Martini, Hélène, Passos, João F.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Senescence is a multi‐functional cell fate, characterized by an irreversible cell‐cycle arrest and a pro‐inflammatory phenotype, commonly known as the senescence‐associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age‐related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often‐unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell‐death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies. Mitochondria play a central role in the development of cellular senescence. Senescence is characterized by several mitochondrial functional changes such as a decrease in OXPHOS, reduced levels of NAD+ and ATP, and accumulation of TCA cycle metabolites, DAMPs, and ROS. Here, we provide an overview of the recent findings demonstrating how these mitochondrial changes can contribute to the senescence‐associated growth arrest and the SASP.
AbstractList Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the senescence-associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age-related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell-death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies.
Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the Senescence-Associated secretory Phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues, drives tissue dysfunction and several age-related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell-death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies. Mitochondria play a central role in the development of cellular senescence. Senescence is characterized by several mitochondrial functional changes such as a decrease in OXPHOS, reduced levels of NAD+ and ATP and accumulation of TCA cycle metabolites, DAMPs, and ROS. Here, we provide an overview of the recent findings demonstrating how these mitochondrial changes can contribute to the senescence-associated growth arrest and the SASP.
Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the senescence-associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age-related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell-death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies.Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the senescence-associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age-related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell-death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies.
Senescence is a multi‐functional cell fate, characterized by an irreversible cell‐cycle arrest and a pro‐inflammatory phenotype, commonly known as the senescence‐associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age‐related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often‐unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell‐death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies. Mitochondria play a central role in the development of cellular senescence. Senescence is characterized by several mitochondrial functional changes such as a decrease in OXPHOS, reduced levels of NAD+ and ATP, and accumulation of TCA cycle metabolites, DAMPs, and ROS. Here, we provide an overview of the recent findings demonstrating how these mitochondrial changes can contribute to the senescence‐associated growth arrest and the SASP.
Author Passos, João F.
Martini, Hélène
AuthorAffiliation 1 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905 USA
2 Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905 USA
AuthorAffiliation_xml – name: 1 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905 USA
– name: 2 Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905 USA
Author_xml – sequence: 1
  givenname: Hélène
  surname: Martini
  fullname: Martini, Hélène
  organization: Mayo Clinic
– sequence: 2
  givenname: João F.
  orcidid: 0000-0001-8765-1890
  surname: Passos
  fullname: Passos, João F.
  email: passos.joao@mayo.edu
  organization: Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35048548$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9LHDEUxYMo_tn64gcoA32RwtrcSSaT9EGwi1ZB6ENb6FvIJHc0kp3YZKbFb99s1y5Vis1LAvmdw73nHJDtIQ5IyBHQEyjnXY9dPgHBBGyRfWh5PeeikdubN_-2Rw5yvqOUNVypXbLHGsplw-U-YQsMYQomVRkHzBYHi-8rE0KVonG5CmhcNcZq6cdob-PgkjevyE5vQsbDx3tGvl6cf1lczq8_fbxanF3PbcNbmDvXKdkBcs5q5EgdoyAkpw2CVX3vHAhrLDBQFHvGKVNtAeuul51TSgKbkdO17_3ULdGV2cZkgr5PfmnSg47G66c_g7_VN_GHVrUSLV0ZHD8apPh9wjzqpS8rhmAGjFPWtQRQrRLQ_B8VNQgBdSsK-uYZehenNJQkdN1K2nIuStIz8vrv4TdT_4m-AG_XgE0x54T9BgGqV73qVa_6d68Fps9g60cz-rha3Id_S2At-ekDPrxgri_OP3xea34BL9izdw
CitedBy_id crossref_primary_10_3390_metabo13070861
crossref_primary_10_3389_fendo_2024_1417007
crossref_primary_10_1186_s12974_023_02879_7
crossref_primary_10_1038_s44318_024_00259_2
crossref_primary_10_1016_j_nbd_2024_106562
crossref_primary_10_1016_j_freeradbiomed_2023_09_019
crossref_primary_10_1038_s41467_024_51846_0
crossref_primary_10_3390_cells13242052
crossref_primary_10_3390_ijms24043436
crossref_primary_10_1097_CCO_0000000000001020
crossref_primary_10_3389_fphar_2024_1433961
crossref_primary_10_1016_j_molmet_2022_101652
crossref_primary_10_3390_antiox11071224
crossref_primary_10_14336_AD_2024_0306
crossref_primary_10_3390_biomedicines11123301
crossref_primary_10_1016_j_phrs_2023_106835
crossref_primary_10_1186_s13287_023_03497_z
crossref_primary_10_1016_j_fct_2025_115355
crossref_primary_10_1371_journal_pone_0306969
crossref_primary_10_1007_s11357_024_01070_x
crossref_primary_10_1016_j_actbio_2024_03_027
crossref_primary_10_3389_fphys_2024_1384966
crossref_primary_10_1186_s13287_024_03935_6
crossref_primary_10_1186_s13287_024_04041_3
crossref_primary_10_1016_j_arr_2024_102646
crossref_primary_10_1186_s12979_024_00494_5
crossref_primary_10_1016_j_jhazmat_2024_135103
crossref_primary_10_17116_rbpdpm2024103153
crossref_primary_10_1093_nar_gkae307
crossref_primary_10_1007_s11357_025_01520_0
crossref_primary_10_1111_acel_14077
crossref_primary_10_3390_antiox13010042
crossref_primary_10_1146_annurev_biochem_032620_104401
crossref_primary_10_3389_fcell_2023_1252318
crossref_primary_10_3389_fgene_2024_1345459
crossref_primary_10_1016_j_brainres_2023_148693
crossref_primary_10_1016_j_freeradbiomed_2024_10_291
crossref_primary_10_1093_lifemedi_lnaf004
crossref_primary_10_1016_j_mtbio_2024_101175
crossref_primary_10_1038_s41514_025_00197_1
crossref_primary_10_1002_adbi_202300461
crossref_primary_10_2174_0115680266273698231107110956
crossref_primary_10_3389_fragi_2022_866718
crossref_primary_10_1016_j_celrep_2023_112880
crossref_primary_10_1007_s10522_023_10059_6
crossref_primary_10_1016_j_isci_2023_107197
crossref_primary_10_1136_ard_2024_225630
crossref_primary_10_1016_j_lfs_2024_122575
crossref_primary_10_3390_ijms242115584
crossref_primary_10_1111_jcmm_70389
crossref_primary_10_3390_ijms241411676
crossref_primary_10_1016_j_archger_2023_105176
crossref_primary_10_1038_s41418_024_01439_7
crossref_primary_10_14336_AD_2023_0214
crossref_primary_10_1016_j_tem_2024_02_008
crossref_primary_10_1126_sciadv_ado5887
crossref_primary_10_1186_s12964_024_01878_2
crossref_primary_10_1111_acel_14354
crossref_primary_10_1080_03014460_2023_2259242
crossref_primary_10_1016_j_scitotenv_2023_163073
crossref_primary_10_3389_fbioe_2023_1148761
crossref_primary_10_3389_fmolb_2023_906606
crossref_primary_10_1021_acs_jafc_4c07268
crossref_primary_10_1016_j_freeradbiomed_2024_04_239
crossref_primary_10_1177_1877718X251316552
crossref_primary_10_3390_ijms25147943
crossref_primary_10_1111_jnc_16301
crossref_primary_10_3390_cells11152416
crossref_primary_10_1016_j_tice_2024_102369
crossref_primary_10_1111_febs_16735
crossref_primary_10_1093_discim_kyad026
crossref_primary_10_1002_mco2_542
crossref_primary_10_1016_j_ijbiomac_2025_142368
crossref_primary_10_1111_acel_14289
crossref_primary_10_1016_j_arr_2024_102294
crossref_primary_10_1038_s41467_024_51901_w
crossref_primary_10_12688_f1000research_133203_1
crossref_primary_10_1038_s41419_024_06755_x
crossref_primary_10_36303_SAGP_2022_3_2_0119
crossref_primary_10_1002_advs_202300988
crossref_primary_10_1021_acsomega_4c04100
crossref_primary_10_1038_s41573_024_01126_9
crossref_primary_10_3390_genes15091153
crossref_primary_10_1002_chem_202403755
crossref_primary_10_1126_sciadv_adg6231
crossref_primary_10_1038_s41514_024_00170_4
crossref_primary_10_1093_lifemeta_loae031
crossref_primary_10_1007_s00018_025_05592_1
crossref_primary_10_18632_aging_206165
crossref_primary_10_1038_s41467_024_51363_0
crossref_primary_10_3390_nano13212840
crossref_primary_10_1038_s41418_022_01058_0
crossref_primary_10_3390_nu14173636
crossref_primary_10_31857_S0320972523110040
crossref_primary_10_1134_S0006297923110032
crossref_primary_10_3389_fnmol_2023_1329554
crossref_primary_10_1016_j_mad_2025_112045
crossref_primary_10_1016_j_mad_2025_112044
crossref_primary_10_3390_cells13040353
crossref_primary_10_1111_acel_14154
crossref_primary_10_1021_acschemneuro_3c00531
crossref_primary_10_1016_j_mad_2024_111993
crossref_primary_10_1016_j_yexmp_2024_104947
crossref_primary_10_3390_antiox13040415
crossref_primary_10_3390_biomedicines11061564
crossref_primary_10_1186_s10020_023_00752_0
crossref_primary_10_1038_s12276_024_01170_w
crossref_primary_10_1038_s41591_022_01923_y
crossref_primary_10_1021_acsmaterialsau_3c00057
crossref_primary_10_3390_antiox12040831
crossref_primary_10_1016_j_jece_2024_112263
crossref_primary_10_1016_j_scitotenv_2024_174502
crossref_primary_10_1038_s41598_023_35447_3
crossref_primary_10_1016_j_autrev_2025_103805
crossref_primary_10_3390_ijms242115788
crossref_primary_10_3390_antiox12061250
crossref_primary_10_3389_fcell_2023_1244321
crossref_primary_10_4132_jptm_2023_10_09
crossref_primary_10_1016_j_exger_2025_112702
crossref_primary_10_1038_s41594_022_00790_y
crossref_primary_10_1111_febs_17352
crossref_primary_10_37349_ei_2023_00112
crossref_primary_10_2174_0109298673251025230919105818
Cites_doi 10.1038/nsmb.3319
10.1016/S1534-5807(01)00055-7
10.1158/1940-6207.CAPR-11-0536
10.1016/j.redox.2018.04.007
10.1016/j.freeradbiomed.2007.06.005
10.3390/ijms22073709
10.1016/S0968-0004(02)02110-2
10.1038/s41467-020-16312-7
10.1089/ars.2011.4373
10.1016/j.cmet.2018.03.016
10.1042/BJ20090666
10.1089/ars.2020.8048
10.1152/ajpheart.00700.2002
10.1096/fj.14-268276
10.1016/j.bbrc.2019.03.199
10.1038/ncomms1708
10.1038/msb.2010.5
10.1038/s41467-020-18039-x
10.1038/s12276-020-00504-8
10.1038/nature16187
10.1128/MCB.01868-08
10.1046/j.1474-9728.2003.00040.x
10.1006/excr.1997.3893
10.1016/j.stemcr.2019.12.012
10.3389/fnagi.2016.00299
10.1038/ncomms7001
10.1038/s41467-018-07825-3
10.1155/2017/7941563
10.1038/s41467-019-13668-3
10.1002/eji.201343921
10.1371/journal.pcbi.1003728
10.1093/nar/gki273
10.1152/ajplung.00293.2015
10.1038/onc.2011.327
10.1126/science.1219855
10.1371/journal.pbio.0060301
10.1083/jcb.200809125
10.1111/acel.12075
10.1016/j.molcel.2019.04.024
10.1111/j.1474-9726.2010.00658.x
10.1038/ncb3195
10.1038/nature12437
10.15252/embr.201949799
10.1038/ncb3225
10.1089/ars.2015.6407
10.1042/BJ20081386
10.1080/15548627.2018.1532259
10.18632/aging.101463
10.3389/fcell.2021.656201
10.1042/bj20030816
10.1038/s41419-017-0105-5
10.1007/s10522-012-9397-0
10.1016/j.cmet.2015.11.011
10.1126/science.aax0860
10.1038/s41591-018-0092-9
10.1111/j.1474-9726.2012.00795.x
10.1038/s41577‐019‐0165‐0
10.1074/jbc.M700679200
10.1042/BJ20040095
10.1038/s41556-018-0124-1
10.1021/pr501221g
10.1038/s42255-020-00298-z
10.1007/BF01128816
10.1002/jcp.20753
10.1007/BF02254978
10.1124/jpet.112.194712
10.1038/nrm2952
10.1002/pmic.201800421
10.1111/acel.12545
10.3389/fcell.2017.00090
10.1016/j.cell.2019.10.005
10.1016/j.cell.2006.06.025
10.1038/s41418-018-0118-3
10.1038/nature10600
10.1016/j.bbrc.2004.08.177
10.3389/fimmu.2018.00832
10.1038/nature14156
10.1074/jbc.RA118.005806
10.1101/gad.197954.112
10.1042/BJ20121778
10.1038/s42255-018-0014-7
10.1128/MCB.00169-10
10.1016/S0006-291X(02)00464-3
10.1159/000213728
10.1101/gad.331272.119
10.1016/j.mad.2017.08.005
10.1038/nature09663
10.15252/embj.2019101982
10.1016/j.tcb.2018.02.001
10.1016/j.tibs.2019.06.011
10.1038/nrm3013
10.1158/0008-5472.177.65.1
10.1002/1873-3468.13498
10.1038/s41556-019-0287-4
10.1038/nprot.2016.159
10.1111/acel.13296
10.1074/jbc.C700018200
10.1016/j.cell.2021.09.034
10.1038/ncomms3308
10.1111/j.1469-7793.2003.00335.x
10.1038/ncb1909
10.1038/s41577-019-0215-7
10.1155/2018/1941285
10.1146/annurev-pharmtox-050120-105018
10.18632/aging.100423
10.1038/nature12154
10.1016/j.molcel.2005.03.027
10.1016/j.cmet.2018.12.008
10.15252/embj.2020106048
10.1038/nm.4054
10.1038/ncb2466
10.1371/journal.pbio.0050110
10.1038/ncb2784
10.15252/embj.201592862
10.1016/j.cmet.2016.05.006
10.1111/acel.13015
10.1038/nature11776
10.1016/j.devcel.2014.11.012
10.1038/ncomms11190
10.1111/acel.13067
10.1242/jcs.059246
10.1038/s42255-021-00412-9
10.1038/s42255-020-00305-3
10.1038/ncomms5172
10.1038/ncomms14532
10.1016/j.molcel.2007.03.023
10.1016/j.redox.2016.10.014
10.1016/j.exger.2006.04.009
10.1016/j.exger.2017.03.004
10.1186/s12915-017-0470-7
10.1074/jbc.M300318200
10.1038/sj.cdd.4402107
10.1111/acel.12344
10.1038/sj.onc.1207102
10.3390/ijms22052245
10.1126/science.abb5916
10.1111/acel.12882
10.1016/j.immuni.2013.08.001
10.1016/j.molmed.2017.01.003
10.1242/jcs.061481
10.1111/acel.12445
10.3389/fphys.2019.01523
10.1038/s41419-019-1550-0
10.1016/j.cmet.2020.08.004
10.1038/nature16932
10.1007/s10522-008-9134-x
10.1016/j.ebiom.2017.03.020
10.1186/s13287-021-02339-0
10.1097/CCM.0b013e3181a001ae
10.15252/embj.2018100492
ContentType Journal Article
Copyright 2022 Federation of European Biochemical Societies
2022 Federation of European Biochemical Societies.
Copyright © 2023 Federation of European Biochemical Societies
Copyright_xml – notice: 2022 Federation of European Biochemical Societies
– notice: 2022 Federation of European Biochemical Societies.
– notice: Copyright © 2023 Federation of European Biochemical Societies
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/febs.16361
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
CrossRef
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1742-4658
EndPage 1202
ExternalDocumentID PMC9296701
35048548
10_1111_febs_16361
FEBS16361
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute on Aging
  funderid: 1R01AG 68048‐1; P01AG 62413‐1
– fundername: National Institutes of Health
  funderid: 1UG3CA 268103‐1
– fundername: NIA NIH HHS
  grantid: P01 AG062413
– fundername: NCI NIH HHS
  grantid: UG3 CA268103
– fundername: NIA NIH HHS
  grantid: R01 AG068048
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5471-ddb98b1e4432e4e0d30168405e1c9ffdd16cac13190ef34039732e2bf8bd99813
IEDL.DBID DR2
ISSN 1742-464X
1742-4658
IngestDate Thu Aug 21 18:35:23 EDT 2025
Fri Jul 11 18:26:22 EDT 2025
Fri Jul 11 16:43:50 EDT 2025
Fri Jul 25 19:31:35 EDT 2025
Mon Jul 21 05:40:32 EDT 2025
Tue Jul 01 03:07:16 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Wed Jan 22 16:23:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords senescence
ageing
SASP
mitochondria
Language English
License 2022 Federation of European Biochemical Societies.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5471-ddb98b1e4432e4e0d30168405e1c9ffdd16cac13190ef34039732e2bf8bd99813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Author contributions: HM and JFP wrote the manuscript, HM created the figures and graphical abstract.
ORCID 0000-0001-8765-1890
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.16361
PMID 35048548
PQID 2780744600
PQPubID 28478
PageCount 1202
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9296701
proquest_miscellaneous_2811979615
proquest_miscellaneous_2621661276
proquest_journals_2780744600
pubmed_primary_35048548
crossref_primary_10_1111_febs_16361
crossref_citationtrail_10_1111_febs_16361
wiley_primary_10_1111_febs_16361_FEBS16361
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2011; 479
2010; 11
2013; 4
2004; 323
2020; 20
2019; 10
2019; 15
2015; 309
2019; 19
2019; 18
2020; 14
2005; 65
2020; 11
2012; 14
2012; 13
2003; 278
2003; 552
2012; 11
2016; 35
2008; 183
2020; 19
2009; 11
2018; 9
2018; 170
2006; 209
2019; 21
2019; 26
2019; 29
2007; 5
2012; 26
2010; 30
2010; 6
2014; 10
2003; 284
2018; 28
2012; 342
2002; 9
2007; 282
2019; 1
2015; 520
2013; 501
2004; 380
2019; 38
2020; 34
2020; 32
2016; 15
2018; 20
2018; 27
2007; 14
2012; 31
2014; 44
2012; 30
2018; 24
1995; 41
2016; 7
2018; 17
2006; 41
1984; 4
2019; 44
2013; 452
2019; 179
2021; 371
2020; 21
2019; 294
2021; 61
2018; 10
2005; 18
2018; 16
2016; 8
2003; 22
2016; 23
2014; 31
2016; 22
2017; 5
2017; 8
2021; 20
2021; 22
2008; 9
1998; 239
2020; 368
2011; 10
2008; 6
2013; 18
2013; 15
2021; 34
2020; 2
2014; 2
2020; 52
2013; 12
2003; 2
2019; 513
2006; 126
2021; 40
2012; 337
2005; 33
2019; 593
2007; 26
2021; 9
2015; 14
2015; 6
2015; 17
2021; 3
2017; 2017
2019; 75
2002; 294
2017; 21
2010; 123
2017; 23
2016; 529
2021; 184
2018; e12811
2009; 417
2003; 376
2009; 29
2002; 27
2015; 23
2018; 2018
2012; 3
2021; 12
2013; 39
2015; 29
2017; 92
2011; 469
2017; 16
2017; 11
2017; 12
2016; 530
2013; 498
2013; 493
2001; 1
2007; 43
2012; 4
2012; 5
2009; 423
2009; 37
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_90_1
e_1_2_10_71_1
Manzella N (e_1_2_10_47_1) 2018; 12811
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
Chaung WW (e_1_2_10_144_1) 2012; 30
e_1_2_10_121_1
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
Santos AL (e_1_2_10_70_1) 2018; 2018
e_1_2_10_130_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_89_1
References_xml – volume: 14
  start-page: 644
  year: 2015
  end-page: 58
  article-title: The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs
  publication-title: Aging Cell
– volume: 30
  start-page: 199
  year: 2012
  end-page: 203
  article-title: Mitochondrial transcription factor A is a proinflammatory mediator in hemorrhagic shock
  publication-title: Int J Mol Med
– volume: 31
  start-page: 722
  year: 2014
  end-page: 33
  article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF‐AA
  publication-title: Dev Cell
– volume: 282
  start-page: 10841
  year: 2007
  end-page: 5
  article-title: Extension of human cell lifespan by nicotinamide phosphoribosyltransferase
  publication-title: J Biol Chem
– volume: 32
  start-page: 447
  year: 2020
  end-page: 456.e6
  article-title: Alpha‐ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice
  publication-title: Cell Metab
– volume: 11
  start-page: 1
  year: 2020
  end-page: 13
  article-title: Senolytics prevent mt‐DNA‐induced inflammation and promote the survival of aged organs following transplantation
  publication-title: Nat Commun
– volume: 184
  start-page: 5506
  year: 2021
  end-page: 26
  article-title: Cytoplasmic DNA: sources, sensing, and role in aging and disease
  publication-title: Cell
– volume: 12
  issue: 1
  year: 2021
  article-title: MiR‐34a suppression targets Nampt to ameliorate bone marrow mesenchymal stem cell senescence by regulating NAD+‐Sirt1 pathway
  publication-title: Stem Cell Res Therapy
– volume: 26
  start-page: 276
  year: 2019
  end-page: 90
  article-title: Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2
  publication-title: Cell Death Differ
– volume: 23
  start-page: 1329
  year: 2015
  end-page: 50
  article-title: The roles of mitochondrial damage‐associated molecular patterns in diseases
  publication-title: Antioxidants Redox Signal
– volume: 15
  start-page: 510
  year: 2019
  end-page: 26
  article-title: PRKN‐regulated mitophagy and cellular senescence during COPD pathogenesis
  publication-title: Autophagy
– volume: 22
  start-page: 3709
  year: 2021
  article-title: Nicotinamide phosphoribosyltransferase as a key molecule of the aging/senescence process
  publication-title: Int J Mol Sci
– volume: 423
  start-page: 363
  year: 2009
  end-page: 74
  article-title: The NADPH oxidase Nox4 restricts the replicative lifespan of human endothelial cells
  publication-title: Biochem J
– volume: 3
  start-page: 983
  year: 2021
  end-page: 1000
  article-title: The SESAME complex regulates cell senescence through the generation of acetyl‐CoA
  publication-title: Nat Metab
– volume: 294
  start-page: 10564
  year: 2019
  end-page: 78
  article-title: Inhibition of nucleotide synthesis promotes replicative senescence of human mammary epithelial cells
  publication-title: J Biol Chem
– volume: 10
  start-page: 239
  year: 2011
  end-page: 54
  article-title: Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue
  publication-title: Aging Cell
– volume: 513
  start-page: 486
  year: 2019
  end-page: 93
  article-title: The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age‐related cellular NAD+ decline
  publication-title: Biochem Biophys Res Commun
– volume: 179
  start-page: 813
  year: 2019
  end-page: 27
  article-title: Cellular senescence: defining a path forward
  publication-title: Cell
– volume: 24
  start-page: 1246
  year: 2018
  end-page: 56
  article-title: Senolytics improve physical function and increase lifespan in old age
  publication-title: Nat Med
– volume: 35
  start-page: 724
  year: 2016
  end-page: 42
  article-title: Mitochondria are required for pro‐ageing features of the senescent phenotype
  publication-title: EMBO J
– volume: 38
  year: 2019
  article-title: Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence
  publication-title: EMBO J
– volume: 126
  start-page: 177
  year: 2006
  end-page: 89
  article-title: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion
  publication-title: Cell
– volume: 11
  start-page: 2549
  issue: 1
  year: 2020
  article-title: Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics
  publication-title: Nat Commun
– volume: 9
  start-page: 1
  year: 2018
  article-title: Mitochondrial damage‐associated molecular patterns: from inflammatory signaling to human diseases
  publication-title: Front Immunol
– volume: 20
  start-page: 1
  issue: 2
  year: 2021
  end-page: 16
  article-title: Whole‐body senescent cell clearance alleviates age‐related brain inflammation and cognitive impairment in mice
  publication-title: Aging Cell
– volume: 23
  start-page: 201
  year: 2017
  end-page: 15
  article-title: Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging
  publication-title: Trends Mol Med
– volume: 19
  start-page: 477
  year: 2019
  end-page: 89
  article-title: The NLRP3 inflammasome: molecular activation and regulation to therapeutics
  publication-title: Nat Rev Immunol
– volume: 10
  start-page: 318
  year: 2019
  article-title: FASN activity is important for the initial stages of the induction of senescence
  publication-title: Cell Death Dis
– volume: 469
  start-page: 221
  year: 2011
  end-page: 6
  article-title: A role for mitochondria in NLRP3 inflammasome activation
  publication-title: Nature
– volume: 9
  start-page: 5435
  year: 2018
  article-title: Impaired immune surveillance accelerates accumulation of senescent cells and aging
  publication-title: Nat Commun
– volume: 11
  start-page: 872
  year: 2010
  end-page: 84
  article-title: Mitochondrial fusion and fission in cell life and death
  publication-title: Nat Rev Mol Cell Biol
– volume: 9
  start-page: 247
  year: 2008
  end-page: 59
  article-title: Premature senescence of human endothelial cells induced by inhibition of glutaminase
  publication-title: Biogerontology
– volume: 14
  start-page: 1086
  year: 2007
  end-page: 94
  article-title: Inhibiting Drp1‐mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis
  publication-title: Cell Death Differ
– volume: 209
  start-page: 468
  year: 2006
  end-page: 80
  article-title: Formation of elongated giant mitochondria in DFO‐induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1
  publication-title: J Cell Physiol
– volume: 11
  start-page: 973
  year: 2009
  end-page: 9
  article-title: Persistent DNA damage signalling triggers senescence‐associated inflammatory cytokine secretion
  publication-title: Nat Cell Biol
– volume: 16
  start-page: 2
  year: 2018
  article-title: PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol
  publication-title: BMC Biol
– volume: 3
  start-page: 708
  year: 2012
  article-title: Telomeres are favoured targets of a persistent DNA damage response in ageing and stress‐induced senescence
  publication-title: Nat Commun
– volume: 1
  start-page: 16
  year: 2019
  end-page: 33
  article-title: Coupling Krebs cycle metabolites to signalling in immunity and cancer
  publication-title: Nat Metab
– volume: 11
  start-page: 102
  year: 2020
  article-title: Mitochondrial TCA cycle metabolites control physiology and disease
  publication-title: Nat Commun
– volume: 371
  start-page: 265
  year: 2021
  end-page: 70
  article-title: Senolysis by glutaminolysis inhibition ameliorates various age‐associated disorders
  publication-title: Science
– volume: 22
  start-page: 8590
  year: 2003
  end-page: 607
  article-title: The Bcl‐2 family: roles in cell survival and oncogenesis
  publication-title: Oncogene
– volume: 41
  start-page: 674
  year: 2006
  end-page: 82
  article-title: Sustained inhibition of oxidative phosphorylation impairs cell proliferation and induces premature senescence in human fibroblasts
  publication-title: Exp Gerontol
– volume: 11
  start-page: 345
  year: 2012
  end-page: 9
  article-title: A senescent cell bystander effect: senescence‐induced senescence
  publication-title: Aging Cell
– volume: 34
  start-page: 308
  year: 2021
  end-page: 23
  article-title: Senescence in post‐mitotic cells: a driver of aging?
  publication-title: Antioxid Redox Signal
– volume: 14
  start-page: 1854
  year: 2015
  end-page: 71
  article-title: Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease
  publication-title: J Proteome Res
– volume: 21
  year: 2020
  article-title: Mitochondrial DNA in inflammation and immunity
  publication-title: EMBO Rep
– volume: 23
  start-page: 1127
  year: 2016
  end-page: 39
  article-title: CD38 dictates age‐related NAD decline and mitochondrial dysfunction through an SIRT3‐dependent mechanism
  publication-title: Cell Metab
– volume: 593
  start-page: 1566
  year: 2019
  end-page: 79
  article-title: Mitochondrial dysfunction and cell senescence: deciphering a complex relationship
  publication-title: FEBS Lett
– volume: 309
  start-page: L1124
  year: 2015
  end-page: 37
  article-title: DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 2
  start-page: 1284
  year: 2020
  end-page: 304
  article-title: CD38 ecto‐enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels
  publication-title: Nat Metab
– volume: 530
  start-page: 184
  year: 2016
  end-page: 9
  article-title: Naturally occurring p16Ink4a‐positive cells shorten healthy lifespan
  publication-title: Nature
– volume: 183
  start-page: 795
  year: 2008
  end-page: 803
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J Cell Biol
– volume: 37
  start-page: 2000
  year: 2009
  end-page: 9
  article-title: Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors
  publication-title: Crit Care Med
– volume: 9
  year: 2021
  article-title: Targeting the mitochondria‐proteostasis axis to delay aging
  publication-title: Front Cell Dev Biol
– volume: 31
  start-page: 1117
  year: 2012
  end-page: 29
  article-title: ROS‐generating NADPH oxidase NOX4 is a critical mediator in oncogenic H‐Ras‐induced DNA damage and subsequent senescence
  publication-title: Oncogene
– volume: 19
  year: 2020
  article-title: Mitochondrial mass governs the extent of human T cell senescence
  publication-title: Aging Cell
– volume: 22
  start-page: 1
  year: 2021
  end-page: 15
  article-title: Selective cardiomyocyte oxidative stress leads to bystander senescence of cardiac stromal cells
  publication-title: Int J Mol Sci
– volume: 6
  start-page: 347
  year: 2010
  article-title: Feedback between p21 and reactive oxygen production is necessary for cell senescence
  publication-title: Mol Syst Biol
– volume: 10
  year: 2014
  article-title: Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions
  publication-title: PLoS Comput Biol
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 23
  article-title: The good, the bad, and the ugly of ROS: new insights on aging and aging‐related diseases from eukaryotic and prokaryotic model organisms
  publication-title: Oxid Med Cell Longev
– volume: 17
  start-page: 259
  year: 2018
  end-page: 73
  article-title: Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging
  publication-title: Redox Biol
– volume: 12
  start-page: 183
  year: 2017
  end-page: 94
  article-title: Depletion of mitochondria in mammalian cells through enforced mitophagy
  publication-title: Nat Protoc
– volume: 75
  start-page: 117
  year: 2019
  end-page: 130.e6
  article-title: Targeted and persistent 8‐oxoguanine base damage at telomeres promotes telomere loss and crisis
  publication-title: Mol Cell
– volume: 27
  start-page: 339
  year: 2002
  end-page: 44
  article-title: Oxidative stress shortens telomeres
  publication-title: Trends Biochem Sci
– volume: 2
  start-page: 4172
  year: 2014
  article-title: Chronic inflammation induces telomere dysfunction and accelerates ageing in mice
  publication-title: Nat Commun
– volume: 11
  start-page: 30
  year: 2017
  end-page: 7
  article-title: A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1− mice is correlated to increased cellular senescence
  publication-title: Redox Biol
– volume: 9
  start-page: 517
  year: 2002
  end-page: 26
  article-title: Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence
  publication-title: J Biomed Sci
– volume: 26
  start-page: 323
  year: 2007
  end-page: 34
  article-title: A RAP1/TRF2 complex inhibits nonhomologous end‐joining at human telomeric DNA ends
  publication-title: Mol Cell
– volume: 29
  start-page: 1061
  year: 2019
  end-page: 1077.e8
  article-title: Obesity‐induced cellular senescence drives anxiety and impairs neurogenesis
  publication-title: Cell Metab
– volume: 40
  year: 2021
  article-title: Neutrophils induce paracrine telomere dysfunction and senescence in ROS‐dependent manner
  publication-title: EMBO J
– volume: 501
  start-page: 421
  year: 2013
  end-page: 5
  article-title: Synthetic lethal metabolic targeting of cellular senescence in cancer therapy
  publication-title: Nature
– volume: 30
  start-page: 3875
  year: 2010
  end-page: 86
  article-title: HuR uses AUF1 as a cofactor to promote p16 INK4 mRNA decay
  publication-title: Mol Cell Biol
– volume: 13
  start-page: 525
  year: 2012
  end-page: 36
  article-title: Cytosolic malate dehydrogenase regulates senescence in human fibroblasts
  publication-title: Biogerontology
– volume: 15
  start-page: 428
  year: 2016
  end-page: 35
  article-title: Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors
  publication-title: Aging Cell
– volume: 43
  start-page: 947
  year: 2007
  end-page: 58
  article-title: Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells
  publication-title: Free Radic Biol Med
– volume: 17
  start-page: 1049
  year: 2015
  end-page: 61
  article-title: MTOR regulates the pro‐tumorigenic senescence‐associated secretory phenotype by promoting IL1A translation
  publication-title: Nat Cell Biol
– volume: 38
  start-page: 1
  year: 2019
  end-page: 18
  article-title: Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction
  publication-title: EMBO J
– volume: 23
  start-page: 303
  year: 2016
  end-page: 14
  article-title: Mitochondrial dysfunction induces senescence with a distinct secretory phenotype
  publication-title: Cell Metab
– volume: 170
  start-page: 30
  year: 2018
  end-page: 6
  article-title: The senescent bystander effect is caused by ROS‐activated NF‐κB signalling
  publication-title: Mech Ageing Dev
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 19
  article-title: Aging: molecular pathways and implications on the cardiovascular system
  publication-title: Oxid Med Cell Longev
– volume: 92
  start-page: 7
  year: 2017
  end-page: 12
  article-title: Depletion of oxaloacetate decarboxylase FAHD1 inhibits mitochondrial electron transport and induces cellular senescence in human endothelial cells
  publication-title: Exp Gerontol
– volume: 529
  start-page: 37
  year: 2016
  end-page: 42
  article-title: Autophagy maintains stemness by preventing senescence
  publication-title: Nature
– volume: 28
  start-page: 436
  year: 2018
  end-page: 53
  article-title: Hallmarks of cellular senescence
  publication-title: Trends Cell Biol
– volume: 284
  start-page: H1460
  year: 2003
  end-page: 7
  article-title: Age‐dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 337
  start-page: 1062
  year: 2012
  end-page: 5
  article-title: Mitochondrial fission, fusion, and stress
  publication-title: Science
– volume: 41
  start-page: 95
  issue: Suppl 2
  year: 1995
  end-page: 108
  article-title: Lipofuscin accumulation and ageing of fibroblasts
  publication-title: Gerontology
– volume: 4
  start-page: 3
  year: 2012
  end-page: 12
  article-title: Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin
  publication-title: Aging
– volume: 493
  start-page: 689
  year: 2013
  end-page: 93
  article-title: Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence
  publication-title: Nature
– volume: 12
  start-page: 489
  year: 2013
  end-page: 98
  article-title: Metformin inhibits the senescence‐associated secretory phenotype by interfering with IKK/NF‐κB activation
  publication-title: Aging Cell
– volume: 123
  start-page: 619
  year: 2010
  end-page: 26
  article-title: Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin‐related protein 1 and mitofusin 1
  publication-title: J Cell Sci
– volume: 29
  start-page: 4495
  year: 2009
  end-page: 507
  article-title: Mitochondrial dysfunction contributes to oncogene‐induced senescence
  publication-title: Mol Cell Biol
– volume: 18
  start-page: 5
  year: 2013
  end-page: 18
  article-title: p53‐PGC‐1α pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase‐A upregulation: role in chronic left ventricular dysfunction in mice
  publication-title: Antioxid Redox Signal
– volume: 368
  start-page: 1371
  year: 2020
  end-page: 6
  article-title: T cells with dysfunctional mitochondria induce multimorbidity and premature senescence
  publication-title: Science
– volume: 20
  start-page: 95
  year: 2020
  end-page: 112
  article-title: DAMP‐sensing receptors in sterile inflammation and inflammatory diseases
  publication-title: Nat Rev Immunol
– volume: 27
  start-page: 1081
  year: 2018
  end-page: 1095.e10
  article-title: A potent and specific CD38 inhibitor ameliorates age‐related metabolic dysfunction by reversing tissue NAD+ decline
  publication-title: Cell Metab
– volume: 2
  start-page: 141
  year: 2003
  end-page: 3
  article-title: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress
  publication-title: Aging Cell
– volume: 61
  start-page: 779
  year: 2021
  end-page: 803
  article-title: Senolytic drugs: reducing senescent cell viability to extend health span
  publication-title: Annu Rev Pharmacol Toxicol
– volume: 33
  start-page: 1230
  year: 2005
  end-page: 9
  article-title: Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2
  publication-title: Nucleic Acids Res
– volume: 17
  start-page: 1205
  year: 2015
  end-page: 17
  article-title: mTOR regulates MAPKAPK2 translation to control the senescence‐associated secretory phenotype
  publication-title: Nat Cell Biol
– volume: 15
  start-page: 978
  year: 2013
  end-page: 90
  article-title: A complex secretory program orchestrated by the inflammasome controls paracrine senescence
  publication-title: Nat Cell Biol
– volume: 6
  start-page: 2853
  year: 2008
  end-page: 68
  article-title: Senescence‐associated secretory phenotypes reveal cell‐nonautonomous functions of oncogenic RAS and the p53 tumor suppressor
  publication-title: PLoS Biol
– volume: 342
  start-page: 827
  year: 2012
  end-page: 34
  article-title: Activation of AMP‐activated protein kinase inhibits the proliferation of human endothelial cells
  publication-title: J Pharmacol Exp Ther
– volume: 1
  start-page: 515
  year: 2001
  end-page: 25
  article-title: The role of dynamin‐related protein 1, a mediator of mitochondrial fission, in apoptosis
  publication-title: Dev Cell
– volume: 239
  start-page: 152
  year: 1998
  end-page: 60
  article-title: Preferential accumulation of single‐stranded regions in telomeres of human fibroblasts
  publication-title: Exp Cell Res
– volume: 452
  start-page: 231
  year: 2013
  end-page: 9
  article-title: Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4
  publication-title: Biochem J
– volume: e12811
  year: 2018
  article-title: Monoamine oxidase‐A is a novel driver of stress‐induced premature senescence through inhibition of parkin‐mediated mitophagy
  publication-title: Aging Cell
– volume: 282
  start-page: 22977
  year: 2007
  end-page: 83
  article-title: Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence
  publication-title: J Biol Chem
– volume: 4
  start-page: 2308
  year: 2013
  article-title: Cytosolic p53 inhibits Parkin‐mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart
  publication-title: Nat Commun
– volume: 380
  start-page: 919
  year: 2004
  end-page: 28
  article-title: Senescence‐associated changes in respiration and oxidative phosphorylation in primary human fibroblasts
  publication-title: Biochem J
– volume: 26
  start-page: 2311
  year: 2012
  end-page: 24
  article-title: Nuclear lamina defects cause ATM‐dependent NF‐κB activation and link accelerated aging to a systemic inflammatory response
  publication-title: Genes Dev
– volume: 11
  start-page: 621
  year: 2010
  end-page: 32
  article-title: Mitochondria and cell death: outer membrane permeabilization and beyond
  publication-title: Nat Rev Mol Cell Biol
– volume: 5
  year: 2007
  article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence
  publication-title: PLoS Biol
– volume: 20
  start-page: 1
  year: 2020
  end-page: 10
  article-title: Proteome oxidative modifications and impairment of specific metabolic pathways during cellular senescence and aging
  publication-title: Proteomics
– volume: 14
  start-page: 355
  year: 2012
  end-page: 65
  article-title: Telomeric DNA damage is irreparable and causes persistent DNA‐damage‐response activation
  publication-title: Nat Cell Biol
– volume: 294
  start-page: 245
  year: 2002
  end-page: 8
  article-title: A role for mitochondria as potential regulators of cellular life span
  publication-title: Biochem Biophys Res Commun
– volume: 520
  start-page: 553
  year: 2015
  end-page: 7
  article-title: Mitochondrial DNA stress primes the antiviral innate immune response
  publication-title: Nature
– volume: 498
  start-page: 109
  year: 2013
  end-page: 12
  article-title: A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene‐induced senescence
  publication-title: Nature
– volume: 20
  start-page: 745
  year: 2018
  end-page: 54
  article-title: The multifaceted contributions of mitochondria to cellular metabolism
  publication-title: Nat Cell Biol
– volume: 376
  start-page: 403
  year: 2003
  end-page: 11
  article-title: Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence
  publication-title: Biochem J
– volume: 7
  start-page: 1
  year: 2016
  end-page: 11
  article-title: Directed elimination of senescent cells by inhibition of BCL‐W and BCL‐XL
  publication-title: Nat Commun
– volume: 18
  start-page: 283
  year: 2005
  end-page: 93
  article-title: AMP‐activated protein kinase induces a p53‐dependent metabolic checkpoint
  publication-title: Mol Cell
– volume: 278
  start-page: 27016
  year: 2003
  end-page: 23
  article-title: Increased AMP:ATP ratio and AMP‐activated protein kinase activity during cellular senescence linked to reduced HuR function
  publication-title: J Biol Chem
– volume: 44
  start-page: 996
  year: 2019
  end-page: 1008
  article-title: Expansion and cell‐cycle arrest: common denominators of cellular senescence
  publication-title: Trends Biochem Sci
– volume: 8
  start-page: 14532
  year: 2017
  article-title: Cellular senescence mediates fibrotic pulmonary disease
  publication-title: Nat Commun
– volume: 323
  start-page: 739
  year: 2004
  end-page: 42
  article-title: Cardiolipin induces premature senescence in normal human fibroblasts
  publication-title: Biochem Biophys Res Commun
– volume: 18
  year: 2019
  article-title: Aging induces cardiac mesenchymal stromal cell senescence and promotes endothelial cell fate of the CD90 + subset
  publication-title: Aging Cell
– volume: 14
  start-page: 201
  year: 2020
  end-page: 9
  article-title: Senescence‐associated metabolomic phenotype in primary and iPSC‐derived mesenchymal stromal cells
  publication-title: Stem Cell Reports
– volume: 18
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Rapamycin improves healthspan but not inflammaging in nfκb1 −/− mice
  publication-title: Aging Cell
– volume: 123
  start-page: 917
  year: 2010
  end-page: 26
  article-title: Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1
  publication-title: J Cell Sci
– volume: 9
  start-page: 332
  year: 2018
  article-title: Mitochondria‐associated membranes in aging and senescence: structure, function, and dynamics
  publication-title: Cell Death Dis
– volume: 44
  start-page: 1552
  year: 2014
  end-page: 62
  article-title: Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm‐aging”
  publication-title: Eur J Immunol
– volume: 5
  start-page: 90
  year: 2017
  article-title: Role of cardiolipin in mitochondrial signaling pathways
  publication-title: Front Cell Dev Biol
– volume: 10
  start-page: 1239
  year: 2018
  end-page: 56
  article-title: Mitochondrial peptides modulate mitochondrial function during cellular senescence
  publication-title: Aging
– volume: 479
  start-page: 232
  year: 2011
  end-page: 6
  article-title: Clearance of p16Ink4a‐positive senescent cells delays ageing‐associated disorders
  publication-title: Nature
– volume: 10
  start-page: 1523
  year: 2019
  article-title: Where metabolism meets senescence: focus on endothelial cells
  publication-title: Front Physiol
– volume: 39
  start-page: 311
  year: 2013
  end-page: 23
  article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation
  publication-title: Immunity
– volume: 22
  start-page: 412
  year: 2016
  end-page: 20
  article-title: p16(Ink4a)‐induced senescence of pancreatic beta cells enhances insulin secretion
  publication-title: Nat Med
– volume: 21
  start-page: 397
  year: 2019
  end-page: 407
  article-title: NAD + metabolism governs the proinflammatory senescence‐associated secretome
  publication-title: Nat Cell Biol
– volume: 4
  start-page: 751
  year: 1984
  end-page: 6
  article-title: Increased glycolysis in ageing cultured human diploid fibroblasts
  publication-title: Biosci Rep
– volume: 2
  start-page: 1265
  year: 2020
  end-page: 83
  article-title: Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages
  publication-title: Nat Metab
– volume: 52
  start-page: 1496
  year: 2020
  end-page: 516
  article-title: Glutamine reliance in cell metabolism
  publication-title: Exp Mol Med
– volume: 552
  start-page: 335
  year: 2003
  end-page: 44
  article-title: Mitochondrial formation of reactive oxygen species
  publication-title: J Physiol
– volume: 34
  start-page: 428
  year: 2020
  end-page: 45
  article-title: Mitochondria‐to‐nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence
  publication-title: Genes Dev
– volume: 417
  start-page: 1
  year: 2009
  end-page: 13
  article-title: How mitochondria produce reactive oxygen species
  publication-title: Biochem J
– volume: 5
  start-page: 536
  year: 2012
  end-page: 43
  article-title: Metformin reduces endogenous reactive oxygen species and associated DNA damage
  publication-title: Cancer Prev Res
– volume: 21
  start-page: 7
  year: 2017
  end-page: 13
  article-title: Mitochondria in cell senescence: is mitophagy the weakest link?
  publication-title: EBioMedicine
– volume: 6
  start-page: 6001
  year: 2015
  article-title: Fumarate induces redox‐dependent senescence by modifying glutathione metabolism
  publication-title: Nat Commun
– volume: 65
  start-page: 177
  year: 2005
  end-page: 85
  article-title: Glycolytic enzymes can modulate cellular life span
  publication-title: Cancer Res
– volume: 8
  start-page: 299
  year: 2016
  article-title: Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs
  publication-title: Front Aging Neurosci
– volume: 16
  start-page: 192
  year: 2017
  end-page: 7
  article-title: Robust, universal biomarker assay to detect senescent cells in biological specimens
  publication-title: Aging Cell
– volume: 23
  start-page: 1092
  year: 2016
  end-page: 100
  article-title: Oxidative guanine base damage regulates human telomerase activity
  publication-title: Nat Struct Mol Biol
– volume: 29
  start-page: 2912
  year: 2015
  end-page: 29
  article-title: Impaired mitophagy leads to cigarette smoke stress‐induced cellular senescence: implications for chronic obstructive pulmonary disease
  publication-title: FASEB J
– ident: e_1_2_10_81_1
  doi: 10.1038/nsmb.3319
– ident: e_1_2_10_33_1
  doi: 10.1016/S1534-5807(01)00055-7
– ident: e_1_2_10_153_1
  doi: 10.1158/1940-6207.CAPR-11-0536
– ident: e_1_2_10_100_1
  doi: 10.1016/j.redox.2018.04.007
– ident: e_1_2_10_61_1
  doi: 10.1016/j.freeradbiomed.2007.06.005
– ident: e_1_2_10_107_1
  doi: 10.3390/ijms22073709
– volume: 12811
  year: 2018
  ident: e_1_2_10_47_1
  article-title: Monoamine oxidase‐A is a novel driver of stress‐induced premature senescence through inhibition of parkin‐mediated mitophagy
  publication-title: Aging Cell
– ident: e_1_2_10_75_1
  doi: 10.1016/S0968-0004(02)02110-2
– ident: e_1_2_10_36_1
  doi: 10.1038/s41467-020-16312-7
– ident: e_1_2_10_95_1
  doi: 10.1089/ars.2011.4373
– ident: e_1_2_10_117_1
  doi: 10.1016/j.cmet.2018.03.016
– ident: e_1_2_10_88_1
  doi: 10.1042/BJ20090666
– volume: 30
  start-page: 199
  year: 2012
  ident: e_1_2_10_144_1
  article-title: Mitochondrial transcription factor A is a proinflammatory mediator in hemorrhagic shock
  publication-title: Int J Mol Med
– ident: e_1_2_10_4_1
  doi: 10.1089/ars.2020.8048
– ident: e_1_2_10_94_1
  doi: 10.1152/ajpheart.00700.2002
– ident: e_1_2_10_44_1
  doi: 10.1096/fj.14-268276
– ident: e_1_2_10_114_1
  doi: 10.1016/j.bbrc.2019.03.199
– ident: e_1_2_10_78_1
  doi: 10.1038/ncomms1708
– ident: e_1_2_10_49_1
  doi: 10.1038/msb.2010.5
– ident: e_1_2_10_135_1
  doi: 10.1038/s41467-020-18039-x
– ident: e_1_2_10_125_1
  doi: 10.1038/s12276-020-00504-8
– ident: e_1_2_10_42_1
  doi: 10.1038/nature16187
– ident: e_1_2_10_48_1
  doi: 10.1128/MCB.01868-08
– ident: e_1_2_10_76_1
  doi: 10.1046/j.1474-9728.2003.00040.x
– ident: e_1_2_10_74_1
  doi: 10.1006/excr.1997.3893
– ident: e_1_2_10_64_1
  doi: 10.1016/j.stemcr.2019.12.012
– ident: e_1_2_10_51_1
  doi: 10.3389/fnagi.2016.00299
– ident: e_1_2_10_121_1
  doi: 10.1038/ncomms7001
– ident: e_1_2_10_20_1
  doi: 10.1038/s41467-018-07825-3
– ident: e_1_2_10_73_1
  doi: 10.1155/2017/7941563
– ident: e_1_2_10_56_1
  doi: 10.1038/s41467-019-13668-3
– ident: e_1_2_10_134_1
  doi: 10.1002/eji.201343921
– ident: e_1_2_10_41_1
  doi: 10.1371/journal.pcbi.1003728
– ident: e_1_2_10_82_1
  doi: 10.1093/nar/gki273
– ident: e_1_2_10_43_1
  doi: 10.1152/ajplung.00293.2015
– ident: e_1_2_10_90_1
  doi: 10.1038/onc.2011.327
– ident: e_1_2_10_30_1
  doi: 10.1126/science.1219855
– ident: e_1_2_10_11_1
  doi: 10.1371/journal.pbio.0060301
– ident: e_1_2_10_37_1
  doi: 10.1083/jcb.200809125
– ident: e_1_2_10_150_1
  doi: 10.1111/acel.12075
– ident: e_1_2_10_80_1
  doi: 10.1016/j.molcel.2019.04.024
– ident: e_1_2_10_98_1
  doi: 10.1111/j.1474-9726.2010.00658.x
– ident: e_1_2_10_149_1
  doi: 10.1038/ncb3195
– ident: e_1_2_10_68_1
  doi: 10.1038/nature12437
– ident: e_1_2_10_133_1
  doi: 10.15252/embr.201949799
– ident: e_1_2_10_151_1
  doi: 10.1038/ncb3225
– ident: e_1_2_10_129_1
  doi: 10.1089/ars.2015.6407
– ident: e_1_2_10_72_1
  doi: 10.1042/BJ20081386
– ident: e_1_2_10_45_1
  doi: 10.1080/15548627.2018.1532259
– ident: e_1_2_10_141_1
  doi: 10.18632/aging.101463
– ident: e_1_2_10_38_1
  doi: 10.3389/fcell.2021.656201
– ident: e_1_2_10_57_1
  doi: 10.1042/bj20030816
– ident: e_1_2_10_50_1
  doi: 10.1038/s41419-017-0105-5
– ident: e_1_2_10_111_1
  doi: 10.1007/s10522-012-9397-0
– ident: e_1_2_10_112_1
  doi: 10.1016/j.cmet.2015.11.011
– ident: e_1_2_10_143_1
  doi: 10.1126/science.aax0860
– ident: e_1_2_10_13_1
  doi: 10.1038/s41591-018-0092-9
– ident: e_1_2_10_83_1
  doi: 10.1111/j.1474-9726.2012.00795.x
– ident: e_1_2_10_136_1
  doi: 10.1038/s41577‐019‐0165‐0
– ident: e_1_2_10_28_1
  doi: 10.1074/jbc.M700679200
– ident: e_1_2_10_59_1
  doi: 10.1042/BJ20040095
– ident: e_1_2_10_55_1
  doi: 10.1038/s41556-018-0124-1
– ident: e_1_2_10_63_1
  doi: 10.1021/pr501221g
– ident: e_1_2_10_113_1
  doi: 10.1038/s42255-020-00298-z
– ident: e_1_2_10_62_1
  doi: 10.1007/BF01128816
– ident: e_1_2_10_23_1
  doi: 10.1002/jcp.20753
– ident: e_1_2_10_25_1
  doi: 10.1007/BF02254978
– ident: e_1_2_10_103_1
  doi: 10.1124/jpet.112.194712
– ident: e_1_2_10_146_1
  doi: 10.1038/nrm2952
– ident: e_1_2_10_85_1
  doi: 10.1002/pmic.201800421
– ident: e_1_2_10_87_1
  doi: 10.1111/acel.12545
– ident: e_1_2_10_139_1
  doi: 10.3389/fcell.2017.00090
– ident: e_1_2_10_2_1
  doi: 10.1016/j.cell.2019.10.005
– ident: e_1_2_10_35_1
  doi: 10.1016/j.cell.2006.06.025
– ident: e_1_2_10_148_1
  doi: 10.1038/s41418-018-0118-3
– ident: e_1_2_10_5_1
  doi: 10.1038/nature10600
– ident: e_1_2_10_140_1
  doi: 10.1016/j.bbrc.2004.08.177
– ident: e_1_2_10_130_1
  doi: 10.3389/fimmu.2018.00832
– ident: e_1_2_10_142_1
  doi: 10.1038/nature14156
– ident: e_1_2_10_58_1
  doi: 10.1074/jbc.RA118.005806
– ident: e_1_2_10_93_1
  doi: 10.1101/gad.197954.112
– ident: e_1_2_10_89_1
  doi: 10.1042/BJ20121778
– ident: e_1_2_10_127_1
  doi: 10.1038/s42255-018-0014-7
– ident: e_1_2_10_106_1
  doi: 10.1128/MCB.00169-10
– ident: e_1_2_10_118_1
  doi: 10.1016/S0006-291X(02)00464-3
– ident: e_1_2_10_86_1
  doi: 10.1159/000213728
– ident: e_1_2_10_132_1
  doi: 10.1101/gad.331272.119
– ident: e_1_2_10_91_1
  doi: 10.1016/j.mad.2017.08.005
– ident: e_1_2_10_137_1
  doi: 10.1038/nature09663
– ident: e_1_2_10_84_1
  doi: 10.15252/embj.2019101982
– ident: e_1_2_10_32_1
  doi: 10.1016/j.tcb.2018.02.001
– ident: e_1_2_10_3_1
  doi: 10.1016/j.tibs.2019.06.011
– ident: e_1_2_10_21_1
  doi: 10.1038/nrm3013
– ident: e_1_2_10_66_1
  doi: 10.1158/0008-5472.177.65.1
– ident: e_1_2_10_24_1
  doi: 10.1002/1873-3468.13498
– ident: e_1_2_10_109_1
  doi: 10.1038/s41556-019-0287-4
– ident: e_1_2_10_69_1
  doi: 10.1038/nprot.2016.159
– ident: e_1_2_10_9_1
  doi: 10.1111/acel.13296
– ident: e_1_2_10_110_1
  doi: 10.1074/jbc.C700018200
– ident: e_1_2_10_131_1
  doi: 10.1016/j.cell.2021.09.034
– ident: e_1_2_10_46_1
  doi: 10.1038/ncomms3308
– ident: e_1_2_10_71_1
  doi: 10.1111/j.1469-7793.2003.00335.x
– ident: e_1_2_10_92_1
  doi: 10.1038/ncb1909
– ident: e_1_2_10_128_1
  doi: 10.1038/s41577-019-0215-7
– volume: 2018
  start-page: 1
  year: 2018
  ident: e_1_2_10_70_1
  article-title: The good, the bad, and the ugly of ROS: new insights on aging and aging‐related diseases from eukaryotic and prokaryotic model organisms
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2018/1941285
– ident: e_1_2_10_147_1
  doi: 10.1146/annurev-pharmtox-050120-105018
– ident: e_1_2_10_97_1
  doi: 10.18632/aging.100423
– ident: e_1_2_10_65_1
  doi: 10.1038/nature12154
– ident: e_1_2_10_104_1
  doi: 10.1016/j.molcel.2005.03.027
– ident: e_1_2_10_17_1
  doi: 10.1016/j.cmet.2018.12.008
– ident: e_1_2_10_15_1
  doi: 10.15252/embj.2020106048
– ident: e_1_2_10_53_1
  doi: 10.1038/nm.4054
– ident: e_1_2_10_77_1
  doi: 10.1038/ncb2466
– ident: e_1_2_10_26_1
  doi: 10.1371/journal.pbio.0050110
– ident: e_1_2_10_12_1
  doi: 10.1038/ncb2784
– ident: e_1_2_10_52_1
  doi: 10.15252/embj.201592862
– ident: e_1_2_10_116_1
  doi: 10.1016/j.cmet.2016.05.006
– ident: e_1_2_10_16_1
  doi: 10.1111/acel.13015
– ident: e_1_2_10_105_1
  doi: 10.1038/nature11776
– ident: e_1_2_10_6_1
  doi: 10.1016/j.devcel.2014.11.012
– ident: e_1_2_10_18_1
  doi: 10.1038/ncomms11190
– ident: e_1_2_10_54_1
  doi: 10.1111/acel.13067
– ident: e_1_2_10_27_1
  doi: 10.1242/jcs.059246
– ident: e_1_2_10_119_1
  doi: 10.1038/s42255-021-00412-9
– ident: e_1_2_10_115_1
  doi: 10.1038/s42255-020-00305-3
– ident: e_1_2_10_101_1
  doi: 10.1038/ncomms5172
– ident: e_1_2_10_14_1
  doi: 10.1038/ncomms14532
– ident: e_1_2_10_79_1
  doi: 10.1016/j.molcel.2007.03.023
– ident: e_1_2_10_99_1
  doi: 10.1016/j.redox.2016.10.014
– ident: e_1_2_10_60_1
  doi: 10.1016/j.exger.2006.04.009
– ident: e_1_2_10_122_1
  doi: 10.1016/j.exger.2017.03.004
– ident: e_1_2_10_39_1
  doi: 10.1186/s12915-017-0470-7
– ident: e_1_2_10_102_1
  doi: 10.1074/jbc.M300318200
– ident: e_1_2_10_34_1
  doi: 10.1038/sj.cdd.4402107
– ident: e_1_2_10_8_1
  doi: 10.1111/acel.12344
– ident: e_1_2_10_31_1
  doi: 10.1038/sj.onc.1207102
– ident: e_1_2_10_96_1
  doi: 10.3390/ijms22052245
– ident: e_1_2_10_124_1
  doi: 10.1126/science.abb5916
– ident: e_1_2_10_152_1
  doi: 10.1111/acel.12882
– ident: e_1_2_10_138_1
  doi: 10.1016/j.immuni.2013.08.001
– ident: e_1_2_10_22_1
  doi: 10.1016/j.molmed.2017.01.003
– ident: e_1_2_10_29_1
  doi: 10.1242/jcs.061481
– ident: e_1_2_10_19_1
  doi: 10.1111/acel.12445
– ident: e_1_2_10_67_1
  doi: 10.3389/fphys.2019.01523
– ident: e_1_2_10_120_1
  doi: 10.1038/s41419-019-1550-0
– ident: e_1_2_10_126_1
  doi: 10.1016/j.cmet.2020.08.004
– ident: e_1_2_10_7_1
  doi: 10.1038/nature16932
– ident: e_1_2_10_123_1
  doi: 10.1007/s10522-008-9134-x
– ident: e_1_2_10_40_1
  doi: 10.1016/j.ebiom.2017.03.020
– ident: e_1_2_10_108_1
  doi: 10.1186/s13287-021-02339-0
– ident: e_1_2_10_145_1
  doi: 10.1097/CCM.0b013e3181a001ae
– ident: e_1_2_10_10_1
  doi: 10.15252/embj.2018100492
SSID ssj0035499
Score 2.6856425
SecondaryResourceType review_article
Snippet Senescence is a multi‐functional cell fate, characterized by an irreversible cell‐cycle arrest and a pro‐inflammatory phenotype, commonly known as the...
Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1186
SubjectTerms ageing
cell cycle checkpoints
Cell death
Cell fate
cell senescence
Cellular Senescence
industry
Inflammation
Mitochondria
Phenotype
Phenotypes
SASP
Senescence
Therapeutic applications
therapeutics
Title Cellular senescence: all roads lead to mitochondria
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.16361
https://www.ncbi.nlm.nih.gov/pubmed/35048548
https://www.proquest.com/docview/2780744600
https://www.proquest.com/docview/2621661276
https://www.proquest.com/docview/2811979615
https://pubmed.ncbi.nlm.nih.gov/PMC9296701
Volume 290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAXWloeoaUyAiGBlFViO4-tuOwuXVVIcAAq7QVFdmwLRJqtmt0D_PrOOA-6FFWCWyRPIseeGX9jj78BeCmEi_PIiDAzJgvl2KLNCalCaxOdCq6c87UIPnxMT8_k-0Wy2IK3_V2Ylh9i2HAjy_D-mgxc6eaakTurmxGiCR_7ULIWIaJPA3eUoMCnvQ3JQ5nKRcdNSmk8v1_dXI1uQMybmZLXEaxfguY78LXvfJt58mO0XulR-esPXsf__btduN9hUzZplekBbNl6D_YnNcbl5z_ZK-azRf02_B7cnfWV4vZBzGxVUTora8hzluQsjpmqKna5VKZhFeoRWy3ZOXoP9La1QaV_CGfzky-z07ArxhCWCS5goTF6nOvYSim4lRanF8EiRoeJjcuxc8bEaanKGC06sk7ISBANkOXa5dpgSBeLR7BdL2v7BBg6FaK5TzVFozpJlIyszniJn-Aqd3kAr_tJKcqOqZwKZlRFH7HQ6BR-dAJ4MchetPwcf5U67Oe26Gy0KXhGREASEV8Az4dmHDo6MlG1Xa5RJuUxIhiepbfI5HQUO0ZoGMDjVl2GrogEPSQGhQFkG4o0CBC792ZL_f2bZ_lG3JpmEXb9jdeTW_6umJ9MP_unp_8ifAD3OCK2NqHuELZXl2v7DBHWSh_Bncn03XR-5C3qCnnmImQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FcAgXloTFEKARiwSSR3Z3exkkDmGS0YQsB0ikuRm3uy2iODbKeITCP_ErfBNV7YUMQZE45MDNUpesXmp55S6_AnghRO7HnhZupHXkyqFBmxMydY0JVCh4mue2F8Hefjg5lB-mwXQJfnT_wjT8EP0HN7IM66_JwOmD9Dkrz42aDRBOhH5bU7ljzr5hxjZ7t72Jx_uS8_HWwWjitk0F3CxAR-xqrYax8o2UghtpcJoIejDLCYyfDfNcaz_M0sxHzfRMLqQniM7GcJXHSmNq4gt87zW4Ti3Eiap_82PPViUo1Wr-v-SuDOW0ZUOlwqHfc12MfxdA7cXazPOY2Qa98S342W1XU-tyPJjXapB9_4NJ8r_Zz9tws4XfbKOxlzuwZMpVWNso07o6OWOvmC2ItTcNq7Ay6prhrYEYmaKgil02o-CQkT98y9KiYKdVqmesQFNhdcVO0EFiQCk12vVdOLySpdyD5bIqzQNg6DeJyT9UlHCrIEilZ1TEM3wFT-M8duB1pwVJ1pKxU0-QIumSMjqNxJ6GA8972a8NBclfpdY7ZUpaNzRLeERcRxJBrQPP-mHcOroVSktTzVEm5D6CNB6Fl8jEdNs8RPTrwP1GP_upiACDAOa9DkQLmtsLEIH54kh59MUSmSM0DyMPp_7GKuYlq0vGW-8_2aeH_yL8FFYmB3u7ye72_s4juMERoDb1g-uwXJ_OzWMElLV6Ys2Yweer1vNfZK9-Jg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UCtoXL63WaNURL6CQJZmZTBLBh7rbpbVaRFvYt5jJTFBMk9Jkkfqb_Cv-J89MLnatFHzog2-BOYS5nMt3MiffAXjCWO5HnmJuqFTo8lijzTGeuloHUjCa5rntRfBuT2wf8DezYLYEP_p_YVp-iOGDm7EM66-NgR-p_JSR51rWI0QTwu9KKnf1yTdM2OpXOxM83aeUTrf2x9tu11PAzQL0w65SMo6krzlnVHONs0TMg0lOoP0sznOlfJGlmY-K6emccY8ZNhtNZR5JhZmJz_C9l-AyF15sGkVMPgxkVcxkWu3vl9Tlgs86MlRTN_R7rovh7wymPVuaeRoy25g3vQ4_-91qS12-juaNHGXf_yCS_F-28wZc68A32Wyt5SYs6XIV1jbLtKkOT8gzYsth7T3DKlwd963w1oCNdVGYel1Sm9CQGW_4kqRFQY6rVNWkQEMhTUUO0T1iOCkVWvUtOLiQpdyG5bIq9R0g6DUNj7-QJt2WQZByT8uQZvgKmkZ55MDzXgmSrKNiNx1BiqRPycxpJPY0HHg8yB61BCR_ldrodSnpnFCd0NAwHaGqeg48GoZx68ydUFrqao4ygvoI0WgozpGJzF1zjNjXgfVWPYepsABDAGa9DoQLijsIGPryxZHyy2dLY47AXIQeTv2F1ctzVpdMt15_tE93_0X4IVx5P5kmb3f2du_BCkV02hYPbsByczzX9xFNNvKBNWICny5azX8BWGh81Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellular+senescence%3A+all+roads+lead+to+mitochondria&rft.jtitle=The+FEBS+journal&rft.au=Martini%2C+H%C3%A9l%C3%A8ne&rft.au=Passos%2C+Jo%C3%A3o+F&rft.date=2023-03-01&rft.issn=1742-4658&rft.eissn=1742-4658&rft.volume=290&rft.issue=5&rft.spage=1186&rft_id=info:doi/10.1111%2Ffebs.16361&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon