Cellular senescence: all roads lead to mitochondria
Senescence is a multi‐functional cell fate, characterized by an irreversible cell‐cycle arrest and a pro‐inflammatory phenotype, commonly known as the senescence‐associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue...
Saved in:
Published in | The FEBS journal Vol. 290; no. 5; pp. 1186 - 1202 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Senescence is a multi‐functional cell fate, characterized by an irreversible cell‐cycle arrest and a pro‐inflammatory phenotype, commonly known as the senescence‐associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age‐related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often‐unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell‐death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies.
Mitochondria play a central role in the development of cellular senescence. Senescence is characterized by several mitochondrial functional changes such as a decrease in OXPHOS, reduced levels of NAD+ and ATP, and accumulation of TCA cycle metabolites, DAMPs, and ROS. Here, we provide an overview of the recent findings demonstrating how these mitochondrial changes can contribute to the senescence‐associated growth arrest and the SASP. |
---|---|
AbstractList | Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the senescence-associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age-related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell-death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies. Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the Senescence-Associated secretory Phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues, drives tissue dysfunction and several age-related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell-death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies. Mitochondria play a central role in the development of cellular senescence. Senescence is characterized by several mitochondrial functional changes such as a decrease in OXPHOS, reduced levels of NAD+ and ATP and accumulation of TCA cycle metabolites, DAMPs, and ROS. Here, we provide an overview of the recent findings demonstrating how these mitochondrial changes can contribute to the senescence-associated growth arrest and the SASP. Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the senescence-associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age-related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell-death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies.Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the senescence-associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age-related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell-death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies. Senescence is a multi‐functional cell fate, characterized by an irreversible cell‐cycle arrest and a pro‐inflammatory phenotype, commonly known as the senescence‐associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age‐related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often‐unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell‐death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies. Mitochondria play a central role in the development of cellular senescence. Senescence is characterized by several mitochondrial functional changes such as a decrease in OXPHOS, reduced levels of NAD+ and ATP, and accumulation of TCA cycle metabolites, DAMPs, and ROS. Here, we provide an overview of the recent findings demonstrating how these mitochondrial changes can contribute to the senescence‐associated growth arrest and the SASP. |
Author | Passos, João F. Martini, Hélène |
AuthorAffiliation | 1 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905 USA 2 Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905 USA |
AuthorAffiliation_xml | – name: 1 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905 USA – name: 2 Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905 USA |
Author_xml | – sequence: 1 givenname: Hélène surname: Martini fullname: Martini, Hélène organization: Mayo Clinic – sequence: 2 givenname: João F. orcidid: 0000-0001-8765-1890 surname: Passos fullname: Passos, João F. email: passos.joao@mayo.edu organization: Mayo Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35048548$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9LHDEUxYMo_tn64gcoA32RwtrcSSaT9EGwi1ZB6ENb6FvIJHc0kp3YZKbFb99s1y5Vis1LAvmdw73nHJDtIQ5IyBHQEyjnXY9dPgHBBGyRfWh5PeeikdubN_-2Rw5yvqOUNVypXbLHGsplw-U-YQsMYQomVRkHzBYHi-8rE0KVonG5CmhcNcZq6cdob-PgkjevyE5vQsbDx3tGvl6cf1lczq8_fbxanF3PbcNbmDvXKdkBcs5q5EgdoyAkpw2CVX3vHAhrLDBQFHvGKVNtAeuul51TSgKbkdO17_3ULdGV2cZkgr5PfmnSg47G66c_g7_VN_GHVrUSLV0ZHD8apPh9wjzqpS8rhmAGjFPWtQRQrRLQ_B8VNQgBdSsK-uYZehenNJQkdN1K2nIuStIz8vrv4TdT_4m-AG_XgE0x54T9BgGqV73qVa_6d68Fps9g60cz-rha3Id_S2At-ekDPrxgri_OP3xea34BL9izdw |
CitedBy_id | crossref_primary_10_3390_metabo13070861 crossref_primary_10_3389_fendo_2024_1417007 crossref_primary_10_1186_s12974_023_02879_7 crossref_primary_10_1038_s44318_024_00259_2 crossref_primary_10_1016_j_nbd_2024_106562 crossref_primary_10_1016_j_freeradbiomed_2023_09_019 crossref_primary_10_1038_s41467_024_51846_0 crossref_primary_10_3390_cells13242052 crossref_primary_10_3390_ijms24043436 crossref_primary_10_1097_CCO_0000000000001020 crossref_primary_10_3389_fphar_2024_1433961 crossref_primary_10_1016_j_molmet_2022_101652 crossref_primary_10_3390_antiox11071224 crossref_primary_10_14336_AD_2024_0306 crossref_primary_10_3390_biomedicines11123301 crossref_primary_10_1016_j_phrs_2023_106835 crossref_primary_10_1186_s13287_023_03497_z crossref_primary_10_1016_j_fct_2025_115355 crossref_primary_10_1371_journal_pone_0306969 crossref_primary_10_1007_s11357_024_01070_x crossref_primary_10_1016_j_actbio_2024_03_027 crossref_primary_10_3389_fphys_2024_1384966 crossref_primary_10_1186_s13287_024_03935_6 crossref_primary_10_1186_s13287_024_04041_3 crossref_primary_10_1016_j_arr_2024_102646 crossref_primary_10_1186_s12979_024_00494_5 crossref_primary_10_1016_j_jhazmat_2024_135103 crossref_primary_10_17116_rbpdpm2024103153 crossref_primary_10_1093_nar_gkae307 crossref_primary_10_1007_s11357_025_01520_0 crossref_primary_10_1111_acel_14077 crossref_primary_10_3390_antiox13010042 crossref_primary_10_1146_annurev_biochem_032620_104401 crossref_primary_10_3389_fcell_2023_1252318 crossref_primary_10_3389_fgene_2024_1345459 crossref_primary_10_1016_j_brainres_2023_148693 crossref_primary_10_1016_j_freeradbiomed_2024_10_291 crossref_primary_10_1093_lifemedi_lnaf004 crossref_primary_10_1016_j_mtbio_2024_101175 crossref_primary_10_1038_s41514_025_00197_1 crossref_primary_10_1002_adbi_202300461 crossref_primary_10_2174_0115680266273698231107110956 crossref_primary_10_3389_fragi_2022_866718 crossref_primary_10_1016_j_celrep_2023_112880 crossref_primary_10_1007_s10522_023_10059_6 crossref_primary_10_1016_j_isci_2023_107197 crossref_primary_10_1136_ard_2024_225630 crossref_primary_10_1016_j_lfs_2024_122575 crossref_primary_10_3390_ijms242115584 crossref_primary_10_1111_jcmm_70389 crossref_primary_10_3390_ijms241411676 crossref_primary_10_1016_j_archger_2023_105176 crossref_primary_10_1038_s41418_024_01439_7 crossref_primary_10_14336_AD_2023_0214 crossref_primary_10_1016_j_tem_2024_02_008 crossref_primary_10_1126_sciadv_ado5887 crossref_primary_10_1186_s12964_024_01878_2 crossref_primary_10_1111_acel_14354 crossref_primary_10_1080_03014460_2023_2259242 crossref_primary_10_1016_j_scitotenv_2023_163073 crossref_primary_10_3389_fbioe_2023_1148761 crossref_primary_10_3389_fmolb_2023_906606 crossref_primary_10_1021_acs_jafc_4c07268 crossref_primary_10_1016_j_freeradbiomed_2024_04_239 crossref_primary_10_1177_1877718X251316552 crossref_primary_10_3390_ijms25147943 crossref_primary_10_1111_jnc_16301 crossref_primary_10_3390_cells11152416 crossref_primary_10_1016_j_tice_2024_102369 crossref_primary_10_1111_febs_16735 crossref_primary_10_1093_discim_kyad026 crossref_primary_10_1002_mco2_542 crossref_primary_10_1016_j_ijbiomac_2025_142368 crossref_primary_10_1111_acel_14289 crossref_primary_10_1016_j_arr_2024_102294 crossref_primary_10_1038_s41467_024_51901_w crossref_primary_10_12688_f1000research_133203_1 crossref_primary_10_1038_s41419_024_06755_x crossref_primary_10_36303_SAGP_2022_3_2_0119 crossref_primary_10_1002_advs_202300988 crossref_primary_10_1021_acsomega_4c04100 crossref_primary_10_1038_s41573_024_01126_9 crossref_primary_10_3390_genes15091153 crossref_primary_10_1002_chem_202403755 crossref_primary_10_1126_sciadv_adg6231 crossref_primary_10_1038_s41514_024_00170_4 crossref_primary_10_1093_lifemeta_loae031 crossref_primary_10_1007_s00018_025_05592_1 crossref_primary_10_18632_aging_206165 crossref_primary_10_1038_s41467_024_51363_0 crossref_primary_10_3390_nano13212840 crossref_primary_10_1038_s41418_022_01058_0 crossref_primary_10_3390_nu14173636 crossref_primary_10_31857_S0320972523110040 crossref_primary_10_1134_S0006297923110032 crossref_primary_10_3389_fnmol_2023_1329554 crossref_primary_10_1016_j_mad_2025_112045 crossref_primary_10_1016_j_mad_2025_112044 crossref_primary_10_3390_cells13040353 crossref_primary_10_1111_acel_14154 crossref_primary_10_1021_acschemneuro_3c00531 crossref_primary_10_1016_j_mad_2024_111993 crossref_primary_10_1016_j_yexmp_2024_104947 crossref_primary_10_3390_antiox13040415 crossref_primary_10_3390_biomedicines11061564 crossref_primary_10_1186_s10020_023_00752_0 crossref_primary_10_1038_s12276_024_01170_w crossref_primary_10_1038_s41591_022_01923_y crossref_primary_10_1021_acsmaterialsau_3c00057 crossref_primary_10_3390_antiox12040831 crossref_primary_10_1016_j_jece_2024_112263 crossref_primary_10_1016_j_scitotenv_2024_174502 crossref_primary_10_1038_s41598_023_35447_3 crossref_primary_10_1016_j_autrev_2025_103805 crossref_primary_10_3390_ijms242115788 crossref_primary_10_3390_antiox12061250 crossref_primary_10_3389_fcell_2023_1244321 crossref_primary_10_4132_jptm_2023_10_09 crossref_primary_10_1016_j_exger_2025_112702 crossref_primary_10_1038_s41594_022_00790_y crossref_primary_10_1111_febs_17352 crossref_primary_10_37349_ei_2023_00112 crossref_primary_10_2174_0109298673251025230919105818 |
Cites_doi | 10.1038/nsmb.3319 10.1016/S1534-5807(01)00055-7 10.1158/1940-6207.CAPR-11-0536 10.1016/j.redox.2018.04.007 10.1016/j.freeradbiomed.2007.06.005 10.3390/ijms22073709 10.1016/S0968-0004(02)02110-2 10.1038/s41467-020-16312-7 10.1089/ars.2011.4373 10.1016/j.cmet.2018.03.016 10.1042/BJ20090666 10.1089/ars.2020.8048 10.1152/ajpheart.00700.2002 10.1096/fj.14-268276 10.1016/j.bbrc.2019.03.199 10.1038/ncomms1708 10.1038/msb.2010.5 10.1038/s41467-020-18039-x 10.1038/s12276-020-00504-8 10.1038/nature16187 10.1128/MCB.01868-08 10.1046/j.1474-9728.2003.00040.x 10.1006/excr.1997.3893 10.1016/j.stemcr.2019.12.012 10.3389/fnagi.2016.00299 10.1038/ncomms7001 10.1038/s41467-018-07825-3 10.1155/2017/7941563 10.1038/s41467-019-13668-3 10.1002/eji.201343921 10.1371/journal.pcbi.1003728 10.1093/nar/gki273 10.1152/ajplung.00293.2015 10.1038/onc.2011.327 10.1126/science.1219855 10.1371/journal.pbio.0060301 10.1083/jcb.200809125 10.1111/acel.12075 10.1016/j.molcel.2019.04.024 10.1111/j.1474-9726.2010.00658.x 10.1038/ncb3195 10.1038/nature12437 10.15252/embr.201949799 10.1038/ncb3225 10.1089/ars.2015.6407 10.1042/BJ20081386 10.1080/15548627.2018.1532259 10.18632/aging.101463 10.3389/fcell.2021.656201 10.1042/bj20030816 10.1038/s41419-017-0105-5 10.1007/s10522-012-9397-0 10.1016/j.cmet.2015.11.011 10.1126/science.aax0860 10.1038/s41591-018-0092-9 10.1111/j.1474-9726.2012.00795.x 10.1038/s41577‐019‐0165‐0 10.1074/jbc.M700679200 10.1042/BJ20040095 10.1038/s41556-018-0124-1 10.1021/pr501221g 10.1038/s42255-020-00298-z 10.1007/BF01128816 10.1002/jcp.20753 10.1007/BF02254978 10.1124/jpet.112.194712 10.1038/nrm2952 10.1002/pmic.201800421 10.1111/acel.12545 10.3389/fcell.2017.00090 10.1016/j.cell.2019.10.005 10.1016/j.cell.2006.06.025 10.1038/s41418-018-0118-3 10.1038/nature10600 10.1016/j.bbrc.2004.08.177 10.3389/fimmu.2018.00832 10.1038/nature14156 10.1074/jbc.RA118.005806 10.1101/gad.197954.112 10.1042/BJ20121778 10.1038/s42255-018-0014-7 10.1128/MCB.00169-10 10.1016/S0006-291X(02)00464-3 10.1159/000213728 10.1101/gad.331272.119 10.1016/j.mad.2017.08.005 10.1038/nature09663 10.15252/embj.2019101982 10.1016/j.tcb.2018.02.001 10.1016/j.tibs.2019.06.011 10.1038/nrm3013 10.1158/0008-5472.177.65.1 10.1002/1873-3468.13498 10.1038/s41556-019-0287-4 10.1038/nprot.2016.159 10.1111/acel.13296 10.1074/jbc.C700018200 10.1016/j.cell.2021.09.034 10.1038/ncomms3308 10.1111/j.1469-7793.2003.00335.x 10.1038/ncb1909 10.1038/s41577-019-0215-7 10.1155/2018/1941285 10.1146/annurev-pharmtox-050120-105018 10.18632/aging.100423 10.1038/nature12154 10.1016/j.molcel.2005.03.027 10.1016/j.cmet.2018.12.008 10.15252/embj.2020106048 10.1038/nm.4054 10.1038/ncb2466 10.1371/journal.pbio.0050110 10.1038/ncb2784 10.15252/embj.201592862 10.1016/j.cmet.2016.05.006 10.1111/acel.13015 10.1038/nature11776 10.1016/j.devcel.2014.11.012 10.1038/ncomms11190 10.1111/acel.13067 10.1242/jcs.059246 10.1038/s42255-021-00412-9 10.1038/s42255-020-00305-3 10.1038/ncomms5172 10.1038/ncomms14532 10.1016/j.molcel.2007.03.023 10.1016/j.redox.2016.10.014 10.1016/j.exger.2006.04.009 10.1016/j.exger.2017.03.004 10.1186/s12915-017-0470-7 10.1074/jbc.M300318200 10.1038/sj.cdd.4402107 10.1111/acel.12344 10.1038/sj.onc.1207102 10.3390/ijms22052245 10.1126/science.abb5916 10.1111/acel.12882 10.1016/j.immuni.2013.08.001 10.1016/j.molmed.2017.01.003 10.1242/jcs.061481 10.1111/acel.12445 10.3389/fphys.2019.01523 10.1038/s41419-019-1550-0 10.1016/j.cmet.2020.08.004 10.1038/nature16932 10.1007/s10522-008-9134-x 10.1016/j.ebiom.2017.03.020 10.1186/s13287-021-02339-0 10.1097/CCM.0b013e3181a001ae 10.15252/embj.2018100492 |
ContentType | Journal Article |
Copyright | 2022 Federation of European Biochemical Societies 2022 Federation of European Biochemical Societies. Copyright © 2023 Federation of European Biochemical Societies |
Copyright_xml | – notice: 2022 Federation of European Biochemical Societies – notice: 2022 Federation of European Biochemical Societies. – notice: Copyright © 2023 Federation of European Biochemical Societies |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/febs.16361 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1742-4658 |
EndPage | 1202 |
ExternalDocumentID | PMC9296701 35048548 10_1111_febs_16361 FEBS16361 |
Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute on Aging funderid: 1R01AG 68048‐1; P01AG 62413‐1 – fundername: National Institutes of Health funderid: 1UG3CA 268103‐1 – fundername: NIA NIH HHS grantid: P01 AG062413 – fundername: NCI NIH HHS grantid: UG3 CA268103 – fundername: NIA NIH HHS grantid: R01 AG068048 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HH5 HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OK1 OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBFHL WBKPD WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 Y6R ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5471-ddb98b1e4432e4e0d30168405e1c9ffdd16cac13190ef34039732e2bf8bd99813 |
IEDL.DBID | DR2 |
ISSN | 1742-464X 1742-4658 |
IngestDate | Thu Aug 21 18:35:23 EDT 2025 Fri Jul 11 18:26:22 EDT 2025 Fri Jul 11 16:43:50 EDT 2025 Fri Jul 25 19:31:35 EDT 2025 Mon Jul 21 05:40:32 EDT 2025 Tue Jul 01 03:07:16 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Wed Jan 22 16:23:22 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | senescence ageing SASP mitochondria |
Language | English |
License | 2022 Federation of European Biochemical Societies. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5471-ddb98b1e4432e4e0d30168405e1c9ffdd16cac13190ef34039732e2bf8bd99813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Author contributions: HM and JFP wrote the manuscript, HM created the figures and graphical abstract. |
ORCID | 0000-0001-8765-1890 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.16361 |
PMID | 35048548 |
PQID | 2780744600 |
PQPubID | 28478 |
PageCount | 1202 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9296701 proquest_miscellaneous_2811979615 proquest_miscellaneous_2621661276 proquest_journals_2780744600 pubmed_primary_35048548 crossref_primary_10_1111_febs_16361 crossref_citationtrail_10_1111_febs_16361 wiley_primary_10_1111_febs_16361_FEBS16361 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The FEBS journal |
PublicationTitleAlternate | FEBS J |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2011; 479 2010; 11 2013; 4 2004; 323 2020; 20 2019; 10 2019; 15 2015; 309 2019; 19 2019; 18 2020; 14 2005; 65 2020; 11 2012; 14 2012; 13 2003; 278 2003; 552 2012; 11 2016; 35 2008; 183 2020; 19 2009; 11 2018; 9 2018; 170 2006; 209 2019; 21 2019; 26 2019; 29 2007; 5 2012; 26 2010; 30 2010; 6 2014; 10 2003; 284 2018; 28 2012; 342 2002; 9 2007; 282 2019; 1 2015; 520 2013; 501 2004; 380 2019; 38 2020; 34 2020; 32 2016; 15 2018; 20 2018; 27 2007; 14 2012; 31 2014; 44 2012; 30 2018; 24 1995; 41 2016; 7 2018; 17 2006; 41 1984; 4 2019; 44 2013; 452 2019; 179 2021; 371 2020; 21 2019; 294 2021; 61 2018; 10 2005; 18 2018; 16 2016; 8 2003; 22 2016; 23 2014; 31 2016; 22 2017; 5 2017; 8 2021; 20 2021; 22 2008; 9 1998; 239 2020; 368 2011; 10 2008; 6 2013; 18 2013; 15 2021; 34 2020; 2 2014; 2 2020; 52 2013; 12 2003; 2 2019; 513 2006; 126 2021; 40 2012; 337 2005; 33 2019; 593 2007; 26 2021; 9 2015; 14 2015; 6 2015; 17 2021; 3 2017; 2017 2019; 75 2002; 294 2017; 21 2010; 123 2017; 23 2016; 529 2021; 184 2018; e12811 2009; 417 2003; 376 2009; 29 2002; 27 2015; 23 2018; 2018 2012; 3 2021; 12 2013; 39 2015; 29 2017; 92 2011; 469 2017; 16 2017; 11 2017; 12 2016; 530 2013; 498 2013; 493 2001; 1 2007; 43 2012; 4 2012; 5 2009; 423 2009; 37 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_90_1 e_1_2_10_71_1 Manzella N (e_1_2_10_47_1) 2018; 12811 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Chaung WW (e_1_2_10_144_1) 2012; 30 e_1_2_10_121_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 Santos AL (e_1_2_10_70_1) 2018; 2018 e_1_2_10_130_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_89_1 |
References_xml | – volume: 14 start-page: 644 year: 2015 end-page: 58 article-title: The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs publication-title: Aging Cell – volume: 30 start-page: 199 year: 2012 end-page: 203 article-title: Mitochondrial transcription factor A is a proinflammatory mediator in hemorrhagic shock publication-title: Int J Mol Med – volume: 31 start-page: 722 year: 2014 end-page: 33 article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF‐AA publication-title: Dev Cell – volume: 282 start-page: 10841 year: 2007 end-page: 5 article-title: Extension of human cell lifespan by nicotinamide phosphoribosyltransferase publication-title: J Biol Chem – volume: 32 start-page: 447 year: 2020 end-page: 456.e6 article-title: Alpha‐ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice publication-title: Cell Metab – volume: 11 start-page: 1 year: 2020 end-page: 13 article-title: Senolytics prevent mt‐DNA‐induced inflammation and promote the survival of aged organs following transplantation publication-title: Nat Commun – volume: 184 start-page: 5506 year: 2021 end-page: 26 article-title: Cytoplasmic DNA: sources, sensing, and role in aging and disease publication-title: Cell – volume: 12 issue: 1 year: 2021 article-title: MiR‐34a suppression targets Nampt to ameliorate bone marrow mesenchymal stem cell senescence by regulating NAD+‐Sirt1 pathway publication-title: Stem Cell Res Therapy – volume: 26 start-page: 276 year: 2019 end-page: 90 article-title: Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2 publication-title: Cell Death Differ – volume: 23 start-page: 1329 year: 2015 end-page: 50 article-title: The roles of mitochondrial damage‐associated molecular patterns in diseases publication-title: Antioxidants Redox Signal – volume: 15 start-page: 510 year: 2019 end-page: 26 article-title: PRKN‐regulated mitophagy and cellular senescence during COPD pathogenesis publication-title: Autophagy – volume: 22 start-page: 3709 year: 2021 article-title: Nicotinamide phosphoribosyltransferase as a key molecule of the aging/senescence process publication-title: Int J Mol Sci – volume: 423 start-page: 363 year: 2009 end-page: 74 article-title: The NADPH oxidase Nox4 restricts the replicative lifespan of human endothelial cells publication-title: Biochem J – volume: 3 start-page: 983 year: 2021 end-page: 1000 article-title: The SESAME complex regulates cell senescence through the generation of acetyl‐CoA publication-title: Nat Metab – volume: 294 start-page: 10564 year: 2019 end-page: 78 article-title: Inhibition of nucleotide synthesis promotes replicative senescence of human mammary epithelial cells publication-title: J Biol Chem – volume: 10 start-page: 239 year: 2011 end-page: 54 article-title: Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue publication-title: Aging Cell – volume: 513 start-page: 486 year: 2019 end-page: 93 article-title: The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age‐related cellular NAD+ decline publication-title: Biochem Biophys Res Commun – volume: 179 start-page: 813 year: 2019 end-page: 27 article-title: Cellular senescence: defining a path forward publication-title: Cell – volume: 24 start-page: 1246 year: 2018 end-page: 56 article-title: Senolytics improve physical function and increase lifespan in old age publication-title: Nat Med – volume: 35 start-page: 724 year: 2016 end-page: 42 article-title: Mitochondria are required for pro‐ageing features of the senescent phenotype publication-title: EMBO J – volume: 38 year: 2019 article-title: Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence publication-title: EMBO J – volume: 126 start-page: 177 year: 2006 end-page: 89 article-title: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion publication-title: Cell – volume: 11 start-page: 2549 issue: 1 year: 2020 article-title: Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics publication-title: Nat Commun – volume: 9 start-page: 1 year: 2018 article-title: Mitochondrial damage‐associated molecular patterns: from inflammatory signaling to human diseases publication-title: Front Immunol – volume: 20 start-page: 1 issue: 2 year: 2021 end-page: 16 article-title: Whole‐body senescent cell clearance alleviates age‐related brain inflammation and cognitive impairment in mice publication-title: Aging Cell – volume: 23 start-page: 201 year: 2017 end-page: 15 article-title: Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging publication-title: Trends Mol Med – volume: 19 start-page: 477 year: 2019 end-page: 89 article-title: The NLRP3 inflammasome: molecular activation and regulation to therapeutics publication-title: Nat Rev Immunol – volume: 10 start-page: 318 year: 2019 article-title: FASN activity is important for the initial stages of the induction of senescence publication-title: Cell Death Dis – volume: 469 start-page: 221 year: 2011 end-page: 6 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature – volume: 9 start-page: 5435 year: 2018 article-title: Impaired immune surveillance accelerates accumulation of senescent cells and aging publication-title: Nat Commun – volume: 11 start-page: 872 year: 2010 end-page: 84 article-title: Mitochondrial fusion and fission in cell life and death publication-title: Nat Rev Mol Cell Biol – volume: 9 start-page: 247 year: 2008 end-page: 59 article-title: Premature senescence of human endothelial cells induced by inhibition of glutaminase publication-title: Biogerontology – volume: 14 start-page: 1086 year: 2007 end-page: 94 article-title: Inhibiting Drp1‐mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis publication-title: Cell Death Differ – volume: 209 start-page: 468 year: 2006 end-page: 80 article-title: Formation of elongated giant mitochondria in DFO‐induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1 publication-title: J Cell Physiol – volume: 11 start-page: 973 year: 2009 end-page: 9 article-title: Persistent DNA damage signalling triggers senescence‐associated inflammatory cytokine secretion publication-title: Nat Cell Biol – volume: 16 start-page: 2 year: 2018 article-title: PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol publication-title: BMC Biol – volume: 3 start-page: 708 year: 2012 article-title: Telomeres are favoured targets of a persistent DNA damage response in ageing and stress‐induced senescence publication-title: Nat Commun – volume: 1 start-page: 16 year: 2019 end-page: 33 article-title: Coupling Krebs cycle metabolites to signalling in immunity and cancer publication-title: Nat Metab – volume: 11 start-page: 102 year: 2020 article-title: Mitochondrial TCA cycle metabolites control physiology and disease publication-title: Nat Commun – volume: 371 start-page: 265 year: 2021 end-page: 70 article-title: Senolysis by glutaminolysis inhibition ameliorates various age‐associated disorders publication-title: Science – volume: 22 start-page: 8590 year: 2003 end-page: 607 article-title: The Bcl‐2 family: roles in cell survival and oncogenesis publication-title: Oncogene – volume: 41 start-page: 674 year: 2006 end-page: 82 article-title: Sustained inhibition of oxidative phosphorylation impairs cell proliferation and induces premature senescence in human fibroblasts publication-title: Exp Gerontol – volume: 11 start-page: 345 year: 2012 end-page: 9 article-title: A senescent cell bystander effect: senescence‐induced senescence publication-title: Aging Cell – volume: 34 start-page: 308 year: 2021 end-page: 23 article-title: Senescence in post‐mitotic cells: a driver of aging? publication-title: Antioxid Redox Signal – volume: 14 start-page: 1854 year: 2015 end-page: 71 article-title: Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease publication-title: J Proteome Res – volume: 21 year: 2020 article-title: Mitochondrial DNA in inflammation and immunity publication-title: EMBO Rep – volume: 23 start-page: 1127 year: 2016 end-page: 39 article-title: CD38 dictates age‐related NAD decline and mitochondrial dysfunction through an SIRT3‐dependent mechanism publication-title: Cell Metab – volume: 593 start-page: 1566 year: 2019 end-page: 79 article-title: Mitochondrial dysfunction and cell senescence: deciphering a complex relationship publication-title: FEBS Lett – volume: 309 start-page: L1124 year: 2015 end-page: 37 article-title: DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 2 start-page: 1284 year: 2020 end-page: 304 article-title: CD38 ecto‐enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels publication-title: Nat Metab – volume: 530 start-page: 184 year: 2016 end-page: 9 article-title: Naturally occurring p16Ink4a‐positive cells shorten healthy lifespan publication-title: Nature – volume: 183 start-page: 795 year: 2008 end-page: 803 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J Cell Biol – volume: 37 start-page: 2000 year: 2009 end-page: 9 article-title: Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors publication-title: Crit Care Med – volume: 9 year: 2021 article-title: Targeting the mitochondria‐proteostasis axis to delay aging publication-title: Front Cell Dev Biol – volume: 31 start-page: 1117 year: 2012 end-page: 29 article-title: ROS‐generating NADPH oxidase NOX4 is a critical mediator in oncogenic H‐Ras‐induced DNA damage and subsequent senescence publication-title: Oncogene – volume: 19 year: 2020 article-title: Mitochondrial mass governs the extent of human T cell senescence publication-title: Aging Cell – volume: 22 start-page: 1 year: 2021 end-page: 15 article-title: Selective cardiomyocyte oxidative stress leads to bystander senescence of cardiac stromal cells publication-title: Int J Mol Sci – volume: 6 start-page: 347 year: 2010 article-title: Feedback between p21 and reactive oxygen production is necessary for cell senescence publication-title: Mol Syst Biol – volume: 10 year: 2014 article-title: Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions publication-title: PLoS Comput Biol – volume: 2018 start-page: 1 year: 2018 end-page: 23 article-title: The good, the bad, and the ugly of ROS: new insights on aging and aging‐related diseases from eukaryotic and prokaryotic model organisms publication-title: Oxid Med Cell Longev – volume: 17 start-page: 259 year: 2018 end-page: 73 article-title: Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging publication-title: Redox Biol – volume: 12 start-page: 183 year: 2017 end-page: 94 article-title: Depletion of mitochondria in mammalian cells through enforced mitophagy publication-title: Nat Protoc – volume: 75 start-page: 117 year: 2019 end-page: 130.e6 article-title: Targeted and persistent 8‐oxoguanine base damage at telomeres promotes telomere loss and crisis publication-title: Mol Cell – volume: 27 start-page: 339 year: 2002 end-page: 44 article-title: Oxidative stress shortens telomeres publication-title: Trends Biochem Sci – volume: 2 start-page: 4172 year: 2014 article-title: Chronic inflammation induces telomere dysfunction and accelerates ageing in mice publication-title: Nat Commun – volume: 11 start-page: 30 year: 2017 end-page: 7 article-title: A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1− mice is correlated to increased cellular senescence publication-title: Redox Biol – volume: 9 start-page: 517 year: 2002 end-page: 26 article-title: Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence publication-title: J Biomed Sci – volume: 26 start-page: 323 year: 2007 end-page: 34 article-title: A RAP1/TRF2 complex inhibits nonhomologous end‐joining at human telomeric DNA ends publication-title: Mol Cell – volume: 29 start-page: 1061 year: 2019 end-page: 1077.e8 article-title: Obesity‐induced cellular senescence drives anxiety and impairs neurogenesis publication-title: Cell Metab – volume: 40 year: 2021 article-title: Neutrophils induce paracrine telomere dysfunction and senescence in ROS‐dependent manner publication-title: EMBO J – volume: 501 start-page: 421 year: 2013 end-page: 5 article-title: Synthetic lethal metabolic targeting of cellular senescence in cancer therapy publication-title: Nature – volume: 30 start-page: 3875 year: 2010 end-page: 86 article-title: HuR uses AUF1 as a cofactor to promote p16 INK4 mRNA decay publication-title: Mol Cell Biol – volume: 13 start-page: 525 year: 2012 end-page: 36 article-title: Cytosolic malate dehydrogenase regulates senescence in human fibroblasts publication-title: Biogerontology – volume: 15 start-page: 428 year: 2016 end-page: 35 article-title: Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors publication-title: Aging Cell – volume: 43 start-page: 947 year: 2007 end-page: 58 article-title: Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells publication-title: Free Radic Biol Med – volume: 17 start-page: 1049 year: 2015 end-page: 61 article-title: MTOR regulates the pro‐tumorigenic senescence‐associated secretory phenotype by promoting IL1A translation publication-title: Nat Cell Biol – volume: 38 start-page: 1 year: 2019 end-page: 18 article-title: Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction publication-title: EMBO J – volume: 23 start-page: 303 year: 2016 end-page: 14 article-title: Mitochondrial dysfunction induces senescence with a distinct secretory phenotype publication-title: Cell Metab – volume: 170 start-page: 30 year: 2018 end-page: 6 article-title: The senescent bystander effect is caused by ROS‐activated NF‐κB signalling publication-title: Mech Ageing Dev – volume: 2017 start-page: 1 year: 2017 end-page: 19 article-title: Aging: molecular pathways and implications on the cardiovascular system publication-title: Oxid Med Cell Longev – volume: 92 start-page: 7 year: 2017 end-page: 12 article-title: Depletion of oxaloacetate decarboxylase FAHD1 inhibits mitochondrial electron transport and induces cellular senescence in human endothelial cells publication-title: Exp Gerontol – volume: 529 start-page: 37 year: 2016 end-page: 42 article-title: Autophagy maintains stemness by preventing senescence publication-title: Nature – volume: 28 start-page: 436 year: 2018 end-page: 53 article-title: Hallmarks of cellular senescence publication-title: Trends Cell Biol – volume: 284 start-page: H1460 year: 2003 end-page: 7 article-title: Age‐dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats publication-title: Am J Physiol Heart Circ Physiol – volume: 337 start-page: 1062 year: 2012 end-page: 5 article-title: Mitochondrial fission, fusion, and stress publication-title: Science – volume: 41 start-page: 95 issue: Suppl 2 year: 1995 end-page: 108 article-title: Lipofuscin accumulation and ageing of fibroblasts publication-title: Gerontology – volume: 4 start-page: 3 year: 2012 end-page: 12 article-title: Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin publication-title: Aging – volume: 493 start-page: 689 year: 2013 end-page: 93 article-title: Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence publication-title: Nature – volume: 12 start-page: 489 year: 2013 end-page: 98 article-title: Metformin inhibits the senescence‐associated secretory phenotype by interfering with IKK/NF‐κB activation publication-title: Aging Cell – volume: 123 start-page: 619 year: 2010 end-page: 26 article-title: Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin‐related protein 1 and mitofusin 1 publication-title: J Cell Sci – volume: 29 start-page: 4495 year: 2009 end-page: 507 article-title: Mitochondrial dysfunction contributes to oncogene‐induced senescence publication-title: Mol Cell Biol – volume: 18 start-page: 5 year: 2013 end-page: 18 article-title: p53‐PGC‐1α pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase‐A upregulation: role in chronic left ventricular dysfunction in mice publication-title: Antioxid Redox Signal – volume: 368 start-page: 1371 year: 2020 end-page: 6 article-title: T cells with dysfunctional mitochondria induce multimorbidity and premature senescence publication-title: Science – volume: 20 start-page: 95 year: 2020 end-page: 112 article-title: DAMP‐sensing receptors in sterile inflammation and inflammatory diseases publication-title: Nat Rev Immunol – volume: 27 start-page: 1081 year: 2018 end-page: 1095.e10 article-title: A potent and specific CD38 inhibitor ameliorates age‐related metabolic dysfunction by reversing tissue NAD+ decline publication-title: Cell Metab – volume: 2 start-page: 141 year: 2003 end-page: 3 article-title: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress publication-title: Aging Cell – volume: 61 start-page: 779 year: 2021 end-page: 803 article-title: Senolytic drugs: reducing senescent cell viability to extend health span publication-title: Annu Rev Pharmacol Toxicol – volume: 33 start-page: 1230 year: 2005 end-page: 9 article-title: Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2 publication-title: Nucleic Acids Res – volume: 17 start-page: 1205 year: 2015 end-page: 17 article-title: mTOR regulates MAPKAPK2 translation to control the senescence‐associated secretory phenotype publication-title: Nat Cell Biol – volume: 15 start-page: 978 year: 2013 end-page: 90 article-title: A complex secretory program orchestrated by the inflammasome controls paracrine senescence publication-title: Nat Cell Biol – volume: 6 start-page: 2853 year: 2008 end-page: 68 article-title: Senescence‐associated secretory phenotypes reveal cell‐nonautonomous functions of oncogenic RAS and the p53 tumor suppressor publication-title: PLoS Biol – volume: 342 start-page: 827 year: 2012 end-page: 34 article-title: Activation of AMP‐activated protein kinase inhibits the proliferation of human endothelial cells publication-title: J Pharmacol Exp Ther – volume: 1 start-page: 515 year: 2001 end-page: 25 article-title: The role of dynamin‐related protein 1, a mediator of mitochondrial fission, in apoptosis publication-title: Dev Cell – volume: 239 start-page: 152 year: 1998 end-page: 60 article-title: Preferential accumulation of single‐stranded regions in telomeres of human fibroblasts publication-title: Exp Cell Res – volume: 452 start-page: 231 year: 2013 end-page: 9 article-title: Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4 publication-title: Biochem J – volume: e12811 year: 2018 article-title: Monoamine oxidase‐A is a novel driver of stress‐induced premature senescence through inhibition of parkin‐mediated mitophagy publication-title: Aging Cell – volume: 282 start-page: 22977 year: 2007 end-page: 83 article-title: Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence publication-title: J Biol Chem – volume: 4 start-page: 2308 year: 2013 article-title: Cytosolic p53 inhibits Parkin‐mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart publication-title: Nat Commun – volume: 380 start-page: 919 year: 2004 end-page: 28 article-title: Senescence‐associated changes in respiration and oxidative phosphorylation in primary human fibroblasts publication-title: Biochem J – volume: 26 start-page: 2311 year: 2012 end-page: 24 article-title: Nuclear lamina defects cause ATM‐dependent NF‐κB activation and link accelerated aging to a systemic inflammatory response publication-title: Genes Dev – volume: 11 start-page: 621 year: 2010 end-page: 32 article-title: Mitochondria and cell death: outer membrane permeabilization and beyond publication-title: Nat Rev Mol Cell Biol – volume: 5 year: 2007 article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence publication-title: PLoS Biol – volume: 20 start-page: 1 year: 2020 end-page: 10 article-title: Proteome oxidative modifications and impairment of specific metabolic pathways during cellular senescence and aging publication-title: Proteomics – volume: 14 start-page: 355 year: 2012 end-page: 65 article-title: Telomeric DNA damage is irreparable and causes persistent DNA‐damage‐response activation publication-title: Nat Cell Biol – volume: 294 start-page: 245 year: 2002 end-page: 8 article-title: A role for mitochondria as potential regulators of cellular life span publication-title: Biochem Biophys Res Commun – volume: 520 start-page: 553 year: 2015 end-page: 7 article-title: Mitochondrial DNA stress primes the antiviral innate immune response publication-title: Nature – volume: 498 start-page: 109 year: 2013 end-page: 12 article-title: A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene‐induced senescence publication-title: Nature – volume: 20 start-page: 745 year: 2018 end-page: 54 article-title: The multifaceted contributions of mitochondria to cellular metabolism publication-title: Nat Cell Biol – volume: 376 start-page: 403 year: 2003 end-page: 11 article-title: Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence publication-title: Biochem J – volume: 7 start-page: 1 year: 2016 end-page: 11 article-title: Directed elimination of senescent cells by inhibition of BCL‐W and BCL‐XL publication-title: Nat Commun – volume: 18 start-page: 283 year: 2005 end-page: 93 article-title: AMP‐activated protein kinase induces a p53‐dependent metabolic checkpoint publication-title: Mol Cell – volume: 278 start-page: 27016 year: 2003 end-page: 23 article-title: Increased AMP:ATP ratio and AMP‐activated protein kinase activity during cellular senescence linked to reduced HuR function publication-title: J Biol Chem – volume: 44 start-page: 996 year: 2019 end-page: 1008 article-title: Expansion and cell‐cycle arrest: common denominators of cellular senescence publication-title: Trends Biochem Sci – volume: 8 start-page: 14532 year: 2017 article-title: Cellular senescence mediates fibrotic pulmonary disease publication-title: Nat Commun – volume: 323 start-page: 739 year: 2004 end-page: 42 article-title: Cardiolipin induces premature senescence in normal human fibroblasts publication-title: Biochem Biophys Res Commun – volume: 18 year: 2019 article-title: Aging induces cardiac mesenchymal stromal cell senescence and promotes endothelial cell fate of the CD90 + subset publication-title: Aging Cell – volume: 14 start-page: 201 year: 2020 end-page: 9 article-title: Senescence‐associated metabolomic phenotype in primary and iPSC‐derived mesenchymal stromal cells publication-title: Stem Cell Reports – volume: 18 start-page: 1 year: 2019 end-page: 11 article-title: Rapamycin improves healthspan but not inflammaging in nfκb1 −/− mice publication-title: Aging Cell – volume: 123 start-page: 917 year: 2010 end-page: 26 article-title: Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1 publication-title: J Cell Sci – volume: 9 start-page: 332 year: 2018 article-title: Mitochondria‐associated membranes in aging and senescence: structure, function, and dynamics publication-title: Cell Death Dis – volume: 44 start-page: 1552 year: 2014 end-page: 62 article-title: Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm‐aging” publication-title: Eur J Immunol – volume: 5 start-page: 90 year: 2017 article-title: Role of cardiolipin in mitochondrial signaling pathways publication-title: Front Cell Dev Biol – volume: 10 start-page: 1239 year: 2018 end-page: 56 article-title: Mitochondrial peptides modulate mitochondrial function during cellular senescence publication-title: Aging – volume: 479 start-page: 232 year: 2011 end-page: 6 article-title: Clearance of p16Ink4a‐positive senescent cells delays ageing‐associated disorders publication-title: Nature – volume: 10 start-page: 1523 year: 2019 article-title: Where metabolism meets senescence: focus on endothelial cells publication-title: Front Physiol – volume: 39 start-page: 311 year: 2013 end-page: 23 article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation publication-title: Immunity – volume: 22 start-page: 412 year: 2016 end-page: 20 article-title: p16(Ink4a)‐induced senescence of pancreatic beta cells enhances insulin secretion publication-title: Nat Med – volume: 21 start-page: 397 year: 2019 end-page: 407 article-title: NAD + metabolism governs the proinflammatory senescence‐associated secretome publication-title: Nat Cell Biol – volume: 4 start-page: 751 year: 1984 end-page: 6 article-title: Increased glycolysis in ageing cultured human diploid fibroblasts publication-title: Biosci Rep – volume: 2 start-page: 1265 year: 2020 end-page: 83 article-title: Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages publication-title: Nat Metab – volume: 52 start-page: 1496 year: 2020 end-page: 516 article-title: Glutamine reliance in cell metabolism publication-title: Exp Mol Med – volume: 552 start-page: 335 year: 2003 end-page: 44 article-title: Mitochondrial formation of reactive oxygen species publication-title: J Physiol – volume: 34 start-page: 428 year: 2020 end-page: 45 article-title: Mitochondria‐to‐nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence publication-title: Genes Dev – volume: 417 start-page: 1 year: 2009 end-page: 13 article-title: How mitochondria produce reactive oxygen species publication-title: Biochem J – volume: 5 start-page: 536 year: 2012 end-page: 43 article-title: Metformin reduces endogenous reactive oxygen species and associated DNA damage publication-title: Cancer Prev Res – volume: 21 start-page: 7 year: 2017 end-page: 13 article-title: Mitochondria in cell senescence: is mitophagy the weakest link? publication-title: EBioMedicine – volume: 6 start-page: 6001 year: 2015 article-title: Fumarate induces redox‐dependent senescence by modifying glutathione metabolism publication-title: Nat Commun – volume: 65 start-page: 177 year: 2005 end-page: 85 article-title: Glycolytic enzymes can modulate cellular life span publication-title: Cancer Res – volume: 8 start-page: 299 year: 2016 article-title: Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs publication-title: Front Aging Neurosci – volume: 16 start-page: 192 year: 2017 end-page: 7 article-title: Robust, universal biomarker assay to detect senescent cells in biological specimens publication-title: Aging Cell – volume: 23 start-page: 1092 year: 2016 end-page: 100 article-title: Oxidative guanine base damage regulates human telomerase activity publication-title: Nat Struct Mol Biol – volume: 29 start-page: 2912 year: 2015 end-page: 29 article-title: Impaired mitophagy leads to cigarette smoke stress‐induced cellular senescence: implications for chronic obstructive pulmonary disease publication-title: FASEB J – ident: e_1_2_10_81_1 doi: 10.1038/nsmb.3319 – ident: e_1_2_10_33_1 doi: 10.1016/S1534-5807(01)00055-7 – ident: e_1_2_10_153_1 doi: 10.1158/1940-6207.CAPR-11-0536 – ident: e_1_2_10_100_1 doi: 10.1016/j.redox.2018.04.007 – ident: e_1_2_10_61_1 doi: 10.1016/j.freeradbiomed.2007.06.005 – ident: e_1_2_10_107_1 doi: 10.3390/ijms22073709 – volume: 12811 year: 2018 ident: e_1_2_10_47_1 article-title: Monoamine oxidase‐A is a novel driver of stress‐induced premature senescence through inhibition of parkin‐mediated mitophagy publication-title: Aging Cell – ident: e_1_2_10_75_1 doi: 10.1016/S0968-0004(02)02110-2 – ident: e_1_2_10_36_1 doi: 10.1038/s41467-020-16312-7 – ident: e_1_2_10_95_1 doi: 10.1089/ars.2011.4373 – ident: e_1_2_10_117_1 doi: 10.1016/j.cmet.2018.03.016 – ident: e_1_2_10_88_1 doi: 10.1042/BJ20090666 – volume: 30 start-page: 199 year: 2012 ident: e_1_2_10_144_1 article-title: Mitochondrial transcription factor A is a proinflammatory mediator in hemorrhagic shock publication-title: Int J Mol Med – ident: e_1_2_10_4_1 doi: 10.1089/ars.2020.8048 – ident: e_1_2_10_94_1 doi: 10.1152/ajpheart.00700.2002 – ident: e_1_2_10_44_1 doi: 10.1096/fj.14-268276 – ident: e_1_2_10_114_1 doi: 10.1016/j.bbrc.2019.03.199 – ident: e_1_2_10_78_1 doi: 10.1038/ncomms1708 – ident: e_1_2_10_49_1 doi: 10.1038/msb.2010.5 – ident: e_1_2_10_135_1 doi: 10.1038/s41467-020-18039-x – ident: e_1_2_10_125_1 doi: 10.1038/s12276-020-00504-8 – ident: e_1_2_10_42_1 doi: 10.1038/nature16187 – ident: e_1_2_10_48_1 doi: 10.1128/MCB.01868-08 – ident: e_1_2_10_76_1 doi: 10.1046/j.1474-9728.2003.00040.x – ident: e_1_2_10_74_1 doi: 10.1006/excr.1997.3893 – ident: e_1_2_10_64_1 doi: 10.1016/j.stemcr.2019.12.012 – ident: e_1_2_10_51_1 doi: 10.3389/fnagi.2016.00299 – ident: e_1_2_10_121_1 doi: 10.1038/ncomms7001 – ident: e_1_2_10_20_1 doi: 10.1038/s41467-018-07825-3 – ident: e_1_2_10_73_1 doi: 10.1155/2017/7941563 – ident: e_1_2_10_56_1 doi: 10.1038/s41467-019-13668-3 – ident: e_1_2_10_134_1 doi: 10.1002/eji.201343921 – ident: e_1_2_10_41_1 doi: 10.1371/journal.pcbi.1003728 – ident: e_1_2_10_82_1 doi: 10.1093/nar/gki273 – ident: e_1_2_10_43_1 doi: 10.1152/ajplung.00293.2015 – ident: e_1_2_10_90_1 doi: 10.1038/onc.2011.327 – ident: e_1_2_10_30_1 doi: 10.1126/science.1219855 – ident: e_1_2_10_11_1 doi: 10.1371/journal.pbio.0060301 – ident: e_1_2_10_37_1 doi: 10.1083/jcb.200809125 – ident: e_1_2_10_150_1 doi: 10.1111/acel.12075 – ident: e_1_2_10_80_1 doi: 10.1016/j.molcel.2019.04.024 – ident: e_1_2_10_98_1 doi: 10.1111/j.1474-9726.2010.00658.x – ident: e_1_2_10_149_1 doi: 10.1038/ncb3195 – ident: e_1_2_10_68_1 doi: 10.1038/nature12437 – ident: e_1_2_10_133_1 doi: 10.15252/embr.201949799 – ident: e_1_2_10_151_1 doi: 10.1038/ncb3225 – ident: e_1_2_10_129_1 doi: 10.1089/ars.2015.6407 – ident: e_1_2_10_72_1 doi: 10.1042/BJ20081386 – ident: e_1_2_10_45_1 doi: 10.1080/15548627.2018.1532259 – ident: e_1_2_10_141_1 doi: 10.18632/aging.101463 – ident: e_1_2_10_38_1 doi: 10.3389/fcell.2021.656201 – ident: e_1_2_10_57_1 doi: 10.1042/bj20030816 – ident: e_1_2_10_50_1 doi: 10.1038/s41419-017-0105-5 – ident: e_1_2_10_111_1 doi: 10.1007/s10522-012-9397-0 – ident: e_1_2_10_112_1 doi: 10.1016/j.cmet.2015.11.011 – ident: e_1_2_10_143_1 doi: 10.1126/science.aax0860 – ident: e_1_2_10_13_1 doi: 10.1038/s41591-018-0092-9 – ident: e_1_2_10_83_1 doi: 10.1111/j.1474-9726.2012.00795.x – ident: e_1_2_10_136_1 doi: 10.1038/s41577‐019‐0165‐0 – ident: e_1_2_10_28_1 doi: 10.1074/jbc.M700679200 – ident: e_1_2_10_59_1 doi: 10.1042/BJ20040095 – ident: e_1_2_10_55_1 doi: 10.1038/s41556-018-0124-1 – ident: e_1_2_10_63_1 doi: 10.1021/pr501221g – ident: e_1_2_10_113_1 doi: 10.1038/s42255-020-00298-z – ident: e_1_2_10_62_1 doi: 10.1007/BF01128816 – ident: e_1_2_10_23_1 doi: 10.1002/jcp.20753 – ident: e_1_2_10_25_1 doi: 10.1007/BF02254978 – ident: e_1_2_10_103_1 doi: 10.1124/jpet.112.194712 – ident: e_1_2_10_146_1 doi: 10.1038/nrm2952 – ident: e_1_2_10_85_1 doi: 10.1002/pmic.201800421 – ident: e_1_2_10_87_1 doi: 10.1111/acel.12545 – ident: e_1_2_10_139_1 doi: 10.3389/fcell.2017.00090 – ident: e_1_2_10_2_1 doi: 10.1016/j.cell.2019.10.005 – ident: e_1_2_10_35_1 doi: 10.1016/j.cell.2006.06.025 – ident: e_1_2_10_148_1 doi: 10.1038/s41418-018-0118-3 – ident: e_1_2_10_5_1 doi: 10.1038/nature10600 – ident: e_1_2_10_140_1 doi: 10.1016/j.bbrc.2004.08.177 – ident: e_1_2_10_130_1 doi: 10.3389/fimmu.2018.00832 – ident: e_1_2_10_142_1 doi: 10.1038/nature14156 – ident: e_1_2_10_58_1 doi: 10.1074/jbc.RA118.005806 – ident: e_1_2_10_93_1 doi: 10.1101/gad.197954.112 – ident: e_1_2_10_89_1 doi: 10.1042/BJ20121778 – ident: e_1_2_10_127_1 doi: 10.1038/s42255-018-0014-7 – ident: e_1_2_10_106_1 doi: 10.1128/MCB.00169-10 – ident: e_1_2_10_118_1 doi: 10.1016/S0006-291X(02)00464-3 – ident: e_1_2_10_86_1 doi: 10.1159/000213728 – ident: e_1_2_10_132_1 doi: 10.1101/gad.331272.119 – ident: e_1_2_10_91_1 doi: 10.1016/j.mad.2017.08.005 – ident: e_1_2_10_137_1 doi: 10.1038/nature09663 – ident: e_1_2_10_84_1 doi: 10.15252/embj.2019101982 – ident: e_1_2_10_32_1 doi: 10.1016/j.tcb.2018.02.001 – ident: e_1_2_10_3_1 doi: 10.1016/j.tibs.2019.06.011 – ident: e_1_2_10_21_1 doi: 10.1038/nrm3013 – ident: e_1_2_10_66_1 doi: 10.1158/0008-5472.177.65.1 – ident: e_1_2_10_24_1 doi: 10.1002/1873-3468.13498 – ident: e_1_2_10_109_1 doi: 10.1038/s41556-019-0287-4 – ident: e_1_2_10_69_1 doi: 10.1038/nprot.2016.159 – ident: e_1_2_10_9_1 doi: 10.1111/acel.13296 – ident: e_1_2_10_110_1 doi: 10.1074/jbc.C700018200 – ident: e_1_2_10_131_1 doi: 10.1016/j.cell.2021.09.034 – ident: e_1_2_10_46_1 doi: 10.1038/ncomms3308 – ident: e_1_2_10_71_1 doi: 10.1111/j.1469-7793.2003.00335.x – ident: e_1_2_10_92_1 doi: 10.1038/ncb1909 – ident: e_1_2_10_128_1 doi: 10.1038/s41577-019-0215-7 – volume: 2018 start-page: 1 year: 2018 ident: e_1_2_10_70_1 article-title: The good, the bad, and the ugly of ROS: new insights on aging and aging‐related diseases from eukaryotic and prokaryotic model organisms publication-title: Oxid Med Cell Longev doi: 10.1155/2018/1941285 – ident: e_1_2_10_147_1 doi: 10.1146/annurev-pharmtox-050120-105018 – ident: e_1_2_10_97_1 doi: 10.18632/aging.100423 – ident: e_1_2_10_65_1 doi: 10.1038/nature12154 – ident: e_1_2_10_104_1 doi: 10.1016/j.molcel.2005.03.027 – ident: e_1_2_10_17_1 doi: 10.1016/j.cmet.2018.12.008 – ident: e_1_2_10_15_1 doi: 10.15252/embj.2020106048 – ident: e_1_2_10_53_1 doi: 10.1038/nm.4054 – ident: e_1_2_10_77_1 doi: 10.1038/ncb2466 – ident: e_1_2_10_26_1 doi: 10.1371/journal.pbio.0050110 – ident: e_1_2_10_12_1 doi: 10.1038/ncb2784 – ident: e_1_2_10_52_1 doi: 10.15252/embj.201592862 – ident: e_1_2_10_116_1 doi: 10.1016/j.cmet.2016.05.006 – ident: e_1_2_10_16_1 doi: 10.1111/acel.13015 – ident: e_1_2_10_105_1 doi: 10.1038/nature11776 – ident: e_1_2_10_6_1 doi: 10.1016/j.devcel.2014.11.012 – ident: e_1_2_10_18_1 doi: 10.1038/ncomms11190 – ident: e_1_2_10_54_1 doi: 10.1111/acel.13067 – ident: e_1_2_10_27_1 doi: 10.1242/jcs.059246 – ident: e_1_2_10_119_1 doi: 10.1038/s42255-021-00412-9 – ident: e_1_2_10_115_1 doi: 10.1038/s42255-020-00305-3 – ident: e_1_2_10_101_1 doi: 10.1038/ncomms5172 – ident: e_1_2_10_14_1 doi: 10.1038/ncomms14532 – ident: e_1_2_10_79_1 doi: 10.1016/j.molcel.2007.03.023 – ident: e_1_2_10_99_1 doi: 10.1016/j.redox.2016.10.014 – ident: e_1_2_10_60_1 doi: 10.1016/j.exger.2006.04.009 – ident: e_1_2_10_122_1 doi: 10.1016/j.exger.2017.03.004 – ident: e_1_2_10_39_1 doi: 10.1186/s12915-017-0470-7 – ident: e_1_2_10_102_1 doi: 10.1074/jbc.M300318200 – ident: e_1_2_10_34_1 doi: 10.1038/sj.cdd.4402107 – ident: e_1_2_10_8_1 doi: 10.1111/acel.12344 – ident: e_1_2_10_31_1 doi: 10.1038/sj.onc.1207102 – ident: e_1_2_10_96_1 doi: 10.3390/ijms22052245 – ident: e_1_2_10_124_1 doi: 10.1126/science.abb5916 – ident: e_1_2_10_152_1 doi: 10.1111/acel.12882 – ident: e_1_2_10_138_1 doi: 10.1016/j.immuni.2013.08.001 – ident: e_1_2_10_22_1 doi: 10.1016/j.molmed.2017.01.003 – ident: e_1_2_10_29_1 doi: 10.1242/jcs.061481 – ident: e_1_2_10_19_1 doi: 10.1111/acel.12445 – ident: e_1_2_10_67_1 doi: 10.3389/fphys.2019.01523 – ident: e_1_2_10_120_1 doi: 10.1038/s41419-019-1550-0 – ident: e_1_2_10_126_1 doi: 10.1016/j.cmet.2020.08.004 – ident: e_1_2_10_7_1 doi: 10.1038/nature16932 – ident: e_1_2_10_123_1 doi: 10.1007/s10522-008-9134-x – ident: e_1_2_10_40_1 doi: 10.1016/j.ebiom.2017.03.020 – ident: e_1_2_10_108_1 doi: 10.1186/s13287-021-02339-0 – ident: e_1_2_10_145_1 doi: 10.1097/CCM.0b013e3181a001ae – ident: e_1_2_10_10_1 doi: 10.15252/embj.2018100492 |
SSID | ssj0035499 |
Score | 2.6856425 |
SecondaryResourceType | review_article |
Snippet | Senescence is a multi‐functional cell fate, characterized by an irreversible cell‐cycle arrest and a pro‐inflammatory phenotype, commonly known as the... Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1186 |
SubjectTerms | ageing cell cycle checkpoints Cell death Cell fate cell senescence Cellular Senescence industry Inflammation Mitochondria Phenotype Phenotypes SASP Senescence Therapeutic applications therapeutics |
Title | Cellular senescence: all roads lead to mitochondria |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.16361 https://www.ncbi.nlm.nih.gov/pubmed/35048548 https://www.proquest.com/docview/2780744600 https://www.proquest.com/docview/2621661276 https://www.proquest.com/docview/2811979615 https://pubmed.ncbi.nlm.nih.gov/PMC9296701 |
Volume | 290 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAXWloeoaUyAiGBlFViO4-tuOwuXVVIcAAq7QVFdmwLRJqtmt0D_PrOOA-6FFWCWyRPIseeGX9jj78BeCmEi_PIiDAzJgvl2KLNCalCaxOdCq6c87UIPnxMT8_k-0Wy2IK3_V2Ylh9i2HAjy_D-mgxc6eaakTurmxGiCR_7ULIWIaJPA3eUoMCnvQ3JQ5nKRcdNSmk8v1_dXI1uQMybmZLXEaxfguY78LXvfJt58mO0XulR-esPXsf__btduN9hUzZplekBbNl6D_YnNcbl5z_ZK-azRf02_B7cnfWV4vZBzGxVUTora8hzluQsjpmqKna5VKZhFeoRWy3ZOXoP9La1QaV_CGfzky-z07ArxhCWCS5goTF6nOvYSim4lRanF8EiRoeJjcuxc8bEaanKGC06sk7ISBANkOXa5dpgSBeLR7BdL2v7BBg6FaK5TzVFozpJlIyszniJn-Aqd3kAr_tJKcqOqZwKZlRFH7HQ6BR-dAJ4MchetPwcf5U67Oe26Gy0KXhGREASEV8Az4dmHDo6MlG1Xa5RJuUxIhiepbfI5HQUO0ZoGMDjVl2GrogEPSQGhQFkG4o0CBC792ZL_f2bZ_lG3JpmEXb9jdeTW_6umJ9MP_unp_8ifAD3OCK2NqHuELZXl2v7DBHWSh_Bncn03XR-5C3qCnnmImQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FcAgXloTFEKARiwSSR3Z3exkkDmGS0YQsB0ikuRm3uy2iODbKeITCP_ErfBNV7YUMQZE45MDNUpesXmp55S6_AnghRO7HnhZupHXkyqFBmxMydY0JVCh4mue2F8Hefjg5lB-mwXQJfnT_wjT8EP0HN7IM66_JwOmD9Dkrz42aDRBOhH5bU7ljzr5hxjZ7t72Jx_uS8_HWwWjitk0F3CxAR-xqrYax8o2UghtpcJoIejDLCYyfDfNcaz_M0sxHzfRMLqQniM7GcJXHSmNq4gt87zW4Ti3Eiap_82PPViUo1Wr-v-SuDOW0ZUOlwqHfc12MfxdA7cXazPOY2Qa98S342W1XU-tyPJjXapB9_4NJ8r_Zz9tws4XfbKOxlzuwZMpVWNso07o6OWOvmC2ItTcNq7Ay6prhrYEYmaKgil02o-CQkT98y9KiYKdVqmesQFNhdcVO0EFiQCk12vVdOLySpdyD5bIqzQNg6DeJyT9UlHCrIEilZ1TEM3wFT-M8duB1pwVJ1pKxU0-QIumSMjqNxJ6GA8972a8NBclfpdY7ZUpaNzRLeERcRxJBrQPP-mHcOroVSktTzVEm5D6CNB6Fl8jEdNs8RPTrwP1GP_upiACDAOa9DkQLmtsLEIH54kh59MUSmSM0DyMPp_7GKuYlq0vGW-8_2aeH_yL8FFYmB3u7ye72_s4juMERoDb1g-uwXJ_OzWMElLV6Ys2Yweer1vNfZK9-Jg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UCtoXL63WaNURL6CQJZmZTBLBh7rbpbVaRFvYt5jJTFBMk9Jkkfqb_Cv-J89MLnatFHzog2-BOYS5nMt3MiffAXjCWO5HnmJuqFTo8lijzTGeuloHUjCa5rntRfBuT2wf8DezYLYEP_p_YVp-iOGDm7EM66-NgR-p_JSR51rWI0QTwu9KKnf1yTdM2OpXOxM83aeUTrf2x9tu11PAzQL0w65SMo6krzlnVHONs0TMg0lOoP0sznOlfJGlmY-K6emccY8ZNhtNZR5JhZmJz_C9l-AyF15sGkVMPgxkVcxkWu3vl9Tlgs86MlRTN_R7rovh7wymPVuaeRoy25g3vQ4_-91qS12-juaNHGXf_yCS_F-28wZc68A32Wyt5SYs6XIV1jbLtKkOT8gzYsth7T3DKlwd963w1oCNdVGYel1Sm9CQGW_4kqRFQY6rVNWkQEMhTUUO0T1iOCkVWvUtOLiQpdyG5bIq9R0g6DUNj7-QJt2WQZByT8uQZvgKmkZ55MDzXgmSrKNiNx1BiqRPycxpJPY0HHg8yB61BCR_ldrodSnpnFCd0NAwHaGqeg48GoZx68ydUFrqao4ygvoI0WgozpGJzF1zjNjXgfVWPYepsABDAGa9DoQLijsIGPryxZHyy2dLY47AXIQeTv2F1ctzVpdMt15_tE93_0X4IVx5P5kmb3f2du_BCkV02hYPbsByczzX9xFNNvKBNWICny5azX8BWGh81Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellular+senescence%3A+all+roads+lead+to+mitochondria&rft.jtitle=The+FEBS+journal&rft.au=Martini%2C+H%C3%A9l%C3%A8ne&rft.au=Passos%2C+Jo%C3%A3o+F&rft.date=2023-03-01&rft.issn=1742-4658&rft.eissn=1742-4658&rft.volume=290&rft.issue=5&rft.spage=1186&rft_id=info:doi/10.1111%2Ffebs.16361&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon |