On the Importance of Morphology Control in Polymer Solar Cells

Nanostructured polymer‐based solar cells (PSCs) have emerged as a promising low‐cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be ad...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 31; no. 21; pp. 1835 - 1845
Main Authors van Bavel, Svetlana, Veenstra, Sjoerd, Loos, Joachim
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.11.2010
WILEY‐VCH Verlag
Wiley
Subjects
Online AccessGet full text
ISSN1022-1336
1521-3927
1521-3927
DOI10.1002/marc.201000080

Cover

Loading…
Abstract Nanostructured polymer‐based solar cells (PSCs) have emerged as a promising low‐cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer. The volume morphology of the bulk heterojunction photoactive layer determines the performance of polymer solar cells. In this paper the critical parameters are discussed influencing morphology creation and thus the ultimate light conversion efficiency for a given electron acceptor and donor system.
AbstractList Nanostructured polymer-based solar cells (PSCs) have emerged as a promising low-cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer.
Nanostructured polymer‐based solar cells (PSCs) have emerged as a promising low‐cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer. magnified image
Nanostructured polymer-based solar cells (PSCs) have emerged as a promising low-cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer.Nanostructured polymer-based solar cells (PSCs) have emerged as a promising low-cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer.
Nanostructured polymer‐based solar cells (PSCs) have emerged as a promising low‐cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer. The volume morphology of the bulk heterojunction photoactive layer determines the performance of polymer solar cells. In this paper the critical parameters are discussed influencing morphology creation and thus the ultimate light conversion efficiency for a given electron acceptor and donor system.
Author van Bavel, Svetlana
Veenstra, Sjoerd
Loos, Joachim
Author_xml – sequence: 1
  givenname: Svetlana
  surname: van Bavel
  fullname: van Bavel, Svetlana
  organization: Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
– sequence: 2
  givenname: Sjoerd
  surname: Veenstra
  fullname: Veenstra, Sjoerd
  organization: Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
– sequence: 3
  givenname: Joachim
  surname: Loos
  fullname: Loos, Joachim
  email: j.loos@physics.gla.ac.uk
  organization: Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23351599$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21567602$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlvFDEQRi0UlP3KEfmCOPXEu9sXpKhFFrIhFsHNcrs9xOBuD3aPyPx73JphQEhRTq7De66qrw7AzhAHB8ALjGYYIXLSm2RnBJUaoRo9A_uYE1xRReROqREhFaZU7IGDnL9PCENkF-wRzIUUiOyDN3cDHO8dvOwXMY1msA7GObyJaXEfQ_y2gk0cxhQD9AN8H8Oqdwl-jMEk2LgQ8hF4Pjchu-PNewg-n7391FxU13fnl83pdWU5k6iyjCsnUcscloJLI5hltFaWO9si1HHDnZOmlaqMh2VnhGw721JVk07UNW7pIXi9_neR4s-ly6PufbZlAjO4uMxaISxE2U89SdZCcCo4YYV8uSGXbe86vUi-pLnSf8IpwKsNYLI1YZ5KPD7_5SjlmKup5WzN2RRzTm6-RTDS05X0dCW9vVIR2H-C9aMZ_RS18eFxTa21Xz641RNN9M3ph-Zft1q7Po_uYeua9EMLSSXXX27P9VdWszP87lZf0d_OMLLs
CitedBy_id crossref_primary_10_1016_j_polymer_2011_06_020
crossref_primary_10_1016_j_solmat_2013_06_031
crossref_primary_10_1039_c3ee41773e
crossref_primary_10_1063_1_3681947
crossref_primary_10_1055_a_2095_5164
crossref_primary_10_1039_C5SM00193E
crossref_primary_10_1007_s11664_019_07702_9
crossref_primary_10_1039_c3nr03202g
crossref_primary_10_1002_macp_201100686
crossref_primary_10_1016_j_jksus_2017_09_008
crossref_primary_10_1021_am5066267
crossref_primary_10_1016_j_synthmet_2011_08_005
crossref_primary_10_1002_marc_201200129
crossref_primary_10_1016_j_polymer_2014_02_048
crossref_primary_10_3390_ma6031159
crossref_primary_10_1021_jp5088724
crossref_primary_10_1039_C6TA09530E
crossref_primary_10_1016_j_solmat_2016_06_042
crossref_primary_10_1021_ma3009178
crossref_primary_10_1016_j_dyepig_2020_108806
crossref_primary_10_1070_RC2014v083n07ABEH004417
crossref_primary_10_1021_ja302935n
crossref_primary_10_1038_srep05701
crossref_primary_10_1039_C6RA20659J
crossref_primary_10_1016_j_synthmet_2011_09_016
crossref_primary_10_1021_acs_langmuir_5b01739
crossref_primary_10_1021_jp2023988
crossref_primary_10_1016_j_polymer_2015_09_005
crossref_primary_10_1039_C9TA08960H
crossref_primary_10_1002_aenm_201100128
crossref_primary_10_1002_polb_23063
crossref_primary_10_1021_ma202409k
crossref_primary_10_1039_C4TC01949K
crossref_primary_10_1021_ma201648t
crossref_primary_10_1016_j_polymer_2011_07_053
crossref_primary_10_1016_j_polymer_2013_07_053
crossref_primary_10_1016_j_polymer_2013_11_016
crossref_primary_10_1557_mrc_2015_55
crossref_primary_10_1002_aenm_201000035
crossref_primary_10_1039_c1jm11963j
crossref_primary_10_1002_macp_201200382
crossref_primary_10_1021_ma4016399
crossref_primary_10_1002_app_38822
crossref_primary_10_1021_ja405493j
crossref_primary_10_1002_pola_26394
crossref_primary_10_1002_macp_201200547
crossref_primary_10_1016_j_polymer_2013_07_049
crossref_primary_10_1021_jp202996p
crossref_primary_10_1021_ja202877q
crossref_primary_10_1039_C2TC00001F
crossref_primary_10_1016_j_orgel_2013_10_027
crossref_primary_10_1146_annurev_physchem_040513_103639
crossref_primary_10_1021_ma2009386
crossref_primary_10_1016_j_progpolymsci_2012_10_001
crossref_primary_10_1002_pola_27095
crossref_primary_10_1002_adfm_201402260
crossref_primary_10_1021_jp311930m
crossref_primary_10_1002_ep_12791
crossref_primary_10_1021_jp503128v
crossref_primary_10_1021_acs_macromol_5b00986
crossref_primary_10_1039_c3ta10629b
crossref_primary_10_1016_j_commatsci_2016_12_020
crossref_primary_10_1002_ejoc_201200715
crossref_primary_10_1021_ja4101003
crossref_primary_10_1021_am200842y
crossref_primary_10_1038_srep16854
crossref_primary_10_1016_j_synthmet_2016_02_002
crossref_primary_10_1016_j_solmat_2012_04_042
crossref_primary_10_1021_ja205977z
crossref_primary_10_1016_j_solmat_2013_10_019
Cites_doi 10.1002/adfm.200500211
10.1002/adfm.200400297
10.1002/9783527623198.ch20
10.1021/cm049917d
10.1038/44359
10.1021/ma900817t
10.1021/cr050149z
10.1063/1.2738197
10.1002/polb.1993.090310614
10.1143/JJAP.32.L357
10.1126/science.1069156
10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
10.1016/j.tsf.2005.08.179
10.1002/adfm.200400559
10.1002/adfm.200500339
10.1021/jp9901803
10.1016/j.solmat.2008.01.005
10.1016/j.solmat.2008.01.006
10.1002/adma.200501717
10.1126/science.258.5087.1474
10.1039/b902060h
10.1021/jp047023a
10.1039/b900901a
10.1063/1.1929875
10.1063/1.96937
10.1063/1.2784961
10.1080/15583720802231833
10.1093/oso/9780195129632.001.0001
10.1063/1.359792
10.1002/adma.201090021
10.1021/jp0217738
10.1016/S0009-2614(98)00163-8
10.1126/science.1141711
10.1063/1.1534621
10.1063/1.2718488
10.1103/PhysRevB.59.15346
10.1002/adma.200306372
10.1016/S0301-4215(01)00144-6
10.1021/ar00015a009
10.1002/adfm.200305026
10.1039/B305988J
10.1063/1.2730746
10.1021/nl048120i
10.1063/1.2006986
10.1021/ja9057986
10.1021/ar900073s
10.1063/1.1616197
10.1021/ol802839z
10.1039/B510618B
10.1002/adma.200900510
10.1002/(SICI)1521-4095(200004)12:7<498::AID-ADMA498>3.0.CO;2-H
10.1002/adma.200702438
10.1002/anie.200702506
10.1016/S0040-6090(03)01348-8
10.1016/j.cis.2007.09.001
10.1126/science.270.5243.1789
10.1063/1.1889240
10.1002/adma.200800456
10.1002/adfm.200900090
10.1063/1.1345834
10.1103/PhysRevB.47.13835
10.1038/nmat1500
10.1063/1.3182797
10.1021/nl8014022
10.1126/science.279.5358.1903
10.1063/1.1861123
10.1002/adfm.200500420
10.1063/1.2719668
10.1039/b712398a
10.1002/adma.200305274
10.1063/1.2711534
10.1002/adfm.200600138
10.1063/1.2408661
10.1002/adfm.200900775
10.1016/S0379-6779(02)01246-8
10.1002/adma.200306659
10.1063/1.2937472
10.1002/adfm.200305049
10.1021/ma047589x
10.1016/j.energy.2005.09.006
10.1038/nmat1928
10.1021/jo00108a012
10.1039/b901732a
10.1016/0032-3861(95)95298-F
10.1016/j.tsf.2006.08.043
10.1002/pip.891
10.1016/j.tsf.2003.11.043
10.1016/j.solmat.2004.02.027
10.1063/1.115797
10.1038/376498a0
10.1002/adfm.200390011
10.1126/science.318.5854.1230
10.1002/adma.200304150
10.1021/ja000160a
10.1063/1.1620683
10.1063/1.2821368
10.1016/j.orgel.2009.07.002
10.1088/0957-4484/15/9/035
10.1021/jp049918t
10.1038/nmat2533
10.1021/ma0618732
10.1021/ol062666p
ContentType Journal Article
Copyright Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
IQODW
NPM
7X8
7SR
7U5
8FD
JG9
L7M
DOI 10.1002/marc.201000080
DatabaseName Istex
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList PubMed
Materials Research Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
EISSN 1521-3927
EndPage 1845
ExternalDocumentID 21567602
23351599
10_1002_marc_201000080
MARC201000080
ark_67375_WNG_X484F1JN_K
Genre reviewArticle
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABEML
ACSCC
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
EBD
GYXMG
M6T
PALCI
RIWAO
RJQFR
SAMSI
TUS
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
NPM
7X8
7SR
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c5470-c459e70b4e17657a64c4389c5ecb00d5a5ee7ab7940217da67bdcb3982d6881b3
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 00:53:01 EDT 2025
Thu Jul 10 23:00:58 EDT 2025
Thu Apr 03 06:53:30 EDT 2025
Mon Jul 21 09:12:03 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Tue Jul 01 01:50:06 EDT 2025
Wed Jan 22 16:57:58 EST 2025
Wed Oct 30 09:49:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords films
bulk heterojunction
Morphology
Polymer
Property structure relationship
polymer solar cells
Review
Surface topography
Organic solar cells
electron tomography
Electrical characteristic
Heterojunction
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5470-c459e70b4e17657a64c4389c5ecb00d5a5ee7ab7940217da67bdcb3982d6881b3
Notes ArticleID:MARC201000080
istex:B9E86CC687C26E6DD2CF1CF91BF8C36C6D0C0B37
ark:/67375/WNG-X484F1JN-K
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21567602
PQID 866536524
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_901660009
proquest_miscellaneous_866536524
pubmed_primary_21567602
pascalfrancis_primary_23351599
crossref_primary_10_1002_marc_201000080
crossref_citationtrail_10_1002_marc_201000080
wiley_primary_10_1002_marc_201000080_MARC201000080
istex_primary_ark_67375_WNG_X484F1JN_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 1, 2010
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: November 1, 2010
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol. Rapid Commun
PublicationYear 2010
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley
References X. Yang, A. Alexeev, M. A. J. Michels, J. Loos, Macromolecules 2005, 38, 4289.
S. S. van Bavel, E. Sourty, G. de With, K. Frolic, J. Loos, Macromolecules 2009, 42, 7396.
C. Y. Kuo, W. C. Tang, C. Gau, T. F. Guo, D. Z. Jeng, Appl. Phys. Lett. 2008, 93, 033307.
Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, Appl. Phys. Lett. 2005, 86, 063502.
M. Reyes-Reyes, K. Kim, D. Carroll, Appl. Phys. Lett. 2005, 87, 083506.
F. Zhang, K. G. Jespersen, C. Björström, M. Svensson, M. R. Andersson, V. Sundström, K. Magnusson, E. Moons, A. Yartsev, O. Inganäs, Adv. Funct. Mater. 2006, 16, 667.
C. R. McNeill, A. Abrusci, J. Zaumseil, R. Wilson, M. J. McKiernan, J. H. Burroughes, J. J. M. Halls, N. C. Greenham, R. H. Friend, Appl. Phys. Lett. 2007, 90, 193506.
G. Yu, A. J. Heeger, J. Appl. Phys. 1995, 78, 4510.
N. Nakicenovic, N. A. Grubler, A. McDonald, Eds., Global Energy Perspectives, Cambridge University Press, Cambridge 1998.
H. Hoppe, N. S. Sariciftci, Adv. Polym. Sci. 2008, 214, 1.
L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett. 2006, 88, 09351.
S. Heutz, P. Sullivan, B. M. Sanderson, S. M. Schultes, T. S. Jones, Sol. Energy Mater. Sol. Cells 2004, 83, 229.
D. Veldman, S. C. J. Meskers, R. A. J. Janssen, Adv. Funct. Mater. 2009, 19, 1939.
H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, Z. Bao, Adv. Funct. Mater. 2005, 15, 671.
T. J. Savenije, J. E. Kroeze, X. Yang, J. Loos, Adv. Funct. Mater. 2005, 15, 1260.
J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Gao, C. L. Wilkins, J. Org. Chem. 1995, 60, 532.
P. A. van Hal, M. P. T. Christiaans, M. M. Wienk, J. M. Kroon, R. A. J. Janssen, J. Phys. Chem. B 1999, 103, 4352.
L. Smilowitz, N. S. Sariciftci, R. Wu, C. Gettinger, A. J. Heeger, F. Wudl, Phys. Rev. B 1993, 47, 13835.
F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu, W. J. H. Verhees, J. M. Kroon, J. C. Hummelen, Org. Lett. 2007, 9, 551.
D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, D. S. Ginley, Thin Solid Films 2006, 496, 26.
F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 2003, 13, 85.
A. Gadisa, F. Zhang, D. Sharma, M. Svensson, M. R. Andersson, O. Inganäs, Thin Solid Films 2007, 515, 3126.
A. L. Roes, E. A. Alsema, K. Blok, M. K. Patel, Prog. Photovolt. : Res. Appl. 2009, 17, 372.
F. Zhang, M. Jonforsen, D. M. Johansson, M. R. Andersson, O. Inganäs, Synth. Met. 2003, 138, 555.
S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
H. Hansel, H. Zettl, G. Krausch, R. Kissilev, M. Thelakkat, H.-W. Schmidt, Adv. Mater. 2003, 15, 2056.
P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693.
U. Stalmach, B. de Boer, C. Videlot, P. F. van Hutten, G. Hadziioannou, J. Am. Chem. Soc. 2000, 122, 5464.
S. S. van Bavel, E. Sourty, G. de With, J. Loos, Nano Lett. 2009, 9, 507.
C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374.
A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, Appl. Phys. Lett. 2007, 90, 163517.
S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, R. A. J. Janssen, Nat. Mater. 2009, 8, 818.
J. J. M. Halls, A. C. Arias, J. D. MacKenzie, W. Wu, M. Inbasekaran, W. P. Woo, R. H. Friend, Adv. Mater. 2000, 12, 498.
M. M. Mandoc, L. J. A. Koster, P. W. M. Blom, Appl. Phys. Lett. 2007, 90, 133504. Very high carrier mobilities (above 10−3 m2 · V−1 · s−1) affect the difference between the quasi-Fermi levels and lead to the reduction of Voc. For comparison, mobilities of holes and electrons in annealed P3HT/PCBM blends are around 10−8 and 10−7 m2 · V−1 · s−1, respectively [34].
R. H. Bube, Photoelectronic Properties of Semiconductors, Cambridge University Press, Cambridge 1992.
V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849.
T. Yohannes, F. Zhang, M. Svensson, J. C. Hummelen, M. R. Andersson, O. Inganäs, Thin Solid Films 2004, 449, 152.
M. Lenes, G.-J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, P. W. M. Blom, Adv. Mater. 2008, 20, 2116.
D. Chirvase, J. Parisi, J. C. Hummelen, V. Dyakonov, Nanotechnology 2004, 15, 1317.
M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, Oxford 1999.
J. E. Kroeze, T. J. Savenije, M. J. W. Vermeulen, J. M. Warman, J. Phys. Chem. B 2003, 107, 7696.
J. Gilot, I. Barbu, M. M. Wienk, R. A. J. Janssen, Appl. Phys. Lett. 2007, 91, 113520.
Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, 1.
T.-Y. Chu, S. Alem, P. G. Verly, S. Wakim, J. Lu, Y. Tao, S. Beaupré, M. Leclerc, F. Bélanger, D. Désilets, S. Rodman, D. Waller, R. Gaudiana, Appl. Phys. Lett. 2009, 95, 063304.
A. Mozer, P. Denk, M. Scharber, H. Neugebauer, N. S. Sariciftci, P. Wagner, L. Lutsen, D. Vanderzande, J. Phys. Chem. B 2004, 108, 5235.
J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett. 1996, 68, 3120.
X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano Lett. 2005, 5, 579.
S. Jenekhe, X. L. Chen, Science 1998, 279, 1903.
S. S. van Bavel, E. Sourty, G. de With, S. Veenstra, J. Loos, J. Mater. Chem. 2009, 19, 5388.
S. C. Veenstra, W. J. H. Verhees, J. M. Kroon, M. M. Koetse, J. Sweelssen, J. J. A. M. Bastiaansen, H. F. M. Schoo, X. Yang, A. Alexeev, J. Loos, U. S. Schubert, M. M. Wienk, Chem. Mater. 2004, 16, 2503.
B. R. Saunders, M. L. Turner, Adv. Colloid Interface Sci. 2008, 138, 1.
J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222.
J. A. Merlo, C. D. Frisbie, J. Phys. Chem. B 2004, 108, 19169.
T. Nishizawa, H. K. Lim, K. Tajima, K. Hashimoto, Chem. Commun. 2009, 2469.
S. Bertho, G. Janssen, T. J. Cleij, B. Conings, W. Moons, A. Gadisa, J. D'Haen, E. Goovaerts, L. Lutsen, J. Manca, D. Vanderzande, Sol. Energy Mater. Sol. Cells 2008, 92, 753.
A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. Turbiez, M. M. Wienk, R. A. J. Janssen, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 1897.
J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498.
R. A. Kerr, Science 2007, 318, 1230.
S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841.
A. J. Moule, K. Meerholz, Adv. Funct. Mater. 2009, 19, 3028.
K. J. Ihn, J. Moulton, P. Smith, J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 735.
X. Yang, J. Loos, Macromolecules 2007, 40, 1353.
J. Gilot, M. M. Wienk, R. A. J. Janssen, Appl. Phys. Lett. 2007, 90, 143512.
T. J. Savenije, J. M. Warman, A. Goossens, Chem. Phys. Lett. 1998, 287, 148.
L. H. Slooff, S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen, M. M. Koetse, Appl. Phys. Lett. 2007, 90, 143506.
L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, P. W. M. Blom, Appl. Phys. Lett. 2005, 86, 123509. The expression in question has the following form: Voc = Egap/q − (kT/q) * ln [C*(1-P)/P], where P is the dissociation probability of excitons into free charges. Unless P is approaching zero, the dependency of Voc on P can be neglected.
C. Yang, J. K. Lee, A. J. Heeger, F. Wudl, J. Mater. Chem. 2009, 19, 5416.
J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497.
Y. Zhao, G. X. Yuan, P. Roche, M. Leclerc, Polymer 1995, 36, 2211.
O. Inganäs, F. Zhang, M. R. Andersson, Acc. Chem. Res. 2009, 42, 1731.
M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. de Boer, P. W. M. Blom, Appl. Phys. Lett. 2007, 91, 263505.
M. Heeney, W. Zhang, D. J. Crouch, M. L. Chabinyc, S. Gordeyev, R. Hamilton, S. J. Higgins, I. McCulloch, P. J. Skabara, D. Sparrowe, S. Tierney, Chem. Commun. 2007, 47, 5061.
X. Yang, J. K. J. Van Duren, M. T. Rispens, J. C. Hummelen, R. A. J. Janssen, M. A. J. Michels, J. Loos, Adv. Mater. 2004, 16, 802.
R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, B. de Boer, Polym. Rev. 2008, 48, 531.
W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295, 2425.
M. Al-Ibrahim, O. Ambacher, S. Sensfuss, G. Gobsch, Appl. Phys. Lett. 2005, 86, 201120.
W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 2004, 14, 1005.
M. M. Wienk, M. G. R. Turbiez, J. Gilot, R. A. J. Janssen, Adv. Mater. 2008, 20, 2556.
A. P. Zoombelt, M. Fonrodona, M. M. Wienk, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Org. Lett. 2009, 11, 903.
H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
F. Wudl, Acc. Chem. Res. 1992, 25, 157.
W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2004, 16, 1009.
N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, I, 1474.
L. J. A. Koster, V. D. Mihailetchi, M. Lenes, P. W. M. Blom, in: Organic Photovoltaics, C. Brabec, V. Dyakonov, U. Scherf, Eds., WILEY-VCH, Weinheim 2008, pp. 283- 298.
R. W. Bentley, Energy Policy 2002, 30, 189.
M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
W. A. Hermann, Energy 2006, 31, 1685.
A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gügel, K. Müllen, Phys. Rev. B 1999, 59, 15346.
M. Jorgensen, K. Norrman, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2008, 92, 686.
H. Hoppe, N. S. Sariciftci, J. Mater. Chem. 2006, 16, 45.
D. J. D. Moet, M. Lenes, J. D. Kotlarski, S. C. Veenstra, J. Sweelssen, M. M. Koetse, B. de Boer, P. W. M. Blom, Org. Electron. 2009, 10, 1275.
B. C. Thompson, J. M. J. Fréchet, Angew. Chem., Int. Ed. 2008, 47, 58.
J. K. J. van Duren, X. Y
2007; 107
2006; 31
2009; 42
1995; 36
1995; 78
2003; 13
2003; 15
1998; 279
1995; 376
2003; 93
2003; 94
2004; 449
1999; 401
2006; 496
2010; 22
2009; 11
2004; 451
1995; 60
2009; 95
2009; 10
2001
2000; 12
1993; 32
2004; 37
1999; 59
1993; 31
1986; 48
2007; 9
2007; 6
2000; 122
2008; 20
1998; 287
2001; 11
1996; 68
2005; 38
2009; 19
2003; 83
2009; 17
1993; 47
2004; 83
2009; 21
2003; 138
2002; 30
2002; 295
2006; 16
1998
2009
2008
2007; 90
2005; 86
2006; 18
2007; 91
2005; 87
1999; 103
1992
2003
2009; 131
2004; 108
2008; 92
2008; 93
1995; 270
1999
2003; 107
2007; 515
2007; 317
2006; 89
2004; 16
2006; 88
2004; 14
2004; 15
2005; 5
2008; 47
2008; 48
2005; 4
2009; 9
2009; 8
2008; 138
2008; 214
1992; 25
2007; 40
2005; 15
2001; 78
2007; 318
2007; 47
e_1_2_7_108_2
e_1_2_7_3_2
e_1_2_7_104_2
Bube R. H. (e_1_2_7_15_2) 1992
e_1_2_7_19_2
e_1_2_7_83_2
e_1_2_7_100_2
e_1_2_7_60_2
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_90_2
e_1_2_7_71_2
e_1_2_7_94_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
e_1_2_7_23_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_37_2
Nakicenovic N. (e_1_2_7_7_2) 1998
e_1_2_7_4_2
e_1_2_7_105_2
e_1_2_7_8_2
e_1_2_7_101_2
e_1_2_7_82_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_48_2
e_1_2_7_29_2
e_1_2_7_109_2
e_1_2_7_93_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_78_2
Yang X. (e_1_2_7_59_2) 2004; 37
Koster L. J. A. (e_1_2_7_12_2) 2006; 88
e_1_2_7_106_2
e_1_2_7_9_2
e_1_2_7_102_2
e_1_2_7_17_2
e_1_2_7_1_2
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_43_2
e_1_2_7_85_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_28_2
Hoppe H. (e_1_2_7_10_2) 2008; 214
e_1_2_7_110_2
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_96_2
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
Koster L. J. A. (e_1_2_7_81_2) 2008
e_1_2_7_39_2
e_1_2_7_107_2
e_1_2_7_2_2
e_1_2_7_103_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_27_2
e_1_2_7_111_2
e_1_2_7_72_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_99_2
e_1_2_7_38_2
Kerr R. A. (e_1_2_7_5_2) 2007; 318
Pope M. (e_1_2_7_16_2) 1999
References_xml – reference: A. Mozer, P. Denk, M. Scharber, H. Neugebauer, N. S. Sariciftci, P. Wagner, L. Lutsen, D. Vanderzande, J. Phys. Chem. B 2004, 108, 5235.
– reference: W. A. Hermann, Energy 2006, 31, 1685.
– reference: V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 699.
– reference: P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693.
– reference: T. Nishizawa, H. K. Lim, K. Tajima, K. Hashimoto, Chem. Commun. 2009, 2469.
– reference: F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu, W. J. H. Verhees, J. M. Kroon, J. C. Hummelen, Org. Lett. 2007, 9, 551.
– reference: B. C. Thompson, J. M. J. Fréchet, Angew. Chem., Int. Ed. 2008, 47, 58.
– reference: G. Yu, A. J. Heeger, J. Appl. Phys. 1995, 78, 4510.
– reference: J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498.
– reference: M.-H. Chen, J. Hou, Z. Hong, G. Yang, S. Sista, L.-M. Chen, Y. Yang, Adv. Mater. 2009, 21, 4238.
– reference: M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, Oxford 1999.
– reference: P. A. van Hal, M. P. T. Christiaans, M. M. Wienk, J. M. Kroon, R. A. J. Janssen, J. Phys. Chem. B 1999, 103, 4352.
– reference: Y. Zhao, G. X. Yuan, P. Roche, M. Leclerc, Polymer 1995, 36, 2211.
– reference: W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
– reference: R. H. Bube, Photoelectronic Properties of Semiconductors, Cambridge University Press, Cambridge 1992.
– reference: J. J. M. Halls, A. C. Arias, J. D. MacKenzie, W. Wu, M. Inbasekaran, W. P. Woo, R. H. Friend, Adv. Mater. 2000, 12, 498.
– reference: J. Peet, C. Soci, R. C. Coffin, T. Q. Nguyen, A. Mikhailovsky, D. Moses, G. C. Bazan, Appl. Phys. Lett. 2006, 89, 252105.
– reference: A. P. Zoombelt, M. Fonrodona, M. M. Wienk, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Org. Lett. 2009, 11, 903.
– reference: V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849.
– reference: N. Nakicenovic, N. A. Grubler, A. McDonald, Eds., Global Energy Perspectives, Cambridge University Press, Cambridge 1998.
– reference: G. Dennler, C. Brabec, in: Organic Photovoltaics, C. Brabec, V. Dyakonov, U. Scherf, Eds., Wiley-VCH, Weinheim 2008, pp. 531- 566.
– reference: L. J. A. Koster, V. D. Mihailetchi, M. Lenes, P. W. M. Blom, in: Organic Photovoltaics, C. Brabec, V. Dyakonov, U. Scherf, Eds., WILEY-VCH, Weinheim 2008, pp. 283- 298.
– reference: L. Smilowitz, N. S. Sariciftci, R. Wu, C. Gettinger, A. J. Heeger, F. Wudl, Phys. Rev. B 1993, 47, 13835.
– reference: H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, Z. Bao, Adv. Funct. Mater. 2005, 15, 671.
– reference: H. Hansel, H. Zettl, G. Krausch, R. Kissilev, M. Thelakkat, H.-W. Schmidt, Adv. Mater. 2003, 15, 2056.
– reference: M. Heeney, W. Zhang, D. J. Crouch, M. L. Chabinyc, S. Gordeyev, R. Hamilton, S. J. Higgins, I. McCulloch, P. J. Skabara, D. Sparrowe, S. Tierney, Chem. Commun. 2007, 47, 5061.
– reference: W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2004, 16, 1009.
– reference: R. W. Bentley, Energy Policy 2002, 30, 189.
– reference: M. M. Wienk, M. G. R. Turbiez, J. Gilot, R. A. J. Janssen, Adv. Mater. 2008, 20, 2556.
– reference: S. Bertho, G. Janssen, T. J. Cleij, B. Conings, W. Moons, A. Gadisa, J. D'Haen, E. Goovaerts, L. Lutsen, J. Manca, D. Vanderzande, Sol. Energy Mater. Sol. Cells 2008, 92, 753.
– reference: M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen, J. M. Kroon, O. Inganäs, M. R. Andersson, Adv. Mater. 2003, 15, 988.
– reference: S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, R. A. J. Janssen, Nat. Mater. 2009, 8, 818.
– reference: C. Y. Kuo, W. C. Tang, C. Gau, T. F. Guo, D. Z. Jeng, Appl. Phys. Lett. 2008, 93, 033307.
– reference: F. Wudl, Acc. Chem. Res. 1992, 25, 157.
– reference: Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, Appl. Phys. Lett. 2005, 86, 063502.
– reference: X. Yang, J. K. J. Van Duren, M. T. Rispens, J. C. Hummelen, R. A. J. Janssen, M. A. J. Michels, J. Loos, Adv. Mater. 2004, 16, 802.
– reference: A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gügel, K. Müllen, Phys. Rev. B 1999, 59, 15346.
– reference: K. J. Ihn, J. Moulton, P. Smith, J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 735.
– reference: J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497.
– reference: A. Gadisa, F. Zhang, D. Sharma, M. Svensson, M. R. Andersson, O. Inganäs, Thin Solid Films 2007, 515, 3126.
– reference: L. H. Slooff, S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen, M. M. Koetse, Appl. Phys. Lett. 2007, 90, 143506.
– reference: X. Yang, J. K. J. van Duren, R. A. J. Janssen, M. A. J. Michels, J. Loos, Macromolecules 2004, 37, 2152.
– reference: M. T. Rispens, A. Meetsma, R. Rittberger, C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Chem. Commun. 2003, 2116.
– reference: D. Chirvase, J. Parisi, J. C. Hummelen, V. Dyakonov, Nanotechnology 2004, 15, 1317.
– reference: M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. de Boer, P. W. M. Blom, Appl. Phys. Lett. 2007, 91, 263505.
– reference: R. Qin, W. Li, C. Li, C. Du, C. Veit, H.-F. Schleiermacher, M. Andersson, Z. Bo, Z. Liu, O. Inganäs, U. Würfel, F. Zhang, J. Am. Chem. Soc. 2009, 131, 14612.
– reference: M. Al-Ibrahim, O. Ambacher, S. Sensfuss, G. Gobsch, Appl. Phys. Lett. 2005, 86, 201120.
– reference: J. K. J. van Duren, X. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Adv. Funct. Mater. 2004, 14, 425.
– reference: U. Stalmach, B. de Boer, C. Videlot, P. F. van Hutten, G. Hadziioannou, J. Am. Chem. Soc. 2000, 122, 5464.
– reference: H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
– reference: S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841.
– reference: H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 2004, 14, 1005.
– reference: B. R. Saunders, M. L. Turner, Adv. Colloid Interface Sci. 2008, 138, 1.
– reference: D. J. D. Moet, M. Lenes, J. D. Kotlarski, S. C. Veenstra, J. Sweelssen, M. M. Koetse, B. de Boer, P. W. M. Blom, Org. Electron. 2009, 10, 1275.
– reference: J. E. Kroeze, T. J. Savenije, M. J. W. Vermeulen, J. M. Warman, J. Phys. Chem. B 2003, 107, 7696.
– reference: G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
– reference: M. Reyes-Reyes, K. Kim, D. Carroll, Appl. Phys. Lett. 2005, 87, 083506.
– reference: X. Yang, A. Alexeev, M. A. J. Michels, J. Loos, Macromolecules 2005, 38, 4289.
– reference: S. S. van Bavel, E. Sourty, G. de With, J. Loos, Nano Lett. 2009, 9, 507.
– reference: J. A. Merlo, C. D. Frisbie, J. Phys. Chem. B 2004, 108, 19169.
– reference: J. Gilot, I. Barbu, M. M. Wienk, R. A. J. Janssen, Appl. Phys. Lett. 2007, 91, 113520.
– reference: C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374.
– reference: L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett. 2006, 88, 09351.
– reference: M. M. Mandoc, L. J. A. Koster, P. W. M. Blom, Appl. Phys. Lett. 2007, 90, 133504. Very high carrier mobilities (above 10−3 m2 · V−1 · s−1) affect the difference between the quasi-Fermi levels and lead to the reduction of Voc. For comparison, mobilities of holes and electrons in annealed P3HT/PCBM blends are around 10−8 and 10−7 m2 · V−1 · s−1, respectively [34].
– reference: X. Yang, J. Loos, Macromolecules 2007, 40, 1353.
– reference: S. C. Veenstra, W. J. H. Verhees, J. M. Kroon, M. M. Koetse, J. Sweelssen, J. J. A. M. Bastiaansen, H. F. M. Schoo, X. Yang, A. Alexeev, J. Loos, U. S. Schubert, M. M. Wienk, Chem. Mater. 2004, 16, 2503.
– reference: T. Yohannes, F. Zhang, M. Svensson, J. C. Hummelen, M. R. Andersson, O. Inganäs, Thin Solid Films 2004, 449, 152.
– reference: D. Veldman, S. C. J. Meskers, R. A. J. Janssen, Adv. Funct. Mater. 2009, 19, 1939.
– reference: H. Hoppe, N. S. Sariciftci, J. Mater. Chem. 2006, 16, 45.
– reference: D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, D. S. Ginley, Thin Solid Films 2006, 496, 26.
– reference: A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, Appl. Phys. Lett. 2007, 90, 163517.
– reference: A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. Turbiez, M. M. Wienk, R. A. J. Janssen, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 1897.
– reference: M. Lenes, G.-J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, P. W. M. Blom, Adv. Mater. 2008, 20, 2116.
– reference: S. Heutz, P. Sullivan, B. M. Sanderson, S. M. Schultes, T. S. Jones, Sol. Energy Mater. Sol. Cells 2004, 83, 229.
– reference: W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295, 2425.
– reference: A. L. Roes, E. A. Alsema, K. Blok, M. K. Patel, Prog. Photovolt. : Res. Appl. 2009, 17, 372.
– reference: R. A. Kerr, Science 2007, 318, 1230.
– reference: F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 2003, 13, 85.
– reference: S. Jenekhe, X. L. Chen, Science 1998, 279, 1903.
– reference: T. J. Savenije, J. E. Kroeze, X. Yang, J. Loos, Adv. Funct. Mater. 2005, 15, 1260.
– reference: O. Inganäs, F. Zhang, M. R. Andersson, Acc. Chem. Res. 2009, 42, 1731.
– reference: S. S. van Bavel, E. Sourty, G. de With, K. Frolic, J. Loos, Macromolecules 2009, 42, 7396.
– reference: N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, I, 1474.
– reference: K. Yoshino, Y. X. Hong, K. Muro, S. Kiyomatsu, S. Morita, A. A. Zakhidov, T. Noguchi, T. Ohnishi, Jpn. J. Appl. Phys. 2 1993, 32, L357.
– reference: S. S. van Bavel, E. Sourty, G. de With, S. Veenstra, J. Loos, J. Mater. Chem. 2009, 19, 5388.
– reference: T.-Y. Chu, S. Alem, P. G. Verly, S. Wakim, J. Lu, Y. Tao, S. Beaupré, M. Leclerc, F. Bélanger, D. Désilets, S. Rodman, D. Waller, R. Gaudiana, Appl. Phys. Lett. 2009, 95, 063304.
– reference: J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Gao, C. L. Wilkins, J. Org. Chem. 1995, 60, 532.
– reference: A. J. Moule, K. Meerholz, Adv. Funct. Mater. 2009, 19, 3028.
– reference: L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, P. W. M. Blom, Appl. Phys. Lett. 2005, 86, 123509. The expression in question has the following form: Voc = Egap/q − (kT/q) * ln [C*(1-P)/P], where P is the dissociation probability of excitons into free charges. Unless P is approaching zero, the dependency of Voc on P can be neglected.
– reference: C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
– reference: G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
– reference: R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, B. de Boer, Polym. Rev. 2008, 48, 531.
– reference: J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett. 1996, 68, 3120.
– reference: K. Coakley, M. D. McGehee, Appl. Phys. Lett. 2003, 83, 3380.
– reference: C. R. McNeill, A. Abrusci, J. Zaumseil, R. Wilson, M. J. McKiernan, J. H. Burroughes, J. J. M. Halls, N. C. Greenham, R. H. Friend, Appl. Phys. Lett. 2007, 90, 193506.
– reference: S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
– reference: X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano Lett. 2005, 5, 579.
– reference: M. Jorgensen, K. Norrman, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2008, 92, 686.
– reference: J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222.
– reference: M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
– reference: F. Zhang, M. Jonforsen, D. M. Johansson, M. R. Andersson, O. Inganäs, Synth. Met. 2003, 138, 555.
– reference: C. Waldauf, P. Schilinsky, J. Hauch, C. J. Brabec, Thin Solid Films 2004, 451, 503.
– reference: F. Zhang, K. G. Jespersen, C. Björström, M. Svensson, M. R. Andersson, V. Sundström, K. Magnusson, E. Moons, A. Yartsev, O. Inganäs, Adv. Funct. Mater. 2006, 16, 667.
– reference: T. J. Savenije, J. M. Warman, A. Goossens, Chem. Phys. Lett. 1998, 287, 148.
– reference: J. Gilot, M. M. Wienk, R. A. J. Janssen, Appl. Phys. Lett. 2007, 90, 143512.
– reference: C. Yang, J. K. Lee, A. J. Heeger, F. Wudl, J. Mater. Chem. 2009, 19, 5416.
– reference: Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, 1.
– reference: H. Hoppe, N. S. Sariciftci, Adv. Polym. Sci. 2008, 214, 1.
– volume: 15
  start-page: 1617
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 1260
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 214
  start-page: 1
  year: 2008
  publication-title: Adv. Polym. Sci.
– volume: 13
  start-page: 85
  year: 2003
  publication-title: Adv. Funct. Mater.
– volume: 279
  start-page: 1903
  year: 1998
  publication-title: Science
– volume: 18
  start-page: 789
  year: 2006
  publication-title: Adv. Mater.
– volume: 78
  start-page: 4510
  year: 1995
  publication-title: J. Appl. Phys.
– volume: 138
  start-page: 1
  year: 2008
  publication-title: Adv. Colloid Interface Sci.
– volume: 42
  start-page: 7396
  year: 2009
  publication-title: Macromolecules
– volume: 22
  start-page: 1
  year: 2010
  publication-title: Adv. Mater.
– volume: 32
  start-page: L357
  year: 1993
  publication-title: Jpn. J. Appl. Phys. 2
– year: 1998
– volume: 19
  start-page: 3028
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 89
  start-page: 252105
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 903
  year: 2009
  publication-title: Org. Lett.
– volume: 287
  start-page: 148
  year: 1998
  publication-title: Chem. Phys. Lett.
– year: 2008
– volume: 295
  start-page: 2425
  year: 2002
  publication-title: Science
– volume: 449
  start-page: 152
  year: 2004
  publication-title: Thin Solid Films
– volume: 108
  start-page: 19169
  year: 2004
  publication-title: J. Phys. Chem. B
– start-page: 531
  year: 2008
  end-page: 566
– volume: 40
  start-page: 1353
  year: 2007
  publication-title: Macromolecules
– volume: 16
  start-page: 667
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 68
  start-page: 3120
  year: 1996
  publication-title: Appl. Phys. Lett.
– volume: 92
  start-page: 753
  year: 2008
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 47
  start-page: 13835
  year: 1993
  publication-title: Phys. Rev. B
– volume: 36
  start-page: 2211
  year: 1995
  publication-title: Polymer
– volume: 83
  start-page: 3380
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 802
  year: 2004
  publication-title: Adv. Mater.
– volume: 20
  start-page: 2556
  year: 2008
  publication-title: Adv. Mater.
– volume: 88
  start-page: 09351
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 86
  start-page: 201120
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 131
  start-page: 14612
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 87
  start-page: 083506
  year: 2005
  publication-title: Appl. Phys. Lett.
– year: 1992
– volume: 78
  start-page: 841
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 1317
  year: 2004
  publication-title: Nanotechnology
– volume: 11
  start-page: 374
  year: 2001
  publication-title: Adv. Funct. Mater.
– volume: 93
  start-page: 033307
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 864
  year: 2005
  publication-title: Nat. Mater.
– volume: 86
  start-page: 123509
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 401
  start-page: 685
  year: 1999
  publication-title: Nature
– start-page: 2116
  year: 2003
  publication-title: Chem. Commun.
– volume: 515
  start-page: 3126
  year: 2007
  publication-title: Thin Solid Films
– volume: 59
  start-page: 15346
  year: 1999
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 498
  year: 2000
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1005
  year: 2004
  publication-title: Adv. Funct. Mater.
– volume: 83
  start-page: 229
  year: 2004
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 93
  start-page: 3693
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 48
  start-page: 183
  year: 1986
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 579
  year: 2005
  publication-title: Nano Lett.
– volume: 15
  start-page: 2056
  year: 2003
  publication-title: Adv. Mater.
– volume: 90
  start-page: 143506
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 497
  year: 2007
  publication-title: Nat. Mater.
– volume: 86
  start-page: 063502
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 671
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 2503
  year: 2004
  publication-title: Chem. Mater.
– volume: 90
  start-page: 193506
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 5388
  year: 2009
  publication-title: J. Mater. Chem.
– year: 2001
– volume: 21
  start-page: 4238
  year: 2009
  publication-title: Adv. Mater.
– volume: 95
  start-page: 063304
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 818
  year: 2009
  publication-title: Nat. Mater.
– volume: 107
  start-page: 1324
  year: 2007
  publication-title: Chem. Rev.
– volume: 90
  start-page: 143512
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 94
  start-page: 6849
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 48
  start-page: 531
  year: 2008
  publication-title: Polym. Rev.
– volume: 19
  start-page: 5416
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 30
  start-page: 189
  year: 2002
  publication-title: Energy Policy
– volume: 19
  start-page: 1939
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 157
  year: 1992
  publication-title: Acc. Chem. Res.
– volume: 496
  start-page: 26
  year: 2006
  publication-title: Thin Solid Films
– volume: 16
  start-page: 1009
  year: 2004
  publication-title: Adv. Mater.
– volume: 107
  start-page: 7696
  year: 2003
  publication-title: J. Phys. Chem. B
– volume: 138
  start-page: 555
  year: 2003
  publication-title: Synth. Met.
– volume: 451
  start-page: 503
  year: 2004
  publication-title: Thin Solid Films
– volume: 38
  start-page: 4289
  year: 2005
  publication-title: Macromolecules
– volume: 92
  start-page: 686
  year: 2008
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 283
  year: 2008
  end-page: 298
– volume: 9
  start-page: 551
  year: 2007
  publication-title: Org. Lett.
– volume: 16
  start-page: 699
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 90
  start-page: 133504
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 31
  start-page: 735
  year: 1993
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 91
  start-page: 263505
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 270
  start-page: 1789
  year: 1995
  publication-title: Science
– volume: 103
  start-page: 4352
  year: 1999
  publication-title: J. Phys. Chem. B
– volume: 122
  start-page: 5464
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 1685
  year: 2006
  publication-title: Energy
– volume: 376
  start-page: 498
  year: 1995
  publication-title: Nature
– volume: 47
  start-page: 5061
  year: 2007
  publication-title: Chem. Commun.
– volume: 108
  start-page: 5235
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 91
  start-page: 113520
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 318
  start-page: 1230
  year: 2007
  publication-title: Science
– volume: 37
  start-page: 2152
  year: 2004
  publication-title: Macromolecules
– volume: 20
  start-page: 2116
  year: 2008
  publication-title: Adv. Mater.
– volume: 60
  start-page: 532
  year: 1995
  publication-title: J. Org. Chem.
– volume: 10
  start-page: 1275
  year: 2009
  publication-title: Org. Electron.
– start-page: 2469
  year: 2009
  publication-title: Chem. Commun.
– volume: 16
  start-page: 1897
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 90
  start-page: 163517
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 507
  year: 2009
  publication-title: Nano Lett.
– volume: 17
  start-page: 372
  year: 2009
  publication-title: Prog. Photovolt. : Res. Appl.
– volume: 47
  start-page: 58
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 317
  start-page: 222
  year: 2007
  publication-title: Science
– volume: 42
  start-page: 1731
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 14
  start-page: 425
  year: 2004
  publication-title: Adv. Funct. Mater.
– start-page: 1474
  year: 1992
  publication-title: Science
– volume: 16
  start-page: 45
  year: 2006
  publication-title: J. Mater. Chem.
– volume: 15
  start-page: 988
  year: 2003
  publication-title: Adv. Mater.
– year: 1999
– ident: e_1_2_7_2_2
– ident: e_1_2_7_50_2
  doi: 10.1002/adfm.200500211
– ident: e_1_2_7_62_2
  doi: 10.1002/adfm.200400297
– ident: e_1_2_7_8_2
  doi: 10.1002/9783527623198.ch20
– ident: e_1_2_7_88_2
  doi: 10.1021/cm049917d
– ident: e_1_2_7_29_2
  doi: 10.1038/44359
– ident: e_1_2_7_83_2
  doi: 10.1021/ma900817t
– ident: e_1_2_7_9_2
  doi: 10.1021/cr050149z
– volume: 214
  start-page: 1
  year: 2008
  ident: e_1_2_7_10_2
  publication-title: Adv. Polym. Sci.
– ident: e_1_2_7_109_2
  doi: 10.1063/1.2738197
– volume-title: Global Energy Perspectives
  year: 1998
  ident: e_1_2_7_7_2
– ident: e_1_2_7_63_2
  doi: 10.1002/polb.1993.090310614
– ident: e_1_2_7_22_2
  doi: 10.1143/JJAP.32.L357
– ident: e_1_2_7_91_2
  doi: 10.1126/science.1069156
– ident: e_1_2_7_35_2
  doi: 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
– ident: e_1_2_7_96_2
  doi: 10.1016/j.tsf.2005.08.179
– ident: e_1_2_7_80_2
  doi: 10.1002/adfm.200400559
– ident: e_1_2_7_72_2
  doi: 10.1002/adfm.200500339
– ident: e_1_2_7_84_2
  doi: 10.1021/jp9901803
– ident: e_1_2_7_13_2
  doi: 10.1016/j.solmat.2008.01.005
– ident: e_1_2_7_68_2
  doi: 10.1016/j.solmat.2008.01.006
– ident: e_1_2_7_36_2
  doi: 10.1002/adma.200501717
– ident: e_1_2_7_17_2
  doi: 10.1126/science.258.5087.1474
– ident: e_1_2_7_1_2
– ident: e_1_2_7_94_2
  doi: 10.1039/b902060h
– ident: e_1_2_7_64_2
  doi: 10.1021/jp047023a
– ident: e_1_2_7_74_2
  doi: 10.1039/b900901a
– ident: e_1_2_7_49_2
  doi: 10.1063/1.1929875
– ident: e_1_2_7_19_2
  doi: 10.1063/1.96937
– ident: e_1_2_7_102_2
  doi: 10.1063/1.2784961
– ident: e_1_2_7_55_2
  doi: 10.1080/15583720802231833
– volume-title: Electronic Processes in Organic Crystals and Polymers
  year: 1999
  ident: e_1_2_7_16_2
  doi: 10.1093/oso/9780195129632.001.0001
– ident: e_1_2_7_26_2
  doi: 10.1063/1.359792
– ident: e_1_2_7_11_2
  doi: 10.1002/adma.201090021
– ident: e_1_2_7_25_2
  doi: 10.1021/jp0217738
– ident: e_1_2_7_24_2
  doi: 10.1016/S0009-2614(98)00163-8
– ident: e_1_2_7_103_2
  doi: 10.1126/science.1141711
– ident: e_1_2_7_20_2
  doi: 10.1063/1.1534621
– ident: e_1_2_7_53_2
  doi: 10.1063/1.2718488
– ident: e_1_2_7_18_2
  doi: 10.1103/PhysRevB.59.15346
– ident: e_1_2_7_61_2
  doi: 10.1002/adma.200306372
– ident: e_1_2_7_4_2
  doi: 10.1016/S0301-4215(01)00144-6
– ident: e_1_2_7_44_2
  doi: 10.1021/ar00015a009
– ident: e_1_2_7_60_2
  doi: 10.1002/adfm.200305026
– ident: e_1_2_7_65_2
  doi: 10.1039/B305988J
– ident: e_1_2_7_100_2
  doi: 10.1063/1.2730746
– ident: e_1_2_7_30_2
  doi: 10.1021/nl048120i
– ident: e_1_2_7_76_2
  doi: 10.1063/1.2006986
– ident: e_1_2_7_57_2
  doi: 10.1021/ja9057986
– ident: e_1_2_7_54_2
  doi: 10.1021/ar900073s
– ident: e_1_2_7_97_2
  doi: 10.1063/1.1616197
– ident: e_1_2_7_108_2
  doi: 10.1021/ol802839z
– ident: e_1_2_7_40_2
  doi: 10.1039/B510618B
– ident: e_1_2_7_69_2
  doi: 10.1002/adma.200900510
– start-page: 283
  volume-title: Organic Photovoltaics
  year: 2008
  ident: e_1_2_7_81_2
– volume: 37
  start-page: 2152
  year: 2004
  ident: e_1_2_7_59_2
  publication-title: Macromolecules
– ident: e_1_2_7_85_2
  doi: 10.1002/(SICI)1521-4095(200004)12:7<498::AID-ADMA498>3.0.CO;2-H
– ident: e_1_2_7_111_2
  doi: 10.1002/adma.200702438
– ident: e_1_2_7_42_2
  doi: 10.1002/anie.200702506
– ident: e_1_2_7_52_2
  doi: 10.1016/S0040-6090(03)01348-8
– ident: e_1_2_7_89_2
  doi: 10.1016/j.cis.2007.09.001
– ident: e_1_2_7_28_2
  doi: 10.1126/science.270.5243.1789
– ident: e_1_2_7_37_2
  doi: 10.1063/1.1889240
– ident: e_1_2_7_106_2
  doi: 10.1002/adma.200800456
– ident: e_1_2_7_70_2
  doi: 10.1002/adfm.200900090
– ident: e_1_2_7_45_2
  doi: 10.1063/1.1345834
– ident: e_1_2_7_21_2
  doi: 10.1103/PhysRevB.47.13835
– ident: e_1_2_7_75_2
  doi: 10.1038/nmat1500
– ident: e_1_2_7_58_2
  doi: 10.1063/1.3182797
– ident: e_1_2_7_82_2
  doi: 10.1021/nl8014022
– ident: e_1_2_7_93_2
  doi: 10.1126/science.279.5358.1903
– ident: e_1_2_7_31_2
  doi: 10.1063/1.1861123
– ident: e_1_2_7_33_2
  doi: 10.1002/adfm.200500420
– ident: e_1_2_7_104_2
  doi: 10.1063/1.2719668
– ident: e_1_2_7_107_2
  doi: 10.1039/b712398a
– ident: e_1_2_7_101_2
  doi: 10.1002/adma.200305274
– ident: e_1_2_7_39_2
  doi: 10.1063/1.2711534
– ident: e_1_2_7_105_2
  doi: 10.1002/adfm.200600138
– ident: e_1_2_7_77_2
  doi: 10.1063/1.2408661
– ident: e_1_2_7_98_2
  doi: 10.1002/adfm.200900775
– ident: e_1_2_7_87_2
  doi: 10.1016/S0379-6779(02)01246-8
– ident: e_1_2_7_90_2
  doi: 10.1002/adma.200306659
– ident: e_1_2_7_92_2
  doi: 10.1063/1.2937472
– volume-title: Photoelectronic Properties of Semiconductors
  year: 1992
  ident: e_1_2_7_15_2
– ident: e_1_2_7_67_2
  doi: 10.1002/adfm.200305049
– ident: e_1_2_7_66_2
  doi: 10.1021/ma047589x
– ident: e_1_2_7_6_2
  doi: 10.1016/j.energy.2005.09.006
– ident: e_1_2_7_56_2
  doi: 10.1038/nmat1928
– ident: e_1_2_7_43_2
  doi: 10.1021/jo00108a012
– ident: e_1_2_7_95_2
  doi: 10.1039/b901732a
– ident: e_1_2_7_78_2
  doi: 10.1016/0032-3861(95)95298-F
– ident: e_1_2_7_73_2
  doi: 10.1016/j.tsf.2006.08.043
– ident: e_1_2_7_14_2
  doi: 10.1002/pip.891
– ident: e_1_2_7_48_2
  doi: 10.1016/j.tsf.2003.11.043
– ident: e_1_2_7_32_2
  doi: 10.1016/j.solmat.2004.02.027
– ident: e_1_2_7_23_2
  doi: 10.1063/1.115797
– ident: e_1_2_7_27_2
  doi: 10.1038/376498a0
– ident: e_1_2_7_3_2
– ident: e_1_2_7_47_2
  doi: 10.1002/adfm.200390011
– volume: 318
  start-page: 1230
  year: 2007
  ident: e_1_2_7_5_2
  publication-title: Science
  doi: 10.1126/science.318.5854.1230
– ident: e_1_2_7_51_2
  doi: 10.1002/adma.200304150
– ident: e_1_2_7_86_2
  doi: 10.1021/ja000160a
– ident: e_1_2_7_34_2
  doi: 10.1063/1.1620683
– ident: e_1_2_7_38_2
  doi: 10.1063/1.2821368
– ident: e_1_2_7_71_2
  doi: 10.1016/j.orgel.2009.07.002
– ident: e_1_2_7_79_2
  doi: 10.1088/0957-4484/15/9/035
– ident: e_1_2_7_46_2
  doi: 10.1021/jp049918t
– ident: e_1_2_7_99_2
  doi: 10.1038/nmat2533
– ident: e_1_2_7_41_2
  doi: 10.1021/ma0618732
– ident: e_1_2_7_110_2
  doi: 10.1021/ol062666p
– volume: 88
  start-page: 09351
  year: 2006
  ident: e_1_2_7_12_2
  publication-title: Appl. Phys. Lett.
SSID ssj0008402
Score 2.281522
SecondaryResourceType review_article
Snippet Nanostructured polymer‐based solar cells (PSCs) have emerged as a promising low‐cost alternative to conventional inorganic photovoltaic devices and are now a...
Nanostructured polymer-based solar cells (PSCs) have emerged as a promising low-cost alternative to conventional inorganic photovoltaic devices and are now a...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1835
SubjectTerms Application fields
Applied sciences
bulk heterojunction
Devices
electron tomography
Energy
Exact sciences and technology
Heterojunctions
Morphology
Nanocomposites
Nanomaterials
Nanostructure
Natural energy
Photovoltaic cells
Photovoltaic conversion
Polymer industry, paints, wood
polymer solar cells
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Technology of polymers
Title On the Importance of Morphology Control in Polymer Solar Cells
URI https://api.istex.fr/ark:/67375/WNG-X484F1JN-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201000080
https://www.ncbi.nlm.nih.gov/pubmed/21567602
https://www.proquest.com/docview/866536524
https://www.proquest.com/docview/901660009
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF9yM8Kh8QnNJmHT-SC1IVsZSiXVChYm-WYztS1W2C9iEBv54Ze5NlERUSHCPZkTyesb_PHn9DyAvjlBn5wqW1yUXKc2bSomxsmgOWcCy3pRD4OHkylcdn_GQmZr-84o_6EMOBG0ZGWK8xwE29PNyKhqLUQ0jNCqgHFmFM2EJUdLrVjwL2Eq87gXEBGZO9amPGDne77-xK19HA3zBL0izBUE2scPEnCLqLaMOWNL5NTD-YmIlycbBe1Qf2x286j_8z2jvk1gav0qPoYHfJNd_eIzeqvkzcffL6Q0sBRNJ3lwHJgw_RrqGTDuYvnNjTKibD0_OWfuzm3y_9gn5CPk0rP58vH5Cz8ZvP1XG6KcqQWsFVllouSq-ymvuRkkIZyS0WULfCW4hgJ4zwXpkawhzZjjNS1c7WeVkwJwvAyPlDstd2rX9MqASyZ6WwogFqLH1eGKO8FZmTwrlm1CQk7SdF241iORbOmOuotcw0WkUPVknIq6H916jVcWXLl2GOh2ZmcYEZbkroL9O3esYLPh6dTPX7hOzvOMHQgeU5IsEyIbT3Cg2Gx9sW0_puvdQoJAgeyfjVTQCLSYkoNyGPokNt_w-8WsmMJYQFt_jLgPTk6LQavp78S6en5GbIjAjvLJ-RvdVi7Z8D4FrV-yGofgIaOR8J
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygX3pTwKD4gOKXNxq_kglRFLNvHLqi0ojfLsR0JdZugfUjAr8fjbLJaRIUEx0jjSB7PxN_njL8BeK2t1AOX2bjUlMeMpjrO8srE1GMJm1KTc46Xk8cTMbpgx5e8qybEuzCtPkR_4IaZEb7XmOB4IH2wVg1FrYdQmxVgz23YxrbegVWdrRWkPH9pf3h6zuXpmOh0G5P0YHP8xr60jS7-jnWSeu5dVbU9Lv4EQjcxbdiUhveg7KbT1qJc7S8X5b75-ZvS43_N9z7cXUFWctjG2AO45eqHsFN0neIewbuPNfE4khxdBzDvw4g0FRk3fgnDoT0p2np48rUmn5rpj2s3I5-RUpPCTafzx3AxfH9ejOJVX4bYcCaT2DCeO5mUzA2k4FILZrCHuuHO-CS2XHPnpC59piPhsVrI0pqS5llqReZhMn0CW3VTu6dAhOd7RnDDK8-OhaOZ1tIZnljBra0GVQRxtyrKrETLsXfGVLVyy6lCr6jeKxG87e2_tXIdN1q-CYvcm-nZFRa5Sa6-TD6oS5ax4eB4ok4i2NuIgn5ASimCwTwC0oWF8o7HHy66ds1yrlBLkAqesptNPBwTAoFuBLttRK3f76m1FEkaQRri4i8TUuPDs6J_evYvg17Bzuh8fKpOjyYnz-FOKJQI1y5fwNZitnQvPf5alHshw34BBygjJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwGX8qaBUnxAcEqbjV_JpVKVsvTBLlWhYm-WYzsS6jap9iEBv75-bLJdRIUEx0jjSB7PxN_njL8BeCs1lz2T6biUmMYEpzLO8krF2GIJnWKVU-ouJw-G7PCcHI_o6MYt_qAP0R24uczw32uX4Fe62l2KhjqpB1-a5VHPXVgnLMlcXB-cLQWkLH0J_zst5bJsjLWyjUm6uzp-ZVtadx7-4cok5dR6qgotLv6EQVchrd-T-g9BtrMJpSgXO_NZuaN-_Sb0-D_TfQQbC8CK9kOEPYY7pn4C94u2T9xT2PtcI4si0dGlh_I2iFBToUFjF9Af2aMiVMOj7zU6bcY_L80EfXGEGhVmPJ4-g_P-h6_FYbzoyhArSngSK0Jzw5OSmB5nlEtGlOugrqhRNoU1ldQYLkub547uaMl4qVWJ8yzVLLMgGT-HtbqpzSYgZtmeYlTRynJjZnAmJTeKJppRrateFUHcLopQC8ly1zljLILYciqcV0TnlQjed_ZXQazjVst3fo07Mzm5cCVunIpvw49iRDLS7x0PxUkE2ytB0A1IMXZQMI8AtVEhrOPd7xZZm2Y-FU5JEDOakttNLBhjzMHcCF6EgFq-3xJrzpI0gtSHxV8mJAb7Z0X39PJfBr2Be6cHffHpaHjyCh74Kgl_53IL1maTuXltwdes3Pb5dQ2UCyHc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Importance+of+Morphology+Control+in+Polymer+Solar+Cells&rft.jtitle=Macromolecular+rapid+communications.&rft.au=van+Bavel%2C+Svetlana&rft.au=Veenstra%2C+Sjoerd&rft.au=Loos%2C+Joachim&rft.date=2010-11-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=31&rft.issue=21&rft.spage=1835&rft.epage=1845&rft_id=info:doi/10.1002%2Fmarc.201000080&rft.externalDBID=10.1002%252Fmarc.201000080&rft.externalDocID=MARC201000080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon