On the Importance of Morphology Control in Polymer Solar Cells
Nanostructured polymer‐based solar cells (PSCs) have emerged as a promising low‐cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be ad...
Saved in:
Published in | Macromolecular rapid communications. Vol. 31; no. 21; pp. 1835 - 1845 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.11.2010
WILEY‐VCH Verlag Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1022-1336 1521-3927 1521-3927 |
DOI | 10.1002/marc.201000080 |
Cover
Loading…
Abstract | Nanostructured polymer‐based solar cells (PSCs) have emerged as a promising low‐cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer.
The volume morphology of the bulk heterojunction photoactive layer determines the performance of polymer solar cells. In this paper the critical parameters are discussed influencing morphology creation and thus the ultimate light conversion efficiency for a given electron acceptor and donor system. |
---|---|
AbstractList | Nanostructured polymer-based solar cells (PSCs) have emerged as a promising low-cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer. Nanostructured polymer‐based solar cells (PSCs) have emerged as a promising low‐cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer. magnified image Nanostructured polymer-based solar cells (PSCs) have emerged as a promising low-cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer.Nanostructured polymer-based solar cells (PSCs) have emerged as a promising low-cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer. Nanostructured polymer‐based solar cells (PSCs) have emerged as a promising low‐cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer. The volume morphology of the bulk heterojunction photoactive layer determines the performance of polymer solar cells. In this paper the critical parameters are discussed influencing morphology creation and thus the ultimate light conversion efficiency for a given electron acceptor and donor system. |
Author | van Bavel, Svetlana Veenstra, Sjoerd Loos, Joachim |
Author_xml | – sequence: 1 givenname: Svetlana surname: van Bavel fullname: van Bavel, Svetlana organization: Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands – sequence: 2 givenname: Sjoerd surname: Veenstra fullname: Veenstra, Sjoerd organization: Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands – sequence: 3 givenname: Joachim surname: Loos fullname: Loos, Joachim email: j.loos@physics.gla.ac.uk organization: Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23351599$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21567602$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUlvFDEQRi0UlP3KEfmCOPXEu9sXpKhFFrIhFsHNcrs9xOBuD3aPyPx73JphQEhRTq7De66qrw7AzhAHB8ALjGYYIXLSm2RnBJUaoRo9A_uYE1xRReROqREhFaZU7IGDnL9PCENkF-wRzIUUiOyDN3cDHO8dvOwXMY1msA7GObyJaXEfQ_y2gk0cxhQD9AN8H8Oqdwl-jMEk2LgQ8hF4Pjchu-PNewg-n7391FxU13fnl83pdWU5k6iyjCsnUcscloJLI5hltFaWO9si1HHDnZOmlaqMh2VnhGw721JVk07UNW7pIXi9_neR4s-ly6PufbZlAjO4uMxaISxE2U89SdZCcCo4YYV8uSGXbe86vUi-pLnSf8IpwKsNYLI1YZ5KPD7_5SjlmKup5WzN2RRzTm6-RTDS05X0dCW9vVIR2H-C9aMZ_RS18eFxTa21Xz641RNN9M3ph-Zft1q7Po_uYeua9EMLSSXXX27P9VdWszP87lZf0d_OMLLs |
CitedBy_id | crossref_primary_10_1016_j_polymer_2011_06_020 crossref_primary_10_1016_j_solmat_2013_06_031 crossref_primary_10_1039_c3ee41773e crossref_primary_10_1063_1_3681947 crossref_primary_10_1055_a_2095_5164 crossref_primary_10_1039_C5SM00193E crossref_primary_10_1007_s11664_019_07702_9 crossref_primary_10_1039_c3nr03202g crossref_primary_10_1002_macp_201100686 crossref_primary_10_1016_j_jksus_2017_09_008 crossref_primary_10_1021_am5066267 crossref_primary_10_1016_j_synthmet_2011_08_005 crossref_primary_10_1002_marc_201200129 crossref_primary_10_1016_j_polymer_2014_02_048 crossref_primary_10_3390_ma6031159 crossref_primary_10_1021_jp5088724 crossref_primary_10_1039_C6TA09530E crossref_primary_10_1016_j_solmat_2016_06_042 crossref_primary_10_1021_ma3009178 crossref_primary_10_1016_j_dyepig_2020_108806 crossref_primary_10_1070_RC2014v083n07ABEH004417 crossref_primary_10_1021_ja302935n crossref_primary_10_1038_srep05701 crossref_primary_10_1039_C6RA20659J crossref_primary_10_1016_j_synthmet_2011_09_016 crossref_primary_10_1021_acs_langmuir_5b01739 crossref_primary_10_1021_jp2023988 crossref_primary_10_1016_j_polymer_2015_09_005 crossref_primary_10_1039_C9TA08960H crossref_primary_10_1002_aenm_201100128 crossref_primary_10_1002_polb_23063 crossref_primary_10_1021_ma202409k crossref_primary_10_1039_C4TC01949K crossref_primary_10_1021_ma201648t crossref_primary_10_1016_j_polymer_2011_07_053 crossref_primary_10_1016_j_polymer_2013_07_053 crossref_primary_10_1016_j_polymer_2013_11_016 crossref_primary_10_1557_mrc_2015_55 crossref_primary_10_1002_aenm_201000035 crossref_primary_10_1039_c1jm11963j crossref_primary_10_1002_macp_201200382 crossref_primary_10_1021_ma4016399 crossref_primary_10_1002_app_38822 crossref_primary_10_1021_ja405493j crossref_primary_10_1002_pola_26394 crossref_primary_10_1002_macp_201200547 crossref_primary_10_1016_j_polymer_2013_07_049 crossref_primary_10_1021_jp202996p crossref_primary_10_1021_ja202877q crossref_primary_10_1039_C2TC00001F crossref_primary_10_1016_j_orgel_2013_10_027 crossref_primary_10_1146_annurev_physchem_040513_103639 crossref_primary_10_1021_ma2009386 crossref_primary_10_1016_j_progpolymsci_2012_10_001 crossref_primary_10_1002_pola_27095 crossref_primary_10_1002_adfm_201402260 crossref_primary_10_1021_jp311930m crossref_primary_10_1002_ep_12791 crossref_primary_10_1021_jp503128v crossref_primary_10_1021_acs_macromol_5b00986 crossref_primary_10_1039_c3ta10629b crossref_primary_10_1016_j_commatsci_2016_12_020 crossref_primary_10_1002_ejoc_201200715 crossref_primary_10_1021_ja4101003 crossref_primary_10_1021_am200842y crossref_primary_10_1038_srep16854 crossref_primary_10_1016_j_synthmet_2016_02_002 crossref_primary_10_1016_j_solmat_2012_04_042 crossref_primary_10_1021_ja205977z crossref_primary_10_1016_j_solmat_2013_10_019 |
Cites_doi | 10.1002/adfm.200500211 10.1002/adfm.200400297 10.1002/9783527623198.ch20 10.1021/cm049917d 10.1038/44359 10.1021/ma900817t 10.1021/cr050149z 10.1063/1.2738197 10.1002/polb.1993.090310614 10.1143/JJAP.32.L357 10.1126/science.1069156 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W 10.1016/j.tsf.2005.08.179 10.1002/adfm.200400559 10.1002/adfm.200500339 10.1021/jp9901803 10.1016/j.solmat.2008.01.005 10.1016/j.solmat.2008.01.006 10.1002/adma.200501717 10.1126/science.258.5087.1474 10.1039/b902060h 10.1021/jp047023a 10.1039/b900901a 10.1063/1.1929875 10.1063/1.96937 10.1063/1.2784961 10.1080/15583720802231833 10.1093/oso/9780195129632.001.0001 10.1063/1.359792 10.1002/adma.201090021 10.1021/jp0217738 10.1016/S0009-2614(98)00163-8 10.1126/science.1141711 10.1063/1.1534621 10.1063/1.2718488 10.1103/PhysRevB.59.15346 10.1002/adma.200306372 10.1016/S0301-4215(01)00144-6 10.1021/ar00015a009 10.1002/adfm.200305026 10.1039/B305988J 10.1063/1.2730746 10.1021/nl048120i 10.1063/1.2006986 10.1021/ja9057986 10.1021/ar900073s 10.1063/1.1616197 10.1021/ol802839z 10.1039/B510618B 10.1002/adma.200900510 10.1002/(SICI)1521-4095(200004)12:7<498::AID-ADMA498>3.0.CO;2-H 10.1002/adma.200702438 10.1002/anie.200702506 10.1016/S0040-6090(03)01348-8 10.1016/j.cis.2007.09.001 10.1126/science.270.5243.1789 10.1063/1.1889240 10.1002/adma.200800456 10.1002/adfm.200900090 10.1063/1.1345834 10.1103/PhysRevB.47.13835 10.1038/nmat1500 10.1063/1.3182797 10.1021/nl8014022 10.1126/science.279.5358.1903 10.1063/1.1861123 10.1002/adfm.200500420 10.1063/1.2719668 10.1039/b712398a 10.1002/adma.200305274 10.1063/1.2711534 10.1002/adfm.200600138 10.1063/1.2408661 10.1002/adfm.200900775 10.1016/S0379-6779(02)01246-8 10.1002/adma.200306659 10.1063/1.2937472 10.1002/adfm.200305049 10.1021/ma047589x 10.1016/j.energy.2005.09.006 10.1038/nmat1928 10.1021/jo00108a012 10.1039/b901732a 10.1016/0032-3861(95)95298-F 10.1016/j.tsf.2006.08.043 10.1002/pip.891 10.1016/j.tsf.2003.11.043 10.1016/j.solmat.2004.02.027 10.1063/1.115797 10.1038/376498a0 10.1002/adfm.200390011 10.1126/science.318.5854.1230 10.1002/adma.200304150 10.1021/ja000160a 10.1063/1.1620683 10.1063/1.2821368 10.1016/j.orgel.2009.07.002 10.1088/0957-4484/15/9/035 10.1021/jp049918t 10.1038/nmat2533 10.1021/ma0618732 10.1021/ol062666p |
ContentType | Journal Article |
Copyright | Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS – notice: Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION IQODW NPM 7X8 7SR 7U5 8FD JG9 L7M |
DOI | 10.1002/marc.201000080 |
DatabaseName | Istex CrossRef Pascal-Francis PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Applied Sciences |
EISSN | 1521-3927 |
EndPage | 1845 |
ExternalDocumentID | 21567602 23351599 10_1002_marc_201000080 MARC201000080 ark_67375_WNG_X484F1JN_K |
Genre | reviewArticle Journal Article |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABEML ACSCC ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION EBD GYXMG M6T PALCI RIWAO RJQFR SAMSI TUS ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW NPM 7X8 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c5470-c459e70b4e17657a64c4389c5ecb00d5a5ee7ab7940217da67bdcb3982d6881b3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 00:53:01 EDT 2025 Thu Jul 10 23:00:58 EDT 2025 Thu Apr 03 06:53:30 EDT 2025 Mon Jul 21 09:12:03 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 Tue Jul 01 01:50:06 EDT 2025 Wed Jan 22 16:57:58 EST 2025 Wed Oct 30 09:49:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | films bulk heterojunction Morphology Polymer Property structure relationship polymer solar cells Review Surface topography Organic solar cells electron tomography Electrical characteristic Heterojunction |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5470-c459e70b4e17657a64c4389c5ecb00d5a5ee7ab7940217da67bdcb3982d6881b3 |
Notes | ArticleID:MARC201000080 istex:B9E86CC687C26E6DD2CF1CF91BF8C36C6D0C0B37 ark:/67375/WNG-X484F1JN-K ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21567602 |
PQID | 866536524 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_901660009 proquest_miscellaneous_866536524 pubmed_primary_21567602 pascalfrancis_primary_23351599 crossref_primary_10_1002_marc_201000080 crossref_citationtrail_10_1002_marc_201000080 wiley_primary_10_1002_marc_201000080_MARC201000080 istex_primary_ark_67375_WNG_X484F1JN_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 1, 2010 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: November 1, 2010 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol. Rapid Commun |
PublicationYear | 2010 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley |
References | X. Yang, A. Alexeev, M. A. J. Michels, J. Loos, Macromolecules 2005, 38, 4289. S. S. van Bavel, E. Sourty, G. de With, K. Frolic, J. Loos, Macromolecules 2009, 42, 7396. C. Y. Kuo, W. C. Tang, C. Gau, T. F. Guo, D. Z. Jeng, Appl. Phys. Lett. 2008, 93, 033307. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, Appl. Phys. Lett. 2005, 86, 063502. M. Reyes-Reyes, K. Kim, D. Carroll, Appl. Phys. Lett. 2005, 87, 083506. F. Zhang, K. G. Jespersen, C. Björström, M. Svensson, M. R. Andersson, V. Sundström, K. Magnusson, E. Moons, A. Yartsev, O. Inganäs, Adv. Funct. Mater. 2006, 16, 667. C. R. McNeill, A. Abrusci, J. Zaumseil, R. Wilson, M. J. McKiernan, J. H. Burroughes, J. J. M. Halls, N. C. Greenham, R. H. Friend, Appl. Phys. Lett. 2007, 90, 193506. G. Yu, A. J. Heeger, J. Appl. Phys. 1995, 78, 4510. N. Nakicenovic, N. A. Grubler, A. McDonald, Eds., Global Energy Perspectives, Cambridge University Press, Cambridge 1998. H. Hoppe, N. S. Sariciftci, Adv. Polym. Sci. 2008, 214, 1. L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett. 2006, 88, 09351. S. Heutz, P. Sullivan, B. M. Sanderson, S. M. Schultes, T. S. Jones, Sol. Energy Mater. Sol. Cells 2004, 83, 229. D. Veldman, S. C. J. Meskers, R. A. J. Janssen, Adv. Funct. Mater. 2009, 19, 1939. H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, Z. Bao, Adv. Funct. Mater. 2005, 15, 671. T. J. Savenije, J. E. Kroeze, X. Yang, J. Loos, Adv. Funct. Mater. 2005, 15, 1260. J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Gao, C. L. Wilkins, J. Org. Chem. 1995, 60, 532. P. A. van Hal, M. P. T. Christiaans, M. M. Wienk, J. M. Kroon, R. A. J. Janssen, J. Phys. Chem. B 1999, 103, 4352. L. Smilowitz, N. S. Sariciftci, R. Wu, C. Gettinger, A. J. Heeger, F. Wudl, Phys. Rev. B 1993, 47, 13835. F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu, W. J. H. Verhees, J. M. Kroon, J. C. Hummelen, Org. Lett. 2007, 9, 551. D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, D. S. Ginley, Thin Solid Films 2006, 496, 26. F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 2003, 13, 85. A. Gadisa, F. Zhang, D. Sharma, M. Svensson, M. R. Andersson, O. Inganäs, Thin Solid Films 2007, 515, 3126. A. L. Roes, E. A. Alsema, K. Blok, M. K. Patel, Prog. Photovolt. : Res. Appl. 2009, 17, 372. F. Zhang, M. Jonforsen, D. M. Johansson, M. R. Andersson, O. Inganäs, Synth. Met. 2003, 138, 555. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324. C. W. Tang, Appl. Phys. Lett. 1986, 48, 183. H. Hansel, H. Zettl, G. Krausch, R. Kissilev, M. Thelakkat, H.-W. Schmidt, Adv. Mater. 2003, 15, 2056. P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693. U. Stalmach, B. de Boer, C. Videlot, P. F. van Hutten, G. Hadziioannou, J. Am. Chem. Soc. 2000, 122, 5464. S. S. van Bavel, E. Sourty, G. de With, J. Loos, Nano Lett. 2009, 9, 507. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374. A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, Appl. Phys. Lett. 2007, 90, 163517. S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, R. A. J. Janssen, Nat. Mater. 2009, 8, 818. J. J. M. Halls, A. C. Arias, J. D. MacKenzie, W. Wu, M. Inbasekaran, W. P. Woo, R. H. Friend, Adv. Mater. 2000, 12, 498. M. M. Mandoc, L. J. A. Koster, P. W. M. Blom, Appl. Phys. Lett. 2007, 90, 133504. Very high carrier mobilities (above 10−3 m2 · V−1 · s−1) affect the difference between the quasi-Fermi levels and lead to the reduction of Voc. For comparison, mobilities of holes and electrons in annealed P3HT/PCBM blends are around 10−8 and 10−7 m2 · V−1 · s−1, respectively [34]. R. H. Bube, Photoelectronic Properties of Semiconductors, Cambridge University Press, Cambridge 1992. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849. T. Yohannes, F. Zhang, M. Svensson, J. C. Hummelen, M. R. Andersson, O. Inganäs, Thin Solid Films 2004, 449, 152. M. Lenes, G.-J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, P. W. M. Blom, Adv. Mater. 2008, 20, 2116. D. Chirvase, J. Parisi, J. C. Hummelen, V. Dyakonov, Nanotechnology 2004, 15, 1317. M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, Oxford 1999. J. E. Kroeze, T. J. Savenije, M. J. W. Vermeulen, J. M. Warman, J. Phys. Chem. B 2003, 107, 7696. J. Gilot, I. Barbu, M. M. Wienk, R. A. J. Janssen, Appl. Phys. Lett. 2007, 91, 113520. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, 1. T.-Y. Chu, S. Alem, P. G. Verly, S. Wakim, J. Lu, Y. Tao, S. Beaupré, M. Leclerc, F. Bélanger, D. Désilets, S. Rodman, D. Waller, R. Gaudiana, Appl. Phys. Lett. 2009, 95, 063304. A. Mozer, P. Denk, M. Scharber, H. Neugebauer, N. S. Sariciftci, P. Wagner, L. Lutsen, D. Vanderzande, J. Phys. Chem. B 2004, 108, 5235. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett. 1996, 68, 3120. X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano Lett. 2005, 5, 579. S. Jenekhe, X. L. Chen, Science 1998, 279, 1903. S. S. van Bavel, E. Sourty, G. de With, S. Veenstra, J. Loos, J. Mater. Chem. 2009, 19, 5388. S. C. Veenstra, W. J. H. Verhees, J. M. Kroon, M. M. Koetse, J. Sweelssen, J. J. A. M. Bastiaansen, H. F. M. Schoo, X. Yang, A. Alexeev, J. Loos, U. S. Schubert, M. M. Wienk, Chem. Mater. 2004, 16, 2503. B. R. Saunders, M. L. Turner, Adv. Colloid Interface Sci. 2008, 138, 1. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222. J. A. Merlo, C. D. Frisbie, J. Phys. Chem. B 2004, 108, 19169. T. Nishizawa, H. K. Lim, K. Tajima, K. Hashimoto, Chem. Commun. 2009, 2469. S. Bertho, G. Janssen, T. J. Cleij, B. Conings, W. Moons, A. Gadisa, J. D'Haen, E. Goovaerts, L. Lutsen, J. Manca, D. Vanderzande, Sol. Energy Mater. Sol. Cells 2008, 92, 753. A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. Turbiez, M. M. Wienk, R. A. J. Janssen, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 1897. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498. R. A. Kerr, Science 2007, 318, 1230. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841. A. J. Moule, K. Meerholz, Adv. Funct. Mater. 2009, 19, 3028. K. J. Ihn, J. Moulton, P. Smith, J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 735. X. Yang, J. Loos, Macromolecules 2007, 40, 1353. J. Gilot, M. M. Wienk, R. A. J. Janssen, Appl. Phys. Lett. 2007, 90, 143512. T. J. Savenije, J. M. Warman, A. Goossens, Chem. Phys. Lett. 1998, 287, 148. L. H. Slooff, S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen, M. M. Koetse, Appl. Phys. Lett. 2007, 90, 143506. L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, P. W. M. Blom, Appl. Phys. Lett. 2005, 86, 123509. The expression in question has the following form: Voc = Egap/q − (kT/q) * ln [C*(1-P)/P], where P is the dissociation probability of excitons into free charges. Unless P is approaching zero, the dependency of Voc on P can be neglected. C. Yang, J. K. Lee, A. J. Heeger, F. Wudl, J. Mater. Chem. 2009, 19, 5416. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497. Y. Zhao, G. X. Yuan, P. Roche, M. Leclerc, Polymer 1995, 36, 2211. O. Inganäs, F. Zhang, M. R. Andersson, Acc. Chem. Res. 2009, 42, 1731. M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. de Boer, P. W. M. Blom, Appl. Phys. Lett. 2007, 91, 263505. M. Heeney, W. Zhang, D. J. Crouch, M. L. Chabinyc, S. Gordeyev, R. Hamilton, S. J. Higgins, I. McCulloch, P. J. Skabara, D. Sparrowe, S. Tierney, Chem. Commun. 2007, 47, 5061. X. Yang, J. K. J. Van Duren, M. T. Rispens, J. C. Hummelen, R. A. J. Janssen, M. A. J. Michels, J. Loos, Adv. Mater. 2004, 16, 802. R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, B. de Boer, Polym. Rev. 2008, 48, 531. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295, 2425. M. Al-Ibrahim, O. Ambacher, S. Sensfuss, G. Gobsch, Appl. Phys. Lett. 2005, 86, 201120. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 2004, 14, 1005. M. M. Wienk, M. G. R. Turbiez, J. Gilot, R. A. J. Janssen, Adv. Mater. 2008, 20, 2556. A. P. Zoombelt, M. Fonrodona, M. M. Wienk, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Org. Lett. 2009, 11, 903. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685. F. Wudl, Acc. Chem. Res. 1992, 25, 157. W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2004, 16, 1009. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, I, 1474. L. J. A. Koster, V. D. Mihailetchi, M. Lenes, P. W. M. Blom, in: Organic Photovoltaics, C. Brabec, V. Dyakonov, U. Scherf, Eds., WILEY-VCH, Weinheim 2008, pp. 283- 298. R. W. Bentley, Energy Policy 2002, 30, 189. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789. W. A. Hermann, Energy 2006, 31, 1685. A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gügel, K. Müllen, Phys. Rev. B 1999, 59, 15346. M. Jorgensen, K. Norrman, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2008, 92, 686. H. Hoppe, N. S. Sariciftci, J. Mater. Chem. 2006, 16, 45. D. J. D. Moet, M. Lenes, J. D. Kotlarski, S. C. Veenstra, J. Sweelssen, M. M. Koetse, B. de Boer, P. W. M. Blom, Org. Electron. 2009, 10, 1275. B. C. Thompson, J. M. J. Fréchet, Angew. Chem., Int. Ed. 2008, 47, 58. J. K. J. van Duren, X. Y 2007; 107 2006; 31 2009; 42 1995; 36 1995; 78 2003; 13 2003; 15 1998; 279 1995; 376 2003; 93 2003; 94 2004; 449 1999; 401 2006; 496 2010; 22 2009; 11 2004; 451 1995; 60 2009; 95 2009; 10 2001 2000; 12 1993; 32 2004; 37 1999; 59 1993; 31 1986; 48 2007; 9 2007; 6 2000; 122 2008; 20 1998; 287 2001; 11 1996; 68 2005; 38 2009; 19 2003; 83 2009; 17 1993; 47 2004; 83 2009; 21 2003; 138 2002; 30 2002; 295 2006; 16 1998 2009 2008 2007; 90 2005; 86 2006; 18 2007; 91 2005; 87 1999; 103 1992 2003 2009; 131 2004; 108 2008; 92 2008; 93 1995; 270 1999 2003; 107 2007; 515 2007; 317 2006; 89 2004; 16 2006; 88 2004; 14 2004; 15 2005; 5 2008; 47 2008; 48 2005; 4 2009; 9 2009; 8 2008; 138 2008; 214 1992; 25 2007; 40 2005; 15 2001; 78 2007; 318 2007; 47 e_1_2_7_108_2 e_1_2_7_3_2 e_1_2_7_104_2 Bube R. H. (e_1_2_7_15_2) 1992 e_1_2_7_19_2 e_1_2_7_83_2 e_1_2_7_100_2 e_1_2_7_60_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_90_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_37_2 Nakicenovic N. (e_1_2_7_7_2) 1998 e_1_2_7_4_2 e_1_2_7_105_2 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_82_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_109_2 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_78_2 Yang X. (e_1_2_7_59_2) 2004; 37 Koster L. J. A. (e_1_2_7_12_2) 2006; 88 e_1_2_7_106_2 e_1_2_7_9_2 e_1_2_7_102_2 e_1_2_7_17_2 e_1_2_7_1_2 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_28_2 Hoppe H. (e_1_2_7_10_2) 2008; 214 e_1_2_7_110_2 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 Koster L. J. A. (e_1_2_7_81_2) 2008 e_1_2_7_39_2 e_1_2_7_107_2 e_1_2_7_2_2 e_1_2_7_103_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_27_2 e_1_2_7_111_2 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_99_2 e_1_2_7_38_2 Kerr R. A. (e_1_2_7_5_2) 2007; 318 Pope M. (e_1_2_7_16_2) 1999 |
References_xml | – reference: A. Mozer, P. Denk, M. Scharber, H. Neugebauer, N. S. Sariciftci, P. Wagner, L. Lutsen, D. Vanderzande, J. Phys. Chem. B 2004, 108, 5235. – reference: W. A. Hermann, Energy 2006, 31, 1685. – reference: V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 699. – reference: P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693. – reference: T. Nishizawa, H. K. Lim, K. Tajima, K. Hashimoto, Chem. Commun. 2009, 2469. – reference: F. B. Kooistra, J. Knol, F. Kastenberg, L. M. Popescu, W. J. H. Verhees, J. M. Kroon, J. C. Hummelen, Org. Lett. 2007, 9, 551. – reference: B. C. Thompson, J. M. J. Fréchet, Angew. Chem., Int. Ed. 2008, 47, 58. – reference: G. Yu, A. J. Heeger, J. Appl. Phys. 1995, 78, 4510. – reference: J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498. – reference: M.-H. Chen, J. Hou, Z. Hong, G. Yang, S. Sista, L.-M. Chen, Y. Yang, Adv. Mater. 2009, 21, 4238. – reference: M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, Oxford 1999. – reference: P. A. van Hal, M. P. T. Christiaans, M. M. Wienk, J. M. Kroon, R. A. J. Janssen, J. Phys. Chem. B 1999, 103, 4352. – reference: Y. Zhao, G. X. Yuan, P. Roche, M. Leclerc, Polymer 1995, 36, 2211. – reference: W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617. – reference: R. H. Bube, Photoelectronic Properties of Semiconductors, Cambridge University Press, Cambridge 1992. – reference: J. J. M. Halls, A. C. Arias, J. D. MacKenzie, W. Wu, M. Inbasekaran, W. P. Woo, R. H. Friend, Adv. Mater. 2000, 12, 498. – reference: J. Peet, C. Soci, R. C. Coffin, T. Q. Nguyen, A. Mikhailovsky, D. Moses, G. C. Bazan, Appl. Phys. Lett. 2006, 89, 252105. – reference: A. P. Zoombelt, M. Fonrodona, M. M. Wienk, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Org. Lett. 2009, 11, 903. – reference: V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849. – reference: N. Nakicenovic, N. A. Grubler, A. McDonald, Eds., Global Energy Perspectives, Cambridge University Press, Cambridge 1998. – reference: G. Dennler, C. Brabec, in: Organic Photovoltaics, C. Brabec, V. Dyakonov, U. Scherf, Eds., Wiley-VCH, Weinheim 2008, pp. 531- 566. – reference: L. J. A. Koster, V. D. Mihailetchi, M. Lenes, P. W. M. Blom, in: Organic Photovoltaics, C. Brabec, V. Dyakonov, U. Scherf, Eds., WILEY-VCH, Weinheim 2008, pp. 283- 298. – reference: L. Smilowitz, N. S. Sariciftci, R. Wu, C. Gettinger, A. J. Heeger, F. Wudl, Phys. Rev. B 1993, 47, 13835. – reference: H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, Z. Bao, Adv. Funct. Mater. 2005, 15, 671. – reference: H. Hansel, H. Zettl, G. Krausch, R. Kissilev, M. Thelakkat, H.-W. Schmidt, Adv. Mater. 2003, 15, 2056. – reference: M. Heeney, W. Zhang, D. J. Crouch, M. L. Chabinyc, S. Gordeyev, R. Hamilton, S. J. Higgins, I. McCulloch, P. J. Skabara, D. Sparrowe, S. Tierney, Chem. Commun. 2007, 47, 5061. – reference: W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2004, 16, 1009. – reference: R. W. Bentley, Energy Policy 2002, 30, 189. – reference: M. M. Wienk, M. G. R. Turbiez, J. Gilot, R. A. J. Janssen, Adv. Mater. 2008, 20, 2556. – reference: S. Bertho, G. Janssen, T. J. Cleij, B. Conings, W. Moons, A. Gadisa, J. D'Haen, E. Goovaerts, L. Lutsen, J. Manca, D. Vanderzande, Sol. Energy Mater. Sol. Cells 2008, 92, 753. – reference: M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen, J. M. Kroon, O. Inganäs, M. R. Andersson, Adv. Mater. 2003, 15, 988. – reference: S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, R. A. J. Janssen, Nat. Mater. 2009, 8, 818. – reference: C. Y. Kuo, W. C. Tang, C. Gau, T. F. Guo, D. Z. Jeng, Appl. Phys. Lett. 2008, 93, 033307. – reference: F. Wudl, Acc. Chem. Res. 1992, 25, 157. – reference: Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, Appl. Phys. Lett. 2005, 86, 063502. – reference: X. Yang, J. K. J. Van Duren, M. T. Rispens, J. C. Hummelen, R. A. J. Janssen, M. A. J. Michels, J. Loos, Adv. Mater. 2004, 16, 802. – reference: A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gügel, K. Müllen, Phys. Rev. B 1999, 59, 15346. – reference: K. J. Ihn, J. Moulton, P. Smith, J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 735. – reference: J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497. – reference: A. Gadisa, F. Zhang, D. Sharma, M. Svensson, M. R. Andersson, O. Inganäs, Thin Solid Films 2007, 515, 3126. – reference: L. H. Slooff, S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen, M. M. Koetse, Appl. Phys. Lett. 2007, 90, 143506. – reference: X. Yang, J. K. J. van Duren, R. A. J. Janssen, M. A. J. Michels, J. Loos, Macromolecules 2004, 37, 2152. – reference: M. T. Rispens, A. Meetsma, R. Rittberger, C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Chem. Commun. 2003, 2116. – reference: D. Chirvase, J. Parisi, J. C. Hummelen, V. Dyakonov, Nanotechnology 2004, 15, 1317. – reference: M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. de Boer, P. W. M. Blom, Appl. Phys. Lett. 2007, 91, 263505. – reference: R. Qin, W. Li, C. Li, C. Du, C. Veit, H.-F. Schleiermacher, M. Andersson, Z. Bo, Z. Liu, O. Inganäs, U. Würfel, F. Zhang, J. Am. Chem. Soc. 2009, 131, 14612. – reference: M. Al-Ibrahim, O. Ambacher, S. Sensfuss, G. Gobsch, Appl. Phys. Lett. 2005, 86, 201120. – reference: J. K. J. van Duren, X. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Adv. Funct. Mater. 2004, 14, 425. – reference: U. Stalmach, B. de Boer, C. Videlot, P. F. van Hutten, G. Hadziioannou, J. Am. Chem. Soc. 2000, 122, 5464. – reference: H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685. – reference: S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841. – reference: H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 2004, 14, 1005. – reference: B. R. Saunders, M. L. Turner, Adv. Colloid Interface Sci. 2008, 138, 1. – reference: D. J. D. Moet, M. Lenes, J. D. Kotlarski, S. C. Veenstra, J. Sweelssen, M. M. Koetse, B. de Boer, P. W. M. Blom, Org. Electron. 2009, 10, 1275. – reference: J. E. Kroeze, T. J. Savenije, M. J. W. Vermeulen, J. M. Warman, J. Phys. Chem. B 2003, 107, 7696. – reference: G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789. – reference: M. Reyes-Reyes, K. Kim, D. Carroll, Appl. Phys. Lett. 2005, 87, 083506. – reference: X. Yang, A. Alexeev, M. A. J. Michels, J. Loos, Macromolecules 2005, 38, 4289. – reference: S. S. van Bavel, E. Sourty, G. de With, J. Loos, Nano Lett. 2009, 9, 507. – reference: J. A. Merlo, C. D. Frisbie, J. Phys. Chem. B 2004, 108, 19169. – reference: J. Gilot, I. Barbu, M. M. Wienk, R. A. J. Janssen, Appl. Phys. Lett. 2007, 91, 113520. – reference: C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374. – reference: L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett. 2006, 88, 09351. – reference: M. M. Mandoc, L. J. A. Koster, P. W. M. Blom, Appl. Phys. Lett. 2007, 90, 133504. Very high carrier mobilities (above 10−3 m2 · V−1 · s−1) affect the difference between the quasi-Fermi levels and lead to the reduction of Voc. For comparison, mobilities of holes and electrons in annealed P3HT/PCBM blends are around 10−8 and 10−7 m2 · V−1 · s−1, respectively [34]. – reference: X. Yang, J. Loos, Macromolecules 2007, 40, 1353. – reference: S. C. Veenstra, W. J. H. Verhees, J. M. Kroon, M. M. Koetse, J. Sweelssen, J. J. A. M. Bastiaansen, H. F. M. Schoo, X. Yang, A. Alexeev, J. Loos, U. S. Schubert, M. M. Wienk, Chem. Mater. 2004, 16, 2503. – reference: T. Yohannes, F. Zhang, M. Svensson, J. C. Hummelen, M. R. Andersson, O. Inganäs, Thin Solid Films 2004, 449, 152. – reference: D. Veldman, S. C. J. Meskers, R. A. J. Janssen, Adv. Funct. Mater. 2009, 19, 1939. – reference: H. Hoppe, N. S. Sariciftci, J. Mater. Chem. 2006, 16, 45. – reference: D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, D. S. Ginley, Thin Solid Films 2006, 496, 26. – reference: A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, Appl. Phys. Lett. 2007, 90, 163517. – reference: A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. Turbiez, M. M. Wienk, R. A. J. Janssen, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 1897. – reference: M. Lenes, G.-J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, P. W. M. Blom, Adv. Mater. 2008, 20, 2116. – reference: S. Heutz, P. Sullivan, B. M. Sanderson, S. M. Schultes, T. S. Jones, Sol. Energy Mater. Sol. Cells 2004, 83, 229. – reference: W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295, 2425. – reference: A. L. Roes, E. A. Alsema, K. Blok, M. K. Patel, Prog. Photovolt. : Res. Appl. 2009, 17, 372. – reference: R. A. Kerr, Science 2007, 318, 1230. – reference: F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 2003, 13, 85. – reference: S. Jenekhe, X. L. Chen, Science 1998, 279, 1903. – reference: T. J. Savenije, J. E. Kroeze, X. Yang, J. Loos, Adv. Funct. Mater. 2005, 15, 1260. – reference: O. Inganäs, F. Zhang, M. R. Andersson, Acc. Chem. Res. 2009, 42, 1731. – reference: S. S. van Bavel, E. Sourty, G. de With, K. Frolic, J. Loos, Macromolecules 2009, 42, 7396. – reference: N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, I, 1474. – reference: K. Yoshino, Y. X. Hong, K. Muro, S. Kiyomatsu, S. Morita, A. A. Zakhidov, T. Noguchi, T. Ohnishi, Jpn. J. Appl. Phys. 2 1993, 32, L357. – reference: S. S. van Bavel, E. Sourty, G. de With, S. Veenstra, J. Loos, J. Mater. Chem. 2009, 19, 5388. – reference: T.-Y. Chu, S. Alem, P. G. Verly, S. Wakim, J. Lu, Y. Tao, S. Beaupré, M. Leclerc, F. Bélanger, D. Désilets, S. Rodman, D. Waller, R. Gaudiana, Appl. Phys. Lett. 2009, 95, 063304. – reference: J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Gao, C. L. Wilkins, J. Org. Chem. 1995, 60, 532. – reference: A. J. Moule, K. Meerholz, Adv. Funct. Mater. 2009, 19, 3028. – reference: L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, P. W. M. Blom, Appl. Phys. Lett. 2005, 86, 123509. The expression in question has the following form: Voc = Egap/q − (kT/q) * ln [C*(1-P)/P], where P is the dissociation probability of excitons into free charges. Unless P is approaching zero, the dependency of Voc on P can be neglected. – reference: C. W. Tang, Appl. Phys. Lett. 1986, 48, 183. – reference: G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864. – reference: R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, B. de Boer, Polym. Rev. 2008, 48, 531. – reference: J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett. 1996, 68, 3120. – reference: K. Coakley, M. D. McGehee, Appl. Phys. Lett. 2003, 83, 3380. – reference: C. R. McNeill, A. Abrusci, J. Zaumseil, R. Wilson, M. J. McKiernan, J. H. Burroughes, J. J. M. Halls, N. C. Greenham, R. H. Friend, Appl. Phys. Lett. 2007, 90, 193506. – reference: S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324. – reference: X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano Lett. 2005, 5, 579. – reference: M. Jorgensen, K. Norrman, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2008, 92, 686. – reference: J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222. – reference: M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789. – reference: F. Zhang, M. Jonforsen, D. M. Johansson, M. R. Andersson, O. Inganäs, Synth. Met. 2003, 138, 555. – reference: C. Waldauf, P. Schilinsky, J. Hauch, C. J. Brabec, Thin Solid Films 2004, 451, 503. – reference: F. Zhang, K. G. Jespersen, C. Björström, M. Svensson, M. R. Andersson, V. Sundström, K. Magnusson, E. Moons, A. Yartsev, O. Inganäs, Adv. Funct. Mater. 2006, 16, 667. – reference: T. J. Savenije, J. M. Warman, A. Goossens, Chem. Phys. Lett. 1998, 287, 148. – reference: J. Gilot, M. M. Wienk, R. A. J. Janssen, Appl. Phys. Lett. 2007, 90, 143512. – reference: C. Yang, J. K. Lee, A. J. Heeger, F. Wudl, J. Mater. Chem. 2009, 19, 5416. – reference: Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, 1. – reference: H. Hoppe, N. S. Sariciftci, Adv. Polym. Sci. 2008, 214, 1. – volume: 15 start-page: 1617 year: 2005 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 1260 year: 2005 publication-title: Adv. Funct. Mater. – volume: 214 start-page: 1 year: 2008 publication-title: Adv. Polym. Sci. – volume: 13 start-page: 85 year: 2003 publication-title: Adv. Funct. Mater. – volume: 279 start-page: 1903 year: 1998 publication-title: Science – volume: 18 start-page: 789 year: 2006 publication-title: Adv. Mater. – volume: 78 start-page: 4510 year: 1995 publication-title: J. Appl. Phys. – volume: 138 start-page: 1 year: 2008 publication-title: Adv. Colloid Interface Sci. – volume: 42 start-page: 7396 year: 2009 publication-title: Macromolecules – volume: 22 start-page: 1 year: 2010 publication-title: Adv. Mater. – volume: 32 start-page: L357 year: 1993 publication-title: Jpn. J. Appl. Phys. 2 – year: 1998 – volume: 19 start-page: 3028 year: 2009 publication-title: Adv. Funct. Mater. – volume: 89 start-page: 252105 year: 2006 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 903 year: 2009 publication-title: Org. Lett. – volume: 287 start-page: 148 year: 1998 publication-title: Chem. Phys. Lett. – year: 2008 – volume: 295 start-page: 2425 year: 2002 publication-title: Science – volume: 449 start-page: 152 year: 2004 publication-title: Thin Solid Films – volume: 108 start-page: 19169 year: 2004 publication-title: J. Phys. Chem. B – start-page: 531 year: 2008 end-page: 566 – volume: 40 start-page: 1353 year: 2007 publication-title: Macromolecules – volume: 16 start-page: 667 year: 2006 publication-title: Adv. Funct. Mater. – volume: 68 start-page: 3120 year: 1996 publication-title: Appl. Phys. Lett. – volume: 92 start-page: 753 year: 2008 publication-title: Sol. Energy Mater. Sol. Cells – volume: 47 start-page: 13835 year: 1993 publication-title: Phys. Rev. B – volume: 36 start-page: 2211 year: 1995 publication-title: Polymer – volume: 83 start-page: 3380 year: 2003 publication-title: Appl. Phys. Lett. – volume: 16 start-page: 802 year: 2004 publication-title: Adv. Mater. – volume: 20 start-page: 2556 year: 2008 publication-title: Adv. Mater. – volume: 88 start-page: 09351 year: 2006 publication-title: Appl. Phys. Lett. – volume: 86 start-page: 201120 year: 2005 publication-title: Appl. Phys. Lett. – volume: 131 start-page: 14612 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 87 start-page: 083506 year: 2005 publication-title: Appl. Phys. Lett. – year: 1992 – volume: 78 start-page: 841 year: 2001 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 1317 year: 2004 publication-title: Nanotechnology – volume: 11 start-page: 374 year: 2001 publication-title: Adv. Funct. Mater. – volume: 93 start-page: 033307 year: 2008 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 864 year: 2005 publication-title: Nat. Mater. – volume: 86 start-page: 123509 year: 2005 publication-title: Appl. Phys. Lett. – volume: 401 start-page: 685 year: 1999 publication-title: Nature – start-page: 2116 year: 2003 publication-title: Chem. Commun. – volume: 515 start-page: 3126 year: 2007 publication-title: Thin Solid Films – volume: 59 start-page: 15346 year: 1999 publication-title: Phys. Rev. B – volume: 12 start-page: 498 year: 2000 publication-title: Adv. Mater. – volume: 14 start-page: 1005 year: 2004 publication-title: Adv. Funct. Mater. – volume: 83 start-page: 229 year: 2004 publication-title: Sol. Energy Mater. Sol. Cells – volume: 93 start-page: 3693 year: 2003 publication-title: J. Appl. Phys. – volume: 48 start-page: 183 year: 1986 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 579 year: 2005 publication-title: Nano Lett. – volume: 15 start-page: 2056 year: 2003 publication-title: Adv. Mater. – volume: 90 start-page: 143506 year: 2007 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 497 year: 2007 publication-title: Nat. Mater. – volume: 86 start-page: 063502 year: 2005 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 671 year: 2005 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 2503 year: 2004 publication-title: Chem. Mater. – volume: 90 start-page: 193506 year: 2007 publication-title: Appl. Phys. Lett. – volume: 19 start-page: 5388 year: 2009 publication-title: J. Mater. Chem. – year: 2001 – volume: 21 start-page: 4238 year: 2009 publication-title: Adv. Mater. – volume: 95 start-page: 063304 year: 2009 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 818 year: 2009 publication-title: Nat. Mater. – volume: 107 start-page: 1324 year: 2007 publication-title: Chem. Rev. – volume: 90 start-page: 143512 year: 2007 publication-title: Appl. Phys. Lett. – volume: 94 start-page: 6849 year: 2003 publication-title: J. Appl. Phys. – volume: 48 start-page: 531 year: 2008 publication-title: Polym. Rev. – volume: 19 start-page: 5416 year: 2009 publication-title: J. Mater. Chem. – volume: 30 start-page: 189 year: 2002 publication-title: Energy Policy – volume: 19 start-page: 1939 year: 2009 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 157 year: 1992 publication-title: Acc. Chem. Res. – volume: 496 start-page: 26 year: 2006 publication-title: Thin Solid Films – volume: 16 start-page: 1009 year: 2004 publication-title: Adv. Mater. – volume: 107 start-page: 7696 year: 2003 publication-title: J. Phys. Chem. B – volume: 138 start-page: 555 year: 2003 publication-title: Synth. Met. – volume: 451 start-page: 503 year: 2004 publication-title: Thin Solid Films – volume: 38 start-page: 4289 year: 2005 publication-title: Macromolecules – volume: 92 start-page: 686 year: 2008 publication-title: Sol. Energy Mater. Sol. Cells – start-page: 283 year: 2008 end-page: 298 – volume: 9 start-page: 551 year: 2007 publication-title: Org. Lett. – volume: 16 start-page: 699 year: 2006 publication-title: Adv. Funct. Mater. – volume: 90 start-page: 133504 year: 2007 publication-title: Appl. Phys. Lett. – volume: 31 start-page: 735 year: 1993 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 91 start-page: 263505 year: 2007 publication-title: Appl. Phys. Lett. – volume: 270 start-page: 1789 year: 1995 publication-title: Science – volume: 103 start-page: 4352 year: 1999 publication-title: J. Phys. Chem. B – volume: 122 start-page: 5464 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 1685 year: 2006 publication-title: Energy – volume: 376 start-page: 498 year: 1995 publication-title: Nature – volume: 47 start-page: 5061 year: 2007 publication-title: Chem. Commun. – volume: 108 start-page: 5235 year: 2004 publication-title: J. Phys. Chem. B – volume: 91 start-page: 113520 year: 2007 publication-title: Appl. Phys. Lett. – volume: 318 start-page: 1230 year: 2007 publication-title: Science – volume: 37 start-page: 2152 year: 2004 publication-title: Macromolecules – volume: 20 start-page: 2116 year: 2008 publication-title: Adv. Mater. – volume: 60 start-page: 532 year: 1995 publication-title: J. Org. Chem. – volume: 10 start-page: 1275 year: 2009 publication-title: Org. Electron. – start-page: 2469 year: 2009 publication-title: Chem. Commun. – volume: 16 start-page: 1897 year: 2006 publication-title: Adv. Funct. Mater. – volume: 90 start-page: 163517 year: 2007 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 507 year: 2009 publication-title: Nano Lett. – volume: 17 start-page: 372 year: 2009 publication-title: Prog. Photovolt. : Res. Appl. – volume: 47 start-page: 58 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 317 start-page: 222 year: 2007 publication-title: Science – volume: 42 start-page: 1731 year: 2009 publication-title: Acc. Chem. Res. – volume: 14 start-page: 425 year: 2004 publication-title: Adv. Funct. Mater. – start-page: 1474 year: 1992 publication-title: Science – volume: 16 start-page: 45 year: 2006 publication-title: J. Mater. Chem. – volume: 15 start-page: 988 year: 2003 publication-title: Adv. Mater. – year: 1999 – ident: e_1_2_7_2_2 – ident: e_1_2_7_50_2 doi: 10.1002/adfm.200500211 – ident: e_1_2_7_62_2 doi: 10.1002/adfm.200400297 – ident: e_1_2_7_8_2 doi: 10.1002/9783527623198.ch20 – ident: e_1_2_7_88_2 doi: 10.1021/cm049917d – ident: e_1_2_7_29_2 doi: 10.1038/44359 – ident: e_1_2_7_83_2 doi: 10.1021/ma900817t – ident: e_1_2_7_9_2 doi: 10.1021/cr050149z – volume: 214 start-page: 1 year: 2008 ident: e_1_2_7_10_2 publication-title: Adv. Polym. Sci. – ident: e_1_2_7_109_2 doi: 10.1063/1.2738197 – volume-title: Global Energy Perspectives year: 1998 ident: e_1_2_7_7_2 – ident: e_1_2_7_63_2 doi: 10.1002/polb.1993.090310614 – ident: e_1_2_7_22_2 doi: 10.1143/JJAP.32.L357 – ident: e_1_2_7_91_2 doi: 10.1126/science.1069156 – ident: e_1_2_7_35_2 doi: 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W – ident: e_1_2_7_96_2 doi: 10.1016/j.tsf.2005.08.179 – ident: e_1_2_7_80_2 doi: 10.1002/adfm.200400559 – ident: e_1_2_7_72_2 doi: 10.1002/adfm.200500339 – ident: e_1_2_7_84_2 doi: 10.1021/jp9901803 – ident: e_1_2_7_13_2 doi: 10.1016/j.solmat.2008.01.005 – ident: e_1_2_7_68_2 doi: 10.1016/j.solmat.2008.01.006 – ident: e_1_2_7_36_2 doi: 10.1002/adma.200501717 – ident: e_1_2_7_17_2 doi: 10.1126/science.258.5087.1474 – ident: e_1_2_7_1_2 – ident: e_1_2_7_94_2 doi: 10.1039/b902060h – ident: e_1_2_7_64_2 doi: 10.1021/jp047023a – ident: e_1_2_7_74_2 doi: 10.1039/b900901a – ident: e_1_2_7_49_2 doi: 10.1063/1.1929875 – ident: e_1_2_7_19_2 doi: 10.1063/1.96937 – ident: e_1_2_7_102_2 doi: 10.1063/1.2784961 – ident: e_1_2_7_55_2 doi: 10.1080/15583720802231833 – volume-title: Electronic Processes in Organic Crystals and Polymers year: 1999 ident: e_1_2_7_16_2 doi: 10.1093/oso/9780195129632.001.0001 – ident: e_1_2_7_26_2 doi: 10.1063/1.359792 – ident: e_1_2_7_11_2 doi: 10.1002/adma.201090021 – ident: e_1_2_7_25_2 doi: 10.1021/jp0217738 – ident: e_1_2_7_24_2 doi: 10.1016/S0009-2614(98)00163-8 – ident: e_1_2_7_103_2 doi: 10.1126/science.1141711 – ident: e_1_2_7_20_2 doi: 10.1063/1.1534621 – ident: e_1_2_7_53_2 doi: 10.1063/1.2718488 – ident: e_1_2_7_18_2 doi: 10.1103/PhysRevB.59.15346 – ident: e_1_2_7_61_2 doi: 10.1002/adma.200306372 – ident: e_1_2_7_4_2 doi: 10.1016/S0301-4215(01)00144-6 – ident: e_1_2_7_44_2 doi: 10.1021/ar00015a009 – ident: e_1_2_7_60_2 doi: 10.1002/adfm.200305026 – ident: e_1_2_7_65_2 doi: 10.1039/B305988J – ident: e_1_2_7_100_2 doi: 10.1063/1.2730746 – ident: e_1_2_7_30_2 doi: 10.1021/nl048120i – ident: e_1_2_7_76_2 doi: 10.1063/1.2006986 – ident: e_1_2_7_57_2 doi: 10.1021/ja9057986 – ident: e_1_2_7_54_2 doi: 10.1021/ar900073s – ident: e_1_2_7_97_2 doi: 10.1063/1.1616197 – ident: e_1_2_7_108_2 doi: 10.1021/ol802839z – ident: e_1_2_7_40_2 doi: 10.1039/B510618B – ident: e_1_2_7_69_2 doi: 10.1002/adma.200900510 – start-page: 283 volume-title: Organic Photovoltaics year: 2008 ident: e_1_2_7_81_2 – volume: 37 start-page: 2152 year: 2004 ident: e_1_2_7_59_2 publication-title: Macromolecules – ident: e_1_2_7_85_2 doi: 10.1002/(SICI)1521-4095(200004)12:7<498::AID-ADMA498>3.0.CO;2-H – ident: e_1_2_7_111_2 doi: 10.1002/adma.200702438 – ident: e_1_2_7_42_2 doi: 10.1002/anie.200702506 – ident: e_1_2_7_52_2 doi: 10.1016/S0040-6090(03)01348-8 – ident: e_1_2_7_89_2 doi: 10.1016/j.cis.2007.09.001 – ident: e_1_2_7_28_2 doi: 10.1126/science.270.5243.1789 – ident: e_1_2_7_37_2 doi: 10.1063/1.1889240 – ident: e_1_2_7_106_2 doi: 10.1002/adma.200800456 – ident: e_1_2_7_70_2 doi: 10.1002/adfm.200900090 – ident: e_1_2_7_45_2 doi: 10.1063/1.1345834 – ident: e_1_2_7_21_2 doi: 10.1103/PhysRevB.47.13835 – ident: e_1_2_7_75_2 doi: 10.1038/nmat1500 – ident: e_1_2_7_58_2 doi: 10.1063/1.3182797 – ident: e_1_2_7_82_2 doi: 10.1021/nl8014022 – ident: e_1_2_7_93_2 doi: 10.1126/science.279.5358.1903 – ident: e_1_2_7_31_2 doi: 10.1063/1.1861123 – ident: e_1_2_7_33_2 doi: 10.1002/adfm.200500420 – ident: e_1_2_7_104_2 doi: 10.1063/1.2719668 – ident: e_1_2_7_107_2 doi: 10.1039/b712398a – ident: e_1_2_7_101_2 doi: 10.1002/adma.200305274 – ident: e_1_2_7_39_2 doi: 10.1063/1.2711534 – ident: e_1_2_7_105_2 doi: 10.1002/adfm.200600138 – ident: e_1_2_7_77_2 doi: 10.1063/1.2408661 – ident: e_1_2_7_98_2 doi: 10.1002/adfm.200900775 – ident: e_1_2_7_87_2 doi: 10.1016/S0379-6779(02)01246-8 – ident: e_1_2_7_90_2 doi: 10.1002/adma.200306659 – ident: e_1_2_7_92_2 doi: 10.1063/1.2937472 – volume-title: Photoelectronic Properties of Semiconductors year: 1992 ident: e_1_2_7_15_2 – ident: e_1_2_7_67_2 doi: 10.1002/adfm.200305049 – ident: e_1_2_7_66_2 doi: 10.1021/ma047589x – ident: e_1_2_7_6_2 doi: 10.1016/j.energy.2005.09.006 – ident: e_1_2_7_56_2 doi: 10.1038/nmat1928 – ident: e_1_2_7_43_2 doi: 10.1021/jo00108a012 – ident: e_1_2_7_95_2 doi: 10.1039/b901732a – ident: e_1_2_7_78_2 doi: 10.1016/0032-3861(95)95298-F – ident: e_1_2_7_73_2 doi: 10.1016/j.tsf.2006.08.043 – ident: e_1_2_7_14_2 doi: 10.1002/pip.891 – ident: e_1_2_7_48_2 doi: 10.1016/j.tsf.2003.11.043 – ident: e_1_2_7_32_2 doi: 10.1016/j.solmat.2004.02.027 – ident: e_1_2_7_23_2 doi: 10.1063/1.115797 – ident: e_1_2_7_27_2 doi: 10.1038/376498a0 – ident: e_1_2_7_3_2 – ident: e_1_2_7_47_2 doi: 10.1002/adfm.200390011 – volume: 318 start-page: 1230 year: 2007 ident: e_1_2_7_5_2 publication-title: Science doi: 10.1126/science.318.5854.1230 – ident: e_1_2_7_51_2 doi: 10.1002/adma.200304150 – ident: e_1_2_7_86_2 doi: 10.1021/ja000160a – ident: e_1_2_7_34_2 doi: 10.1063/1.1620683 – ident: e_1_2_7_38_2 doi: 10.1063/1.2821368 – ident: e_1_2_7_71_2 doi: 10.1016/j.orgel.2009.07.002 – ident: e_1_2_7_79_2 doi: 10.1088/0957-4484/15/9/035 – ident: e_1_2_7_46_2 doi: 10.1021/jp049918t – ident: e_1_2_7_99_2 doi: 10.1038/nmat2533 – ident: e_1_2_7_41_2 doi: 10.1021/ma0618732 – ident: e_1_2_7_110_2 doi: 10.1021/ol062666p – volume: 88 start-page: 09351 year: 2006 ident: e_1_2_7_12_2 publication-title: Appl. Phys. Lett. |
SSID | ssj0008402 |
Score | 2.281522 |
SecondaryResourceType | review_article |
Snippet | Nanostructured polymer‐based solar cells (PSCs) have emerged as a promising low‐cost alternative to conventional inorganic photovoltaic devices and are now a... Nanostructured polymer-based solar cells (PSCs) have emerged as a promising low-cost alternative to conventional inorganic photovoltaic devices and are now a... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1835 |
SubjectTerms | Application fields Applied sciences bulk heterojunction Devices electron tomography Energy Exact sciences and technology Heterojunctions Morphology Nanocomposites Nanomaterials Nanostructure Natural energy Photovoltaic cells Photovoltaic conversion Polymer industry, paints, wood polymer solar cells Solar cells Solar cells. Photoelectrochemical cells Solar energy Technology of polymers |
Title | On the Importance of Morphology Control in Polymer Solar Cells |
URI | https://api.istex.fr/ark:/67375/WNG-X484F1JN-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201000080 https://www.ncbi.nlm.nih.gov/pubmed/21567602 https://www.proquest.com/docview/866536524 https://www.proquest.com/docview/901660009 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF9yM8Kh8QnNJmHT-SC1IVsZSiXVChYm-WYztS1W2C9iEBv54Ze5NlERUSHCPZkTyesb_PHn9DyAvjlBn5wqW1yUXKc2bSomxsmgOWcCy3pRD4OHkylcdn_GQmZr-84o_6EMOBG0ZGWK8xwE29PNyKhqLUQ0jNCqgHFmFM2EJUdLrVjwL2Eq87gXEBGZO9amPGDne77-xK19HA3zBL0izBUE2scPEnCLqLaMOWNL5NTD-YmIlycbBe1Qf2x286j_8z2jvk1gav0qPoYHfJNd_eIzeqvkzcffL6Q0sBRNJ3lwHJgw_RrqGTDuYvnNjTKibD0_OWfuzm3y_9gn5CPk0rP58vH5Cz8ZvP1XG6KcqQWsFVllouSq-ymvuRkkIZyS0WULfCW4hgJ4zwXpkawhzZjjNS1c7WeVkwJwvAyPlDstd2rX9MqASyZ6WwogFqLH1eGKO8FZmTwrlm1CQk7SdF241iORbOmOuotcw0WkUPVknIq6H916jVcWXLl2GOh2ZmcYEZbkroL9O3esYLPh6dTPX7hOzvOMHQgeU5IsEyIbT3Cg2Gx9sW0_puvdQoJAgeyfjVTQCLSYkoNyGPokNt_w-8WsmMJYQFt_jLgPTk6LQavp78S6en5GbIjAjvLJ-RvdVi7Z8D4FrV-yGofgIaOR8J |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygX3pTwKD4gOKXNxq_kglRFLNvHLqi0ojfLsR0JdZugfUjAr8fjbLJaRIUEx0jjSB7PxN_njL8BeK2t1AOX2bjUlMeMpjrO8srE1GMJm1KTc46Xk8cTMbpgx5e8qybEuzCtPkR_4IaZEb7XmOB4IH2wVg1FrYdQmxVgz23YxrbegVWdrRWkPH9pf3h6zuXpmOh0G5P0YHP8xr60jS7-jnWSeu5dVbU9Lv4EQjcxbdiUhveg7KbT1qJc7S8X5b75-ZvS43_N9z7cXUFWctjG2AO45eqHsFN0neIewbuPNfE4khxdBzDvw4g0FRk3fgnDoT0p2np48rUmn5rpj2s3I5-RUpPCTafzx3AxfH9ejOJVX4bYcCaT2DCeO5mUzA2k4FILZrCHuuHO-CS2XHPnpC59piPhsVrI0pqS5llqReZhMn0CW3VTu6dAhOd7RnDDK8-OhaOZ1tIZnljBra0GVQRxtyrKrETLsXfGVLVyy6lCr6jeKxG87e2_tXIdN1q-CYvcm-nZFRa5Sa6-TD6oS5ax4eB4ok4i2NuIgn5ASimCwTwC0oWF8o7HHy66ds1yrlBLkAqesptNPBwTAoFuBLttRK3f76m1FEkaQRri4i8TUuPDs6J_evYvg17Bzuh8fKpOjyYnz-FOKJQI1y5fwNZitnQvPf5alHshw34BBygjJA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwGX8qaBUnxAcEqbjV_JpVKVsvTBLlWhYm-WYzsS6jap9iEBv75-bLJdRIUEx0jjSB7PxN_njL8BeCs1lz2T6biUmMYEpzLO8krF2GIJnWKVU-ouJw-G7PCcHI_o6MYt_qAP0R24uczw32uX4Fe62l2KhjqpB1-a5VHPXVgnLMlcXB-cLQWkLH0J_zst5bJsjLWyjUm6uzp-ZVtadx7-4cok5dR6qgotLv6EQVchrd-T-g9BtrMJpSgXO_NZuaN-_Sb0-D_TfQQbC8CK9kOEPYY7pn4C94u2T9xT2PtcI4si0dGlh_I2iFBToUFjF9Af2aMiVMOj7zU6bcY_L80EfXGEGhVmPJ4-g_P-h6_FYbzoyhArSngSK0Jzw5OSmB5nlEtGlOugrqhRNoU1ldQYLkub547uaMl4qVWJ8yzVLLMgGT-HtbqpzSYgZtmeYlTRynJjZnAmJTeKJppRrateFUHcLopQC8ly1zljLILYciqcV0TnlQjed_ZXQazjVst3fo07Mzm5cCVunIpvw49iRDLS7x0PxUkE2ytB0A1IMXZQMI8AtVEhrOPd7xZZm2Y-FU5JEDOakttNLBhjzMHcCF6EgFq-3xJrzpI0gtSHxV8mJAb7Z0X39PJfBr2Be6cHffHpaHjyCh74Kgl_53IL1maTuXltwdes3Pb5dQ2UCyHc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Importance+of+Morphology+Control+in+Polymer+Solar+Cells&rft.jtitle=Macromolecular+rapid+communications.&rft.au=van+Bavel%2C+Svetlana&rft.au=Veenstra%2C+Sjoerd&rft.au=Loos%2C+Joachim&rft.date=2010-11-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=31&rft.issue=21&rft.spage=1835&rft.epage=1845&rft_id=info:doi/10.1002%2Fmarc.201000080&rft.externalDBID=10.1002%252Fmarc.201000080&rft.externalDocID=MARC201000080 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |