Promises and Perils of Artificial Intelligence in Neurosurgery

Abstract Artificial intelligence (AI)-facilitated clinical automation is expected to become increasingly prevalent in the near future. AI techniques may permit rapid and detailed analysis of the large quantities of clinical data generated in modern healthcare settings, at a level that is otherwise i...

Full description

Saved in:
Bibliographic Details
Published inNeurosurgery Vol. 87; no. 1; pp. 33 - 44
Main Authors Panesar, Sandip S, Kliot, Michel, Parrish, Rob, Fernandez-Miranda, Juan, Cagle, Yvonne, Britz, Gavin W
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.07.2020
Copyright by the Congress of Neurological Surgeons
Wolters Kluwer Health, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Artificial intelligence (AI)-facilitated clinical automation is expected to become increasingly prevalent in the near future. AI techniques may permit rapid and detailed analysis of the large quantities of clinical data generated in modern healthcare settings, at a level that is otherwise impossible by humans. Subsequently, AI may enhance clinical practice by pushing the limits of diagnostics, clinical decision making, and prognostication. Moreover, if combined with surgical robotics and other surgical adjuncts such as image guidance, AI may find its way into the operating room and permit more accurate interventions, with fewer errors. Despite the considerable hype surrounding the impending medical AI revolution, little has been written about potential downsides to increasing clinical automation. These may include both direct and indirect consequences. Directly, faulty, inadequately trained, or poorly understood algorithms may produce erroneous results, which may have wide-scale impact. Indirectly, increasing use of automation may exacerbate de-skilling of human physicians due to over-reliance, poor understanding, overconfidence, and lack of necessary vigilance of an automated clinical workflow. Many of these negative phenomena have already been witnessed in other industries that have already undergone, or are undergoing “automation revolutions,” namely commercial aviation and the automotive industry. This narrative review explores the potential benefits and consequences of the anticipated medical AI revolution from a neurosurgical perspective.
AbstractList Artificial intelligence (AI)-facilitated clinical automation is expected to become increasingly prevalent in the near future. AI techniques may permit rapid and detailed analysis of the large quantities of clinical data generated in modern healthcare settings, at a level that is otherwise impossible by humans. Subsequently, AI may enhance clinical practice by pushing the limits of diagnostics, clinical decision making, and prognostication. Moreover, if combined with surgical robotics and other surgical adjuncts such as image guidance, AI may find its way into the operating room and permit more accurate interventions, with fewer errors. Despite the considerable hype surrounding the impending medical AI revolution, little has been written about potential downsides to increasing clinical automation. These may include both direct and indirect consequences. Directly, faulty, inadequately trained, or poorly understood algorithms may produce erroneous results, which may have wide-scale impact. Indirectly, increasing use of automation may exacerbate de-skilling of human physicians due to over-reliance, poor understanding, overconfidence, and lack of necessary vigilance of an automated clinical workflow. Many of these negative phenomena have already been witnessed in other industries that have already undergone, or are undergoing “automation revolutions,” namely commercial aviation and the automotive industry. This narrative review explores the potential benefits and consequences of the anticipated medical AI revolution from a neurosurgical perspective.
Artificial intelligence (AI)-facilitated clinical automation is expected to become increasingly prevalent in the near future. AI techniques may permit rapid and detailed analysis of the large quantities of clinical data generated in modern healthcare settings, at a level that is otherwise impossible by humans. Subsequently, AI may enhance clinical practice by pushing the limits of diagnostics, clinical decision making, and prognostication. Moreover, if combined with surgical robotics and other surgical adjuncts such as image guidance, AI may find its way into the operating room and permit more accurate interventions, with fewer errors. Despite the considerable hype surrounding the impending medical AI revolution, little has been written about potential downsides to increasing clinical automation. These may include both direct and indirect consequences. Directly, faulty, inadequately trained, or poorly understood algorithms may produce erroneous results, which may have wide-scale impact. lndirectly, increasing use of automation may exacerbate de-skilling of human physicians due to over-reliance, poor understanding, overconfidence, and lack of necessary vigilance of an automated clinical workflow. Many of these negative phenomena have already been witnessed in other industries that have already undergone, or are undergoing "automation revolutions," namely commercial aviation and the automotive industry. This narrative review explores the potential benefits and consequences of the anticipated medical AI revolution from a neurosurgical perspective. KEYWORDS: Artificial intelligence, Deep learning, Machine learning, Automation, Surgical adjuncts, Diagnostics, Prognostication
Abstract Artificial intelligence (AI)-facilitated clinical automation is expected to become increasingly prevalent in the near future. AI techniques may permit rapid and detailed analysis of the large quantities of clinical data generated in modern healthcare settings, at a level that is otherwise impossible by humans. Subsequently, AI may enhance clinical practice by pushing the limits of diagnostics, clinical decision making, and prognostication. Moreover, if combined with surgical robotics and other surgical adjuncts such as image guidance, AI may find its way into the operating room and permit more accurate interventions, with fewer errors. Despite the considerable hype surrounding the impending medical AI revolution, little has been written about potential downsides to increasing clinical automation. These may include both direct and indirect consequences. Directly, faulty, inadequately trained, or poorly understood algorithms may produce erroneous results, which may have wide-scale impact. Indirectly, increasing use of automation may exacerbate de-skilling of human physicians due to over-reliance, poor understanding, overconfidence, and lack of necessary vigilance of an automated clinical workflow. Many of these negative phenomena have already been witnessed in other industries that have already undergone, or are undergoing “automation revolutions,” namely commercial aviation and the automotive industry. This narrative review explores the potential benefits and consequences of the anticipated medical AI revolution from a neurosurgical perspective.
Artificial intelligence (AI)-facilitated clinical automation is expected to become increasingly prevalent in the near future. AI techniques may permit rapid and detailed analysis of the large quantities of clinical data generated in modern healthcare settings, at a level that is otherwise impossible by humans. Subsequently, AI may enhance clinical practice by pushing the limits of diagnostics, clinical decision making, and prognostication. Moreover, if combined with surgical robotics and other surgical adjuncts such as image guidance, AI may find its way into the operating room and permit more accurate interventions, with fewer errors. Despite the considerable hype surrounding the impending medical AI revolution, little has been written about potential downsides to increasing clinical automation. These may include both direct and indirect consequences. Directly, faulty, inadequately trained, or poorly understood algorithms may produce erroneous results, which may have wide-scale impact. lndirectly, increasing use of automation may exacerbate de-skilling of human physicians due to over-reliance, poor understanding, overconfidence, and lack of necessary vigilance of an automated clinical workflow. Many of these negative phenomena have already been witnessed in other industries that have already undergone, or are undergoing "automation revolutions," namely commercial aviation and the automotive industry. This narrative review explores the potential benefits and consequences of the anticipated medical AI revolution from a neurosurgical perspective.
Audience Academic
Author Parrish, Rob
Fernandez-Miranda, Juan
Kliot, Michel
Britz, Gavin W
Panesar, Sandip S
Cagle, Yvonne
AuthorAffiliation Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas Department of Neurosurgery, Stanford University, Stanford, California Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas Department of Neurosurgery, Stanford University, Stanford, California NASA Ames Research Center, Mountain View, California Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas
AuthorAffiliation_xml – name: Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas Department of Neurosurgery, Stanford University, Stanford, California Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas Department of Neurosurgery, Stanford University, Stanford, California NASA Ames Research Center, Mountain View, California Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas
– name: Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas Department of Neurosurgery, Stanford University, Stanford, California NASA Ames Research Center, Mountain View, California
Author_xml – sequence: 1
  givenname: Sandip S
  surname: Panesar
  fullname: Panesar, Sandip S
– sequence: 2
  givenname: Michel
  surname: Kliot
  fullname: Kliot, Michel
– sequence: 3
  givenname: Rob
  surname: Parrish
  fullname: Parrish, Rob
– sequence: 4
  givenname: Juan
  surname: Fernandez-Miranda
  fullname: Fernandez-Miranda, Juan
– sequence: 5
  givenname: Yvonne
  surname: Cagle
  fullname: Cagle, Yvonne
– sequence: 6
  givenname: Gavin W
  surname: Britz
  fullname: Britz, Gavin W
  email: gbritz@houstonmethodist.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31748800$$D View this record in MEDLINE/PubMed
BookMark eNqFkdtrFDEUxoNU7Hb10VcZ8MWXaXObSfZFWIqXQtE-KPgWMsnJNjWbrMkMZf3rzTr1ipeEEHL4nS8f5ztBRzFFQOgxwacEr9hZhCmnchb3n7kg99CCdJS3HHN8hBaYcNmyVf_hGJ2UcoMx6bmQD9AxI4JLifECPb_KaesLlEZH21xB9qE0yTXrPHrnjdehuYgjhOA3EA00PjZvvv445Q3k_UN03-lQ4NHdvUTvX754d_66vXz76uJ8fdmartpqh77vxKAHoNKQQVAnhLGECGYF6S1xGktpsDSDG0TniLait5YRNwAXXK-ALdGzWXeX06cJyqiqaVNt6QhpKooy0gtJRZVcoqe_oTdpyrG6U5TT6kOu5E_URgdQPro0Zm0Oomrdc9bVww_U6R-oui1svalBOF_rvzS0c4OpIyoZnNplv9V5rwhWh7zUnJea86r8kzuz07AF-53-FlAFyAzcpjBCLh_DdAtZXYMO4_VfRfk_enBdPaGspZhiLOqrPZT4jxmnafcf218AAxPCVg
CitedBy_id crossref_primary_10_1007_s11060_022_04234_x
crossref_primary_10_1177_2632010X241226887
crossref_primary_10_3389_fneur_2024_1332048
crossref_primary_10_23934_2223_9022_2022_11_2_355_363
crossref_primary_10_25259_SNI_522_2022
crossref_primary_10_1055_s_0042_1760341
crossref_primary_10_1177_15910199241238798
crossref_primary_10_1159_000520099
crossref_primary_10_18137_cardiometry_2024_31_132137
crossref_primary_10_3389_fnins_2021_670287
crossref_primary_10_1016_j_wneu_2022_08_109
crossref_primary_10_25259_SNI_321_2024
crossref_primary_10_1016_j_wneu_2024_03_149
crossref_primary_10_1016_j_wnsx_2024_100301
crossref_primary_10_1080_14737175_2023_2285432
crossref_primary_10_1177_02666669231200628
crossref_primary_10_25259_SNI_877_2022
crossref_primary_10_1016_j_wneu_2020_03_182
crossref_primary_10_1227_NEU_0000000000001736
crossref_primary_10_1016_j_bas_2023_102706
crossref_primary_10_23736_S2723_9284_23_00244_9
crossref_primary_10_5812_pmco_133563
crossref_primary_10_1016_j_wneu_2022_12_087
crossref_primary_10_1093_neuros_nyab331
crossref_primary_10_3390_cancers13195010
crossref_primary_10_1016_j_nec_2022_06_001
crossref_primary_10_1016_j_wneu_2022_03_022
crossref_primary_10_1080_21679169_2023_2198571
crossref_primary_10_1016_j_wneu_2022_02_006
crossref_primary_10_1016_j_wneu_2023_09_012
crossref_primary_10_1093_neuros_nyab337
crossref_primary_10_1080_08820538_2022_2139625
crossref_primary_10_1007_s10143_024_02514_w
crossref_primary_10_1007_s10439_021_02891_z
crossref_primary_10_3389_fneur_2021_790682
crossref_primary_10_3389_fpsyg_2021_710982
crossref_primary_10_1371_journal_pone_0279088
crossref_primary_10_3934_Neuroscience_2021025
crossref_primary_10_3389_fsurg_2022_863633
Cites_doi 10.1097/SLA.0000000000003262
10.1093/neuonc/now121
10.1158/1078-0432.CCR-17-2236
10.1001/jama.2018.17163
10.1001/jama.2017.7797
10.1016/j.clinph.2011.06.001
10.3171/2009.11.JNS09857
10.1016/j.measurement.2012.11.015
10.1093/neuonc/now086
10.1002/wsbm.1198
10.1007/s00330-016-4653-3
10.1093/neuonc/now256
10.1093/jamia/ocx125
10.1007/s00586-012-2499-1
10.1097/00006123-200011000-00008
10.1258/jhsrp.2010.010001
10.1126/scitranslmed.aad9398
10.1161/STROKEAHA.117.019740
10.5116/ijme.5b3f.9fb3
10.3174/ajnr.A1037
10.4137/BII.S38308
10.1002/jmri.21815
10.1056/NEJMra1814259
10.1038/s41551-018-0305-z
10.3171/2009.6.FOCUS09109
10.1148/radiol.2016161382
10.1016/j.nec.2014.11.011
10.1088/1741-2560/6/5/056001
10.1016/j.compmedimag.2016.03.003
10.1136/bmjqs-2018-008551
10.1016/j.acra.2008.09.015
10.1038/s41591-018-0147-y
10.1016/j.artmed.2014.03.001
10.1159/000099863
10.1007/s11548-014-1007-y
10.1177/0018720814535628
10.4103/2152-7806.142777
10.1016/j.wneu.2010.07.007
10.1148/radiol.14140770
10.1038/s41591-018-0300-7
10.1038/520609a
10.1038/s41746-018-0048-y
10.1093/neuros/nyx384
10.1097/00005373-200102000-00018
10.4103/2152-7806.95390
10.3171/2014.5.JNS132279
10.1016/j.wnsx.2019.100012
10.1097/01.sla.0000103020.19595.7d
10.1080/15376490490451552
10.1002/jmri.24696
10.1227/NEU.0b013e31827235f8
10.3171/2009.2.JNS081334
10.1136/bmj.i2139
10.1038/nature21056
10.1302/2048-0105.13.360038
10.1159/000076571
10.1038/s41551-017-0165-y
10.1148/radiol.2018180901
10.1148/radiol.2018181928
10.1097/HMR.0b013e31821826a1
10.1001/jamainternmed.2015.5231
ContentType Journal Article
Copyright Copyright © 2019 by the Congress of Neurological Surgeons 2019
Copyright © by the Congress of Neurological Surgeons
Copyright © 2019 by the Congress of Neurological Surgeons.
COPYRIGHT 2020 Oxford University Press
Copyright © 2019 by the Congress of Neurological Surgeons
Copyright_xml – notice: Copyright © 2019 by the Congress of Neurological Surgeons 2019
– notice: Copyright © by the Congress of Neurological Surgeons
– notice: Copyright © 2019 by the Congress of Neurological Surgeons.
– notice: COPYRIGHT 2020 Oxford University Press
– notice: Copyright © 2019 by the Congress of Neurological Surgeons
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1093/neuros/nyz471
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Eastern Edition


CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1524-4040
EndPage 44
ExternalDocumentID A643564347
10_1093_neuros_nyz471
31748800
10.1093/neuros/nyz471
00006123-202007000-00004
Genre Journal Article
Review
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
.-D
.Z2
01R
0R~
123
354
48X
4Q1
4Q2
53G
5RE
71W
77Y
7X7
88E
8FI
8FJ
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAPQZ
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAUQX
AAVAP
AAYEP
ABASU
ABDIG
ABHFT
ABJNI
ABLJU
ABOCM
ABPPZ
ABPTD
ABUWG
ACDDN
ACGFO
ACGFS
ACILI
ACOAL
ACUTJ
ACWRI
ACXJB
ACXNZ
ADBBV
ADGZP
ADHKW
ADHPY
ADRTK
AE3
AE6
AEMDU
AENEX
AENZO
AETBJ
AEWNT
AFDTB
AFFZL
AFKRA
AFOFC
AFUWQ
AGINI
AGINJ
AHMBA
AHOMT
AHQNM
AHVBC
AJNWD
AJZMW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMNEI
APIBT
BAYMD
BCRHZ
BENPR
BOYCO
BPHCQ
BTRTY
BVXVI
BYPQX
C45
CCPQU
CDBKE
CS3
DAKXR
E.X
EBS
EEVPB
ENERS
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FECEO
FL-
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
GAUVT
GJXCC
H0~
H13
HLJTE
HMCUK
HZ~
IAO
IHR
INH
INR
IN~
IPNFZ
JF7
JK8
K8S
KD2
KMI
KOP
KSI
KSN
L-C
L7B
LMP
M1P
MHKGH
N9A
NOYVH
N~7
N~B
O9-
OAG
OAH
OBH
ODMLO
OHH
OL1
OLB
OLH
OLU
OLV
OLY
OLZ
OVD
OWU
OWV
OWW
OWX
OWZ
P2P
PAFKI
PEELM
PQQKQ
PROAC
PSQYO
RIG
RLZ
ROX
ROZ
RUSNO
RXW
SJN
TEORI
TJX
UKHRP
V2I
VVN
W3M
WOQ
WOW
XXN
XYM
YAYTL
YCJ
YFH
YKOAZ
YOC
YXANX
ZFV
ZY1
-
0R
40H
4Q3
5WD
7O
7O~
AABJS
AABMN
AAPBV
ABFLS
ABZAD
ACIMA
ADEIU
ADIPN
AFXEN
AGVJH
AHULI
AIKOY
AIMBJ
ASMCH
AWKKM
AZQFJ
BEYMZ
BGYMP
BHONS
DPPUQ
H0
HZ
IN
JK3
OCZFY
OWPYF
OWY
RSW
S4R
TAF
X3V
X3W
Z2
ACLDA
CGR
CUY
CVF
ECM
EIF
NPM
.3C
.55
.GJ
1TH
3O-
3V.
5VS
A9M
AAJQQ
AAKAS
AAQOH
AAQQT
AAYXX
ABSAR
ACFRR
ADBIZ
ADFPA
ADZCM
AEETU
AFTRI
AGKRT
AHRYX
AIZYK
AJNYG
AQDSO
AQKUS
ASAOO
ATDFG
BS7
CITATION
EIHJH
EJD
ELUNK
FW0
J5H
JF9
JG8
M18
MBLQV
MBTAY
N4W
NVLIB
N~M
OCUKA
ODA
OLG
ORVUJ
P-K
R58
X7M
ZCG
ZGI
ZXP
AAPXW
BYORX
OJZSN
ABXVV
7XB
8FK
K9.
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c5471-b6657babe28c1b72f77cd1173d716d1fa088c08cbfb75f1ad76dd31fbe474a9e3
IEDL.DBID BENPR
ISSN 0148-396X
IngestDate Fri Oct 25 09:21:02 EDT 2024
Thu Oct 10 20:27:26 EDT 2024
Thu Feb 22 23:54:17 EST 2024
Mon Jan 01 07:17:21 EST 2024
Thu Sep 12 18:09:33 EDT 2024
Wed Oct 16 00:46:17 EDT 2024
Thu Aug 13 19:50:31 EDT 2020
Thu Aug 13 19:39:14 EDT 2020
Wed Aug 28 03:18:42 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Surgical adjuncts
Automation
Prognostication
Diagnostics
Machine learning
Artificial intelligence
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
Copyright © 2019 by the Congress of Neurological Surgeons.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5471-b6657babe28c1b72f77cd1173d716d1fa088c08cbfb75f1ad76dd31fbe474a9e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://academic.oup.com/neurosurgery/article-pdf/87/1/33/33377861/nyz471.pdf
PMID 31748800
PQID 2426578987
PQPubID 2046368
PageCount 12
ParticipantIDs proquest_miscellaneous_2316782717
proquest_journals_2426578987
gale_infotracmisc_A643564347
gale_infotracacademiconefile_A643564347
crossref_primary_10_1093_neuros_nyz471
pubmed_primary_31748800
wolterskluwer_health_10_1093_neuros_nyz471
wolterskluwer_health_00006123-202007000-00004
oup_primary_10_1093_neuros_nyz471
ProviderPackageCode L-C
C45
7O~
AARTV
OLH
ABZAD
JK3
H0~
OLV
OLU
OLZ
OLY
F2K
F2M
F2L
F2N
FL-
KMI
K8S
V2I
S4R
4Q1
OAG
4Q2
4Q3
OAH
OVD
71W
AHULI
.Z2
N~7
AWKKM
40H
N~B
OBH
X3V
X3W
ACDDN
ACWRI
BOYCO
AAAXR
E.X
OWW
OWY
01R
ACXNZ
OL1
IN~
KD2
77Y
JF7
PublicationCentury 2000
PublicationDate 2020-July-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-July-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Philadelphia
PublicationTitle Neurosurgery
PublicationTitleAlternate Neurosurgery
PublicationYear 2020
Publisher Oxford University Press
Copyright by the Congress of Neurological Surgeons
Wolters Kluwer Health, Inc
Publisher_xml – name: Oxford University Press
– name: Copyright by the Congress of Neurological Surgeons
– name: Wolters Kluwer Health, Inc
References Rajpurkar (bib19-20231011) 2017
Li (bib54-20231011) 2017; 1
(bib5-20231011) 2002; 31
Girão (bib55-20231011) 2013; 46
Keane (bib71-20231011) 2018; 1
Tzou (bib56-20231011) 2004; 11
Campillo-Gimenez (bib30-20231011) 2013; 192
Topol (bib1-20231011) 2019; 25
Brown (bib22-20231011) 2018; 25
Chang (bib11-20231011) 2018; 24
Rolston (bib13-20231011) 2015; 26
Dolz (bib31-20231011) 2016; 52
Yu (bib7-20231011) 2017; 27
Chen (bib39-20231011) 2013; 5
Panesar (bib10-20231011) 2019; 2
Duun-Henriksen (bib35-20231011) 2012; 123
Shortliffe (bib78-20231011) 2018; 320
Oborn (bib62-20231011) 2011; 16
Kitajima (bib33-20231011) 2009; 16
Titano (bib21-20231011) 2018; 24
Emblem (bib23-20231011) 2009; 30
Kantelhardt (bib49-20231011) 2013; 72
Cohen (bib42-20231011) 2016; 8
Enchev (bib50-20231011) 2009; 27
Senders (bib17-20231011) 2018; 83
Rajkomar (bib2-20231011) 2019; 380
Cabitza (bib66-20231011) 2017; 318
Zhou (bib24-20231011) 2017; 19
Nielsen (bib41-20231011) 2018; 49
Rotman (bib67-20231011) 2013; 16
Shademan (bib16-20231011) 2016; 8
Yu (bib18-20231011) 2018; 2
Pandya (bib51-20231011) 2009; 111
Zhang (bib27-20231011) 2017; 19
Cobb (bib61-20231011) 2012; 1
Emblem (bib43-20231011) 2015; 275
Lanfranco (bib15-20231011) 2004; 239
Sinha (bib36-20231011) 2001; 50
Rolston (bib12-20231011) 2014; 5
Dumont (bib40-20231011) 2011; 75
D’Albis (bib52-20231011) 2015; 10
Kassahun (bib25-20231011) 2014; 61
Yamashita (bib34-20231011) 2008; 29
Yu (bib59-20231011) 2019; 28
Faustinella (bib81-20231011) 2018; 9
Kickingereder (bib9-20231011) 2016; 281
Esteva (bib20-20231011) 2017; 542
Chiang (bib32-20231011) 2015; 41
Schork (bib46-20231011) 2015; 520
Ueda (bib28-20231011) 2018; 290
Ausman (bib64-20231011) 2012; 3
Panesar (bib3-20231011) 2019; 270
Rughani (bib45-20231011) 2010; 113
Ahn (bib8-20231011) 2014; 121
Nimsky (bib53-20231011) 2000; 47
Adler (bib58-20231011) 1997; 69
Casner (bib70-20231011) 2014; 56
Fereidouni (bib38-20231011) 2017; 1
Hoff (bib65-20231011) 2011; 36
Chang (bib44-20231011) 2016; 18
Tankus (bib29-20231011) 2009; 6
Bidiwala (bib26-20231011) 2004; 40
Rudie (bib37-20231011) 2019; 290
Hu (bib57-20231011) 2013; 22
Bohl (bib4-20231011) 2016; 8
Lehman (bib69-20231011) 2015; 175
Makary (bib77-20231011) 2016; 353
References_xml – volume: 270
  start-page: 223
  issue: 2
  year: 2019
  ident: bib3-20231011
  article-title: Artificial intelligence and the future of surgical robotics
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000003262
  contributor:
    fullname: Panesar
– volume: 19
  start-page: 109
  issue: 1
  year: 2017
  ident: bib27-20231011
  article-title: Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas
  publication-title: Neuro-Oncol
  doi: 10.1093/neuonc/now121
  contributor:
    fullname: Zhang
– volume: 24
  start-page: 1073
  issue: 5
  year: 2018
  ident: bib11-20231011
  article-title: Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-2236
  contributor:
    fullname: Chang
– volume: 320
  start-page: 2199
  issue: 21
  year: 2018
  ident: bib78-20231011
  article-title: Clinical decision support in the era of artificial intelligence
  publication-title: JAMA
  doi: 10.1001/jama.2018.17163
  contributor:
    fullname: Shortliffe
– volume: 318
  start-page: 517
  issue: 6
  year: 2017
  ident: bib66-20231011
  article-title: Unintended consequences of machine learning in medicine
  publication-title: JAMA
  doi: 10.1001/jama.2017.7797
  contributor:
    fullname: Cabitza
– volume: 123
  start-page: 84
  issue: 1
  year: 2012
  ident: bib35-20231011
  article-title: Channel selection for automatic seizure detection
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2011.06.001
  contributor:
    fullname: Duun-Henriksen
– volume: 113
  start-page: 585
  issue: 3
  year: 2010
  ident: bib45-20231011
  article-title: Use of an artificial neural network to predict head injury outcome
  publication-title: J Neurosurg
  doi: 10.3171/2009.11.JNS09857
  contributor:
    fullname: Rughani
– volume: 46
  start-page: 1257
  issue: 3
  year: 2013
  ident: bib55-20231011
  article-title: Tactile sensors for robotic applications
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.11.015
  contributor:
    fullname: Girão
– volume: 18
  start-page: 1680
  issue: 12
  year: 2016
  ident: bib44-20231011
  article-title: Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/now086
  contributor:
    fullname: Chang
– volume: 5
  start-page: 73
  issue: 1
  year: 2013
  ident: bib39-20231011
  article-title: Promise of personalized omics to precision medicine
  publication-title: Wiley Interdiscip Rev Syst Biol Med
  doi: 10.1002/wsbm.1198
  contributor:
    fullname: Chen
– volume: 27
  start-page: 3509
  issue: 8
  year: 2017
  ident: bib7-20231011
  article-title: Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4653-3
  contributor:
    fullname: Yu
– volume: 19
  start-page: 862
  issue: 6
  year: 2017
  ident: bib24-20231011
  article-title: MRI features predict survival and molecular markers in diffuse lower-grade gliomas
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/now256
  contributor:
    fullname: Zhou
– volume: 25
  start-page: 568
  issue: 5
  year: 2018
  ident: bib22-20231011
  article-title: Using machine learning for sequence-level automated MRI protocol selection in neuroradiology
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocx125
  contributor:
    fullname: Brown
– volume: 22
  start-page: 661
  issue: 3
  year: 2013
  ident: bib57-20231011
  article-title: Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients
  publication-title: Eur Spine J
  doi: 10.1007/s00586-012-2499-1
  contributor:
    fullname: Hu
– volume: 47
  start-page: 1070
  issue: 5
  year: 2000
  ident: bib53-20231011
  article-title: Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging
  publication-title: Neurosurgery
  doi: 10.1097/00006123-200011000-00008
  contributor:
    fullname: Nimsky
– volume: 16
  start-page: 46
  issue: 1
  year: 2011
  ident: bib62-20231011
  article-title: Robots and service innovation in health care
  publication-title: J Health Serv Res Policy
  doi: 10.1258/jhsrp.2010.010001
  contributor:
    fullname: Oborn
– volume: 8
  issue: 337
  year: 2016
  ident: bib16-20231011
  article-title: Supervised autonomous robotic soft tissue surgery
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aad9398
  contributor:
    fullname: Shademan
– volume: 49
  start-page: 1394
  issue: 6
  year: 2018
  ident: bib41-20231011
  article-title: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.019740
  contributor:
    fullname: Nielsen
– volume: 9
  start-page: 195
  year: 2018
  ident: bib81-20231011
  article-title: The decline of clinical skills: a challenge for medical schools
  publication-title: Int J Med Educ
  doi: 10.5116/ijme.5b3f.9fb3
  contributor:
    fullname: Faustinella
– volume: 1
  issue: 1
  year: 2017
  ident: bib54-20231011
  article-title: Computer-assisted neurosurgery: Yesterday, today and tomorrow
  publication-title: Neurosurg J
  contributor:
    fullname: Li
– volume: 29
  start-page: 1153
  issue: 6
  year: 2008
  ident: bib34-20231011
  article-title: Performance evaluation of radiologists with artificial neural network for differential diagnosis of intra-axial cerebral tumors on MR images
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A1037
  contributor:
    fullname: Yamashita
– volume: 8
  start-page: 11
  year: 2016
  ident: bib42-20231011
  article-title: Methodological issues in predicting pediatric epilepsy surgery candidates through natural language processing and machine learning
  publication-title: Biomed Inform Insights
  doi: 10.4137/BII.S38308
  contributor:
    fullname: Cohen
– volume: 30
  start-page: 1
  issue: 1
  year: 2009
  ident: bib23-20231011
  article-title: Automatic glioma characterization from dynamic susceptibility contrast imaging: Brain tumor segmentation using knowledge-based fuzzy clustering
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21815
  contributor:
    fullname: Emblem
– volume: 380
  start-page: 1347
  issue: 14
  year: 2019
  ident: bib2-20231011
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
  contributor:
    fullname: Rajkomar
– volume: 2
  start-page: 719
  issue: 10
  year: 2018
  ident: bib18-20231011
  article-title: Artificial intelligence in healthcare
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0305-z
  contributor:
    fullname: Yu
– volume: 27
  start-page: E11
  issue: 3
  year: 2009
  ident: bib50-20231011
  article-title: Neuronavigation: geneology, reality, and prospects
  publication-title: Neurosurg Focus
  doi: 10.3171/2009.6.FOCUS09109
  contributor:
    fullname: Enchev
– volume: 281
  start-page: 907
  issue: 3
  year: 2016
  ident: bib9-20231011
  article-title: Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features
  publication-title: Radiology
  doi: 10.1148/radiol.2016161382
  contributor:
    fullname: Kickingereder
– volume: 26
  start-page: 149
  issue: 2
  year: 2015
  ident: bib13-20231011
  article-title: Errors in neurosurgery
  publication-title: Neurosurg Clin N Am
  doi: 10.1016/j.nec.2014.11.011
  contributor:
    fullname: Rolston
– volume: 6
  start-page: 056001
  issue: 5
  year: 2009
  ident: bib29-20231011
  article-title: An automatic measure for classifying clusters of suspected spikes into single cells versus multiunits
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/6/5/056001
  contributor:
    fullname: Tankus
– volume: 52
  start-page: 8
  year: 2016
  ident: bib31-20231011
  article-title: Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: a clinical study
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2016.03.003
  contributor:
    fullname: Dolz
– volume: 28
  start-page: 238
  issue: 3
  year: 2019
  ident: bib59-20231011
  article-title: Framing the challenges of artificial intelligence in medicine
  publication-title: BMJ Qual Saf
  doi: 10.1136/bmjqs-2018-008551
  contributor:
    fullname: Yu
– volume: 16
  start-page: 313
  issue: 3
  year: 2009
  ident: bib33-20231011
  article-title: Differentiation of common large sellar-suprasellar masses: effect of artificial neural network on radiologists’ diagnosis performance
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2008.09.015
  contributor:
    fullname: Kitajima
– volume: 24
  start-page: 1337
  issue: 9
  year: 2018
  ident: bib21-20231011
  article-title: Automated deep-neural-network surveillance of cranial images for acute neurologic events
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0147-y
  contributor:
    fullname: Titano
– volume: 61
  start-page: 79
  issue: 2
  year: 2014
  ident: bib25-20231011
  article-title: Automatic classification of epilepsy types using ontology-based and genetics-based machine learning
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2014.03.001
  contributor:
    fullname: Kassahun
– volume: 69
  start-page: 124
  issue: 1-4
  year: 1997
  ident: bib58-20231011
  article-title: The Cyberknife: a frameless robotic system for radiosurgery
  publication-title: Stereotact Funct Neurosurg
  doi: 10.1159/000099863
  contributor:
    fullname: Adler
– volume: 16
  start-page: 28
  issue: 4
  year: 2013
  ident: bib67-20231011
  article-title: How technology is destroying jobs
  publication-title: Technol Rev
  contributor:
    fullname: Rotman
– volume: 10
  start-page: 117
  issue: 2
  year: 2015
  ident: bib52-20231011
  article-title: PyDBS: an automated image processing workflow for deep brain stimulation surgery
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-014-1007-y
  contributor:
    fullname: D’Albis
– volume: 56
  start-page: 1506
  issue: 8
  year: 2014
  ident: bib70-20231011
  article-title: The retention of manual flying skills in the automated cockpit
  publication-title: Hum Factors
  doi: 10.1177/0018720814535628
  contributor:
    fullname: Casner
– volume: 5
  start-page: S435
  issue: suppl 10
  year: 2014
  ident: bib12-20231011
  article-title: Medical errors in neurosurgery
  publication-title: Surg Neurol Int
  doi: 10.4103/2152-7806.142777
  contributor:
    fullname: Rolston
– volume: 75
  start-page: 57
  issue: 1
  year: 2011
  ident: bib40-20231011
  article-title: Prediction of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage with an artificial neural network: feasibility and comparison with logistic regression models
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2010.07.007
  contributor:
    fullname: Dumont
– volume: 275
  start-page: 228
  issue: 1
  year: 2015
  ident: bib43-20231011
  article-title: A generic support vector machine model for preoperative glioma survival associations
  publication-title: Radiology
  doi: 10.1148/radiol.14140770
  contributor:
    fullname: Emblem
– volume: 25
  start-page: 44
  issue: 1
  year: 2019
  ident: bib1-20231011
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
  contributor:
    fullname: Topol
– volume: 520
  start-page: 609
  issue: 7549
  year: 2015
  ident: bib46-20231011
  article-title: Personalized medicine: time for one-person trials
  publication-title: Nat News
  doi: 10.1038/520609a
  contributor:
    fullname: Schork
– volume: 1
  start-page: 40
  issue: 1
  year: 2018
  ident: bib71-20231011
  article-title: With an eye to AI and autonomous diagnosis
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-018-0048-y
  contributor:
    fullname: Keane
– volume: 192
  start-page: 572
  year: 2013
  ident: bib30-20231011
  article-title: Full-text automated detection of surgical site infections secondary to neurosurgery in Rennes, France
  publication-title: Stud Health Technol Inform
  contributor:
    fullname: Campillo-Gimenez
– volume: 83
  start-page: 181
  issue: 2
  year: 2018
  ident: bib17-20231011
  article-title: Natural and artificial intelligence in neurosurgery: a systematic review
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyx384
  contributor:
    fullname: Senders
– volume: 50
  start-page: 308
  issue: 2
  year: 2001
  ident: bib36-20231011
  article-title: Artificial neural network predicts CT scan abnormalities in pediatric patients with closed head injury
  publication-title: J Trauma
  doi: 10.1097/00005373-200102000-00018
  contributor:
    fullname: Sinha
– volume: 3
  year: 2012
  ident: bib64-20231011
  article-title: The transition of neurosurgeons through the technology and information age
  publication-title: Surg Neurol Int
  doi: 10.4103/2152-7806.95390
  contributor:
    fullname: Ausman
– volume: 121
  start-page: 367
  issue: 2
  year: 2014
  ident: bib8-20231011
  article-title: Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging
  publication-title: J Neurosurg
  doi: 10.3171/2014.5.JNS132279
  contributor:
    fullname: Ahn
– volume: 2
  start-page: 100012
  year: 2019
  ident: bib10-20231011
  article-title: Machine learning versus logistic regression methods for 2-year mortality prognostication in a small, heterogeneous glioma database
  publication-title: World Neurosurg X
  doi: 10.1016/j.wnsx.2019.100012
  contributor:
    fullname: Panesar
– volume: 239
  start-page: 14
  issue: 1
  year: 2004
  ident: bib15-20231011
  article-title: Robotic surgery
  publication-title: Ann Surg
  doi: 10.1097/01.sla.0000103020.19595.7d
  contributor:
    fullname: Lanfranco
– volume: 11
  start-page: 367
  issue: 4-5
  year: 2004
  ident: bib56-20231011
  article-title: Smart materials, precision sensors/actuators, smart structures, and structronic systems
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376490490451552
  contributor:
    fullname: Tzou
– volume: 41
  start-page: 1689
  issue: 6
  year: 2015
  ident: bib32-20231011
  article-title: Computer-automated focus lateralization of temporal lobe epilepsy using fMRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24696
  contributor:
    fullname: Chiang
– volume: 72
  start-page: A19
  issue: suppl_1
  year: 2013
  ident: bib49-20231011
  article-title: Evaluation of a completely robotized neurosurgical operating microscope
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e31827235f8
  contributor:
    fullname: Kantelhardt
– volume: 111
  start-page: 1141
  issue: 6
  year: 2009
  ident: bib51-20231011
  article-title: Advancing neurosurgery with image-guided robotics: technical note
  publication-title: J Neurosurg
  doi: 10.3171/2009.2.JNS081334
  contributor:
    fullname: Pandya
– volume: 353
  start-page: i2139
  year: 2016
  ident: bib77-20231011
  article-title: Medical error—the third leading cause of death in the US
  publication-title: BMJ
  doi: 10.1136/bmj.i2139
  contributor:
    fullname: Makary
– volume: 31
  start-page: 256
  issue: 7
  year: 2002
  ident: bib5-20231011
  article-title: Evaluation of the computer motion AESOP 3000 robotic endoscope holder
  publication-title: Health Devices
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: bib20-20231011
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
  contributor:
    fullname: Esteva
– volume: 1
  start-page: 2
  issue: 3
  year: 2012
  ident: bib61-20231011
  article-title: Are robots taking over orthopaedic surgery
  publication-title: Bone Jt 360
  doi: 10.1302/2048-0105.13.360038
  contributor:
    fullname: Cobb
– volume: 8
  start-page: e662
  issue: 6
  year: 2016
  ident: bib4-20231011
  article-title: A prospective cohort evaluation of a robotic, auto-navigating operating microscope
  publication-title: Cureus
  contributor:
    fullname: Bohl
– volume: 40
  start-page: 8
  issue: 1
  year: 2004
  ident: bib26-20231011
  article-title: Neural network classification of pediatric posterior fossa tumors using clinical and imaging data
  publication-title: Pediatr Neurosurg
  doi: 10.1159/000076571
  contributor:
    fullname: Bidiwala
– volume: 1
  start-page: 957
  issue: 12
  year: 2017
  ident: bib38-20231011
  article-title: Microscopy with ultraviolet surface excitation for rapid slide-free histology
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-017-0165-y
  contributor:
    fullname: Fereidouni
– volume: 290
  start-page: 187
  issue: 1
  year: 2018
  ident: bib28-20231011
  article-title: Deep learning for MR angiography: automated detection of cerebral aneurysms
  publication-title: Radiology
  doi: 10.1148/radiol.2018180901
  contributor:
    fullname: Ueda
– volume: 290
  start-page: 607
  issue: 3
  year: 2019
  ident: bib37-20231011
  article-title: Emerging applications of artificial intelligence in neuro-oncology
  publication-title: Radiology
  doi: 10.1148/radiol.2018181928
  contributor:
    fullname: Rudie
– year: 2017
  ident: bib19-20231011
  article-title: CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning
  publication-title: ArXiv171105225
  contributor:
    fullname: Rajpurkar
– volume: 36
  start-page: 338
  issue: 4
  year: 2011
  ident: bib65-20231011
  article-title: Deskilling and adaptation among primary care physicians using two work innovations
  publication-title: Health Care Manage Rev
  doi: 10.1097/HMR.0b013e31821826a1
  contributor:
    fullname: Hoff
– volume: 175
  start-page: 1828
  issue: 11
  year: 2015
  ident: bib69-20231011
  article-title: Diagnostic accuracy of digital screening mammography with and without computer-aided detection
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2015.5231
  contributor:
    fullname: Lehman
SSID ssj0016478
Score 2.5230055
SecondaryResourceType review_article
Snippet Abstract Artificial intelligence (AI)-facilitated clinical automation is expected to become increasingly prevalent in the near future. AI techniques may permit...
Artificial intelligence (AI)-facilitated clinical automation is expected to become increasingly prevalent in the near future. AI techniques may permit rapid...
SourceID proquest
gale
crossref
pubmed
wolterskluwer
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage 33
SubjectTerms Algorithms
Artificial intelligence
Artificial Intelligence - trends
Automation
Computer-aided medical diagnosis
Forecasts and trends
Humans
Machine learning
Medical diagnosis
Medical prognosis
Methods
Nervous system
Neurosurgery
Neurosurgery - methods
Neurosurgery - trends
Neurosurgical Procedures - methods
Neurosurgical Procedures - trends
Surgery
Title Promises and Perils of Artificial Intelligence in Neurosurgery
URI http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00006123-202007000-00004
https://www.ncbi.nlm.nih.gov/pubmed/31748800
https://www.proquest.com/docview/2426578987
https://search.proquest.com/docview/2316782717
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEB_s9UUpUvFr9SwriIIQbjf7ke1LSyst1YdyiIV7C_mEouzW2ytF_3pnNrnzFoo-7NOGJMxM5iMz8wvAu9qURruKM7RFipWirJg2hWdFjRKiMtVUfkD7vKwvrsovi2oRL9z6WFa51omDoradoTvyGZkSlC4MkY9vfjJ6NYqyq_EJjR3Y5RgpZBPYPT27nH_d5BGokzIUMTasOKwXEWUTw_hZwIuctb9-lyIfWaWom0cNb1t-5yPYu-sold1_HyrZt-zR-T48jo5kehI4_wQeuPYpHM2XHTLO9alqbTpH6frRp50fRgWoiPTzFgZnet2mAzpHH5qjn8HV-dm3TxcsvpDATIW7ZpryJlppxxuTa8G9EMbmuSgshkE29wp1iMkao70Wlc-VFbW1Re61Q66oQ1c8h0nbte4lpKi5yBnkuUcHo7JcO8sNOku-pG5drhJ4v6aQvAlAGDIksAsZSCkDKRP4QPSTdEBWS2VUrPPHZQhqSp6gD1ThV4oEpqORSB8z-v0WOfC_xaZr_sh4-Hr5V1Rwis1vmp0KylrX3eIYQgBoOAazCbwIfN2shC4VqbUsATZitAytqTKLqDWoYeimN_bmZ2UCH-8df-_OX_1756_hIc0eCoOnMFktb90bdH9W-gB2xEIcREn_AyACBEY
link.rule.ids 315,783,787,12068,21400,27936,27937,31731,31732,33756,33757,43322,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEB-0fVApoqh126uuIApCuP3O9qVSpeWq9TikhXsL-QRRduvtFdG_3plN7noLRR_2aUMmzEwmM5mZXwBeV7rQypYZw7NIsoIXJVM6dyyvUENkIuvS9Wif02pyWXyal_Nw4daFssqVTewNtWk13ZGP6ShB7cIQ-f3VT0avRlF2NTyhcRe2CaoKg6_tDyfT2dd1HoE6KX0RY83yw2oeUDYxjB97vMhx8_tPwdPBqRRs86DhbcPvfAA7v1pKZXff-0r2jfPo9BE8DI5kfOwl_xju2OYJHM0WLQrOdrFsTDxD7frRxa3rR3moiPhsA4Mz_tbEPTpH55ujn8Ll6cnFxwkLLyQwXeKqmaK8iZLKZrVOFc8c59qkKc8NhkEmdRJtiE5qrZzipUul4ZUxeeqURanIQ5s_g62mbexziNFykTOYpQ4djNJkyppMo7PkCurWzWQEb1YcElceCEP4BHYuPCuFZ2UEb4l_gjbIciG1DHX-SIagpsQx-kAlfgWPYDQYifzRg9-vUAL_IzZayUeEzdeJG1XBKda_aXYqKGtse41jCAGgzjCYjWDXy3VNCV0qMmtJBGwgaOFbU0USUGvQwtBNb-jNT4oI3t06_taV7_175S_h3uTiy7k4P5t-3of7RMkXCY9ga7m4tgfoCi3Vi6DvfwGDdQZZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promises+and+Perils+of+Artificial+Intelligence+in+Neurosurgery&rft.jtitle=Neurosurgery&rft.au=Panesar%2C+Sandip+S&rft.au=Kliot%2C+Michel&rft.au=Parrish%2C+Rob&rft.au=Fernandez-Miranda%2C+Juan&rft.date=2020-07-01&rft.eissn=1524-4040&rft.volume=87&rft.issue=1&rft.spage=33&rft_id=info:doi/10.1093%2Fneuros%2Fnyz471&rft_id=info%3Apmid%2F31748800&rft.externalDocID=31748800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-396X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-396X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-396X&client=summon